最小公倍数反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《最小公倍数》教学反思
最小公倍数这部分内容是在学生掌握了倍数的概念和分解质因数的基础上进行教学的,求最小公倍数主要是为通分做准备的,是学生学好异分母分数加减法的关键,是教学的重点。再有,“最小公倍数”是一节概念课,学起来比较枯燥。另外,本课是在学生学习了最大公约数以后进行教学的,最大公约数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。所以本课的设计强调了知识的迁移和学习方法的借鉴,让学生借鉴学习最大公约数的方法研究最小公倍数的意义。
一、在试讲研究中不断调整改善
1、适当调整将情境贯穿始终
应用最小公倍数解决生活中的问题,并不是这节课的重点。这节课的重点还是在于掌握概念,理解算理。但是为了使枯燥的概念教学更有意思,更好的调动学生学习数学的兴趣,能够使学生感受到最小公倍数在生活中的实际意义。我们设计了与学生实际生活联系比较紧密地运动会情景,一开始,我们只注重从解决生活中的实际问题入手,所以只设计了“接力赛的练习”和“拉拉队的彩带”两个情境,而且也没有加入相应的图片。经过试讲,我们发现仅仅一个引入就想让学生体验到数学的生活价值,过于牵强。于是我们就进行了适当的调整,把整个运动会情景贯穿始终,又设计了“拔河比赛”和“健美操展示”的环节并加入了相应的图片,经过试讲我们也发现,完整的情境和恰当的视觉冲击,更有效的将学生带入到了生活情境当中。使学生仿佛身临运动会的现场,充分体会到最小公倍数在生活中的实际意义,也大大增加了解题的乐趣。
2、将问题细化有效突破算理
在算理的突破上,一开始设计,学生用分解质因数的方法写出[18,30]=2×3×3×5=9 0明确2和3是公有的,3和5是独有的后。老师就将问题“为什么用公有的乘独有的”抛给学生。经过试讲发现,学生接到这个问题后有些不知所措,不知如何去表述,理解起来比较困难。后经过研究我们决定将问题细化,通过写出18、30全部质因数的乘积是540,分析540是什么?(公倍数)在与90的质因数去比较,发现多了一个2和一个3,进而突出为什么公有的选代表,而独有的要全部都选。这样给学生搭一搭台阶,使学生蹦一蹦能够得着,思考问题有着眼点,从而更好的突破难点。
3、精心设问充分发挥练习题作用
一开始设计的两个练习,目的比较单一。经过研究我们感觉到每个练习的深度和广度不够,没有发挥出每个练习题的全部作用。
(1)A=2×3×5
B=3×5×7
[A,B]=
第一次设计时意在突出算理,公有质因数代表×全部独有质因数=最小公倍数,所以设计的问题是[A,B]是哪几个数相乘得到的,目的在于再一次巩固算理公有的选代表,独有的全选。第一次试讲后,我们感觉这道题的解决形式过于单一,限制了学生的思维。于是在研究后我们将问题设计的更加开放,改为:[A,B]= 最小公倍数是多少?你是怎么找的?实践证明,孩子们的解题策略是多样的,其实这道题在巩固算理的基础上还可以向学生渗透一题多解的思路。有一部分孩子就是通过算出A和B后,再用短除的形式去求最小公倍数的,其实对于部分学生来说这一基本的方法是一种更容易理解的方法。通过这个练习题也体现出了不同的孩子学习不同的数学,有不同的解题方法。而且通过两种方法的比较,更能突出对算理的应用,巧妙地解决问题。
(2)两个数的最小公倍数是12,这两个数可能是()和()。
安排这道题的目的是引出最小公倍数的两种特殊关系、互质关系、倍数关系,并从中总结出规律,第一次试讲时,是由学生说老师直接分类写出这几组数,然后学生观察关系总结规律。后来感觉到这种形式忽视了学生思考的过程。我们考虑能不能尊重学生的意见将数字全部找出后由学生概括特点进行分类,又考虑到学生分类的依据不同情况也就各不相同,很可能脱离了研究的重点。所以改成了老师分类学生观察思考:为什么这样分。给学生一个观察思考的空间。也加深了学生的理解和应用。
二、反思整个教学过程,几点突出之处:
1、结合学生实际创设生活情境。
《新课程标准》十分强调数学与现实生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”。“最小公倍数”是一节概念课,与学生的生活实际看似并无多大联系,为了使学生体验到概念与生活的联系,感受到数学知识在生活中的实际应用。我们对教材内容作了适当的补充调整,将运动会的情景贯穿始终。在解决实际问题“猜一猜, 参加接力比赛的同学可能有多少人?至少有多少人?”的同时很自然的得到了“公倍数”和“最小公倍数”的概念,为后面算理的探究做好了铺垫。这样设计,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高于生活的特点。
2、通过自主探究引导学生构建概念和方法
(1)概念的构建
“公倍数”“最小公倍数”的概念,和“公约数”“最大公约数”的概念非常的相似,学生理解起来也比较容易。这部分内容我们采用迁移、引导的形式进行概念的构建。利用问题“24与3和4分别是什么关系”引导学生发现24 是3的倍数,同时也是4的倍数。利用旧知很顺利的自主构建出“公倍数”和“最小公倍数”的概念。
(2)方法的构建
“最小公倍数”这节课的重难点就在于理解求最小公倍数的算理。在算理的突破上,我们采用了对比的手段。利用已有的分解质因数的知识有效的进行了对比。
当学生用分解质因数的方法计算出[18,30]=2×3×3×5=90 后,设计了问题:2、3是什么?3、5是什么?两个3一样吗?明确了公有质因数和独有质因数以后,又将18和3 0的全部的质因数相乘和[18,30]进行对比。学生很直观的看到,公有的要选代表保证是最小的?独有的全取保证是公倍数?把两个结合起来就是最小公倍数。算理在直观的比较中一目了然。而求最小公倍数的短除的形式,学生在理解了算理的基础上,加上求最大公约数的知识经验,理解起来已然顺理成章。
接下来我们结合运动会项目设计一个题目“用自己喜欢的方法求12和28的最小公倍数。”使学生在练习中自然的对算法进行优化,自主构建出短处形式的解题方法。
在整个过程中学生利用已有的认识结构,自己动脑、动口,将直观比较与亲身体验建立起实质性的联系,进行自主构建。
3、发挥习题作用进行算理巩固
数学课堂上学生在建立起概念,找到解题方法之后,必须做相应的数学练习题,才能对知识进行巩固,对算理加深理解,才能形成技能、技巧,培养思维能力。
我们设计以下两个练习题:
(1)填空
A=2×3×5
B=3×5×7
则[A,B]= (最小公倍数是多少?你是怎么找的?)
设计这道练习题的目的有两个。第一:巩固算理,突出应用算理灵活、巧妙的解决实际问题。第二:满足不同层次学生的需求。这道题除了应用算理直接用2×3×5×7=210以