信号与系统第二章资料

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

信号与系统-2章-简明版本

信号与系统-2章-简明版本

t ln 2 t ln 2

(t t 0 ) [ (t t 0 )] n
n 为正整数。
不难画出相应的波形,见图 2.5。
2 (t)
2
( ) t
1
(t 2 )
1 0 2
0
t
0
t
(2t)
1
t
0
2
t
(et 2 )
1 0 ln 2
(2 ) t
1
t
0
t
( t) 2
d (t ) dt
(2.7)
(t )
1 0
(t ) ' (t )
(1)
t
图 2.13 冲激信号与阶跃信号的关系
0
t
冲激信号的强度等于阶跃的幅度。
2. 性质 (1) (t ) 为偶函数,即有
(t ) (t )
(t t 0 ) (t 0 t )
(2.8)
1 ( e 2) 0
t


1 e t 2 1 et 2 0 0 e t 2 0 1 2t 0 1 t 0 (t ) ; ( 2t ) 0 2t 0 0 t 0 1 2t 0 1 t 0 (2t ) (t ) ; 0 2t 0 0 t 0 1 2t 1 0 1 t 0.5 (2t 1) ; 0 2t 1 0 0 t 0.5 et 2 0
[ (t t 0 ) (t t1 )] 表示, t 0 为起始时间, t 1 为终止时间, x(t )[ (t t 0 ) (t t1 )] 是保
x(t )
x (t ) (t t0 )

信号与系统 第二章ppt剖析

信号与系统 第二章ppt剖析
网络拓扑约束:由网络结构决定的电压电流约束关系, KCL,KVL。

例1 求并联电路的端电压 vt 与激励 is t 间的关系。
7 页
电阻
iR t
1 R
vt
电感
iLt
1 L
t v d
ist
电容
iC
t
C
dv d
t
t
iR iL R LC
a ic
vt
b
根据KCL iRt iLt iC t iS t
系统的完全响应
第 17

求出齐次解rh t 和特解rp t 相加即得方程的完全解:
n
rt Aieit rp t i 1
利用初始条件求待定系数Ai 我们一般将激励信号加入的时刻定义为t=0,响应
的求解区间定为 t ,如0 果响应在0时刻没有跳变,通常
取t=0,这样对应的一组条件称为初始条件。
1
2
10
B1
, 3
B2
, 9
B3 27
所以,特解为
rp t
1 3

2 9
t
10 27
第 15

(2)
(原方程:
d2 rt
dt2
2
d rt
dt
3r t
d et
dt
et

当et et时, 很明显, 可选rt Bet。这里,B是待定系数。
代入方程后有:
Bet 2Bet 3Bet et et
于是,特解为 1 et。 3
B 1 3
几种典型激励函数相应的特解
第 16

激励函数e(t)
E(常数)
响应函数r(t)的特解

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

信号与系统第2章信号的复数表示

信号与系统第2章信号的复数表示
π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2

信号与系统第2章

信号与系统第2章

第二章 傅立叶变换
(5) 微分特性 如果 那么
(6)积分特性 如果 那么
如果F(0)=0
第二章 傅立叶变换
(7)卷积定理 1.时域卷积定理 如果 那么 (8)频域卷积定理 如果
那么
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为
n1 ) 2 n1 2
2 E sin( An T
2 E sin( An T

2
)

2
这里
2 1 T
Hale Waihona Puke n1第二章 2 E sin( An T
傅立叶变换

2
)

2
若: 2 An 0 (1) 2 (2) 2
该式表明:周期信号f(t)的傅里叶变换F(ω )是由一些冲击函数组成的, 并位于基波ω 1的整数倍处,冲击强度为f(t)的指数傅里叶级数的系数Cn 的2π 倍。
第二章 傅立叶变换
例4. 求周期单位冲激序列的傅里叶级数与傅里叶变换。
傅里叶级数为
第二章 傅立叶变换
例5. 求周期矩形脉冲信号的傅里叶级数和傅里叶变换 矩形脉冲信号f(t)的 傅里叶系数为:
第二章 傅立叶变换
例1已知矩形脉冲f1(t)如图(a)所示,其相位谱如图(b)所示, 将f1(t)右移τ /2得到如图(c)所示f2(t),试画出其相位谱。
由题意可知
根据时移特性,可得f2(t)的频谱函数 为
第二章 傅立叶变换
f2(t)幅度谱没有变化,其相位谱比图(b)滞后τ ω /2、如图(d)所示。要

信号与系统 第二章 第3讲

信号与系统 第二章 第3讲
第二节 起始点的跳变

电容电压的跳变 电感电流的跳变 冲激函数匹配法确定初始条件
信号与系统 第2章

一.起始条件与初始条件
一般将激励信号加入的时刻定义为t=0 ,响应r(t)为 t 0 时方程的解,对于n阶系统,起始状态( 0- 状态)指:
d r ( 0 - ) d 2 r (0 - ) d n1 r (0 - ) r (0 ) , , , , 2 dt dt d t n1


0
0
vL ( ) d 0 , 此时iL (0 ) iL (0 )
冲激电压或阶跃电流作 用于电感时:
如果vL (t )为 t
1 0 1 v L ( ) d , L 0 L 此时 i L 0 i L 0
信号与系统 第2章
iL (0 ) iL (0 )
信号与系统 第2章
例2-2-2
d i L (t ) v L (t ) L dt
i L (t )

I s u(t )
L
d[ I s v(t )] L LI s (t ) dt
1 0 i L (0 ) i L (0 ) LI s (t ) d t L 0
v L (t )

i L (0 ) I s

当系统用微分方程表示时,系统从 0 到0 状态有没 有跳变取决于微分方程右端自由项是否包含 (t ) 及其各 阶导数项。

信号与系统 第2章
1. 电容电压的跳变
t c i c (t ) 由伏安关系 vC (t ) 1 iC ( ) d C v (t ) 1 0 1 0 1 t c iC ( ) d iC ( ) d iC ( ) d C C 0 C 0 1 0 1 t vC (0 ) iC ( ) d iC ( ) d C 0 C 0

《信号与系统》第二章总结

《信号与系统》第二章总结
其中零状态响应rzs (t )由初始态为零时的方程求解而定 即rzs (t ) = rzsh (t ) + rzsp (t )
其中rzsh (t )和rzsp (t )分别为如下方程的齐次解和特解 zsp d n rzs (t ) d n −1rzs (t ) dr (t ) C0 + C1 + L + Cn −1 zs + Cn rzs (t ) dt n dt n −1 dt d m e(t ) d m −1e(t ) de(t ) = E + E1 + L + Em −1 + Em e(t ), m −1 0 dt m dt dt (k ) rzs (0− ) = 0
则h(t )为t ≥ 0+时满足起始态为零的微分齐次方程的解
n α t 当n > m时,h(t ) = ∑ Ak e k u (t ) k =1 (设特征方程的根为n个单根α k)
当n ≤ m时,h(t )还须含δ ( m − n ) (t )、δ ( m − n −1) (t )、 、δ (t ), L 而各项系数由Em决定
•连续时间系统的时域分析法:不通过任何变换,直接求解 求解系 求解 统的微分 微分、积分方程 方程。 微分 方程 •连续时间系统的时域分析方法:经典法,卷积法,算子法。
设n阶复杂系统激励信号为e(t ),响应信号为r (t )
其n阶微分方程为 d n r (t ) d n −1r (t ) dr (t ) C0 + C1 + L + Cn −1 + Cn r (t ) n n −1 dt dt dt d m e (t ) d m −1e(t ) de(t ) = E0 + E1 + L + Em −1 + Em e(t ) m m −1 dt dt dt

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

信号与系统第四版第二章

信号与系统第四版第二章

该过程可借助数学描述
第 2章 连续系统时域分析
分析
中的 表示 到


章 连续系统时域分析
数学描述
设 则 代入方程 得出 即 即
所以得
第 2章 连续系统时域分析
例2-3-3
代入微分方程, 得 (1)将e(t)代入微分方程,t≥0得 ) 代入微分方程
iL(0+ ) ≠ iL(0− )
第 2章 连续系统时域分析
例2-3-2
第 2章 连续系统时域分析
三.冲激函数匹配法确定初始条件
配平的原理: 时刻微分方程左右两端的δ(t)及各阶 配平的原理:t =0 时刻微分方程左右两端的 及各阶 导数应该平衡(其他项也应该平衡,我们讨论初始条件, 导数应该平衡(其他项也应该平衡,我们讨论初始条件, 可以不管其他项) 可以不管其他项) 例:
第 2章 连续系统时域分析
(3)
换路前
第 2章 连续系统时域分析
由于电容两端电压和电感中的电流不会发生突变, 由于电容两端电压和电感中的电流不会发生突变, 因而有
第 2章 连续系统时域分析
(4)
求得 要求的完全响应为
第 2章 连续系统时域分析
几种典型激励函数相应的特解
激励函数e(t) 激励函数 响应函数r(t)的特解 响应函数 的特解
第 2章 连续系统时域分析
第二章 连续时间系统的时域分析 §2.1 引言 系统数学模型的时域表示
时域分析方法:不涉及任何变换, 时域分析方法:不涉及任何变换,直接求解系统 的微分、积分方程式,这种方法比较直观, 的微分、积分方程式,这种方法比较直观,物理概 念比较清楚,是学习各种变换域方法的基础。 念比较清楚,是学习各种变换域方法的基础。

信号与系统 第2章(3-5)

信号与系统 第2章(3-5)

X
n = −∞

k
x[n ]
1 k
n = −∞
∑ x[n]
2 1
k
3
单位阶跃序列可 用单位脉冲序列 的求和表示: 的求和表示:
0
k
k
u[ k ] =
n = −∞
∑ δ [n]
2.5 确定信号的时域分解
X
一、信号分解为直流分量与交流分量 二、信号分解为奇分量与偶分量之和 三、信号分解为实部分量与虚部分量 四、连续信号分解为冲激信号的线性组合 五、离散信号分解为脉冲序列的线性组合 六、信号分解为正交信号集
d
u[k ] =
u( t ) =
∫d ∫
t
−∞
δ (τ ) τ
n =−∞
∑ δ [ n] ∑ u [n]
k
k
u( t ) = d r ( t ) t r (t ) =
−∞
u[k ] = r[k + 1] − r[k ]
u(τ ) τ
d
r [ k + 1] =
n = −∞
2.4 离散时间信号的基本运算
一、序列相加与相乘
2. 序列相乘 序列相乘
x1[ k ]
0 1 k
2 1 y[k]=x1[k]× x2[k] 2 1.5
X
将若干序列同序号的数值相乘。 将若干序列同序号的数值相乘。
y[k ] = x1 [k ] × x2 [k ] × … × xn [k ]
x2 [ k ]
0
k
0
k
2.4.2 序列的相加、相乘、差分与求和
x[k] = x D C [k] + x A C [k]
k = N1

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

0 21
/4
/2
(b)相位图
图2.1-2例2.1-2的频谱图
二、指数形式的傅里叶级数
利用欧拉公式将三角形式的傅里叶级数,表示为 复指数形式的傅氏级数
其中
f t F n1 e jn1t
n
F n1
1 T
t0 T t0
f t e jn1tdt
F n1 是复常数,通常简写为 Fn 。
21t
5
4
2
sin
1t
1 2
sin
31t
解:将 f t 整理为标准形式
f
(t)
1
2cos 1t来自4cos 21t
5
4
1 2
cos
31t
2
1
2
cos
1t
4
cos
21t
4
1 2
cos
31t
2
振幅谱与相位谱如图2-1所示。
cn
2
1
1
1/2
0 1 21 31
(a) 振幅图
n
/4
31
第二章 连续时间信号与系统的频域分析 ——Fourier变换
2. 1 周期信号的傅里叶级数分析 2. 2 非周期信号的频谱--傅里叶变换 2. 3 傅里叶变换的性质及定理 2. 4 系统的频域分析方法 2. 5 无失真传输系统与滤波
LTI系统分析的一个基本任务,是求解系统对任意 激励信号的响应,基本方法是将信号分解为多个基本信 号元。
一、三角形式傅里叶级数
周期信号: f t f t nT
其中
T
是信号的最小重复时间间隔,f1
1 是信号的基波频率。 T
若 f t 满足狄里赫利条件,则 f t 可以展开为三角形

信号与系统(第二章)教材

信号与系统(第二章)教材
② 0 n 4 时,
③ 4 n 6 时,
④ 6 n 10 时, ⑤ n 10 时,
列表法
分析卷积和的过程,可以发现有如下特点:
① x(n) 与 h(n) 的所有各点都要遍乘一次
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
参与相加的各点都具有 x(k)与 h(n k) 的宗量之
基本思想:如果能把任意输入信号分解成基本信号 的线性组合,那么只要得到了LTI系统对基本信号 的响应,就可以利用系统的线性特性,将系统对任 意输入信号产生的响应表示成系统对基本信号的响 应的线性组合
问题的实质:
1. 研究信号的分解:即以什么样的信号作为构成任 意信号的基本信号单元,如何用基本信号单元的线 性组合来构成任意信号 2. 如何得到LTI系统对基本单元信号的响应
例:求 aku(k) u(k 4)
aku(k) u(k 4) aiu(k) u(k 4 i) i
k 4
u(k 4) ai (1 a a2 ... ak4)u(k 4) i0
ak4 1u(k 4) a 1
例: x(n) nu(n) 0 1 h(n) u(n)
第2章 线性时不变系统
主要内容: • 信号的时域分解——用 表示离散时间信号
用 (t)表示连续时间信号
• LTI系统的时域分析——卷积积分与卷积和 • LTI系统的微分方程及差分方程表示 • LTI系统的框图结构表示 • 奇异函数
引言 ( Introduction )
LTI系统特点: 齐次性和可加性,具有时不变性 信号与系统分析理论与方法的基础
response )
[n]
LTI
h[n]
时不变性
[n]
[n k]

《信号与系统》总结:第二章1

《信号与系统》总结:第二章1
冲激偶卷积
四.电路元件的运算模型
元件名称
电路符号
时域
电路符号
频域
电路符号
复域
关系
运算模型
运算模型
运算模型
电阻
电容
电感
五.连续时间系统时域分析
1. 2.
高阶冲激信号
冲激偶信号
说明:1. 量纲是 2.强度 的单位是
3. 是奇函数
筛选特性
证明:对 两端微分
取样特性
证明:关键利用筛选特性展开
展缩特性
特别:
是奇函数
备注:1.Байду номын сангаас度变换:
三.卷积
连续时间信号
离散时间信号
卷积定义
交换率
分配率
结合率
奇异信号卷积特性
单位样值信号卷积特性
单位元特性
延时特性
积分特性
第二、三章.连续时间信号、离散时间信号与系统时域分析
一.普通信号
普通信号

直流信号
实指数信号
时间常数:
虚指数信号
正弦信号
复指数信号
二、冲激信号
冲激信号
是偶函数
筛选特性
特别:
取样特性
特别:
展缩特性
证明:1. 2. 3.
阶跃信号
处可以定义为 (个别点数值差别不会导致能量的改变)
性质
1. 2.
斜坡信号
性质

《信号与系统》第二章

《信号与系统》第二章

x[1]
0
n 1 n 1
x[0]
[n]
x[0] 0
n0 n0
x[1]
[n
1]
x[1]
0
n 1 n 1
x[2]
[n
2]
x[2] 0
n2 n2
[n
图2.1 一个离散时间信号分解为一组加 权的移位脉冲之和
因此 x[n] 可表示为
x[n] x[3][n 3] x[2][n 2] x[1][n 1] x[0][n]
若 n 0, 则有
ak x[k]h[n k]
0
0k n 0k
因此,对于 n 0 :
y[n]
n
ak
1 an1
k 0
1 a
对于全部 n :
1 an1
y[n] (
)u[n]
1 a
n0 n
1 1 a
图2.7 例2.3的输出响应
例2.5 一个LTI系统,其输入x[n]和单位脉冲响应h[n]如下:
第二章
线性时不变系统
2.1 离散时间LTI系统:卷积和
2.1.1 用脉冲表示离散时间信号
图2.1(a)是单位脉冲序列,每个脉冲的大小与x[n]所对应的时刻值相等。
图(b)~ (f)分别为 n= -2 、-1、0、1、2时的单个脉冲。即
x[2] [n
2]
x[1]
0
n 2 n 1
x[1]
[n
1]
具体地说,若令
[n k] 系统hk[n]
而输入x[n]的响应为
x[n]
x[k] [n k] 系统 y[n]
x[k]hk [n]
k
k
因为讨论的是线性时不变系统,所以 [n k] 是 [n] 的时移。同样,hk [n]

信号与系统第二章课件

信号与系统第二章课件



(t 0)
18
连续系统的时域求解(例)
例.(2.4-1)系统 r (t ) r (t ) r (t ) e(t ) e(t ) 解: 2 1 0 1,2 0.5 j 0.5 3 求h (t)和g (t)。
1
在所选专用树的单树支割集、单连支回路方程中列方程
消去其它变量,得 i(t) 的微分方程
3 2 L C uc (t ) 1 H F 1 4
i(t ) 7i(t ) 10i(t ) e(t ) 6e(t ) 4e(t )
2nd.确定初始值/定解条件
i (0 ), i(0 )
[前例]
m n ( i ) ( j) ai rzs (t ) b j e (t ) j0 i 0 (k ) rzs (0 ) 0
求全响应:
13
第二章 连续时间信号与系统的时域分析
§2.5 系统的零状态响应 2.
n (i ) r(t )求解:先求零输入响应 a r i zi (t ) 0 即解零输入方程(即齐次方程)i 0 (k ) (k ) r ( t ) r ( t ) r ( 0 ) r 经典法得解为: zi h zi (0 ) zi
8
1st. i(t ) 7i(t ) 10i(t ) e(t ) 6e(t ) 4e(t ) nd i ( 0 ) 14 5 ( A ) i ( 0 ) 2( A) 2 .求出初始条件 3rd.解: 2 7 10 0 1 2, 2 5
[求取h(t) ]
1. 作为一种特殊的零状态响应(经典法) 例1:系统 r(t ) 4r(t ) 3r (t ) e(t ) 2e(t ) 求 h(t ) 解: 即解 h(t ) 4h(t ) 3h(t ) (t ) 2 (t ) h ( 0 ) h ( 0 ) 0(无初始储能 )

信号与系统第二章 总结

信号与系统第二章 总结

第二章 总结一﹑LTI 连续系统响应(一)微分方程经典解法=解开方式:全解y (t )=通解)(特解)(t y t y p n + 1﹑通解(齐次解):令右侧为零由特征方程n a +n λ1-n a +1-n λ…+0a a 01=+λ确定通解形式,再由n 个+0初始条件确定系数。

总结:齐次解模式由系统决定,系数由n 个初始条件决定,有时与f (t )有关。

2﹑特解:函数形式与f (t )有关,根据f (t )形式选择特定形式后,代入原微分方程,球的系数。

3﹑全解:) y (t )=)()(t y t y p n + 响应。

)又称强迫响应或受迫(响应;)又称自由响应或固有(t y t y p n (二)初始条件与-00+(1)经典系统的响应应限于到正无穷范围。

+0(2)不能将{)(-n 0y }作为微分方程初始条件。

(3){)(+0y n }由{)(-n 0y }导出,{)(+0y n }又称导出初始条件。

(三)零输入响应与零状态响应y (t )=)()(t y t y zs zi + 定义求解:(1)求解zi y :微分方程→特征方程→特征根→zi y (t )模式→数由{)(-n 0y }确定。

(2))(t y zs 求解:经典法﹑卷积积分法。

二﹑卷积积分卷积积分及其图解计算(1)定义: (2)图解计算:∑=n 1i i i t y a )()(∑=m 1j j j t f b )()(()()()τττd 21⎰∞∞--=t f f t f ττ ),()(.111积分变量改为f t f →)()()()(.22222τττ-−−→−-−−→−→t f f f t f 平移翻转τττd )(.)(.321-⎰∞∞-t f f 乘积的积分:总结:翻卷(翻转+平移)→乘积→积分三﹑卷积的性质:(一)卷积的代数性质:(1) 交换性:(2) 分配性:(3) 结合律: (二)延时特性:卷积的延迟量等于相卷积的两函数卷积之和(三)函数与冲激函数卷积)()()(t f t t f =*δ卷积奇偶性:同偶异奇(四)卷积的导数与积分:1﹑卷积导数:[)()(t f t f 21*]´=)()(t f t f 21*´=)()(,t f t f 21* 推广:)()()()()()(t f t f t f t f n 2n 121-*=* 2、卷积积分)()()()()()(t f dx x f dx x f t f dx x f x f 2t 1t 212t 1*=*=*⎰⎰⎰∞-∞-∞- 若y (t )=)()(t f t f 21*,则)()()()()()(t f t f t y j -i 2j 1i *= (五)相关函数dt t f t f dt t f t )()()(f R 212-112•+=-•=⎰⎰∞∞-∞∞τττ)()( dt t f t f dt t f t )()()(-f R 212-121τττ+•=•=⎰⎰∞∞-∞∞)()( )-(R 2112ττR =)( )()(ττ-R R 1221=自相关函数:若)()()(t f t f t f 21==,则R (τ)称为自相关函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所示。
(4) f4(t)=e(-1+j2)t=e-t· ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
6
第2章 连续信号与系统的时域分析
题解图 2.2
7
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
39
第2章 连续信号与系统的时域分析
解 计算两个分段信号在某时刻的卷积积分值,应用图解 法求解比较方便。
当t=-1时,f2(t-τ)=f2(-1-τ)。画出f1(τ)、f2(-1-τ)波形如
30
第2章 连续信号与系统的时域分析
31
第2章 连续信号与系统的时域分析
最后整理得
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
题解图 2.6
33
第2章 连续信号与系统的时域分析
2.7 试计算下列卷积: (1) 2*t[ε(t+2)-ε(t-1)];
(2) ε(t)*tnε(t);
观察乘积信号f1(τ)· f2(t-τ)波形的净面积得到。
42
第2章 连续信号与系统的时域分析
2.9 已知信号f1(t)和f2(t)波形如题图2.5所示,试计算 f1(t)*f2(t)。
题图 2.5
第2章 连续信号与系统的时域分析
第2章
连续信号与系统 的时域分析
1
第2章 连续信号与系统的时域分析
2.1 对下列信号,当τ→0(τ>0)时,f(t)→δ(t),试确定系数 值K(提示: 利用 的特点求解)。
2
第2章 连续信号与系统的时域分析
解 (1) 因为
对上式两边从-∞到∞取积分,考虑到
求得 所以
10
第2章 连续信号与系统的时域分析
题解图 2.3-1
11
第2章 连续信号与系统的时域分析
(2)
波形如题解图2.3-2所示。
12
第2章 连续信号与系统的时域分析
题解图 2.3-2
13
第2章 连续信号与系统的时域分析
(3)
波形如题解图2.3-3所示。
14
第2章 连续信号与系统的时域分析
题解图 2.3-3
所以,卷积积分
y1(t)=2*f1(t)=2S=-3
(2) 因为ε(-∞)=0,故可应用卷积的微积分性质简化公式得
36
第2章 连续信号与系统的时域分析
(3) 因为ε(-∞)=0, 故有
所以
37
第2章 连续信号与系统的时域分析
(4) 由于tε(t)|t=-∞=0,有
所以
38
第2章 连续信号与系统的时域分析
15
第2章 连续信号与系统的时域分析
(4) 用图解法求卷积积分。求解过程及f4(t)*f5(t)波形如题解 图2.3-4所示。
题解图 2.3-4
16
第2章 连续信号与系统的时域分析
因为17Βιβλιοθήκη 第2章 连续信号与系统的时域分析
所以
18
第2章 连续信号与系统的时域分析
2.4 计算卷积积分f1(t)*f2(t):
(3) e-tε(t)*δ′(t)*ε(t); (4) e-2tε(t)*δ″(t)*tε(t)。
34
第2章 连续信号与系统的时域分析
解 (1) 画出f1(t)=t[ε(t+2)-ε(t-1)]波形如题解图2.7 所示。
题解图 2.7
35
第2章 连续信号与系统的时域分析
由于f1(t)波形净面积
S=-2+0.5=-1.5
24
第2章 连续信号与系统的时域分析
先计算
再应用卷积时移性质,求得
25
第2章 连续信号与系统的时域分析
(10) 因为
所以
26
第2章 连续信号与系统的时域分析
2.5 已知f(t)如题图2.2(a)所示。试用f(t),δT(t)= 进行两种运算(相乘和卷积),构成题图2.2(b)和 (c)所示的f1(t)和f2(t)。 解
27
第2章 连续信号与系统的时域分析
题图 2.2
28
第2章 连续信号与系统的时域分析
2.6 f1(t)和f2(t)如题图2.3(a)和(b)所示,试用图解法求卷积 积分f1(t)*f2(t),并画出其波形。
题图 2.3
29
第2章 连续信号与系统的时域分析
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
19
第2章 连续信号与系统的时域分析
解 应用卷积性质和公式计算卷积积分。
20
第2章 连续信号与系统的时域分析
21
第2章 连续信号与系统的时域分析
结合题解图2.4,求得
所以
22
第2章 连续信号与系统的时域分析
题解图 2.4
23
第2章 连续信号与系统的时域分析
(9) 将f1(t)、f2(t)改写为
题解图2.8(a)所示, 两波形重叠区间为[-2,0],求得
40
第2章 连续信号与系统的时域分析
题解图 2.8
41
第2章 连续信号与系统的时域分析
同理,当t=0和1时,分别画出f1(τ)、f2(t-τ)波形如题解图 2.8(b)、(c)所示,并在相应重叠区间上计算卷积结果,得
自然,根据积分运算的几何意义,上述结果也可通过直接
2.3 各信号波形如题图2.1所示,计算下列卷积,并画出其 波形。
(1) f1(t)*f2(t);
(2) f1(t)*f3(t); (3) f4(t)*f3(t); (4) f4(t)*f5(t)。
8
第2章 连续信号与系统的时域分析
题图 2.1
9
第2章 连续信号与系统的时域分析

波形如题解图2.3-1所示。
3
第2章 连续信号与系统的时域分析
(2) 因为
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2;
(2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c)
相关文档
最新文档