第一章-摩擦学基础知识(摩擦表面).复习课程
一 摩擦学基础
摩擦学基础(l)近年来,摩擦学研究在物理学、材料学、机械工程学等领域取得了重要进展,成为应用广泛、理论基础扎实的学科。
本论文将从基础理论入手,系统介绍摩擦学的基本原理、研究方法和应用现状。
一、摩擦学的基本原理摩擦是物体相对运动时,由于接触面间互相作用而产生的阻力。
摩擦力的大小与接触面间的压力、材料性质等因素有关。
在物体相对运动状态下,摩擦力始终与运动方向相反,这是摩擦学的基本特点。
实际上,摩擦力不仅与运动状态有关,还与接触面之间的相互作用力密切相关。
摩擦力的大小、方向和稳定性均可由接触面微观结构的特点决定。
例如,当两个光滑的硬表面相互接触时,由于表面微观结构的特殊性质,摩擦力可近似为零;而两个粗糙的表面接触时,则有较大的摩擦力产生。
二、摩擦学的研究方法为了更好地研究摩擦学,我们需要寻找摩擦力的特点,从而确定相应的研究方法。
目前,常见的研究方法如下:(1)摩擦学实验。
该方法通过建立摩擦学模型,模拟实际摩擦条件,通过实验观察和测试,研究摩擦学中的影响因素、作用原理及其宏观特征。
(2)摩擦力理论分析。
该方法通过力学、热力学和统计物理等理论方法,建立数学模型,推导摩擦力公式,研究摩擦力大小、方向和稳定性等性质。
(3)摩擦学表征技术。
该方法通过各种表征手段,如扫描电镜、电子探针、拉力试验机等,分析和表征摩擦学中的微观特征,研究摩擦学行为和机制。
三、摩擦学的应用现状摩擦学的应用领域广泛,包括机械工程、材料工程、表面学、纳米技术及生物医学等。
其中,摩擦学在机械工程领域中的应用尤为广泛,如锅炉、汽车、机床等领域,均需要摩擦学研究的支持。
同时,在材料工程领域,稳定的摩擦是材料性能评价的关键。
总之,摩擦学的研究和应用对于各行各业都具有重要的意义,这一学科的发展必将推动现代技术和工业的进步。
同时,我们也期望今后能有更多的研究工作者加入到这一学科的研究中来。
在表面学领域,摩擦学可应用于摩擦学表征技术、自润滑材料的设计和表面改性等方面。
摩擦磨损与润滑课件第一章绪论
表示润滑剂在长期储存和使用过程中抵抗氧 化变质的能力。
05
CATALOGUE
润滑理论简介
润滑理论的发展历程
01
古代润滑理论
古代人类在实践中发现某些物质可以减少摩擦,如油脂、动物脂肪等,
但缺乏科学理论支撑。
02
近代润滑理论
随着工业革命的发展,机械设备的广泛应用,润滑理论逐渐形成。例如
,库伦提出了关于摩擦的定律,奠定了现代摩擦学的基础。
02
CATALOGUE
摩擦现象与原理
摩擦现象的分类
01
02
03
干摩擦
表面之间没有润滑剂,如 金属之间的摩擦。
流体摩擦
表面被润滑剂分开,如滑 轮中的润滑油与金属表面 之间的摩擦。
边界摩擦
表面间有一层极薄的润滑 剂,如滑动轴承中的润滑 油膜与轴颈之间的摩擦。
摩擦产生的原理
表面粗糙度
由于表面微观不平度,实际接触面积 小于名义接触面积,导致实际接触点 承受压力,产生弹性变形和塑性变形 ,从而产生摩擦。
疲劳剥落
由于循环接触应力作用 ,使表面材料发生疲劳
裂纹并剥落。
粘着与撕脱
由于粘着作用,使材料 从一个表面转移到另一 个表面,或从一个表面
撕脱。
腐蚀与磨损
由于腐蚀介质的作用, 使表面材料发生腐蚀并
导致磨损。
04
CATALOGUE
润滑及其作用
润滑剂的种类
润滑油
主要用于液体润滑,如发动机 机油、齿轮油等。
交通运输领域
润滑理论在交通运输领域中涉及汽车、飞机和船舶等交通 工具的发动机润滑、传动系统润滑和液压系统润滑等方面 。
科研领域
润滑理论也是摩擦学、流体力学、材料科学等领域的重要 研究方向之一,对于推动相关学科的发展具有重要意义。
摩擦(课件)
摩擦、磨损和润滑各种运动的机器零件,在工作过程中,都要发生摩擦和磨损。
为了减少机器零件的摩擦和磨损,通常有效的方法是在发生摩擦的零件表面之间添加润滑剂。
因此,对于机器维护和修理人员来说,必须具备一定的有关摩擦、磨损和润滑等方面的一些基本知识,以便能更有效地做好机器的维护和维修工作。
第一节摩擦的本质和摩擦的种类一、摩擦的本质摩擦是两个物体彼此有相对运动或有相对运动的趋势时相互作用的一种特殊形式,它发生在两个摩擦物体的接触面上,其所呈现的阻力称为摩擦力。
摩擦力的特征就是阻碍两个摩擦物体间的相对运动,甚至阻止了运动的发生。
二、摩擦的种类根据摩擦物体的运动状态,摩擦分为静摩擦和动摩擦两大类。
静摩擦的摩擦系数总是要比动摩擦的摩擦系数大一些。
根据摩擦物体的运动方式,摩擦分为滑动摩擦和滚动摩擦两大类。
根据摩擦物体的表面润滑程度,摩擦可分为干摩擦、液体摩擦、界限摩擦、半干摩擦和半液体摩擦等五种。
1、干摩擦在两个滑动摩擦的表面之间,由于不加润滑剂,因而使两表面直接接触,这时的摩擦称为干摩擦。
2、界限摩擦在两个滑动摩擦表面之间,由于润滑剂供应非常不足,根本无法建立液体摩擦,而只能依靠润滑剂中的极性油分子在摩擦表面形成一层极薄的“绒毛”状油膜,这层油膜能牢固地吸附在金属的摩擦表面上,这时,相互接触的不是摩擦表面本身(或有个别点直接接触)而是表面的油膜。
这种油膜润滑状态下的摩擦是液体摩擦过渡到干摩擦的最后界限,所以称为界限(临界或边界)摩擦。
机器在启动和制动时,各对摩擦表面间都可能发生界限摩擦。
3、液体摩擦在两个滑动摩擦表面之间,由于充满润滑剂,因而表面不发生直接接触,这时的摩擦不是发生在两摩擦表面上,而是发生在润滑剂的内部,所以称为液体摩擦。
液体摩擦时摩擦表面不发生磨损。
在一切机器零件的摩擦表面上,必须尽力建立液体摩擦,只有这样才能延长零件的使用寿命。
一般滑动轴承在正常工作和润滑条件下能获得液体摩擦。
4、半干摩擦和半液体摩擦半干摩擦是指摩擦表面上同时存在着干摩擦和界限摩擦的情况,半液体摩擦是指在摩擦表面上同时存在着液体摩擦和界限摩擦的情况。
摩擦及润滑基础知识
第八章摩擦和润滑第一节摩擦与润滑机理当两个紧密接触的物体沿着它们的接触面作相对运动时,会产生一个阻碍这种运动的阻力,这种现象叫摩擦,这个阻力就叫做摩擦力。
摩擦力与垂直载荷的比值叫做摩擦系数。
摩擦定律可描述如下:(1)摩擦力与法向载荷成正比:F∝P(2)摩擦力与表面接触无关,即与接触面积大小无关。
(3)摩擦力与表面滑动速度的大小无关。
(4)静摩擦力(有运动趋向时)F S大于动摩擦力F K,即Fs>F K。
摩擦定律公式:F=f·P或f=F/P式中F——摩擦力f——摩擦系数;P——法向载荷,即接触表面所受的载荷;载荷机器中凡是互相接触和相互之间有相对运动的两个构件组成的联接称为“运动副”(也可称为“摩擦副”),如滚动轴承里的滚珠与套环;滑动轴承的轴瓦与轴径等等。
任何机器的运转都是靠各种运动副的相对运动来实现,而相对运动时必然伴随着摩擦的发生。
摩擦首先是造成不必要的能量损失,其次是使摩擦副相互作用的表面发热、磨损乃至失效。
磨损是运动副表面材料不断损失的现象,它引起了运动副的尺寸和形状的变化,从而导致损坏。
例如油在轴承内运转,轴承孔表面和轴径逐渐磨损,间隙逐渐扩大、发热,使得机器精度和效率下降,伴随着产生冲击载荷,摩擦损失加大,磨损速度加剧,最后使机器失效。
润滑是在相对运动部件相互作用表面上涂有润滑物质,把两个相对运动表面隔开,使运动副表面不直接发生磨擦,而只是润滑物质内部分子与分子之间的摩擦。
所以,摩擦是运动副作相对运动时的物理现象,磨损是伴随摩擦而发生的事实,润滑则是减少摩擦、降低磨损的重要措施。
第二节摩擦分类摩擦有许多分类法。
1. 按摩擦副运动状态分静磨擦:一个物体沿着另一个物体表面有相对运动趋势时产生的摩擦,叫做静摩擦。
这种摩接力叫做静摩擦力。
静摩擦力随作用于物体上的外力变化而变化。
当外力克服了最大静摩擦力时,物体才开始宏观运动。
动磨擦:一个物体沿着另一个物体表面相对运动时产生的摩擦叫做动摩擦。
摩擦学基本知识48页PPT
ห้องสมุดไป่ตู้
摩擦学基本知识
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
第一章 摩擦学基础知识(摩擦表面)解读
(3)描述参数(GB3505-83): 相对支承长度率:
支承面积: Ax离峰顶h处面积 Ao离峰顶最大高度面积
(4)按支承面积的大小将轮廓图形分三个高度层:支承面积小 于25%的部分称为波峰,为最高层;在25%~75%之间部分称 为波中,为中间层;大于75%部分为波谷,最低层。
塑性接触状态:
实际接触面积与载荷为线性关系,而与高度分布函 数ψ(z)无关。 结论:实际接触面积与载荷的关系取决于表面轮廓 曲线和接触状态。当为塑性接触时,无论高度分布 曲线如何,实际接触面积都与载荷成线性关系。在 弹性接触状态下,大多数表面的轮廓高度接近于正 态分布,实际接触面积与载荷也具有线性关系。
第一章 摩擦学基础知识
1 摩擦表面
1.表面形貌组成:
固体表面的微观几何形状,即形状公差、波 纹度和表面粗糙度统称为表面形貌。
(1)表面形状误差:
实际表面形状与理想表面形状的宏观 偏差,是一种连续而不重复的形状偏差。 它是机床- 工件- 刀具系统的误差和弹 性变形等造成,如机床和刀具精度不够、 不正确的加工规范或温度应力等。表面 形状误差的数值由最大偏差表示,国家 标准 GB1182~1184-80 规定了形状和 位置公差。
(4)四次矩-峰态K:分布曲线的陡峭度。正态K =3,K<3概率分散,表面凸峰较平缓。K >3概 率集中,凸峰较尖锐。
(3). 自相关函数R(l):
反映了相邻轮廓的关系和轮廓曲线的变化趋势。 对于任一条轮廓曲线,自相关函数是各点的轮廓 高度与该点相距一定间隔处的轮廓高度乘积的数 学期望,即
离散函数:测量长度内测量点n,高度值xi,则
摩擦学基础知识
τb、σs分别是较软材料的剪切强度极限(或界面 剪切强度)和屈服极限。
精品文档
(2)粘着理论基本要点:
摩擦表面处于塑性接触状态:实际接触面只 占名义面积很小部分,接触点处应力达到受 压屈服极限产生塑性变形后,接触点的应力 不再改变,只能靠扩大接触面积承受继续增 加的载荷。
当两表面的材料分子接近时,分子之间的吸引作 用是产生摩擦阻力的假说,利用分子力与分子之 间距离的关系导出了摩擦系数与接触面积成正比:
F=f(N+pAr) p为分子引力,Ar为真实接触面积
精品文档
3. 分子—机械理论
克拉盖尔斯基1939年提出分子-机械摩擦理论,认 为摩擦阻力是由机械变形抗力和分子引力的综合, 并非常量,用摩擦二项式定律表示:
精品文档
.
精品文档
表面膜效应:
当摩擦副表面生成氧化膜或被污染形成污染 膜时,摩擦系数将降低。污染膜的剪切强度 较底时,粘着结点增长不明显。当剪切应力 达到污染膜的剪切强度时,表面膜被剪断, 摩擦副开始运动,摩擦系数表示为:
μ= τ f /σy
只τ f适界用面与膜金的属剪摩切擦强副度。, σy金属副的屈服强度,
Stribeck曲线表现了这些摩擦状态,u、η、p 分别表示速度、润滑剂粘度和压力。
精品文档
摩擦的基本特性
1. 古典摩擦定律 (称为阿蒙顿-库仑定律):
(1)摩擦力和载荷成正比,即 F= f N 。除了在重载 荷下实际接触面积接近表观面积外,都是正确的。 (2)摩擦系数与(名义)接触面积无关。一般仅对 具有屈服极限的材料如金属材料是满足的,不适于 弹性和粘弹性材料。 (3)静摩擦系数大于动摩擦系数。不适于粘弹性材 料,尽管改材料究竟是否具有静摩擦系数还没定论。 (4)摩擦系数与滑动速度无关。金属材料基本符合, 粘弹性显著的弹性材料,与滑动速度有关。
摩擦学基本知识
摩擦学基本知识目录1. 摩擦学简介 (3)1.1 摩擦学的定义和学科范围 (4)1.2 摩擦学的重要性与应用领域 (5)2. 摩擦的分类与机制 (6)2.1 摩擦的分量和类型 (7)2.2 摩擦机理的基本概念 (8)2.3 不同表面相互作用的摩擦特性 (9)3. 摩擦因数的测定与预测 (10)3.1 摩擦因数的测定方法 (13)3.2 摩擦因数的预测模型 (14)3.3 摩擦因数的理论与实验研究 (16)4. 接触力与接触压力 (17)4.1 接触力产生的基本原理 (18)4.2 接触压力分布分析 (19)4.3 表面纹理与非线性接触压力 (21)5. 摩擦系数与磨损 (22)5.1 摩擦系数的影响因素 (23)5.2 磨损理论与磨损机制 (25)5.3 表面损伤与摩擦副寿命 (26)6. 润滑理论与技术 (27)6.1 润滑的基本原理 (29)6.2 润滑剂的种类与性能 (29)6.3 润滑技术的应用与发展 (30)7. 润滑与摩擦学研究进展 (32)7.1 高温润滑与表面化学 (33)7.2 纳米润滑与摩擦纳米技术 (34)7.3 非传统润滑方法 (36)8. 摩擦与润滑系统分析 (37)8.1 摩擦与润滑系统的建模 (38)8.2 系统分析和仿真方法 (39)8.3 设计原则与优化方法 (42)9. 摩擦与润滑材料 (43)9.1 摩擦与润滑基体材料 (44)9.2 摩擦系数与材料特性 (46)9.3 摩擦与磨损材料的研究 (47)10. 表面工程与表面特征对摩擦的影响 (48)10.1 表面工程技术 (50)10.2 表面特征与摩擦性质 (51)10.3 表面处理与润滑原理 (52)11. 摩擦与润滑的可持续性与环境考量 (54)11.1 环境保护与绿色润滑 (55)11.2 可持续设计与材料选择 (56)11.3 摩擦与润滑的节能减排 (57)12. 摩擦与润滑的科技伦理与社会责任 (58)12.1 专利与知识产权保护 (59)12.2 技术创新与科技伦理 (61)12.3 摩擦与润滑的社会责任 (62)13. 摩擦与润滑的未来趋势 (63)13.1 新兴技术的应用前景 (64)13.2 智能化与信息化在摩擦学中的应用 (65)13.3 摩擦学与当代科技发展的交融 (66)1. 摩擦学简介摩擦学是一门研究涉及相互接触并相对运动的物体间相互作用的科学。
第一章摩擦学概论
课程名称: 摩擦学Tribology 课程类型:校公共选修课计划学时:18主讲教师: 孙建林 教授;校公共选修课 “摩擦学”(教学大纲)课程类型: 公共选修课计划学时: 18 教材:有先修课程:1摩擦学概述-------------------------------------3学时1.1摩擦学定义与主要内容1.2摩擦与润滑的发展1.3摩擦学研究状况1. 4 摩擦学面临的任务2表面性质-------------------------------------3学时2.1表面形貌与表面测量2.2 表面张力与表面能2.3表面吸附与氧化2.4 表面接触3摩擦机理-------------------------------------3学时3.1摩擦类型与特点3.2摩擦理论3.3影响摩擦的因素3.4摩擦的测定4工艺润滑剂概述-------------------3学时4.1工艺润滑的目的与要求4.2润滑状态;4.3工艺润滑剂的类型(油基润滑剂;水基润滑剂;乳化液;固体润滑剂)4.4润滑添加剂5 工艺润滑基本理论--------------------------------------------------3学时5.1润滑状态5.2流体润滑5.3混合润滑5.4 边界润滑6磨损-------------------------------------------3学时6.1磨损的定义6.2磨损类型6.3磨损对工模具及制品表面质量的影响参考书目[1] 温诗铸,摩擦学原理,北京:清华大学出版社,1994。
[2] 全永昕,工程摩擦学,杭州:浙江大学出版社,1994。
[3] 汪一麟,实用摩擦学,上海:上海科学技术出版社,1984。
[4] 颜志光,润滑材料与润滑技术,北京:中国石化出版社,2000。
[5] 张剑烽等,摩擦磨损与抗磨技术,天津:天津科技翻译出版公司,1993。
[6] 孙建林,材料成形摩擦磨损与润滑,国防工业出版社,2007。
摩擦和磨损课件
摩擦和磨损
14
§1-4 摩擦与磨损
2. 磨损种类 (2)磨损机理下的几种磨损及影响因素
4)冲蚀磨损
当一束含有硬质微粒的流体冲击到固体表面上的时候就会造成冲蚀磨 损,例如利用高压空气输送型砂或高压水输送矿石的管道所产生的摩损。 冲蚀磨损是在有摩擦的情况下受到硬质微粒冲击反复作用而造成的表层 疲劳破坏。
磨损会影响机器的精度,强敌工作的可靠性,甚至促使机器提前报废。
摩擦和磨损
8
§1-4 摩擦与磨损
1. 磨损过程
磨
损 量 Q
磨 合
稳定磨损
剧烈磨损
0 t2
t1
时间t
0~t1:磨合阶段
t1~t2:稳定磨损阶段
t2~~:剧烈磨损阶段
摩擦和磨损
9
§1-4 摩擦与磨损
1. 磨损过程
(1)磨合阶段
在运转初期,摩擦副的接触面积较小,单位面积上的实际载荷较 大,磨损速度较快。随着磨合的进行,实际接触面积不断增大,磨 损速度在达到某一定值后转入稳定磨损阶段。
(3)根据摩擦副的摩擦状态可分为: 固体摩擦、液(气)体摩擦和混合摩擦。
摩擦和磨损
3
§1-4 摩擦与磨损 2. 种类
1)固体摩擦 固体摩擦分为干摩擦和边界摩擦。
干摩擦 摩擦副在直接接触时产生的摩擦称为干摩擦。
因摩擦因数大,磨损严重,除利用摩擦力工作的场合外,应尽量避免。
摩擦和磨损
4
§1-4 摩擦与磨损
严重的粘着磨损会造成运动副咬死,不能正常运转 。
影响因素:①同类摩擦副材料比异类材料容易粘着,如钢件运动副的 相对运动;②脆性材料比塑性材料的粘着能力高;③在一定范围内,零 件的表面粗糙度愈小,抗粘着能力愈强。
汽车摩擦学复习大纲2012
汽车摩擦学复习大纲第1章前言摩擦学定义:摩擦学是研究作相对运动的相互作用表面及其有关的理论和实践的一门科学技术,涉及的主要学科为物理学、化学、机械工程等等。
摩擦是本质,磨损是摩擦的结果,润滑是减少摩擦与磨损的措施。
摩擦学行为有着有害的一面,也有有利的一面。
摩擦学学科的三个特点:摩擦学现象的普遍性、问题的严重性、摩擦学知识构成的复杂性。
摩擦学的发展:宏观到微观,定性到定量,静态到动态(时变),个别到系统到大系统。
第2章机械系统中的表面和摩擦一个物体经过加工后实际存在的表面即称为实际表面(或称为真实表面)。
真实表面形貌,它由表面形状误差、波纹度和表面粗糙度组成。
表面粗糙度参数:(1)高度特性参数(2)间距特性参数(3)形状特性参数(4)一维、二维、三维形貌参数表面形貌是指固体表面的微观几何形状,尤其与沿垂直高度的微观变量有关。
表面形貌参数:微观不平度R z 也称为微观不平度十点平均高度,是在取样长度L 内,5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和称为R z 。
轮廓算术中心线平均值Ra :在粗糙度测量中,在取样长度内与轮廓走向一致的基准线,由该线划分实际轮廓使上下两边的面积相等。
在取样长度内轮廓高度对轮廓算术平均中线的偏离量的称为偏距。
偏距的绝对值的算术平均值为轮廓算术平均偏差。
轮廓均方根偏差是以中线为横轴即二次矩或称为二阶中心矩,与基准线的选择有关,反映轮廓偏离基准线的离散程度。
在取样长度内轮廓偏距的均方根值为轮廓均方根偏差。
金属表面层是由若干层次组成的表面层:外表面层有物理吸附和化学吸附作用生长的吸附层及因氧化形成的氧化膜层。
塑性变形层称内层。
固体表面间的实际接触真实物体的表面不是理想光滑的表面,当两个表面相接触时,只是在表面的个别地方接触,这些离散的接触面积的总和构成实际接触面积。
1、接触面积的概念名义接触面积A n :又称表面接触面积或几何接触面积,它是两接触物体的宏观界面的边界所确定的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布高度偏离概率分布中心的绝对平均情况,不能 真实反映出表面轮廓的离散性和波动性,但由于其 定义与测量仪表读数设计原理一致,作为衡量表面 粗糙度的主要参数,被广泛采用。
(2)轮廓均方根偏差 Rq:轮廓图形上各点和中线 之间距离平方和平均值的平方根。均方根偏差比 算术平均偏差优越,在理论上普遍采用。
(4)四次矩-峰态K:分布曲线的陡峭度。正态K =3,K<3概率分散,表面凸峰较平缓。K >3概 率集中,凸峰较尖锐。
(3). 自相关函数R(l):
反映了相邻轮廓的关系和轮廓曲线的变化趋势。 对于任一条轮廓曲线,自相关函数是各点的轮廓 高度与该点相距一定间隔处的轮廓高度乘积的数 学期望,即
离散函数:测量长度内测量点n,高度值xi,则
第一章-摩擦学基础知识(摩擦表 面).
(1)表面形状误差:
实际表面形状与理想表面形状的宏观 偏差,是一种连续而不重复的形状偏差。 它是机床- 工件- 刀具系统的误差和弹 性变形等造成,如机床和刀具精度不够、 不正确的加工规范或温度应力等。表面 形状误差的数值由最大偏差表示,国家 标准 GB1182~1184-80 规定了形状和 位置公差。
面轮廓曲线与中线交点各波形之间距离的算术平 均值。该参数反应了表面不规则起伏的波长或间 距以及粗糙峰的疏密程度。
(5)支承面曲线:即能表示粗糙表面的微凸体高
度分布,也能反映摩擦表面磨损到一定程度时支承 面积的大小。主要用于计算实际接触面积,一般用 二维作图法求支承面曲线。
(1)以通过最高峰顶点的直线为零位线,在标准长 度L的轮廓曲线上,作与中线平行的一系列直线, 如h1、h2、h3…..
连续函数的轮廓曲线为积分形式:
4 表面形貌的测量
1. 光学法:
光学显微镜,适用于测量较规则表面的Sm值。 包括光切法和干涉法。
2. 电子显微镜:
适用于评定不均匀表面的粗糙度。
3. 截面法:
直接将轮廓表面切开进行表面几何形状的观察。
4. 流量法:
当流体从测量仪器与被测表面之间的缝隙流过 时,如果控制流体压力并测出一定量流体经过 缝隙的时间,根据流体力学原理,就可以推算 出表面的当量粗糙度。根据表面粗糙度的程度 不同,使用的流体有气体和液体两种。
高 度接近于正态分布(Gauss分布):
σ为粗糙度的均方值,正态分布中称标准偏差, σ2为方差。相关参数定义为:
(2). 分布曲线的数字特征(矩):
(1)一次矩算术平均值: 确定中线位置。
(2)二次矩-均方偏差: 衡量高度分布的离散性。
(3)三次矩-偏态 S:分布曲线偏离对称位置的 指标,正态分布曲线 S = 0,非正态分布可正 可负。
(5)评定摩擦表面的接触和表面磨合:(a)图中,支撑面曲线在 微凸体顶部处的斜率较大,曲线较陡,这种表面组成的摩擦 副,接触面积小,耐磨性差。(b)图中的支撑面曲线在微凸体 顶部处的斜率较小,曲线较平缓,这种表面组成的摩擦副, 接触面积较大,耐磨性能较好。
3 表面形貌统计学特性
切削加工的金属表面形貌包含了周期变化和随 即变化两个部分,单一形貌参数不能够描述复 杂的表面形貌,采用形貌统计参数能反映更多 的表面形貌信息。 (1).轮廓高度分布函数:切削加工表面的轮廓
5. 针描法:
利用仪器的触针与被测表面相接触,并使触针 等速的沿表面轮廓移动以描述出轮廓的图形。 最常使用的是表面轮廓仪。
5.表面化学性质:
(2)表面波纹度:
表面周期性重复出现的几何形状误差,是有规律、 周期性、峰和谷的大小几乎相等的表面宏观误差。 是由机床- 工件-刀具系统的振动和机床传动件的 缺陷引起的。它的存在对摩擦磨损是有害的,减 少配合件的实际接触面积,导致真实接触表面压 强增加,加快零件的磨损。
波高 h:波峰与波谷之距离。 波距 s:相邻波形对应点距离。
(3)微观不平度十点平均高度Rz:在取样长度范围 内以平行轮廓中线的任一条直线为基准,测量轮 廓上五点最高的凸峰和五点最低的凹谷之间的算
术平均距离,hpi第i个最高的轮廓峰高,hvi第i个
最低的轮廓峰高。这一参数对表面轮廓的评定, 在测量时易受人为因素的影响,不能稳定反映出 表面的几何特征。
ቤተ መጻሕፍቲ ባይዱ
(4) 中线截距平均值 Sm:取样长度范围内,表
2. 表面粗糙度的评定参数
z 为轮廓上各点的高度,m-m 为轮廓中线,L 为取样长度,h 为峰或谷距任一平行于中线的
基线距离。
(1)轮廓算术平均偏差Ra(Arithmetic average
roughness)轮廓上各点高度在测量长度范围内的 算术平均值,数学表达式:
概率统计表达式:
zi 以中线为起点度量出的轮廓高度; n 标准长度内测量的次数; ƒ(x) 轮廓图形的分布函数。
(3)表面粗糙度(surface
roughness):是固体表面的基本形貌, 又称表面微观粗糙度,波距小,约 2~800μm,波高较低 0.03~400μm, 属表面微观几何形状误差。主要与切 削加工方法、刀具的运动轨迹、磨损 及工艺系统的高频振动有关。 GB1031-83 规定了表面粗糙度的参数 和数值。工程上通常采用表面粗糙度 表征表面的形貌参数。
表面粗糙度的特征:
1.变化规律:呈现某种规律性变化或为 无规律的随机变化特征。如车削、钻孔 或刨削等工艺加工的表面微凹凸体分布 往往具有一定的规律和方向性;磨削、 研磨或抛光等精加工表面则为无规律的 随机分布特征。
2.与摩擦磨损关系密切:表面粗糙度的 特征对接触表面的压力分布、接触变形 程度、分子吸引力的大小、以及摩擦阻 力和摩擦成因等有决定性的影响。
(2)将各平行线截取轮廓图形中微凸体的长度相加, 画在轮廓图右侧,直到轮廓图形的最低点为止,连 接图中各点,即得到支承面曲线。
(3)描述参数(GB3505-83): 相对支承长度率:
支承面积: Ax离峰顶h处面积 Ao离峰顶最大高度面积
(4)按支承面积的大小将轮廓图形分三个高度层:支承面积小 于25%的部分称为波峰,为最高层;在25%~75%之间部分称 为波中,为中间层;大于75%部分为波谷,最低层。