四年级奥数——速算与巧算(加减乘除)
(完整版)四年级奥数速算与巧算
四年级奥数知识点:速算与巧算(一)例1计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例81999+999×999解法1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二)例1比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250—3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250—5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x —1, x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一)1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到1 2点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105 +104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987) =1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1 993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+ 107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.四年级奥数习题:速算与巧算(二)1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题解答1.先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算. 解法1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=375最后算30个数的总和=10+360+375=745.解法2:把每格的数算出填好.先算出10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数.经观察可以列出下式:(23+37)+(25+35)× 2+(27+33)×3+(29+31)× 4= 60 ×(1+ 2+ 3+4)=600最后算总和:总和=145+600=745.2.① 98765 × 98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1)× 98768= 98765 × 98768+ 98768.所以②比①大3.3.同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016是最大的得数.5.85÷5=17为中数,则五个数是:13、15、17、19、21最大的是21,最小的数是13.6.45÷5=9为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数,10是上面一行的中间数,17是下面一行的中间数,10+17=27是上、下两行中间数之和.这个中间数之和可以用81÷3=27求得.利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7)÷2=75 75+1=76最大数是76.。
小学数学四年级奥数1、速算与巧算
小学数学——四年级奥数1.速算与巧算知识回顾1、数学中的速算与巧算主要是利用乘、除法的运算定律和性质来进行的,我们已经学习了四则混合运算的各种运算律,包括交换律、结合律、分配率、去括号和添括号的法则等等。
加法交换律:a+b=b+a乘法交换律:axb=bxa加法结合律:(a+b)+c=a+(b+c)乘法结合律:(axb)xc=ax(bxc)乘法分配律(a+b)xc=axc+bxc 或a-b)xc=axc-bxc减法的性质:a-b-c=a-(b+c)除法的性质:a÷b=(axn)÷(bxn)=(a÷n)÷(b÷n)(n≠0)2、去(添)括号规律:1.加、减法去(添)括号:括号前面是“+”,去(添)括号后不变号;括号前面是“-”,去(添)括号后要变号例如:234+(345-123)=234+345-123、345-(234-123)=345-234+1232.乘、除法去(添)括号:括号前面是“x”,去(添)括号后不变号;括号前面是“÷”(添)括号后要变号例如:8x(5÷8)=8×5÷8、93+(31+3)=93+31+33、带符号搬家同级运算时,可以带符号搬家,改变运算顺序,加、减法同为第一级运算,乘、除法同为第二级运算例如:241-164+59=241+59-164;165×29+5=165+5×29四则混合运算时要先算乘除法、后算加减法,同级运算按照从左到右的顺序计算,有括号时先算括号内的。
以上这些运算法则和性质在整数与小数中同样适用。
第一课时整数的速算与巧算经典题型一25+138+175解析:25+175=200,200+138=338,通过观察不难看出25+75正好可以得到一个整百数,所以我们利用加法交换律和结合律先算25+175的和,再和175相加,可以使运算变得简便。
练一练1、56+27+442、603+138+973、88+27+73+124、1+3+5+7+…+199+2015、1+2+3+4+…+48+49+50+49+48+…+4+3+2+1经典题型二125 x71 x8解析:125 x8=1000,1000 x71=71000,利用乘法交换律和结合律可以先算125 x8得到一个整千数,再乘71,可以直接口算出结果。
四年级奥数思维训练专题-速算与巧算
四年级奥数思维训练专题-速算与巧算专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,使计算简便.例1:计算325÷25分析:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.利用这一性质,可以使这道计算题简便.325÷25=(325×4)÷(25×4)=1300÷100=13试一试1:计算下面各题.450÷25 3500÷125例2:计算25×125×4×8分析:先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了.这就启发我们运用乘法交换律和结合律使计算简便.25×125×4×8=(25×4)×(125×8)=100×1000=100000试一试:计算下面各题.125×25×32 75×16例3:计算(360+108)÷36 (450-75)÷15分析:两个数的和(或差)除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(或差).利用这一性质,可以使这道题计算简便.(360+108)÷36 (450-75)÷15=360÷36+108÷36 =450÷15-75÷15=10+3 =30-5=13 =25试一试3:计算下面各题.(720+96)÷24 (4500-90)÷45例4:计算158×61÷79×3分析:在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置.158×61÷79×3=158÷79×61×3=2×61×3=366试一试4:计算下面各题.624×48÷312÷8 406×312÷104÷203速算与巧算专题简析:有些题看似不能巧算,如果把已知数适当分解或转化就可以使计算简便.例1:计算236×37×27分析:将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了.236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764试一试1:计算下面各题:315×77×13 6666×6666例2:计算333×334+999×222解析:333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000试一试2:计算下面各题:9999×2222+3333×3334 46×28+24×63例3:计算20012001×2002-20022002×2001分析:大数化小:20012001=2001×10001,20022002=2002×10001:20012001×2002-20022002×2001=2001×10001×2002-2002×10001×2001=0试一试3:计算19931993×1994-19941994×1993例4:不用笔算,请你指出下面哪个得数大.163×167 164×166分析1:两个因数和相等,差越小积越大,所以163×167<164×166分析2:把题中的数据作适当变形,再利用乘法分配律,再比较就方便了.163×167 164×166=163×(166+1)=(163+1)×166=163×166+163 =163×166+166所以,163×167<164×166试一试4:计算:8353×363-8354×362。
小学速算与巧算(奥数基础)
速算与巧算(奥数基础)教学目标:1.学生能够喜欢上有趣的奥数题目。
2.学生的基础知识更加牢固,在考试中能更快地做题。
3.尽量使学生在轻松的氛围下扩展思维,奥数只是一个扩展思维的载体,而不是学生的课业负担。
教学重点:加减乘除的速算与巧算方法。
教学难点:学生刚接触奥数,思维还不能一下子转变过来。
基本公式1.运算顺序*第一级:括号:()→[ ] → { }第二级:作: 同一级别可以交换运算次序*第三级:+-:同一级别可以交换运算次序2.去括号① a+(b+c)=a+b+c a+(b-c)=a+b-c② a-(b+c)=a-b-c a-(b-c)=a-b+c③ a×(b×c)=a×b×c a×(b÷c)=a×b÷c④ a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c3.分配律/结合律乘法: a×(b+c) = a×b+a×ca×b+a×c = a×(b+c)除法:(a+b)÷c = a÷c+b÷ca÷c+b÷ c = (a+b)÷c4.两个必须掌握的性质两个数的和一定,则两数越相近,积越大两个数的积一定,则两数越分散,和越大5.几个计算公式完全平方和(差)公式:(a+b)2= a2+2ab+b2平方差公式:a2-b2= (a+b)(a-b)速算与巧算教义一.取巧计算: 1.手指算法: nn*92.平方的巧算:1+3+5=3的平方1+3+5+7=4的平方3.立方的巧算:(1+2)平方 =1的立方+2的立方4.简便的计算:基本简便算法训练(写出简算过程)456+897+103 587+684-484 654-387+287 5121+6573+4879 5634+4366-8765 6543+854-1543 5646+9997 6545-1996 6587+59947865-347-1653 7958-(958+162)4795-(355+1795)345-279+655-321 6544+8953-4544-5953 4673-897-2673 5647+8956-4603 78×99 68×101867×999 567×1001 125×3225×36 125×432×8 76×25×425×32×125 4×83×25 84000÷125÷87800÷25÷4 25×(80+4) 125×(80-4)379 ×58+42×379 965×176-965×76 163×175-163×34-163×41十位相同个位相加刚好满十的规律(头同尾补)十位乘十位加一的和,并个位。
小学数学四年级奥数第20讲速算与巧算(一)
小学数学四年级奥数第20讲速算与巧算(一)一、知识要点速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
这一讲我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
二、精讲精练【例题1】计算9+99+999+9999练习1:计算(1)99999+9999+999+99+9 (2)9+98+996+9997(3)19999+2998+396+497 (4)198+297+396+495【例题2】计算489+487+483+485+484+486+488练习2:计算(1)50+52+53+54+51 (2)262+266+270+268+264(3)89+94+92+95+93+94+88+96+87 (4)381+378+382+383+379【例题3】计算下面各题。
(1)632-156-232 (2)128+186+72-86练习3:计算下面各题(1)1208-569-208 (2)283+69-183(3)132-85+68 (4)2318+625-1318+375【例题4】计算下面各题。
(1)248+(152-127)(2)324-(124-97)(3) 283+(358-183)练习4:计算下面各题(1)348+(252-166)(2)629+(320-129)(3)462-(262-129) (4) 662-(315-238)【例题5】计算下面各题。
四年级奥数第一讲-速算与巧算含答案
第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。
二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。
解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。
解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
四年级《速算与巧算》奥数教案
师:那也就是说,我们得想个办法把这两个括号给去掉。
师:在要去括号之前,先认真观察这个式子,说说这个式子的特点是什么?生:偶数的和减去奇数的和。
师:唉,他说的对吗?生:对。
师:没错,我们通过观察可以发现,减号左边的括号里,都是像2、4、6一直到96、98、100的偶数相加的,而减号右边的则是1、3、5一直到99这样的奇数相加的。
两个括号里都是加号,而括号外面的则是减号,那如果把括号去掉,我们该怎么办呢?生:第二个括号里的加号都变成减号。
师:他说的没错吧?生:没错。
师:很好,但是先别急,当我们把两个括号都去掉之后,前面的偶数都是相加,到后面的奇数都变成相减的,这个已经没问题了,那最后还有一个,去掉括号之后,两两数字之间可以交换位置的吗?生:可以。
师:很好,如果我把2跟这个减1配对,等于多少?生:等于1。
师:把4跟减3配对呢?生:也等于1。
师:6减5?生:还是等于1。
师:所以你们发现了吗?生:相减之后都是等于1的。
师:没错,通过去括号,再交换位置之后,我们可以发现,原来偶数减去奇数的差是等于1的。
这样题目就变简单了吗?生:变简单了。
师:那最后到底有多少个1呢?生:50个。
师:你怎么知道的?生:因为1到100中有50个偶数,50个奇数。
师:说得非常好。
因为1到100中有50个偶数,50个奇数,所以最后就是有50个偶数减去奇数,就可以得出有50个1相加了,所以这道题的答案是多少?生:50师:很好。
【教师在讲解时,要配合课件演示整个解题过程,在讲解这道题时,注意要把话语权交给学生,教师适时引导就可以了。
】师:既然你们都理解了,那就一起来计算一下练习五的两道题吧。
师:我请两位同学上台板演,其他同学写在课堂练习本上。
【课件出示练习五,教师请两位中上的学生上台板演,教师下台巡视观察学生的解题情况。
】(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)= (2-1)+(4-3)+(6-5)+…+(96-95)+(98-97)+(100-99)= 1+1+1+…+1+1+1(50个1)。
四年级奥数 速算与巧算,带答案
1.。
A.B.C.D.答案:B解析:2.计算:,结果是( )。
A.B.C.D.答案:C解析:通过观察都是接近的数,所以把这些数都表⽰为加减⼀个数:3.计算,结果是( )。
A.B.C.D.答案:C解析:计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=66000109+91+97+101+99+107+102700690706696100100109+91+97+101+99+107+102=100+9+100−9+100−3+100+1+100−1+100+7+100+2=100+100+100+100+100+100+100+9−9−3+1−1+7+2=100×7+6=700+6=70698+101+797+298+199−305128812001188110098+101+797+298+199−305=100+100+800+300+200−300−2+1−3−2−1−5=1200−12=11884.简便计算:。
A.B.C.答案:A解析:加括号时注意除号变乘号。
5.计算:。
A.B.C.答案:C解析:6.计算:。
A.B.C.D.答案:C 解析:7.计算A.B.C.答案:C5000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=30000098+998+9998+99998=99999811111211109211100298+998+9998+99998=(100−2)+(1000−2)+(10000−2)+(100000−2)=111100−8=111092125×64×25×5100001000001000000解析:8.计算:,结果是。
完整版)四年级奥数简算、速算与巧算
完整版)四年级奥数简算、速算与巧算本讲将研究用凑整法和分解法等方法进行乘除的巧算。
通过适当分解或转化已知数,可以使计算变得简单。
对于较复杂的计算题,要善于从整体上把握特征,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,简化计算过程。
例1:计算236×37×27.可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=-236=.练一:计算132×37×27、315×77×136、6666×6666.例2:计算333×334+999×222.只要对数据作适当变形即可简算。
333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=.练二:计算9999×2222+3333×3334、37×18+27×42、46×28+24×63.例3:计算xxxxxxxx×2002-xxxxxxxx×2001.将xxxxxxxx变形为2001×,把xxxxxxxx变形为2002×,计算起来就非常方便。
xxxxxxxx×2002-xxxxxxxx×2001=2001××2002-2002××2001=0.练三:计算×368-×1922、xxxxxxxx×1994-xxxxxxxx×、xxxxxxx×3998-xxxxxxxx×666.例4:不用笔算,请指出下面哪个得数大:163×167或164×166.可以将163乘以166,得到,将164乘以167,得到,因此164×166得数大。
四年级奥数第一讲_速算与巧算含答案
四年级奥数第⼀讲_速算与巧算含答案第⼀讲速算与巧算⼀、知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的⽅法:如等差数列求知、凑整、拆数等等。
⼆、典例剖析:例(1) 19199199919999199999++++分析:运⽤凑整法来解⼗分⽅便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练⼀练:898998999899998999998+++++=例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若⼲个1,再与其余部分进⾏计算。
解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练⼀练:989796959493929190894321+--++--++---++例(3) 1111111111?分析:111,1111121,11111112321?=?=?= 解:1111111111123454321?=练⼀练:2222222222?可以探索⼀下11×11,11×12,…11×19,11×21…11×29…例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、⼗位、百位、千位上均各出现⼀次。
解:原式1111222233334444=+++ 1111(1234)=?+++ 111110=? 11110=练⼀练:5678967895789568956795678++++例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
四年级奥数——速算与巧算(加减乘除)
四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
完整版)四年级奥数速算与巧算
完整版)四年级奥数速算与巧算用了基准数的特性,直接求解)4940+14941.四年级奥数知识点:速算与巧算(一)例1:计算9+99+999+9999+.解法:在所有数字都是9的计算中,常使用凑整法。
例如,将999化成100-1去计算,这是小学数学中常用的一种技巧。
9+99+999+9999+10-1)+(100-1)+(1000-1)+(-1)+(-1)10+100+1000++-5-5.例2:计算++1999+199+19.解法:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。
不过这里是加1凑整(如199+1=200)。
++1999+199+19+1)+(+1)+(1999+1)+(199+1)+(19+1)-5++2000+200+20-5-5.例3:计算(1+3+5+…+1989)-(2+4+6+…+1988)。
解法:先把两个括号内的数分别相加,再相减。
第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995;第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995-1990×497=995.例4:计算389+387+383+385+384+386+388.解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数。
389+387+383+385+384+386+388390×7-1-3-7-5-6-42730-282702.解法2:也可以选380为基准数,则有:389+387+383+385+384+386+388380×7+9+7+3+5+4+6+82660+422702.例5:计算(4942+4943+4938+4939+4941+4943)÷6.解法:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数。
四年级上奥数第13讲 速算与巧算(一)
四秋第13讲 速算与巧算(一)一、教学目标速算与巧算是小学数学竞赛永恒的话题,每个杯赛都会有1-2道题目考察学生的运算能力,主要集中在整数的巧算,极少涉及小数。
掌握速算与巧算的技巧,往往能够在极短的时间内解决运算问题。
巧算的方法主要有:提取公因式、凑整、拆分、分组、换元,同学们需根据具体情况具体分析,选择合适的方法。
二、例题精选加减凑整:【例1】 计算:1、699999+69999+6999+699+692、1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9【巩固1】计算:1、199+298+397+496+595+202、987654-151-269-149-31+346【例2】 计算:10020092000920000920009++++L L 14243个【巩固2】计算:98+998+9998+......+99 (98)乘除凑整:【例3】 计算:(1)125428525⨯⨯⨯⨯⨯ (2)2100425÷÷10个9【巩固3】计算:(1)125258÷÷⨯ (2)456⨯⨯÷⨯⨯36825()乘法分配律:【例4】 计算:(1)2748+5227⨯⨯ (2)329+2999⨯ (3)10199⨯【巩固4】计算:(1)3426+2666⨯⨯ (2)13250+25870⨯⨯ (3)9835⨯重叠数:【例5】 计算:123123123321321321321123⨯-⨯位值原理:【例6】 用7、8、9可以组成6个各位数字不相同的三位数,那么这6个数的和是多少?三、回家作业【作业1】计算:458+356+289+244-58+711【作业2】计算:11+12+13+14+21+22+23+24+31+32+33+34++91+92+93+94L【作业3】计算:197+1997+19997+......+199 (97)【作业4】计算:67200254335467_______⨯+⨯+⨯=【作业5】计算:82198219821919818119811981191983⨯-⨯10个9。
小学四年级奥数第20讲 速算与巧算(一)后附答案
第20讲速算与巧算(一)一、知识要点速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
这一讲我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
二、精讲精练【例题1】计算9+99+999+9999练习1:计算(1)99999+9999+999+99+9 (2)9+98+996+9997(3)19999+2998+396+497 (4)198+297+396+495【例题2】计算489+487+483+485+484+486+488练习2:计算(1)50+52+53+54+51 (2)262+266+270+268+264 (3)89+94+92+95+93+94+88+96+87 (4)381+378+382+383+379【例题3】计算下面各题。
(1)632-156-232 (2)128+186+72-86练习3:计算下面各题(1)1208-569-208 (2)283+69-183(3)132-85+68 (4)2318+625-1318+375【例题4】计算下面各题。
(1)248+(152-127)(2)324-(124-97)(3) 283+(358-183)练习4:计算下面各题(1)348+(252-166)(2)629+(320-129)(3)462-(262-129) (4) 662-(315-238)【例题5】计算下面各题。
(1)286+879-679 (2)812-593+193练习5:计算下面各题。
四年级奥数第一讲速算与巧算整理版
• 799998+79997+7996+797+18
• 1234567+2345671+3456712+4567123+5671234+6712345+7123456 (提示:每个数位上的数字和都是1+2+3+4+5+6+7)
利用组合法巧算可以达到简化算式的效果有时候是两个数为一组有时候是三个数为一组同步巩固练习98979695949392919089
一、速算与巧算
记住它们的特色 2×5=10 25×4=100 125×8=1000 625×8=5000 625×16=10000
简便计算加减篇
例1、 8+98+998+9998+99998+999998
=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)+(999998+2)-2×6 = 10+100+1000+10000+100000+1000000 = 1111110-12 = 1111098
总结:利用“补数法”巧算时,要根据“多加的要减去,
少加的再加上。”的原则进行处理。
延伸拓展
用“组合法”巧算
812-593+193-647+247-374+174+200 =812-400-400-200+200 =12 1-2+3-4+5-6+……+1991-1992+1993
= 1+(3-2)+(5-4)+(7-6)+ ……+(1991-1990)+(1993-1992) =1+(1992÷2)×1 =1+996 =997
小学四年级奥数(速算与巧算)
小学四年级奥数第2讲速算与巧算知识方法…………………………………………………我们已经学过了加法交换律、加法结合律及乘法交换律、乘法交换律、乘法分配律等运算定律,这些定律在学习中经常会用到这就需要我们首先要掌握好这几个定律,在经常练习的基础之上,巧秒地运用运算定律和性质,可以把较复杂的计算转化为简单的计算,使得计算正确而迅速。
重点点拨…………………………………………………【例1】计算:598-65-35分析如果按照运算顺序进行计算显然比较麻烦。
这里我们可以利用减法的性质:从一个数里连续减去几个数,等于从这个数里减去这几个数的和。
因为65与35的和刚好等于整百数,所以这题可以先用65与35相加,得到100再用598减去100,这样计算非常简便。
解答598-65-35=598-(65+35)=598-100减法的性质:a-b-c=a-(b+c)【例2】计算:8×42×125分析这题是三个数连乘,可以按照从左到右的顺序进行计算,这样也能求出结果,但比较麻烦。
今后碰到这样的题目,在动笔计算之前,可以先研究一下,你就会发现把8与125先相乘,计算会非常简便。
解答8×42×125=8×125×42=1000×42=42000这里运用了乘法交换律使得计算更加简便。
【例3】计算:7800÷25÷4分析在除法里有这样一种性质,“一个数连续除以几个数,可以先把这几个数相乘,再用这个数去除以后面几个数的,结果不变”这题我们可以先把25与4相乘,再用7800除以它们的积,这样计算起来会非常简便。
解答7800÷25÷4=7800÷(25×4)=7800÷100=78除法的性质是:a÷b÷c=a÷:(bXc)。
【例4】计算:85×27+85×74-85分析这题看起来有点复杂,因为它不是典型的乘法分配律的运用。
(完整版)四年级奥数简算、速算与巧算
速算与巧算(三)一、本讲知识概要本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
二、典例解析·举一反三例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764练习一计算下面各题:132×37×27 315×77×13 6666×6666例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000练习二计算下面各题:9999×2222+3333×3334 37×18+27×42 46×28+24×63例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。
四年级奥数-速算与巧算
四年级奥数-速算与巧算速算与巧算一、知识要点速算与巧算是计算中的重要组成部分。
掌握巧算方法有助于提高计算和思维能力。
本周研究加减法的巧算方法,根据加减法的定律和性质,通过适当变形简化计算。
巧算方法蕴含解决问题的策略。
转化问题法是根据运算定律和性质,改变运算顺序或减整,使计算变得简便。
二、精讲精练例题1:计算9+99+999+9999思路导航:四个加数接近10、100、1000、.通常使用减整法,例如将99转化为100-1.9+99+999+999910-1)+(100-1)+(1000-1)+(-1)10+100+1000+-4练1:1.计算+9999+999+99+92.计算9+98+996+99973.计算1999+2998+396+4974.计算198+297+396+4955.计算1998+2997+4995+59946.计算+++例题2:计算489+487+483+485+484+486+488思路导航:观察每个加数,发现它们都接近整数490,选490为基准数。
489+487+483+485+484+486+488490×7-1-3-7-5-6-4-23430-283402思考:如果选480为基准数,如何计算?练2:1.50+52+53+54+512.262+266+270+268+2643.89+94+92+95+93+94+88+96+874.381+378+382+383+3795.1032+1028+1033+1029+1031+10306.2451+2452+2446+2453例题3:计算下面各题。
1)632-156-2322)128+186+72-86在一个没有括号的算式中,如果只有第一级运算,可以根据运算定律和性质调换加数或减数的位置来计算。
例如:632-156-232=632-232-156=400-156=244.练题为:计算1.1208-569-2082.283+69-1833.132-85+684,2318+625-1318+375.在计算有括号的加减混合运算时,有时可以去括号来使计算简便。
四年级奥数《速算与巧算》专项练习题及答案
四年级奥数《速算与巧算》专项练习题及答案1. 数的速算法2. 快速计算3. 小学奥数加减乘除练习4. 常见乘法口诀5. 方便的除法计算技巧6. 巧妙的加减法运算7. 优化的百分数计算方法8. 实用的几何图形计算技巧9. 实战的生活中的计算题目10. 视觉记忆的速算训练答案:1. 数的速算法答案:速算法指的是运用一些简便的技巧与方法来快速计算的方法。
例如用9段样条线来表示数字1,将数字的表达与视觉形象结合在一起,可以达到快速计算的效果。
2. 快速计算答案:快速计算技巧包括了加减乘除各个方面,如加法有凑数法、抵数法等;减法有加倍数法、分解数法等;乘法有竖式运算方法,交叉相乘计算法等;除法有竖式运算法、分解分子分母法等。
3. 小学奥数加减乘除练习答案:加减乘除是小学奥数的基础,掌握了这些基础的数学运算能力,才能在学习高阶数学知识时更加游刃有余。
可以通过刻意而有目的地训练来提高计算速度和准确度。
4. 常见乘法口诀答案:小学奥数中最为基础的技能之一就是乘法口诀,通过熟练掌握乘法口诀,可以极大地方便我们的计算。
如:1×8=8,2×8=16,3×8=24,8的下一个是9,所以 4×8=32,5×8=40,等等。
5. 方便的除法计算技巧答案:除法相对而言更为复杂一些,但我们可以通过一些简单易行的技巧来提高计算效率。
如:除法的大小关系可以和乘法相互转换,而某些数字的约数和倍数也可以有助于除法的计算。
6. 巧妙的加减法运算答案:加减法其实是一种递归的过程。
一旦我们掌握了这些技巧,就可以通过这些技巧来递归计算出较为复杂的问题。
例如,在求两个小数的相加时,我们可以把两个小数的小数位数统一,然后相加即可。
7. 优化的百分数计算方法答案:百分数在日常生活中也很常见,要精通百分数计算,通常需要对常用的百分数进行速算。
例如:50%等于1/2,25%等于1/4,10%等于1/10,更高级的百分数转化可以运用推导法来操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数状元郎网络教育平台旗舰店(百度文库) 速算与巧算四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
解:选基准数为450,则累计差=12+30-7-30+23-21+18-11+25+11=50,平均每块产量=450+50÷10=455(千克)。
答:平均每块麦田的产量为455千克。
求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。
对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。
有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。
所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。
下面通过例题来说明这一方法。
例3 求292和822的值。
解:292=29×29=(29+1)×(29-1)+12=30×28+1=840+1=841。
822=82×82=(82-2)×(82+2)+22=80×84+4=6720+4=6724。
由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。
因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。
本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。
最后,还要加上“移多补少”的数的平方。
由凑整补零法计算352,得35×35=40×30+52=1225。
这与三年级学的个位数是5的数的平方的速算方法结果相同。
这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。
例4求9932和20042的值。
解:9932=993×993=(993+7)×(993-7)+72=1000×986+49=986000+49=986049。
20042=2004×2004=(2004-4)×(2004+4)+42=2000×2008+16=4016000+16=4016016。
下面,我们介绍一类特殊情况的乘法的速算方法。
请看下面的算式:四年级奥数状元郎网络教育平台旗舰店(百度文库) 速算与巧算66×46,73×88,19×44。
这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。
这类算式有非常简便的速算方法。
例5 88×64=?分析与解:由乘法分配律和结合律,得到88×64=(80+8)×(60+4)=(80+8)×60+(80+8)×4=80×60+8×60+80×4+8×4=80×60+80×6+80×4+8×4=80×(60+6+4)+8×4=80×(60+10)+8×4=8×(6+1)×100+8×4。
于是,我们得到下面的速算式:由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。
例6 77×91=?解:由例3的解法得到由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。
用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。
练习11.求下面10个数的总和:165,152,168,171,148,156,169,161,157,149。
2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):26,25,25,23,27,28,26,24,29,27,27,25。
求这批麦苗的平均高度。
3.某车间有9个工人加工零件,他们加工零件的个数分别为:68,91,84,75,78,81,83,72,79。
他们共加工了多少个零件?4.计算:13+16+10+11+17+12+15+12+16+13+12。
5.计算下列各题:(1)372;(2)532;(3)912;(4)682:(5)1082;(6)3972。
6.计算下列各题:(1)77×28;(2)66×55;(3)33×19;(4)82×44;(5)37×33;(6)46×99。
练习1 答案1.1596。
2.26厘米。
3.711个。
4.147。
5.(1)1369;(2)2809;(3)8281;(4)4624;(5)11664;(6)157609。
6.(1)2156;(2)3630;(3)627;(4)3608;(5)1221;(6)4554。
速算与巧算(二)上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。
两个数之和等于10,则称这两个数互补。
在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。
72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。
计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。
例1 (1)76×74=?(2)31×39=?分析与解:本例两题都是“头相同、尾互补”类型。
(1)由乘法分配律和结合律,得到76×74=(7+6)×(70+4)=(70+6)×70+(7+6)×4=70×70+6×70+70×4+6×4=70×(70+6+4)+6×4=70×(70+10)+6×4=7×(7+1)×100+6×4。
于是,我们得到下面的速算式:四年级奥数状元郎网络教育平台旗舰店(百度文库) 速算与巧算(2)与(1)类似可得到下面的速算式:由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。
“同补”速算法简单地说就是:积的末两位是“尾×尾”,前面是“头×(头+1)”。
我们在三年级时学到的15×15,25×25,…,95×95的速算,实际上就是“同补”速算法。
例2 (1)78×38=?(2)43×63=?分析与解:本例两题都是“头互补、尾相同”类型。
(1)由乘法分配律和结合律,得到78×38=(70+8)×(30+8)=(70+8)×30+(70+8)×8=70×30+8×30+70×8+8×8=70×30+8×(30+70)+8×8=7×3×100+8×100+8×8=(7×3+8)×100+8×8。
于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。
“补同”速算法简单地说就是:积的末两位数是“尾×尾”,前面是“头×头+尾”。
例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。
当被乘数和乘数多于两位时,情况会发生什么变化呢?我们先将互补的概念推广一下。
当两个数的和是10,100,1000,…时,这两个数互为补数,简称互补。
如43与57互补,99与1互补,555与445互补。
在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。
例如,因为被乘数与乘数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型。