材料力学弯曲应力总结.

合集下载

材料力学结构变形知识点总结

材料力学结构变形知识点总结

材料力学结构变形知识点总结材料力学是研究物体受力后产生的变形规律的一门学科,它涵盖了材料的力学性能以及结构受力后的变形特点。

在这篇文章中,我将对材料力学结构变形的相关知识点进行总结。

一、应力与应变1. 定义:应力是单位面积上的内力,它描述了物体受力后所产生的内部分子间的相互作用;应变是物体在受到外力作用下发生的形变,它描述了物体的相对位移。

2. 计算方法:应力等于物体表面上的受力除以受力点所在的面积;应变等于物体发生形变的长度变化与原始长度的比值。

二、材料的力学性质1. 弹性力学:当物体受到外力作用后,能够恢复原状的性质称为弹性;2. 塑性力学:当物体受到外力作用后,形状改变并保持新形状,失去弹性恢复能力;3. 破坏力学:当物体受到外力作用后,无法恢复原状,发生破裂或破坏。

三、结构变形的类型1. 拉伸变形:物体在受到拉力作用下发生的变形,导致长度增加,横截面积减小;2. 压缩变形:物体在受到压力作用下发生的变形,导致长度减小,横截面积增加;3. 弯曲变形:物体在受到弯矩作用下发生的变形,导致形状发生弯曲;4. 扭转变形:物体在受到扭矩作用下发生的旋转变形;5. 剪切变形:物体在受到切割力作用下发生的变形,导致相邻层之间发生滑动。

四、材料的力学性能指标1. 弹性模量:描述物体在受到外力作用下发生弹性变形的能力,是应力与应变的比值;2. 屈服强度:描述物体在受到外力作用下发生塑性变形的能力,是材料开始出现塑性变形时的应力值;3. 抗拉强度:描述物体在拉伸变形过程中的最大承受力;4. 弯曲强度:描述物体在弯曲变形过程中的最大承受力。

五、结构变形的影响因素1. 材料性质:不同材料具有不同的力学性能,会对结构变形产生影响;2. 外力作用:外力的大小、方向以及施加位置都会影响结构的变形;3. 结构形状与尺寸:结构的形状与尺寸决定了其抵抗变形的能力。

六、应用领域1. 建筑工程:材料力学结构变形的研究为建筑工程的安全设计提供了重要依据,使结构能够承受各种力学作用;2. 航空航天工程:飞行器的结构变形对飞行性能具有重要影响,材料力学可以提供合理的结构设计;3. 汽车工程:材料力学能够应用于汽车的碰撞安全设计,以及车身结构的优化。

材料力学06(第六章 弯曲应力)分析

材料力学06(第六章 弯曲应力)分析

F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd

h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b

材料力学弯曲应力知识点总结

材料力学弯曲应力知识点总结

材料力学弯曲应力知识点总结弯曲应力是材料力学中重要的概念之一,它描述了材料在受到弯曲力作用时所承受的内部力状态。

了解和掌握弯曲应力的知识对于工程领域的设计和分析具有重要意义。

本文将对材料力学中弯曲应力的相关知识点进行总结。

一、弯曲应力的基本概念弯曲应力是指在材料受到弯曲作用时,在横截面上单位面积所承受的力的大小,通常用σ表示。

弯曲应力的大小与施加在材料上的弯曲力以及截面形状和尺寸有关。

二、弯矩和截面性质1. 弯矩:在弯曲过程中,作用在材料上的弯曲力会产生一个力矩。

弯矩的大小等于力矩除以截面法线距离。

弯矩的单位通常是N·m。

2. 惯性矩和截面模量:惯性矩描述了截面抵抗变形的能力,通常用I表示。

截面模量描述了材料在弯曲过程中的刚度,通常用W表示。

惯性矩和截面模量与截面的形状和尺寸有关。

三、材料的截面形状对弯曲应力的影响材料的截面形状对弯曲应力有着重要的影响,以下是几种常见截面形状的弯曲应力分析:1. 矩形截面:矩形截面的弯曲应力呈线性分布,最大弯曲应力出现在截面内边缘。

2. 圆形截面:圆形截面的弯曲应力均匀分布,在截面上的任意一点的弯曲应力都相同。

3. T型截面:T型截面的弯曲应力最大出现在截面顶部和底部的交接处。

4. I型截面:I型截面的弯曲应力主要集中在截面中轴线部分。

四、弯曲应力与应变的关系弯曲应力和应变之间的关系可以通过杨氏模量进行描述。

弯曲应力和应变的关系可以用以下公式表示:σ=M*y/I,其中M为弯矩,y为截面的纵向距离,I为截面的惯性矩。

五、弯曲应力的计算方法根据弯曲应力的定义和性质,可以采用以下方法来计算弯曲应力:1. 等效应力法:将弯矩和弯曲力矩转化为等效应力,然后根据截面形状计算弯曲应力。

2. 梁理论:基于材料的截面形状和尺寸,使用梁理论来计算弯曲应力。

通过计算截面的惯性矩和截面模量来获得弯曲应力。

六、弯曲应力的影响因素弯曲应力受到以下因素的影响:1. 弯曲力的大小和方向2. 材料的弹性模量3. 材料的截面形状和尺寸4. 材料的力学性质和力学行为5. 材料的应变率和应变历史七、弯曲应力的应用弯曲应力在工程设计和分析中具有广泛的应用,例如:1. 结构设计:通过对材料的弯曲应力进行分析,可以确定结构的合理尺寸和截面形状,以满足设计要求。

弯曲变形知识点总结

弯曲变形知识点总结

弯曲变形知识点总结一、弯曲变形的原理1.1 弯曲应力和弯曲应变在外力作用下,梁或梁状结构会发生弯曲变形。

在梁上的任意一点,都会受到弯曲应力的作用。

弯曲应力是指由于梁在受力下产生的内部应力,它的大小和方向取决于梁的截面形状、受力方向和大小等因素。

弯曲应力与梁的截面形状呈二次关系,通常情况下,弯曲应力最大值出现在梁的截面中性轴附近。

随着梁的弯曲,材料内部会产生弯曲应变。

弯曲应变也是和梁的截面形状有关的,并且与弯曲应力呈线性关系。

弯曲应变可以用来描述梁在受力下的变形情况,对于计算梁的弯曲变形非常重要。

1.2 理想弹性梁的弯曲变形对于理想弹性梁而言,其弯曲变形可以通过弯曲方程来描述。

弯曲方程可以根据梁的几何形状和外力作用来得到,通过求解弯曲方程可以得到梁的变形情况。

理想弹性梁的弯曲变形遵循胡克定律,即弯曲应力和弯曲应变成正比。

1.3 破坏弯曲当外力作用到一定程度时,梁会发生破坏弯曲。

在破坏弯曲阶段,梁的抵抗力不足以克服外力作用,导致梁发生不可逆的变形。

在此阶段,梁的弯曲应力和弯曲应变将迅速增大,直至梁失去稳定性。

二、弯曲变形的计算方法2.1 弯曲方程弯曲方程是描述梁弯曲变形的重要工具,可以根据弯曲方程来求解梁的弯曲应力和弯曲应变。

通常情况下,弯曲方程是一种二阶微分方程,需要求解出合适的边界条件,才能得到梁的变形情况。

弯曲方程的求解与梁的截面形状直接相关,对于不同形状的梁,需要采用不同的弯曲方程。

2.2 梁的截面性质对于计算梁的弯曲变形而言,了解梁的截面性质非常重要。

梁的截面性质包括截面面积、截面惯性矩等参数,这些参数会直接影响弯曲方程的求解。

在实际工程中,可以通过截面性质来选择合适的梁截面形状,以满足结构设计的需求。

2.3 数值计算方法为了解决复杂梁的弯曲变形问题,通常需要采用数值计算方法。

数值计算方法可以通过数学模型来描述梁的变形行为,然后通过计算机仿真来得到梁的变形情况。

在工程实践中,有限元方法是一种常用的数值计算方法,可以对复杂结构的弯曲变形问题进行有效求解。

材料力学梁的应力解读

材料力学梁的应力解读

材料力学梁的应力解读
梁是结构分析中最基本的问题之一,也是材料力学中一个重要的概念。

梁的应力解读,就是对梁结构中的应力的分析。

一般来说,在材料力学中,梁的应力解读可以从下面几个方面来进行:
(1)弯曲应力:弯曲应力是指当梁在受到外力的作用下发生偏移或
沿着其中一轴线变形时,梁中钢材筋的纵向应力称为弯曲应力。

根据梁的
预定约束方式,可以分为受自重弯曲的应力和受外力弯曲的应力。

受自重
弯曲的应力大小由梁的自重和梁的几何形态所决定,一般情况下,斜梁的
自重弯曲应力会比悬臂梁的自重弯曲应力大。

受外力弯曲的应力大小取决
于受力梁的拉张性和刚度,以及施加外力的位置,大小和作用方向等因素,其中最重要的是材料的弹性模量。

(2)剪切应力:梁结构的剪切应力,是指梁受到外力作用时,对面
两侧的钢材筋之间的剪切应力。

由于受力面两端受非对称分布的外力作用,使得受力面的梁结构受到剪切应力的作用,一般情况下,受力面梁结构分
布的剪切应力会在受力面的两端有最大值,随着回头距离变小而逐渐减小。

(3)压应力:梁受外力所产生的压应力,是指受力面角支撑点处承
受拉力的钢材筋之间的应力,称为压应力。

材料力学-弯曲应力

材料力学-弯曲应力

对于宽为b高为h的矩形截面:
W
bh3 12
bh2
h
6
2
对于直径为d的圆形截面:
W d 4 64 d 3
d
32
2
限定最大弯曲正应力不得超过许用应力,于是强度条件为:
max
M max W
设σt 表示拉应力,σc 表示压应力,则:
t max t
cmax c
塑性材料, [σt]= [σc]= [σ];
所以由(1)式:
A
d
A
A E
y
d
A
E
A y d
A
E
Sz
0
由(2)式:
说明中性轴过形心
A z
d
A
A zE
y
d
A
E
A
yz d
A
E
I yz
0
由于y轴是对称轴,此 式自然满足。
由(3)式:
A
y
d
A
A
yE
y
d
A
E
A
y2
d
A
E
Iz
M
1 M
EI z
1 为梁轴线变形后的曲率 ;
由变形几何关系得到 y
由物理关系得到
bh2 2b3 W
63
故: b 121.6 mm
h 2b 243.2 mm
选取截面为: 125 250 mm 2
e.g.3 已知:l=1.2m,[σ]=170MPa, 18号工字钢,不计自重。
求:P 的最大许可值。
P A
解:作弯矩图, 由图可得:
M
| M |max Pl 1.2P N m

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

弯曲应力-材料力学

弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
3 R2
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /

材料力学(给排水)第四章-弯曲应力

材料力学(给排水)第四章-弯曲应力

弯曲应力的计算方法
1 梁弯曲公式
常用于计算直梁受弯时的应力分布和最大应 力值。
2 等强度法
常用于计算不同形状截面的梁受弯时的应力 分布。
弯曲应力的分布特点
1 最大应力出现在最远离中性轴的位置
2 中性轴附近应力应变
2 下表面拉应变
3 中性面应变为0
弯曲应力的应力-应变关系
1 胡克定律
当弯曲应力小于材料的弹性极限时,应力与 应变成正比关系。
2 弹性模量
描述了材料在受力时的变形程度。
材料力学中常见的弯曲应力计算问题
1 悬臂梁的最大弯曲应力计算
2 叠木梁的弯曲应力分布计算
3 榀形梁的弯曲应力计算
弯曲应力的工程应用及实例
1 建筑结构设计
弯曲应力的分析和计算对 于设计坚固和稳定的建筑 结构至关重要。
2 桥梁工程
弯曲应力的研究可以帮助 工程师设计和评估桥梁的 结构和安全性。
3 车辆设计
在汽车和飞机等交通工具 的设计过程中,弯曲应力 是一个重要的考虑因素。
材料力学(给排水)第四章 -弯曲应力
在材料力学中,弯曲应力是一个重要的概念,它涉及到物体在受力时的弯曲 情况。本章将介绍弯曲应力的定义、计算方法、分布特点、应变状态、应力应变关系以及其工程应用及实例。
弯曲应力的定义
1 弯曲应力
当一个物体受到外力作用而发生弯曲时,物体内部会出现垂直于弯曲面的应力,这种应 力即为弯曲应力。

材料力学弯曲应力

材料力学弯曲应力

材料力学弯曲应力材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而弯曲应力是材料在受到弯曲载荷时所产生的应力。

弯曲应力的研究对于工程结构设计和材料选用具有重要意义。

本文将从弯曲应力的概念、计算公式、影响因素等方面进行详细介绍。

弯曲应力是指在材料受到弯曲载荷作用下,横截面上的应力分布情况。

在弯曲过程中,材料上部受到压应力,下部受到拉应力,而中性面则不受应力影响。

根据梁的理论,弯曲应力与弯矩、截面形状以及材料性质有关。

在工程实践中,我们通常使用梁的弯曲应力公式来计算弯曲应力的大小。

梁的弯曲应力公式可以表示为:\[ \sigma = \frac{M \cdot c}{I} \]其中,σ为弯曲应力,M为弯矩,c为截面中性轴到受拉或受压纤维的距离,I为截面的惯性矩。

从公式中可以看出,弯曲应力与弯矩成正比,与截面形状和材料性质有关,截面越大,惯性矩越大,弯曲应力越小。

影响弯曲应力的因素有很多,主要包括载荷大小、截面形状、材料性质等。

首先是载荷大小,当外力作用在梁上时,产生的弯矩大小将直接影响弯曲应力的大小。

其次是截面形状,截面形状不同将导致截面惯性矩不同,进而影响弯曲应力的大小。

最后是材料性质,材料的弹性模量、屈服强度等参数也会对弯曲应力产生影响。

在工程实践中,我们需要根据具体的工程要求和材料性质来选择合适的截面形状和材料类型,以使得结构在受到弯曲载荷时能够满足强度和刚度的要求。

同时,还需要合理设计结构,减小弯曲应力集中的区域,避免出现应力集中而导致的破坏。

综上所述,弯曲应力是材料在受到弯曲载荷时产生的应力,其大小与弯矩、截面形状和材料性质有关。

在工程实践中,我们需要根据具体的工程要求和材料性质来计算和分析弯曲应力,以保证结构的安全可靠。

同时,合理设计结构和选择合适的材料也是降低弯曲应力的重要手段。

希望本文对于弯曲应力的理解和应用能够有所帮助。

材料弯曲实验报告总结(3篇)

材料弯曲实验报告总结(3篇)

第1篇一、实验目的本次材料弯曲实验的主要目的是了解和掌握材料在弯曲过程中的力学性能,验证材料力学基本理论,提高对材料力学实验方法的认识。

通过实验,观察和分析不同材料在不同条件下的弯曲行为,为工程设计和材料选择提供理论依据。

二、实验原理材料在弯曲过程中,受到弯矩和剪力的影响,产生正应力和剪应力。

根据材料力学的基本理论,我们可以通过计算得到材料在弯曲过程中的应力分布和变形情况。

实验中,我们主要关注材料的弯曲正应力,即材料在弯曲过程中产生的垂直于中性轴的应力。

三、实验设备与材料1. 实验设备:弯曲试验机、万能材料试验机、测量仪器(如位移计、应变片等)、计算机等。

2. 实验材料:碳素钢、不锈钢、铝合金、塑料等。

四、实验步骤1. 根据实验要求,选择合适的材料,并进行加工处理,确保试样的尺寸和形状符合实验要求。

2. 将试样安装在弯曲试验机上,调整试验机的参数,如加载速度、加载方式等。

3. 对试样进行弯曲试验,记录实验过程中的数据,如位移、应变等。

4. 利用测量仪器对试样进行应变测量,通过应变片采集数据。

5. 对实验数据进行处理和分析,计算材料在弯曲过程中的应力分布和变形情况。

五、实验结果与分析1. 实验结果表明,不同材料在弯曲过程中的力学性能存在差异。

碳素钢具有较高的抗弯强度和刚度,适用于承受较大载荷的工程结构;不锈钢具有良好的耐腐蚀性能,适用于腐蚀性环境;铝合金具有较低的密度,适用于轻量化设计;塑料具有较好的韧性,适用于需要一定变形能力的场合。

2. 实验结果表明,材料在弯曲过程中的应力分布呈现非线性规律。

中性轴附近应力较大,远离中性轴的应力逐渐减小。

在材料弯曲过程中,最大应力出现在中性轴处。

3. 实验结果表明,材料在弯曲过程中的变形情况与材料的弹性模量和泊松比有关。

弹性模量较大的材料,其变形较小;泊松比较大的材料,其横向变形较大。

六、实验结论1. 通过本次材料弯曲实验,我们掌握了材料在弯曲过程中的力学性能,验证了材料力学基本理论。

材料力学弯曲知识点总结

材料力学弯曲知识点总结

材料力学弯曲知识点总结材料力学是研究物质力学性质和力学行为的一门学科,其中弯曲是一个重要的研究方向。

本文将对材料力学中的弯曲知识点进行总结,包括弯曲的定义、应力、应变和杨氏模量等内容。

1. 弯曲的定义弯曲是指在作用力或力矩的作用下,物体发生形状的变化,使其变曲或曲度改变的现象。

在材料力学中,弯曲是指材料在受到外力作用下,产生弯曲应变和弯曲应力的行为。

2. 弯曲应力弯曲应力是指在材料发生弯曲时,单位面积上的内力。

在弯曲过程中,材料上的各点受到不同程度的拉伸或压缩,产生弯曲应力。

弯曲应力与外力以及横截面形状和尺寸有关。

3. 弯曲应变弯曲应变是指材料在受到弯曲作用时,单位长度上的变形量。

弯曲应变正比于弯曲的曲率半径和材料的长度,与材料的刚度有关。

4. 应力和应变的关系根据胡克定律,应力和应变之间存在线性关系。

在弯曲过程中,弯曲应力和弯曲应变近似满足线性关系,可以用杨氏模量来表示。

杨氏模量是材料的一个重要力学参数,可以衡量材料的刚度。

5. 计算弯曲应力和应变的公式在弯曲现象中,可以通过一些公式来计算弯曲应力和应变。

其中,弯曲应力的计算公式为σ = (M*y) / I,弯曲应变的计算公式为ε = (M*y) / (E*I)。

其中,M为弯矩,y为离中性轴的距离,I为惯性矩,E为杨氏模量。

6. 中性轴和惯性矩在材料弯曲过程中,中性轴是指曲率最小的轴线,即弯曲位置上的轴线。

惯性矩则是材料承受弯矩时,各点离中性轴距离的平方乘以截面积后的积分,用来量化材料的抗弯刚度。

7. 材料弯曲的应用材料弯曲的特性使其具有广泛的应用,比如在工程结构中的材料选择和设计中,弯曲强度和刚度是重要的考虑因素之一。

此外,弯曲还可用于制造各种曲线形状的构件和装饰品。

综上所述,材料力学中的弯曲是一种重要的力学行为,涉及到弯曲应力、弯曲应变和杨氏模量等知识点。

弯曲应力和应变的计算可以通过公式来完成,中性轴和惯性矩是描述材料弯曲过程中位置和抗弯刚度的重要概念。

材料力学-弯曲应力

材料力学-弯曲应力
超静定梁
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图

弯曲应力-材料力学

弯曲应力-材料力学
已知:弯矩M、横截面的惯性矩Iz、许用应力[]。求:判断不等号。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。

材料力学弯曲应力

材料力学弯曲应力

六. 弯曲应力
从变形特点分析,到材料本构关系,到静力平衡
1、研究对象:等直、细长、对称截面梁
细长梁:长度比其高度大许多倍的梁, 一般来讲长高比 L/h > 20
有关细长梁的理论:经典梁理论, 或叫 Euler-Bernoulli 梁理论
2、基本假设:
(a) 小变形——在弹性变形范围内,
(b) 满足平面弯曲条件, (c) 纯弯曲。
dA
x
s
y
I yz 0
(d)
即:y -轴,z -轴为截面的形心主惯性轴
材料力学
六. 弯曲应力
§6.1 纯弯曲时梁横截面上的正应力
对于实心截面,若截面无对称轴,要使梁产生平面弯曲,
亦必须满足 I yz 。0即 y、z 轴为截面的形心主惯性轴。
所以只要外力作用在形心主惯性平面内同样可产生平面弯曲。
中性轴的特点:
q=0.5KN/m
D
A
B
d
z
L= 4m
1 qL2 8
(+)
M 图
M
max
1 8
qL2
材料力学
§6.3 弯曲正应力强度条件
解:
M max
1 8
qL2
1.0
103
N.m
由强度条件
Wz
D3(1 4 )
32
M max
[s ]
D 0.113m
六. 弯曲应力
1 qL2 8
(+)
M 图
若外径 D增加一倍,则 D 0.226m, 仍由强度条件,得
(x) EI
正应力计算公式为
s (x) M (x) y
I
材料力学
六. 弯曲应力

梁的弯曲正应力测定实验总结

梁的弯曲正应力测定实验总结

梁的弯曲正应力测定实验总结梁的弯曲正应力测定实验是材料力学实验中的重要一环,旨在通过实验手段来研究材料在受力情况下的正应力变化。

通过本次实验,我深刻的认识到了弯曲变形对材料正应力的影响,同时也对实验操作技巧有了更深一步的理解。

在实验过程中,我们首先测量了试验梁的直径以及长度,并计算出了截面积、即初始的自由端切应力值。

接着我们进行了荷载实验,通过不断增加荷载,在满足线性弹性范围的条件下,记录不同荷载时梁的挠度数据。

然后我们对荷载和挠度数据进行了处理,并绘制出了梁在不同荷载下的挠曲线图。

最后,基于挠度与荷载之间的关系,计算得到了梁的弯曲切应力。

在实验过程中,我们充分体验到了实验数据的重要性,因此要求我们对每次荷载、挠度的记录都要精确、准确。

同时,对于试验所采用的仪器,例如测力计、卡尺等,我们也要严格保证其精度的可靠性。

只有如此,我们才能获得一个完整、具有参考价值的实验数据结果。

同时,在实验过程中,我们也需要注意数据的间接测量和误差产生的修正。

比如,在梁的挠曲线图上,数据之间可能存在微小的偏差,这可能是由于梁自身的曲度、弯度误差、荷载偏心等因素所引起。

因此,在最终的数据分析过程中,我们需要结合这些因素,进行科学的数据校正,以得到更加真实、准确的实验结果。

总之,梁的弯曲正应力测定实验对材料工程的发展有着重要的意义。

通过本次实验,我不仅掌握了实验数据的获取、处理技能,更重要的是充分认识到了实验数据对于材料工程开发的重要意义。

我相信,通过不断的学习、实践,我们将能够更好地应用实验手段来研究材料工程领域的问题,为材料科学技术的发展贡献自己的力量。

材料力学应力应变知识点总结

材料力学应力应变知识点总结

材料力学应力应变知识点总结材料力学是研究物体的力学性质和行为的学科。

其中,应力和应变是材料力学中的重要概念。

应力是指力对物体单位面积的作用,应变是物体单位长度的变形程度。

本文将对材料力学中的应力应变相关知识点进行总结。

一、应力的概念和分类应力是指单位面积内受力的大小。

根据应力的方向和大小,可以将应力分为以下几类:1.1 张应力:当物体内外部作用力的方向相反,使物体发生延伸或拉长的变形时,产生的应力称为张应力。

1.2 压应力:当物体内外部作用力的方向相同,使物体发生压缩或缩短的变形时,产生的应力称为压应力。

1.3 剪应力:当物体内外部作用力平行但方向相反,使物体内部产生剪切变形时,产生的应力称为剪应力。

1.4 弯曲应力:当物体受到外力作用时,在物体的截面上会出现内部受力的分布,使物体发生弯曲变形,产生的应力称为弯曲应力。

1.5 组合应力:在实际工程应用中,物体受到多种不同方向的力作用时,会同时产生不同方向的应力,这种情况下的应力称为组合应力。

二、应力的计算和表示计算应力需要确定作用力的大小和作用面积的大小。

根据不同的情况,应力的计算和表示方式也不同。

2.1 一维应力计算:当物体的受力方向与截面法线方向一致时,应力的计算公式为σ=F/A,其中σ表示应力,F表示作用力,A表示作用面积。

2.2 平面应力计算:当物体受力的方向不与截面法线方向一致时,需要通过平面应力的计算方法来确定应力的大小和方向。

常见的平面应力计算方法有叠加原理、应力分析法等。

2.3 主应力和主应力方向:物体在某一点上的应力是沿着不同方向的应力的代数和,其中最大的应力称为主应力,最大应力所涉及的方向称为主应力方向。

主应力和主应力方向的计算对于材料的强度评估和结构设计具有重要意义。

三、应变的概念和计算应变是指物体在受力作用下产生的长度变化和形状变化。

可以将应变分为以下几类:3.1 线性应变:当物体受到轴向拉伸或压缩作用时,长度发生变化,此时的应变称为线性应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0. 9 MPa,试求最大正应力和最大剪应力
之比,并校核梁的强度。
L= 3m
q L/ 2
6 . 25 MPa
< 7 MPa s

-q L/ 2
t max
Qmax 1 . 5 5400 1.5 A 0 . 12 0 . 18
t 0. 375MPa < 0. 9 MPa
2、正应力强度条件:
3、强度条件应用:依此强度准则可进行三种强度计算: M max ● 强度校核: s max [s ] Wz
M max s max s Wz
Wz [s ] M max
M max [s ]Wz
M max [s ] ● 截面设计:s max Wz M max [s ] ● 载荷设计: s max Wz
......
M s 最大正应力: max Wz
二、 纯弯曲理论的推广
...... (5)
对于跨度与截面高度之比 大于5的横力弯曲梁,横截面上的最大正应力 按纯弯曲正应力公式计算,满足工程上的精度要求。梁的跨高比 越大, 误差就越小。
三、梁的正应力强度条件 1、危险面与危险点分析:最大正应力发生在弯矩绝对值最大的截 面的上下边缘上;
3.作剪应力图和弯矩图
最大剪力发生在梁端,其值为
F Q max
1 ql 2
最大弯矩发生在跨中,它的数值为Mmax
1 2 ql 8
二、根据内力图规律做图
二、用叠加原理
叠加原理 当所求参数(约束力、内力、应力或 位移)与梁上(或结构上)荷载成线性关系时,由 几项荷载共同作用所引起的某一参数之值,就等 于每项荷载单独作用时所引起的该参数值的叠加 。
q L²/ 8
解:、画内力图求危面内力
应力之比
s max M max 2 A L 16.7 t max W z 3Q h
Qmax
M max
qL 3600 3 5400 N 2 2
qL2 3600 32 4050Nm 8 8
求最大应力并校核强度
Mmax 6Mmax 6 4050 s 2 max Wz bh 0.12 0.182
2、剪应力强度条件:
t max
Qmax S z max t b Iz
3、强度条件应用:依此强度准则也可进行三种强度计算:
通常有以下措施 改变加载方式、改变支座位置、增加支座、改变约束、合理放置、合理选择截面、变截 面梁
q= 3.6kN/m A B
例 矩形(bh=0.12m0.18m)截面木梁 如图,[s]=7 MPa,[t]=
例 : 有一承受管道的悬臂梁 ,用两根槽钢组成,管
s 130MPa。 道上作用重物各重 G 5.39kN。许用应力 解:弯矩图如图。 试选择槽钢型号。
A
300
G C
510
2.75
G
M max 5.98kNm
D
100
B
s max
WZ
M s 2WZ
5.98
M 2s
纯弯曲(Pure Bending):某段梁的内力只有弯矩没有剪力时,该段梁 的变形称为纯弯曲。
一、 纯弯曲时梁横截面上的正应力
几个重要方程 几何方程:
物理关系:
x
ห้องสมุดไป่ตู้

y
......
(1)
MZ 静力学关系: EIz
s x E x
1
Ey

...... (2)
(3) EI z 杆的抗弯刚度。
1、剪力及剪力图 2、弯矩及弯矩图
建 工 一 班
3、应力强度分析 4、梁的合理设计
周 秋 风
学号3120130601225
内力
剪力FS
切应力t
弯矩M
正应力s
一、根据内力方程作内力图
剪力方程——表示横截面上剪力FQ随横截面位置x而变化的函数关系; 弯矩方程——表示横截面上弯矩M随横截面位置x而变化的函数关系。
例题1 简支梁受均布荷载作用,如图示,作此梁的剪力图和弯 矩图。
解:1.求约束反力由对称关系,可得: F F 1 ql Ay By
2.列剪力方程和弯矩方程
FQ ( x) FAy qx 1 ql qx 2
2
1 2 1 1 2 M ( x) FAy x 9 x qlx qx 2 2 2
5.98103 3 WZ 23 cm 2 130106 查表,应选 8号槽钢两根。
四、矩形截面梁横截面上的剪应力 1、研究方法:分离体平衡。
QS z 2、剪应力的计算公式亦为: t 1 bI z
五、剪应力强度条件
1、危险面与危险点分析
一般截面,最大正应力发生在弯矩绝对值最大的截面的上下边缘上;最大剪应 力发生在剪力绝对值最大的截面的中性轴处。 带翼缘的薄壁截面,最大正应力与最大剪应力的情况与上述相同;还有一个可 能危险的点,在Q和M均很大的截面的腹、翼相交处。(以后讲)
相关文档
最新文档