负阻抗变换器及其应用
16.6 回转器和负阻抗变换器
本节介绍两种特殊的二端口器件: 本节介绍两种特殊的二端口器件:
回转器和负阻抗变换器
一、回转器
回转器是一种线性非互易的多端元件。 回转器是一种线性非互易的多端元件。 回转器是一种阻抗逆变器,可用于将电容回转成电感。 回转器是一种阻抗逆变器,可用于将电容回转成电感。 1、电路符号图 、 i2 i1 + u1 + u2 -
0 − r Z= r 0 0 g Y== - r i2 u2 = r i1 或 i1 = g u2 i2 = -g u1
u1i1+u2i2= - r i2 i1 + r i1 i2 = 0
理想回转器既不消耗功率又不发出功率, 理想回转器既不消耗功率又不发出功率,它 是一个无源线性元件 无源线性元件。 是一个无源线性元件。且互易定理不适用于回转 器。
4、回转器的应用 、 回转器具有把一个端口上的电流 回转” “回转”为另一端口上的电压或相反过 程的性质。 程的性质。 应用这一性质回转器可以把一个电 容回转为一个电感, 容回转为一个电感, 这在微电子器件中为用易于集成的 电容来实现难于集成的电感提供了可能 来实现难于集成的电感 电容来实现难于集成的电感提供了可能 性。
0 U 2 − I 1 2
4、负阻抗的实现(以电流反向型为例) 、负阻抗的实现 I1 + U1 NIC I2
Z2
U1 1 0 U 2 I = 0 − k − I 2 + 1
U2 U2 = - Z2I2
U1 ( s ) U 2 (s) = 输入阻抗 Zin= I1 ( s ) kI 2 ( s )
电容回转为电感. 若C=1µF,r = 50k ,则L=2500H.电容回转为电感 , 电容回转为电感
负阻抗变换器及其在电路实验中的应用
负阻抗变换器及其在电路实验中的
应用
负阻抗变换器是一种用来将正阻抗转换为负阻抗的装置,它可以利用相对较小的正阻抗来模拟较大的负阻抗。
一般来说,它会使用一些特殊的半导体或其他元器件来实现这种变换,从而能够提供准确的、可靠的变换。
负阻抗变换器通常应用于电路实验,在这里它可以用来模拟不同的正阻抗值,从而使测试更加准确有效。
负阻抗变换器的原理很简单,它使用一个晶体管或双极型三极管作为主要的变换元件,并通过将正阻抗接入到其中实现变换。
当正阻抗接入时,晶体管就会产生一个负压差,这也就意味着正阻抗被变换成了负阻抗。
因此,负阻抗变换器就可以用来将正阻抗转换为负阻抗,从而使测试测量更加准确有效。
负阻抗变换器在电路实验中被广泛使用,它可以用来模拟不同的正阻抗值,从而使测试更加准确有效。
它们可以用来测量和分析一个电路的特性,如电流、电压、阻抗和其他参数。
此外,它们还可以用来模拟电路中某个元件的特性,如电容、电阻、变压器等,从而可以帮助我们更好的理解电路的工作原理。
因此,负阻抗变换器在电路实验中被广泛使用,它可以用来模拟不同的正阻抗值,从而使测试更加准确有效。
它可以用来测量和分析一个电路的特性,以及模拟电路中某个元件的特性,从而可以帮助我们更好的理解电路的工作原理。
第三章 电 路 实 验
电路实验指导江苏科技大学电工电子实验中心实验一 元件特性的示波测量法一、实验目的1、 掌握用示波器测量电压、电流等基本电量的方法2、学习用示波器测量电压、电流基本变量的方法。
3、掌握元件特性的示波器测量法,加深对元件特性的理解。
二、实验原理1、 电压的测量用示波器测量电压的方法主要有直接测量法和比较测量法。
实验中常采用直接测量法,这种方法就是直接从示波器屏幕上测量出被测电压的高度,然后换算成电压值。
计算公式为p p Y U D h -=∙式中h 是被测信号的峰-峰值的高度,单位是cm ,Y D 是Y 轴灵敏度,单位是V/cm (或mV/cm )。
2、 电流的测量用示波器不能直接测量电流。
若要用示波器测量某支路的电流,一般是在该支路中串入一个采样电阻r ,当电路中的电流流过电阻r 时,在r 两端得到的电压与r 中的电流的波形完全一样,测出党的r u 就得到了该支路的电流,r ui r =。
(1) 电阻元件的特性测量电阻元件的特性曲线就是它的伏安关系曲线。
用示波器测量电阻元件的特性曲线就是利用示波器可以把电阻元件的特性曲线在荧光屏上显示出来。
实验原理如图1-3所示,图中,r 是取样电阻,它两端的电压()()t ri t u r r =反映了通过它的电流的变化规律。
r 必须足够小,使得()()t u t u R r <<。
这时把被测电阻R 上的电压()()t u t u s R ≈接入CH1端,即Y 轴输入端,把被测电阻上的电流()()r t u t i r R /=接入CH2端,即X 轴输入端,适当调节X 轴和Y 轴灵敏度旋钮,u 特性曲线。
就是元件的伏安特示波器的荧光屏即可清楚的显示出被测电阻的i性曲线。
图 1-3测电阻伏安特性曲线的电路图 1-4测量二极管伏安特性的电路三、实验任务1、按图1-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(输u取频率为1000Hz,峰峰值为5V的正弦波):入信号i(1)线性电阻元件(阻值自选)。
负阻抗变换器和回转器的设计
负阻抗变换器和回转器的设计摘要 本文简要介绍了负阻抗变换器(NIC )和回转器的原理,通过实验研究NIC 的性能,并应用NIC 性能作为负内阻电源研究其输出特性,还将这负电阻应用到R LC 串联电路中, 从中观察到除过阻尼、临界阻尼、负阻尼外的无阻尼等幅振荡和总电阻小于零的负阻尼发散震荡;并且利用负阻抗变换器实现回转器,进而利用回转器将电容回转成模拟纯电感,还利用模拟的电感组成RLC 并联谐振电路。
关键字 负阻抗变换器 运算放大器 二端口网络 回转器 回转电导 模拟电感 并联谐振1.负阻抗变换器的原理负转换器是一种二端口网络,通常,把一端口处的U 1和I 1称为输入电压和输入电流,而把另一端口’处的U 2和-I 2称为输出电压和输出电流。
U 1、I 1和U 2、I 2的指定参考方向如下图中所示。
根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(INIC)和电压反向型(VNIC)两种, 电路图分别如下图的(a )(b )所示:图中U 1和I 1称为输入电压和输入电流, U 2和-I 2称为输出电压和输出电流。
U 1、I 1和U 2、I 2的指定参考方向如图1-1、1-2中所示。
根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(INIC)和电压反向型(VNIC)两种,对于INIC ,有U 1 =U 2 ;I 1=( 1K -)(2I -)式中K 1为正的实常数,称为电流增益。
由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。
换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向相反(即和I 2的参考方向相同)。
对于VNIC ,有U 1= 2K - U 2 ; I 1 = 2I -式中K 2是正的实常数,称为电压增益。
由上式可见,输出电流-I 2与输入电流I 1相同,但输出电压U 2不仅大小与输入电压U 1不同(为U 1的1/K 2倍)而且方向也相反。
负阻抗变换器和回转器
负阻抗变换器和回转器一、摘要本文提出了利用运算放大器实现:(1)负阻抗变换器(NIC)的电路(2)回转器电路二、引言1、理想运算放大器有着①开环电压放大倍数A为无穷大;②输入电阻为无穷大;③输出电阻为零的特性。
而它在线性工作区的两个特性:“虚短”及“虚短”使得它有了广泛的应用。
如比例器、加法器、减法器、积分器等。
本文中则是实现了简单的负阻抗变换器和回转器。
2、负阻抗变换器(NIC)是一种二端口器件,是电路理论中的一个重要的基本概念,在工程实践中也有广泛的应用。
它一般由一个有源二端网络形成一个等值的线性负阻抗。
该网络可由线性集成电路或晶体管等元器件组成。
3、回转器是一种二端口网络元件,可用含晶体管或运算放大器的电路来实现。
它有着①不消耗能量不存储能量②非记忆元件③线性非互异元件④电量回转作用的特点。
也就是说它具有把一个端口的电压(或电流)“回转”成另一端口电流(或电压)的能力。
它的一个重要用途就是将电容“回转”成电感,或反之。
三、正文(一)实验材料与设备装置本实验采用的是虚拟的方法,所使用的软件为Multisim7。
(二)实验过程1、用运放设计一负阻抗变换器(NIC)电路⑴电流反向型负阻抗变换器(INIC)(图11 INIC电路INIC的端口特性可用T参数描述为:U11 0 U2 ,其中1 0 = T= I1 01 /k 当有负载Zl时,11’ 端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2、即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
⑵电压反向型负阻抗变换器(VINC)(图12 VNIC电路VNIC的端口特性可用T参数描述为:U1k 0 = T= I1 01 I2 01当有负载Zl时,11’ 端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2、即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
负阻元件的设计与应用实验
负阻元件的设计与应用实验【摘要】在电路理论中,负阻元件在电子电路中主要用来产生振荡,其特性曲线都是严重非线性的。
负阻元件典型的应用是间歇振荡,在缺乏高效供电时尤其有用。
负阻振荡器结构简单、体积小、成本低,所以在一些需要初始触发时经常使用。
【关键词】负阻元件;二极管;运算放大器;负阻抗;负阻抗变换器;振荡器负阻元件在电子电路中主要用来产生振荡,其特性曲线都是严重非线性的。
负阻元件大都为两端器件,做振荡器时可代替多端有源器件,如三极管等。
负阻元件典型的应用是间歇振荡,在缺乏高效供电时尤其有用。
负阻振荡器结构简单、体积小、成本低。
常用的双向触发二极管,其特性曲线就有典型的负阻区,所以在一些需要初始触发时经常使用。
一、负阻元件负阻元件是一种电阻值为负值的元件,目前还没有研制出这种元件,只是理论推测应该存这样一种二端电路元件。
下面从电路变量的约束关系给出具体推测过程。
元件的基本变量如端电压U,端电流i和与此相关的变量如元件两端电荷q及其中磁通&,在理想电路元件中,R、L、C元件已为我们所熟悉,从变量约束关系的完备性及对称性推断,还应存在一种理想电路元件,在变量q与&之间建立起一种约束关系,即f(q、&、t)=O。
这就是“负阻元件”目前人们预它将是发现和应用得最迟的一种基本二端元件。
1.基本特性负阻特性也称为负微分电阻特性,是指一些电路或电子元件在某特定的电流增加时,电压反而减少的特性。
一般的电阻在电流增加时,电压也会增加,负阻特性恰好与电阻的特性相反。
电压随电流变化的情形可以用微分电阻(differential resistance)r表示:r=dV/dI没有一个单一的电子元件,可以在所有工作范围都呈现负阻特性,不过有些二极管(例如隧道二极管(英语:tunnel diode))在特定工作范围下会有负阻特性。
用共振隧道二极管(英语:resonant-tunneling diode)说明其负阻特性。
负阻抗变换器.
实验五 负阻抗变换器的研究一、实验目的1. 了解负阻抗变换器的原理及其运放实现。
2. 通过负阻器加深对负电阻(阻抗)特性的认识,掌握对含有负阻的电路的分析测量方法。
二、实验原理负阻抗变换器(NIC)是一种二端口器件,如图5—1所示。
图5—1通常,把端口1—1’处的U 1和I 1称为输入电压和输入电流,而把端口2—2’处的U 2和-I 2称为输出电压和输出电流。
U 1、I 1和U 2、I 2的指定参考方向如图5—1中所示。
根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(CNIC)和电压反向型(VNIC)两种,对于CNIC ,有U 1 =U 2 I 1=( 1K -)(2I -)式中K 1为正的实常数,称为电流增益。
由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。
换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向相反(即和I 2的参考方向相同)。
对于VNIC ,有U 1= 2K - U 2 I 1 = 2I -式中K 2是正的实常数,称为电压增益。
由上式可见,输出电流-I 2与输入电流I 1相同,但输出电压U 2不仅大小与输入电压U 1不同(为U 1的1/K 2倍)而且方向也相反。
若在NIC 的输出端口2—2’接上负载Z L ,则有U 2= -I 2Z L 。
对于CNIC ,从输入端口1—1’看入的阻抗为L in Z K I K U I U Z 12121111-===对于VNIC ,从输入端口1—1`看入的阻抗为L in Z K I U K I U K I U Z 2222222111-==--==若倒过来,把负载Z L 接在输入端口1—1’,则有U 1=-I 1Z L ,从输出端口2—2’看入,对于CNIC ,有L in Z K I UK I K U I U Z 11111112221-====对于VNIC ,有L in Z K I K U I U K I U Z 212111222211-==--== 综上所述,NIC 是这样一种二端口器件,它把接在一个端口的阻抗变换成另一端口的负阻抗。
电工电子综合实验报告-负阻抗变换器和回转器
电工电子综合实验报告——负阻抗变换器和回转器的设计一、摘要本文提出了利用运算放大器实现:(1)负阻抗变换器(NIC)的电路(2)回转器电路二、引言1、理想运算放大器有着①开环电压放大倍数A为无穷大;②输入电阻为无穷大;③输出电阻为零的特性。
而它在线性工作区的两个特性:“虚短”及“虚短”使得它有了广泛的应用。
如比例器、加法器、减法器、积分器等。
本文中则是实现了简单的负阻抗变换器和回转器。
2、负阻抗变换器(NIC)是一种二端口器件,是电路理论中的一个重要的基本概念,在工程实践中也有广泛的应用。
它一般由一个有源二端网络形成一个等值的线性负阻抗。
该网络可由线性集成电路或晶体管等元器件组成。
3、回转器是一种二端口网络元件,可用含晶体管或运算放大器的电路来实现。
它有着①不消耗能量不存储能量②非记忆元件③线性非互异元件④电量回转作用的特点。
也就是说它具有把一个端口的电压(或电流)“回转”成另一端口电流(或电压)的能力。
它的一个重要用途就是将电容“回转”成电感,或反之。
三、正文(一)实验材料与设备装置本实验采用的是虚拟的方法,所使用的软件为Multisim7。
(二)实验过程1、用运放设计一负阻抗变换器(NIC)电路⑴电流反向型负阻抗变换器(INIC)(图1—1)图1—1 INIC电路INIC的端口特性可用T参数描述为:U1 1 0 U2 ,其中 1 0= T=I1 0 -1/k I2 0 -1 /k当有负载Zl时,11’端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2.即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
⑵电压反向型负阻抗变换器(VINC)(图1—2)图1—2 VNIC电路VNIC的端口特性可用T参数描述为:U1 -k 0 U2 ,其中-k 0= T=I1 0 1 I2 0 1当有负载Zl时,11’端口看进去的端口阻抗Z=U1/I1=kU2/I2,即为Z=-kZ2.即若22’接电阻R时,端口阻抗为-kR;接电感时,端口阻抗为-kL;接电容时,端口阻抗为-kC。
负阻抗变换器及其应用
双踪示波器观察并记录U1与I1以及U2与I2的相位差。 为了测量到I1,信号源需串联一个100~200Ω的电阻,通
过测量电压间接获取电流。
电工技术实验课程团队
示波器公共地
电工技术实验课程团队
U1用示波器CH1测量,I1用示波器CH2测量。示波器的接地端( 鳄鱼夹)接地端。通过光标法,读取U1与I1的相位差。注意
R=500Ω L=15mH
阻抗角 -174.64°
五、实验注意事项 1、整个实验中应使U1=(0~1)V。
2、防止运放输出端短路。
电工技术实验课程团队
六、实验报告要求
1、根据表9-2-1中的数据,完成计算,并绘制负 阻特性曲线。 2、根据实验2的数据,解释观察到的现象,说明 负阻抗变换器实现阻抗变换的功能。 3、回答思考题。
I1平均(mA) I1平均(mA)
(3)计算等效负阻抗。
实测值:R-=U1平均/I1平均。
理论计算值:
R '
KZ L
10 3
RL
电流增益: K R1 / R2
电工技术实验课程团队
2、阻抗变换及相位观察
(1)用0.2μF的电容器串联一500Ω电阻取代ZL,电容另外 一端接实验箱ZL的正端,电阻的另外一端接ZL的负端。
可见,电容通过负阻抗变换器呈现电感性质,而电
感通过负阻抗变换器呈现电容性质。
,
电工技术实验课程团队
三、实验设备
1、负阻抗变换器实验箱
电工技术实验课程团队
2、电流测试线
电工技术实验课程团队
3、正负12V电源
电工技术实验课程团队
4、元件
电工技术实验课程团队
实验二十七负阻抗变换器的研究
实验二十七负阻抗变换器的研究1实验目的1.加深对负阻抗概念的认识,掌握对含有负阻抗器件电路的分析方法。
2.了解负阻抗变换器的工作原理及其运放实现。
3.掌握负阻抗变换器的各种测试方法。
2实验器材1.QY-DT01电源控制屏2.直流稳压电源3.函数信号发生器4.QY-DG05通用电路实验模块5.QY-DG14受控源/回转器/负阻抗变换器实验模块6.示波器3实验原理1.负阻抗是电路理论中一个重要基本概念,在工程实践中广泛的应用。
负阻抗的产生除某些线性元件(如燧道二极管)在某个电压或电流的范围内具有负阻特性外,一般都由一个有源双口网络来形成一个等值的线性负阻抗。
该网络由线性集成电路或晶体管等元件组成,这样的网络称作负阻抗变换器(NIC)。
按有源网络输入电压和电流与输出电压和电流的关系,可分为电流倒置型和电压倒置型两种(INIC及VNIC),电路模型如图1 所示。
图1负阻抗变换器电路模型理想情况下,两种负阻抗变换器的电压、电流变换关系为:(1) 对于INIC 型:12U U = , 21I KI = (K 为正的常实数电流增益) (公式1)(2) 对于VNIC 型: 211U K U =- , 21I I =- (K 1为电压增益) (公式2)由(公式1)可见,输入电压1U 经传输后等于输出电压2U ,大小和极性均未改变,但电流1I 经传输后变为2KI ,即大小和方向都变了,故名电流倒置型;由式(公式2)可见,经传输后,21I I =-,但电压的大小和正负极性都变了,故名电压倒置型。
2. 阻抗变换作用今在NIC 的输出端接以阻抗Z L ,如图26-2所示,则其输入阻抗可由(式1)求得:1221112121()i L U U U Z Z K I K I K I ====---或由(式2)可得122212i L U K U Z K Z I I -===--图2阻抗变换原理图可见Z i 为Z L 的(-1/K 1)倍或(-K 2)倍,即把正阻抗Z L 变换成了负阻抗,亦即能把R ,L ,C 元件分别变换为-R/K 1,L /K 1,C/K 1(或-K 2R ,-K 2L ,-K 2C ),故名负阻抗变换器。
实验14(8)负阻抗变换器及其应用
EWB仿真实验 EWB仿真实验
2、阻抗变换及相位观察 、
七、试验报告
1、完成计算与绘制特性曲线 2、总结对INCI的认识 3、心得体会及其它
总目录 章目录 返回 上一页 下一页
谢
谢
总目录 章目录 返回 上一页 下一页
1
1
一般可分为电流反向型和电压反向型 + 两种,电流反向型的模型如图14--1所示。 ɺ 所示。 两种,电流反向型的模型如图 所示 U1 − 其电压、电流关系为: 其电压、电流关系为:
I2
2
+
ɺ (k + 1) I 2
ɺ U2
−
2'
ɺ ɺ U1 = U 2
ɺ ,I1
ɺ = kI 2
为电流增益) (k为电流增益) 为电流增益
总目录 章目录 返回 上一页 下一页
1、负阻抗变换器 、 负阻抗是电路理论中的一个重要基本概念, 负阻抗是电路理论中的一个重要基本概念,负阻抗的产生除 某些非线性元件(如隧道二极管) 某些非线性元件(如隧道二极管)在某个电压或电流的范围内具 有负阻抗特性外, 有负阻抗特性外,一般都由一个有源二端口网络来形成一个等值 的线性负阻抗。这样的网络就是负阻抗变换器。 的线性负阻抗。这样的网络就是负阻抗变换器。 Iɺ ɺ
ɺ ɺ ɺ ɺ I1 = I3 I2 = I4 ɺ ɺ I1Z1 = I 2 Z 2
(虚短路) 虚短路)
+
Zi
ɺ U1
−
Z1
ɺ I1
∞
+
Z2
−
ɺ I2
+ ɺ U −
+
(虚开路) 虚开路)
负阻抗变换器
Z1 / Ω u1 / V i1 / mA 理论值
等效电阻
1000
1200
1400
1600
1800
2000
/
测量值
2. 负载固定,改变输入电压u1,测取负阻抗,伏安 特性曲线; 按图5.15.2所示电路接线,R0为51 ,负载Z1取 1k ,在1V~8V范围内,改变电源电压。依次取5个 工作点,分别记录以上几种情况下的电压表、电流表 读数。将实验数据填入表1中。
实验结果分析
1. 用无源元件能实现线性定常的负阻吗? 答:不能。 2. 负阻抗元件在工作时是吸收还是发出功率?它 的能量从何而来? 答:负阻抗元件在工作时是发出功率的,它的能量 由运算放大器提供。
实验相关知识
预习知识及要求 相关知识点 注意事项
预习要求
1. 预习运算放大器的工作原理。 2. 预习用运算放大器构成负阻抗变换器的基本原理。 3. 预习二阶电路的构成及其特性。
七、实验结果分析 1.电阻经负阻抗转换器后,电阻成为负阻。 2.容性负载经负阻抗转换后变成感性负载。
R
+
R0
R0
US
C
RS
L
UC
图5.15.4 RLC串联阶跃响应电路
d ( −i1 ) 1 Rs (−i1 ) + L + ∫ (−i1 ) dt + i2 R = us dt C −∞
二端口的特性阻抗和回转器与负阻抗变换器基础知识讲解
R1 R2
R1 R2
9节
I1
+ U 1
R1
R1
R1
R1
R1
2
2 R2 2
2
R2 2
R1 R2
I2 +
U 2
I2
+
R1 2
R1 R1
R2 2
2
R2 U 2
返回首页
回转器与负阻抗变换器
1. 回转器
(1) 回转器:回转器也是二端口.
i1
i2
+
+
电路符号 u1
u2
特性:
u1 ri2 u2 ri1
或
r 称为回转电阻
U 1
AU 2
B ZC
U 2
(4)
(3)代入(2)消去 U 2 得
UI11
AU 2 BI2 CU 2 DI2
U 2 ZC I2
(1) ( 2) ( 3)
I1 CZC I2 D I2
( 5)
由(4)式得
U 1 U 2
A
B ZC
A
B A BC
BC
由(5)式得
I1 I2
CZC
ii12
gu2 gu1
g 称为回转电导
其矩阵形式为:
u1 u2
0 r
r i1
0
i2
或
i1 i2
0
g
g u1
0
u2
注意u, i的方向!
令
Z
0 r
r
0
有 Z Y 1
Y
0
g
g
0
(2) 回转器可以把一个端口的电流(或电压)回转成另一个
1-10__阻抗变换器和阻抗逆变器
n2 Z L ( s)
− k1 k 2 Z L ( s )
1 Z L r2
r1 r2
NII
1 1 r2
− r1 1
− r1 r2
1 Z L ( s)
故它同时具有阻抗逆变和将参数反号的作用。 故它同时具有阻抗逆变和将参数反号的作用。
表1-1 阻抗变换器和阻抗逆变器
第2端口接ZL(s) 时 第1端口的输入 阻抗
元件
传输参数矩阵T
n 0
+ − k1 0
PIC
0 1 n
0 − 1 + k2
0 u1 =1 i1 r2
− r1 0
u2 − i 2
如果在负阻抗逆变器的第2端口接以阻抗 如果在负阻抗逆变器的第 端口接以阻抗ZL(s),则第 端口接以阻抗 ) 则第1 端口的输入阻抗为
1 Z(s)= − r1 r2 1 Z ( s) L
1-10-2 阻抗逆变器 回转器是一种正阻抗逆变器,它是无源、 回转器是一种正阻抗逆变器,它是无源、无损二端口 电阻元件。 电阻元件。
0 u1 =1 i1 r2
r1 0
u2 − i 2
回转器可以用受控源实现,也可用运算放大器和电阻 回转器可以用受控源实现, 实现, 实现, 负阻抗逆变器的元件特性用传输参数矩阵表示为
负阻抗变换器的阻抗变换作用是:将阻抗变换至 倍 负阻抗变换器的阻抗变换作用是:将阻抗变换至k倍 并反号。即所谓“负阻抗变换”作用。在有源网络综 并反号。即所谓“负阻抗变换”作用。 合中,可利用NIC的这一性质实现负值的电阻、电感 合中,可利用 的这一性质实现负值的电阻、 的这一性质实现负值的电阻 或电容。 或电容。 负阻抗变换器是有源二端口电阻元件。 负阻抗变换器是有源二端口电阻元件。 负阻抗变换器可用受控源实现, 负阻抗变换器可用受控源实现,也可用运算放大器和 电阻元件实现。 电阻元件实现。
基于MATLAB的负阻抗变换器的特性及应用的研究(精)
基于MATLAB的负阻抗变换器的特性及应用的研究摘要:采用实验的方法研究负阻抗变换器的特性及其应用,存在数据处理量大、特性曲线绘制困难等问题,设计出基于MATLAB的仿真实验方案。
与传统的实验方法相比,MATLAB利用群元素计算特性,把多个频率分量及相应的电压、电流、阻抗等都看作多元素的行数组,每一元素对应于一种频率分量的值,因为它们服从同样的方程,所以程序就特别简洁;直接绘制电压电流的相向图、电流的幅频特性和相频特性,且定量地分析电路的性质。
应用MATLAB设计出RLC并联谐振电路,其谐振频率、品质因数、通频带等参数的测试比传统实验测试更精确。
关键词:负阻抗变换器;运算放大器;模拟电感;并联谐振负阻抗是电路理论中的一个重要基本概念,在工程实践中有广泛的应用。
有些非线性元件(如隧道二极管)在某个电压或电流范围内具有负阻特性。
除此之外,一般都由一个有源双口网络来形成一个等效的线性负阻抗。
负阻抗变换器作为一种元件,在使用时一般不考虑其内部结构,主要是从应用观点研究其外部特性。
1 研究负阻抗变换器特性的实验方案采用实验的方法研究负阻抗变换器的特性:1)测量负电阻的伏安特性。
测量不同输入电压U1时的输入电流,I1,计算等效负阻和电流增益,绘制负阻的伏安特性曲线U1=f(I1)。
2)阻抗变换及相位观察,在输入端施加正弦信号源,改变信号源频率f=500~2 000 Hz,用双踪示波器观察输入电压U1与电流之间i1的相位差,判定电路的性质。
负载为电感和电容时分别测量一次。
根据以上实验内容,存在实验数据处理量大,手工绘制特性曲线困难等问题。
2 负阻抗变换器特性的实验设计MATLAB具有强大的计算功能,在电路结构不发生改变时,可以用统一的程序,只需用输入语句来选择所带的负载性质,更可以直观地绘制电压与电流的相位关系,电路的性质一目了然。
用一级运算放大器实现的电流反向型负阻抗变换器电路如图1所示,假设运算放大器是理想的,根据运放理论可知,则有即输入阻抗等于负载阻抗的负倍数。
电网络论文
阻抗变换器及其应用1 概述1.1 阻抗变换器的研究意义及研究现状社会的发展和科学技术的进步推动着电力工业的不断发展,而电力工业的发展又离不开电工和电子科学技术的革新。
近年来,随着近代电路理论和电工电子技术的日益成熟,电子电路的微型化、片型化和集成化成为研究重点,许多种新型元件已被学者广泛研究并取得了一定的成绩。
阻抗变换器就是其中之一。
它不但已在理论上有所突破,在实践上也有很重要的意义。
阻抗变换器的研究是近年来国内外十分活跃的研究课题之一,主要围绕着阻抗变换器的实现方法以及在微波电路中的应用为主。
包括有源滤波器、电子调谐、并网逆变等方面的应用,都已取得了具有实际意义的成绩。
在实际应用中,负阻抗变换器的应用较为广泛,也是学者们主要研究的方向,主要由于它的特性适用于有源网络的应用。
1.2 阻抗变换器概述阻抗变换器作为一种阻抗匹配结构,已经成为微波射频电路以及最大功率传输系统中的基本部件,被广泛应用于各种微波电路和天线系统中, 对提高系统的性能起着十分重要的作用。
阻抗变换器即实现负载阻抗到输入阻抗的变换,作用是解决微波传输线与微波器件之间的阻抗匹配。
所谓阻抗匹配,是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,反映了输入电路与输出电路之间的功率传输关系。
它常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间等。
当电路实现阻抗匹配时,将获得最大的功率传输;反之,当电路阻抗失匹时,不但得不到最大的功率传输,还可能对电路产生损害。
例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器,由此可见阻抗变换器对于阻抗匹配是十分重要的。
阻抗变换器可分为广义阻抗变换器(GIC)和广义阻抗逆转器(GII)。
其中,广义阻抗变换器(GIC)可分为正阻抗变换器和负阻抗变换器,而负阻抗变换器又有电流反向型和电压反向型之分;广义阻抗逆转器(GII)可分为正阻抗逆转器和负阻抗逆转器,负阻抗逆转器又有电流反向型和电压反向型之分。