锐角三角函数第1课时学案(正弦)
锐角三角函数(第一课时)教案
第2课时 锐角三角函数(1)讲课人:陈海森一、板书课题:(1分钟)锐角三角函数二、学习目标:(1分钟)展示、齐读1、了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;认识正弦、余弦、正切、余切四个三角函数的定义。
2、熟练求出直角三角形锐角的四个三角函数值。
三、回顾导入:上一节,我们利用相似三角形的知识计算旗杆的高度。
按一定的比例将△ABC 画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.实际上,我们利用图中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?四、教学过程:(28分钟)聚焦学习目标一:1、自学内容:认真看课本P88——89例1前的内容。
2、自学时间: 10分钟3、自学要求:⑴联系相似三角形的知识自学锐角三角函数的定义,明确在Rt △ABC 中,只要一个锐角的度数不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是一个固定值。
⑵记住正弦、余弦、正切、余切各自的定义。
4、自学后完成下面练习:(1)如图,在Rt △ABC 中,∠C =90°,BC=a 、AC=b 、AB=csinA = cosA = tanA = cotA =(2)对于锐角三角函数sinA 、cosA 、 tanA 、cotA 来说,自变量A 的取值范围是: ;正弦函数sinA 、余弦函数cosA 、正切函数tanA 、余切函数cotA 的取值范围是:。
(3)如图,在Rt △ABC 中,∠C =90°,BC=a 、AC=b 、AB=csinA = cosA = ;sin 2A +cos 2A= =1;若sinA=53,则cosA = ;若cosA =135,则sinA = 。
24.1锐角的三角函数(第一课时)教案
24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。
锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。
2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。
(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。
通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。
情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。
2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。
三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。
教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。
四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。
(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。
体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。
《锐角三角函数》第一课时参考教案
课题《直角三角形的边角关系》第一课锐角三角函数(一) 一、教学目标1.经历探索直角三角形中边角关系的过程,理解锐角三角函数的意义及与现实生活的联系。
2.发展学生观察、分析、合作、解决问题的能力。
3.经历对日常生活中与正切有关的实例进行观察、分析动手实验发现规律等过程,体会数形结合的思想及数学与现实世界的联系,通过利用正切知识解决生活中的实际问题,增强学生学数学用数学的信心。
二、教材分析本章旨在探索直角三角形的边角关系,理解锐角三角函数的概念,解决与直角三角形有关的实际问题,培养学生分析问题、解决问题的能力。
本章的知识广泛应用于测量、建筑、工程技术及物理学中,其中正切与生活的联系最为密切。
因此在第一节中教材首先提供了梯子倾斜程度比较的问题,从学生身边常见的例子引入,提出引发学生思考的问题。
这样做既激发了学生的好奇心与求知欲,又充分体现了数学与现实世界的紧密联系。
通过“想一想”三个小问题得出“梯子倾斜角确定对边与邻边的比也确定”,并概括出正切的概念。
最后通过“议一议”又回到了梯子的倾斜角度问题。
这样编排,知识由易到难、层层递进,符合学生的认知规律,使学生经历了数学知识的形成全过程,满足了不同学生发展的需求。
得出正切的概念后,教材又编排了相应的例题与练习,培养学生应用知识的能力,还补充了山坡坡度的例子,使知识进一步扩充与延伸。
三、教学设计(一)情境导入师:一天下午的课外活动时间,小明、小亮、小颖三位同学在操场上一起讨论这样一个数学问题:如何测量操场上的国旗杆的高度?小明说:可以在操场上立一根与地面垂直的标杆,测得标杆的长度和标杆的影子长,再测得旗杆的影子长,它们的比值相等,就可以求得旗杆的高度。
小亮说:拿一块等腰直角三角板,调节人与旗杆的距离,使三角板的一直角边与旗杆平行,视线沿着斜边的方向刚好经过旗杆的顶端,只要测得人到旗杆的距离和眼睛到地面的高度相加,就是旗杆的高度。
小颖这段时间正在自学刚发到的数学九(下),她说:站在操场上的任一位置,用测角仪测得看旗杆顶端的仰角,比如为700,再测得人与旗杆的距离,就可以求得旗杆的高度。
《锐角三角函数(第1课时)》教案 (省一等奖)
锐角三角函数教学目标:1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;3、 掌握Rt △中的锐角三角函数的表示:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠4、掌握锐角三角函数的取值范围;5、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。
教学重点:锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。
教学难点:锐角三角函数概念的形成。
教学过程:一、创设情境:鞋跟多高适宜?美国人体工程学研究人员卡特·克雷加文调查发现,70%以上的女性喜欢穿鞋跟高度为6至7厘米左右的高跟鞋。
但专家认为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最正确。
问:你知道专家是怎样计算的吗? 显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回忆直角三角形的已学知识,引出课题。
二、探索新知:1、下面我们一起来探索一下。
实践一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
⑴计算AB BC ,AB AC ,ACBC的值,并将所得的结果与你同伴所得的结果进行比拟。
∠A=30°时AB BC AB AC ACBC学生1结果 学生2结果 学生3结果 学生4结果⑵将你所取的AB 的值和你的同伴比拟。
实践二:作一个50°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
〔1〕量出AB ,AC ,BC 的长度〔精确到1mm 〕。
〔2〕计算AB BC ,AB AC ,ACBC的值〔结果保存2个有效数字〕,并将所得的结果与你同伴所得的结果进行比拟。
AC B∠A=50°时 AB AC BC ABBCABACACBC学生1结果 学生2结果 学生3结果 学生4结果〔3〕将你所取的AB 的值和你的同伴比拟。
一堂课的设计 锐角三角函数(第一课时)教学设计
锐角三角函数(第一课时)教学设计教材版本:人民教育出版社 课型:新授 年级:九年级教学任务分析一、教学目标 (一)知识目标1.理解掌握锐角三角函数的定义及锐角三角函数的表示方法:Sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠2.掌握锐角三角函数的取值范围。
(二)能力目标1.能根据直角三角形的边长计算锐角三角函数值;2.培养学生从特殊到一般的分析能力。
3正确认识直角三角形中的边角关系 (三)情感态度通过三角函数概念的形成过程,增强数形结合的数学思想意识。
通过一系列的探究学习活动,培养学生合作交流的思想意识,感受数学知识的严谨性 二、教学重点:理解锐角三角函数的定义,计算锐角三角函数值。
三、教学难点:锐角三角函数概念的形成。
教学方法设计一、体现学生的主体地位:学生通过自主完成导学案中的学习任务,真正实现学生是学习的主体,切实提高学生的数学学习能力。
二、体现教师的主导作用:教师通过设计导学案体现教师的主导作用。
以PPT 多媒体课件的播放形式,展示知识的形成过程,体现数学思想方法,反应教学思路。
三、教前准备:(一)教具:三角板、直尺等。
(二)PPT 多媒体课件。
(三)导学案(附后)。
教学流程安排教学过程设计(一)创设情境1、情境之一: ——实际生活情境。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,可算出鞋跟高度在3厘米左右最佳。
怎样将11度的锐角、15厘米的边长用于计算鞋跟的高度呢?显然,高跟鞋的鞋底、鞋跟与地面围成了一个直角三角形,这就需要建立边与角的特殊联系。
由此情境引出课题——“锐角三角函数”2、情境之二:自主探究 ——本节课的新知情境。
探索的问题任务: 如图1, 在Rt △ABC 中,∠A 的度数不变时,斜边的邻边A ∠、斜边的对边A ∠、的邻边的对边A A ∠∠的值是否发生变化?探索的方式、方法:学生分成10个小组,实践一由5个小组完成,另外5个小组完成实践二。
锐角三角函数教案(正弦)
3.能够运用三角函数解直 角三角形,并解决与直角 三角形有关的实际问题
难点
1 正弦函数的概念 2.探索 30°、45°、60° 角的三角函数值的过程
教学策略 教学过程
基于 APOS 理论、多元表征和变式的教学 ①活动阶段——在活动中思考问题 大部分数学概念的形成都要经历一个反省和抽象的过 程,而反省的基础就是活动,我们通过学生熟悉的活 动场景提供外部刺激,让学生更快理解概念的意义。 活动一:我们一起来爬山。(情景表征) 秋高气爽,正是登高望远的好时节,小明和同学们一 起去登山,已知山坡与地面所成角度为 30°,小明要 登上山坡上距离地面 350m 高的望江亭需沿山坡前进 多少米?如果小红要登到距离地面 560m 的山顶, 需要 沿山坡前进多少米?(注:要突出解题依据:在直角 三角形中,30°所对的直角边等于斜边的一半。)
560m 350m 30°
活动二: 把直角三角形中的 30°的角换成 45°的角时, 它的对边与斜边的比值还是一个定值吗?再换成 60° 呢?
60°
②过程阶段——体验概念的抽象过程 在以上活动阶段中,学生逐渐感受到三角形的边比值 与角度的变化有关,激发了学生的思维和学习兴趣, 一下对锐角三角函数的概念加以描述
角 A 的对边 a 与斜边 c 的比叫做锐角 A 的正弦(正弦 函数),记作 sinA,即 sinA= 。 (符号表征、文字表征和图形表征)
斜边 c
a c
B
对边 a
A
b
C
例一:
B 3
A 13 5 C
A
4
C
B
图一图二是两个直角三角形,请计算出 sinA 和 sinB 的 值。
例二:在 Rt△ABC 中,∠C=90°,AB=10,sinB= ,BC 的长是( )
锐角三角函数(第一课时)教学设计
《锐角三角函数》(第1课时)教学设计【教材内容】1.内容:正弦的概念2.内容解析:本章在前面已经研究了直角三角形三边之间关系、两个锐角之间的基础上,通过引进锐角三角函数建立了直角三角形中边与角之间的关系,使学生全面掌握直角三角形的组成要素(边、角)之间的关系,并综合运用锐角三角函数、勾股定理等知识解决与直角三角形有关的度量问题。
【设计思想】1、指导思想:教学中要充分体现数学教学是数学活动(研究与应用)、学生是数学学习主人的观念,以培养学生自主学习能力和促进探究意识为重点,以诱思探究理论为指导思想。
2、设计理念:在数学教学中渗透数学思想方法,发展思维能力,形成空间观念,提高学生运用所学知识解决实际问题的能力,培养学生的实践能力与创新意识。
3、学情分析:本节的内容的学习涉及到直角三角形和相似三角形方面的知识,这些内容学生掌握情况良好,教师应在解决实际问题中提出,然后让他们自主探究解决问题的方法。
【教学目标】1、了解当直角三角形的锐角固定时,它的对边与斜边的比值都是固定值这一事实;2、通过实例是学生理解并认识锐角三角函数的概念;3、正确理解正弦符号的含义,掌握锐角三角函数的表示;4、学会根据定义求锐角的正弦值。
【教学重点】锐角的正弦的定义。
【教学难点】理解直角三角形中的一个锐角与其他对边及斜边比值的对应关系。
【教法准备】多媒体课件、三角板。
【教学过程】一、创设情境,导入新课如图:意大利比萨斜塔在1350年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1m,1972年比萨地区发生地震,这座高54.5m的斜塔在大幅度摇摆后仍巍峨屹立,但塔顶中心点偏离垂直中心线增至5.2m。
问题1用“塔身中心线与垂直中心线所称的角 (如图)”来描述比萨斜塔的倾斜程度,你能完成吗?师生活动:多媒体动画展示“垂直中心线”“塔身中心线”“塔顶中心点偏离垂直中心线的距离”显示相关数据,并提出问题,激励学生观察、思考。
设计意图:利用多媒体展示意大利比萨斜塔图片创设情境,引起学生的认知冲突,是学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
锐角三角函数教案
∠A 的对边与临边的比呢?引入新课:锐角三角函数
(2) 二、出示目标: 今天的学习目标是什么呢? 学习目标 1.理解当直角三角形的锐角固定时,它的临边与斜边、对 边与临边的比值都是固定的(即余弦值与正切值不变)。 2.能根据余弦和正切的概念熟练的进行计算。 三、自学指导: 师:怎样才能达到今天的学习目标呢?上节课我们有 了学习正弦的基本方法,相信大家本节课一定能学的更好, 请同学们认真看自学指导: 自学指导 认真看课本(P77-P78 练习前)注意: 1、余弦是直角三角形的哪两个边的比值,它与正弦的 区别与联系是什么? 2、正切是哪两个边的比值? 3、正弦值、余弦值、正切值有单位吗?为什么? 4、仔细琢磨:sinA 为什么是 A 的函数?cosA、tanA 呢? 5、 锐角 A 的锐角三角函数是怎样定义的?
6、思考讨论:根据正弦、余弦的定义,请你说一下它 们的取值范围,正切的范围和正弦、余弦的范围一 样吗?为什么? 8 分钟后,比谁能准确的回答上述问题,然后创造 性地做出例题和与例题类似的习题。 四、先学。 1、学生看书,教师巡视,师督促每一位学生认真的自 学,关注每位学生自学的情况。 2、检测:师:同学们,请停止自学。对自学指导的 问题都会了的请举手。 若都举手,则教师表扬。若有人不举手,则提问:哪 道题不会?请会的同学帮助, 能讲的举手。 让学生说,
(1) 指名回答上述“思考”中的问题; (2) 举手板演“探究”中的问题。 (3) 指名回答“正弦”的定义。 (4)演板 P76 五、后教。 (一)引导学生回答锐角三角函数的表示方法:三个字母 表示角如∠AOB,一个字母表示角如∠A,,具体的角度如 19° 分别表示为:sin∠AOB, sin∠A, sin19° (二)自由更正 请同学们仔细看一看黑板上的板演,发现错误并能 更正的同学请举手。 (三)讨论、归纳。 (1) 求一个角的正弦值时, 必须把这个角放在直角三角形中, 并且求出这个角的对边与斜边。 (2) 当一个锐角固定时,它的正弦值也是固定的。即:某 例 1, P77 练习
1.1 锐角三角函数 第1课时(教案)-北师大版数学九下
第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。
锐角三角函数教案
【锐角三角函数全章教案】 锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2 a=6,解这个三角形.例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 ∠=350,解这个三角形(精确到0.1).B解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习∠的平分线AD=43,解此直角三角形。
28.1锐角三角函数-正弦(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正弦函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
28 .1锐角三角函数-正弦(教案)
一、教学内容
本节课选自教材《数学》八年级下册第28章“锐角三角函数”中的第1节“正弦”。教学内容主要包括以下几部分:
1.锐角三角函数的定义:介绍锐角三角函数的概念,以直角三角形为载体,让学生理解正弦函数的定义。
2.正弦函数的表达式:推导并讲解正弦函数的表达式,即正弦函数等于锐角三角形中对边与斜边的比值。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正弦函数的基本概念。正弦函数是指在直角三角形中,锐角的对边与斜边的比值。它是解决三角形相关问题的重要工具,尤其在测量和工程领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量一个物体在地面上的影子长度,我们可以使用正弦函数计算出物体的高度。这个案例展示了正弦函数在实际中的应用,以及它如何帮助我们解决问题。
3.正弦函数的性质:讲解正弦函数在0°~90°锐角范围内的变化规律,了解正弦函数的单调递增性。
《锐角三角函数(第1课时)》教学设计
第一章直角三角形的边角关系《锐角三角函数(第1课时)》知识与技能:1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等.3.能够根据直角三角形的边角关系,用正切进行简单的计算.过程与方法:体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题情感态度与价值观:进一步锻炼学生用数学的观点来解释身边的事物,形成良好的数学思维习惯和思维品质.教学重点:理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系教学难点:理解正切的意义,并用它来表示两边的比.三、教学过程分析第一环节创设问题情境活动内容:观察梯子的倾斜程度梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的“陡”或“平缓”是用来描述梯子什么的为了描述梯子的这种倾斜程度,先给大家介绍三个简单的概念:倾斜角,铅垂高,水平宽.1.图1—1和图1—2中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗你是如何判断的2.图1—3中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗你又是如何判断的对于图1—3,学生可能难于下手,这时老师可以借助几何画板的动态演示,引导学生比较对边与邻边的比值,即比较表一中的1t 与2t 大小,当12t t >、12t t <、12t t 时,借助几何画板直观的验证梯子的倾斜程度,以突破学生认识上的障碍.(为了方便研究,表格中的数据精确到十分位)活动目的:先让学生从图1-1和图1-2中直观感受梯子的倾斜程度,再让学生理性思考该如何寻找方法判断图1-3中梯子的倾斜程度.这样学生会感到知识上的匮乏,从而对数学产生好奇心和求知欲.让他们从实例中体会不同情况下比较梯子的倾斜程度只靠直观感受是不够的,还需要其他方法——用边的比进行比较.第二环节 探求新知活动内容1:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够图1—3 表1图1—1 图1—2长的尺来测量,你有什么巧妙的方法得到梯子的倾斜程度呢如图1-4,小明想通过测量11B C 及1AC ,算出它们的比,来说明梯子的倾斜程度;而小亮则认为通过测量22B C 及2AC ,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗(1)11Rt AB C ∆和22Rt AB C ∆有什么关系(2)222AC C B 和111AC C B 有什么关系 (3)如果改变2B 在梯子上的位置呢 由此你得出什么结论活动目的:通过对前面问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度.这个活动旨在说明,当倾斜角确定时,其对边与邻边之比也随之确定.这一比值只与倾斜角度有关,而与直角三角形的大小无关.活动内容2:结合活动内容1,请同学们思考:既然直角三角形中,一个锐角一旦确定,它的对边与邻边的比也随之确定.那么这个确定的比我们能不能用一个数学符号来表示呢数学上,我们把这个确定的比叫做一个锐角的正切.如图1—5,我们把A ∠的对边与A ∠的邻边的比,叫做A ∠的正切(tangent ),记作tan A .即tan A A A ∠=∠的对边的邻边图1—4对于正切的定义,同学们必须明确以下几点:1.tan A 中常省略角的符号“∠”.用希腊字母表示角时也可省略如:tan α、tan β等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成tan BAC ∠或tan 1∠、tan 2∠等;2、tan A 没有单位,它表示一个比值;3、tan A 是一个完的整数学符号,不可分割,不表示“tan ”乘以“A ”;4、一个角的正切是在直角三角形中定义的,因此,tan A A A ∠=∠的对边的邻边只能在直角三角形中适用;请同学们思考,梯子的倾斜程度与tan A 的值有关吗 tan A 的值越大,梯子越陡活动目的:通过对直角三角形中边角关系的探索,合理的引出正切的定义;通过对定义的辨析,发展学生的符号感;通过探究梯子的倾斜程度与tan A 的值的关系,渗透数形结合的数学思想;进一步体会正切的意义和与现实生活的联系.第三环节 应用与拓展活动内容1:例题1:图1—6表示甲、乙两个手扶电梯,哪个手扶电梯比较陡(乙)4m(甲)5m8m图1—6 图1—5 A ∠的邻边A 的对边活动目的:通过计算正切值判断梯子的倾斜程度,这是对第二环节中得出结论的直接运用,旨在巩固正切的定义以及发展学生的数学应用意识.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力活动内容2:认识坡角、坡度(坡比)坡角:坡面与水平面的夹角;坡度(坡比):坡面的铅垂高度与水平宽度的比,因此坡度(坡比)就是坡角的正切.如图1—7,有一山坡在水平方向上每前进100m 米就升高60m ,那么山坡的坡角是α,坡度(坡比)就是:603tan 1005α==教学目的:认识坡角、坡度(坡比),理解坡度(坡比)其实质就是坡角的正切.体会数学与实际生活的联系第四环节 变式练习活动内容:1、如图1—8,在ABC ∆中,90C ∠=,6AC =,若3tan 4A =,则BC = ; 2、如图1—9,在ABC ∆中,10AC AB ==,16BC =,则tan B = ;3、如图1—10,某人从山脚下的点A 走了200m 后到达山顶的点B .已知山顶B 到山脚下的垂直距离是55m.求山坡的坡度(结果精确到0.001m).图1—8 A图1—9图1—10活动目的:为学生运用新知识解决与直角三角形有关的实际问题提供资源,并将进一步感受数形结合的思想,体会数形结合的方法.让学生尝试用正切表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,学会运用正切的定义进行简单的计算.教学效果:以上3个例题都是基础题,其中第2题学生需要添加简单的辅助线,加深了学生对正切的理解,体会到正切是在直角三角形中定义的,因此使用的前提必须是在直角三角形中使用.第五环节课堂小结活动内容:师生互相交流总结本堂课所学的知识点和体会;谈谈对本节知识的理解.第六环节布置作业作业:习题 1、2四、教学反思本课时结合学生身边的数学现象,依据初中学生身心发展的特点,通过介绍求比萨斜塔的倾斜角入手引入新课,激发了学生的求知欲.为了突破教学难点,教学活动中运用了直观教学、几何画板动态演示和验证、几何推理等方法,既直观的呈现了知识的内在联系,培养了学生的几何直观能力,又唤起和加深学生对教学内容的体会和理解.本课中,对比萨斜塔的倾斜角、梯子的倾斜程度、坡角、坡度(坡比)的认识,让学生更进一步体验了数学的实用性,加深了数学和实际生活的联系,使学生学习数学不再感到恐惧和陌生.。
《锐角三角函数》第一课时导学案
C BA 28.1《锐角三角函数》第一课时——正弦主备:任江涛 审核:九年级数学备课组 授课时间: 年 月 日【学习目标】1: 经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
【学习重点】2: 能根据正弦概念正确进行计算【学习难点】理解正弦(sinA )概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值【学习过程】一、课堂导入:请同学们回忆直角三角形的有关性质有哪些?二、自主学习:(一)自学指导:认真阅读课本74---77页内容,完成下列问题:思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ;结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值 ,都等于思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:在一个直角三角形中,如果一个锐角等于45°,那么不管三角形的大小如何,这个角的对边与斜边的比值 ,都等于 在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的 ,记作sinA ,即sinA= =a c . sinA =A a A c∠=∠的对边的斜边 例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= .(二)自学检测:三、合作探究:探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,(2)1353C B A (1)34CBA ∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?四、课堂小结:五、达标训练: 1 如图,在Rt △ABC 中,∠C=90°,求sinA和sinB 的值.2.如图,在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则sinA =( ) A .35 B .45 C .34 D .433. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( ) A .13 B .3 C .43D . 5 4.如图,已知点P 的坐标是(a ,b ),则sin α等于( ) A .a b B .ba CD 六、堂清检测:七、自我反思: 本节课我的收获: 。
21.1锐角三角函数(第一课时)教案设计
28.1.1锐角三角函数(第一课时)教案设计踏虎学校张艳芳一、教学目标根据以上对教材的地位作用以及学情的分析,结合新课标对本节课的要求,确定了本节课的教学目标:1. 知识目标:理解锐角正弦的意义,会求锐角的正弦值,能根据直角三角形中的边角关系进行简单计算。
2. 能力目标:经历锐角正弦的意义的探索过程,体验数形结合的运用,发展合情推理能力。
3. 情感态度价值观:使学生在学习数学过程中体会数学与生活的密切联系,激发学习数学的兴趣。
二、教学重点、难点1. 重点:对正弦意义的理解,能运用正弦定义进行简单计算。
2. 难点:对正弦函数意义的理解。
三、教学过程(一)概念探索:1.播放绿化荒山。
引入新课。
老师问:“为使出水口的高度为35m,那么需要准备多少的水管呢?”这样引起学生学习的兴趣,引发思考。
2.继续就画面问:“为使出水口的高度为50m,那么又需要准备多少的水管呢?”设计意图:此时学生会把实际问题抽象成几何问题。
求含30°的直角三角形的斜边。
通过实际例题的展示极大地调动了学生们学习的积极性。
让学生体会到了数学与生活的联系。
问题是让学生复习已经学过的含30°角的直角三角形的斜边的求法,求比值引出本节课要探究的问题。
得到结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 即在直角三角形中30°的对边与斜边的比是一个固定值。
,3:计了一个思考题“问在一个直角三角形中有个角是45°是,它的对边与斜边的比是否是固定值?”设计意图:让学生体会当直角三角形锐角发生改变时,锐角的对边与斜边的比值也在发生改变。
但是这个角一定它的比值也是个固定值4:教师引导学生观察分析:在直角三角形ABC 中,∠C=90°.当∠A 为任意一个锐角时,∠A 的对边与斜边的比是否仍有上述性质呢?(二)概念的建立1.正弦定义:在直角三角形ABC 中∠C=90°,把锐角a 的对边与斜边的比叫做∠A 的正弦。
初中数学_锐角三角函数(第一课时)教学设计学情分析教材分析课后反思
初中数学_锐⾓三⾓函数(第⼀课时)教学设计学情分析教材分析课后反思课题:《锐⾓三⾓函数》第⼀课时教学⽬标1、了解直⾓三⾓形中锐⾓的正切的概念;认识tan的符号2、会求直⾓三⾓形中锐⾓的正切3、通过正切的学习,发展提⾼学⽣的观察、⽐较、分析、概括等逻辑思维能⼒.教学重点、难点重点:理解正切的概念,计算锐⾓的正切值。
难点:教学准备课件刻度尺教学过程:(⼀)联系⽣活,导⼊新课(多媒体展⽰⽣活中⼀些运⽤梯⼦的图⽚,学⽣观察后)问:攀爬这些梯⼦,哪个⽐较费⼒,哪个⽐较省⼒,为什么?观察两组图⽚(多媒体展⽰)哪个⽐较陡?观察第三组图⽚,思考:如何辨别哪个梯⼦陡?引⼊课题并展⽰教学⽬标。
(⼆)新课探究:1、学习正切的概念出⽰材料:⼩明和⼩亮经过讨论,同意在梯⼦AB取两点B1和B2,过B1和B2做B1C1⊥AC,B2C2⊥AC,垂⾜分别为C1、C2,但是,⼩明想通过测量B 1C 1和AC1,并算出它们的⽐来说明梯⼦AB 的倾斜度,⽽⼩亮想通过测量B 2C 2和AC 2,并算出它们的⽐来说明梯⼦AB1测量并计算,交流发现⼼得。
2引导学⽣运⽤⼏何推理验证谈发现:(引导学⽣明确)当梯⼦的倾斜⾓⼀定时,它的竖直⾼度与⽔平宽度的⽐就是⼀定的,即:⽐值相等。
2、讲解正切的概念在R t △ABC中,如果锐⾓A 确定,那么∠A 的对边与邻边的⽐随之确定,这个⽐叫做∠A 即tanA=的邻边的对边C⾓的表⽰⽅法正切的表⽰tan ∠BACtanatan ∠1 tanA ∠ BAC∠ a ∠ 1 ∠ A3、问题:梯⼦的倾斜度与正切的⼤⼩有什么关系?(1)哪(2)计算出∠BAC (3⼩结:锐⾓的正切值⼤。
(4)例题探究例题:如图,甲、⼄两个⾃动扶梯,哪⼀个⾃动扶梯⽐较陡?(学⽣⾃主探究,交流评价)(5)练习1、如图1,在Rt △ABC 中,∠C=900,AC=4,BC=6,那么 tanA=_______,tanB=_________2、如图2,在Rt △ABC 中,∠C=900,AC=5,BA=13,那么 tanA=_______,tanB=_________3、在Rt △ABC 中,∠C=900,AC=2BC ,则tanA=____________AC 14m αβ5m13m甲⼄4、在Rt △ABC 中,∠C=900,∠ A=300,BC=5,则tanA=_______(6)认识坡度(课件展⽰情景)讲述:⼭坡的坡度也可以⽤正切来描述,即:⽤坡⾯的铅直⾼度和⽔平宽度的⽐表⽰。
《锐角三角函数(第1课时)》教案
24.3 锐角三角函数第1课时锐角三角函数【知识与技能】1.使学生掌握锐角的四种三角函数的定义.2.使学生掌握锐角三角函数的取值范围.【过程与方法】1.使学生会利用三角函数的定义,表示出直角三角形中某个锐角的三角函数值.2.使学生会利用锐角三角函数的定义求三角函数值.3.使学生学会运用参数法求三角函数值.【情感态度】培养学生的数形结合的思想和探索的精神.【教学重点】三角函数的定义及三角函数值的求法.【教学难点】引入参数三角函数值.一、情境导入,初步认识°角的直角三角形,有什么性质?答:30°角的直角三角形中,30°角所对的直角边与斜边的比值为12.2.上述结论与所选取的直角三角形的大小有关吗?答:无关.°角的直角三角形中,45°角所对的直角边与斜边的比值为多少?这个比值与所选取的直角三角形的大小有关吗?答2.4.一般地,在Rt△ABC中,∠A为其一个锐角,当∠A取一个固定的值时,∠A所对的直角边和斜边的比值固定吗?我们把这个固定的比值,称为∠A的正弦,记作sinA,当∠A看作变量时,sinA常称为∠A的正弦函数,正弦函数是三角函数的一种,今天我们就来研究锐角三角函数.二、思考探究,获取新知〔一〕锐角三角函数的定义如图,在Rt△ABC中,∠C=90°∠A的正弦:A BC a sinAAB c∠===的对边斜边∠A的余弦:A AC b cosAAB c∠===的邻边斜边∠A的正切:A BC a tanAA AC b∠===∠的对边的邻边【教学说明】这三个三角函数的书写和含义,特别是不能看成是乘法的关系,另外角的符号也常常省略.提问:你能按定义写出∠B的三个三角函数来吗?(二〕锐角三角函数的取值范围在Rt△ABC中,∠A为其一锐角,有0<a<c,0<b<c,∴0<sinA<1,0<cosA<1,tanA>0.(三)利用锐角三角函数定义求三角函数值例1 如图,在Rt△ABC中,∠C=90°,AC=15,BC=8,试求出∠A的三个三角函数值.2.直角三角形的两边的比,求三角函数值例2 ,在Rt△ABC中,∠C=90°,a∶b=2∶3,求sinA、cosA.3.某锐角三角函数值,求三角函数值.例3 ,在Rt△ABC中,∠C=90°,sinA=23,求∠A的另外两个三角函数值.三、运用新知,深化理解1.在平面直角坐标系中,点P的坐标为〔2,4),O为原点,OP与x轴的夹角为α,那么sinα=______.△ABC中,∠C=90°,ac=513,那么cosA=______.△ABC中,∠C=90°,tanA=13,那么sinA=______,cosA=______.4.如图,在△ABC中,∠ABC=60°,AB∶BC=2∶5,求tanC的值.【教学说明】第4题教师适当点拨:过A点作AD⊥BC构造直角三角形.四、师生互动,课堂小结1.锐角三角函数的定义:∠α的正弦:sinα=α∠的对边斜边∠α的余弦:cosα=α∠的邻边斜边∠α的正切:tanα=αα∠∠的对边的邻边2.锐角三角函数的取值范围:当∠α为锐角时,0<sinα<1;0<cosα<1;tanα>0.3.利用定义求锐角三角函数值.1.布置作业:从教材相应练习和“习题24.3中选取.〞2.完成练习册中本课时练习.本课时遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和开展.。
初中数学《锐角三角函数》第1课时学案
《锐角三角函数》第1课时学案
学习目标
1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值;
2.能根据已知直角三角形的边长求一个锐角的正弦值.
一、复习引入
1.回忆直角三角形有哪些特殊性质?
2.在Rt△ABC中,∠C=90°,∠A=30°,若BC=10m,•求AB;
3.在Rt△ABC中,∠C=90°,∠A=30°,若BC=20m,•求AB.
二、自主探究
为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
思考:1.如果使出水口的高度为50m,那么需要准备多长的水管?
2.如果使出水口的高度为a m,那么需要准备多长的水管?
思考:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?•如果是,是多少?
思考:当∠A取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?
正弦函数概念:
三、课堂训练
在Rt△ABC中,∠ACB=90°,CD是AB上的高,AC=,BC=2,求sinB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C B
锐角三角函数----正弦
姓名: 九年级下学期第一周第1课时
【学习目标】
1、理解锐角正弦的定义,并能运用sinA 表示直角三角形中两边的比。
(重点)
2、能灵活运用正弦的定义进行简单的计算。
(难点)
【学习过程】
一、知识回顾
1.在直角三角形中有哪些元素?
2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这些元素中,你还记得它们之间有哪些性质吗?
①三边之间的等量关系:__________________________________.
②两锐角之间的关系:__________________________________.
③边与角之间的关系:__________________________________.
3. 直角三角形ABC 中,究竟边与角之间有什么特殊的关系呢?我们将在这一章的知识中不断探究学习.
二、探究导学 1、正弦的定义:(课本第75页)
如图,在Rt △ABC 中,∠C =90°,
我们把锐角∠A 的对边a 与斜边c 的比叫做∠A
的______,记作________,
即:
sinA =_____________________=________.
2、概念诊断:
(1)sinA 表示sin 与A 的乘积 ( )
(2)sinA 表示∠A 的邻边与斜边的比值 ( )
(3)在Rt △ABC 中,∠C =90°,则sinB=
AB AC ( ) (4) 在△ABC 中,则sinA= AC
BC ( ) 4、自学课本第76页例1,并尝试在课本上完成第第77页练习
5、根据如图中条件,分别求出下列直角三角形中锐角的正弦值。
三、能力提升
1、如图,在Rt △ABC 中,∠C =90°,
(1)若AC =6,BC =8,求 sinB 的值
(2)若sinB=5
3,求sinA 的值 解题提示:(1)已知AC 和BC ,要求sinB 的值,需先求得什么?如何再求sinB 的值? 解:
(2)根据sinB=
53,设AC=3k ,如何表示其他两边的长度?求sinA 的值又如何呢?
解:
2、如图,在Rt △ABC 中,∠C =90°,sinA=
5
4, AB =15,求△ABC 的周长
四、课堂小结
(1)、sinA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
(2)、sinA 是一个比值(数值)。
(3)、sinA 的大小只与∠A 的大小有关,而与直角三角形边长无关
(4)、 sinA 是整体符号。
不能写成sin.A
(5)、当用三个字母表示角时,角的符号“∠”不能省。
五、课后拓展
1、你对这节课还有什么疑惑吗?
2、学习锐角的正弦,你知道余弦的定义吗?
3、余弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。
(你能写出∠B的正弦、余弦的表达式吗?)试试看. ___________________________________________________.。