传热学-第二章-导热基本定律及稳态导热
传热学(第二章)
(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp
传热学-第二章 导热基本定律及稳态导热第一讲-动力工程
液体的热导率随压力p的升高而增大 p
2-3 导热微分方程式及单值性条件
理论解析的基本思路
简化
物理问题
数学模型
求解
热流量
温度场
导热定律
控制方程 定解条件
q -grad T [W m2 ]
建立导热体内的温度分布计算模型是导热理论 的首要任务
理论基础:傅里叶定律 + 热力学第一定律
导入与导出微元体净热量:
qx dxdydz d
x
[J]
d 时间内、沿 y 轴方向
导入与导出微元体净热量:
qy dxdydz d
y
[J]
d 时间内、沿 z 轴方向导
入与导出微元体净热量:
qz dxdydz d
z
[J]
D. 导入与导出净热量:
[] ( qx qy qz )dxdydzd
[J]
dQx qx dydz d [J]
B. d 时间内、沿 x 轴方向、
经 x+dx 表面处dydz导出的热量:
dQxdx qxdx dydz d [J]
qxdx
qx
qx x
dx
C. d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
[J]
d 时间内、沿 x 轴方向
2、推导过程 在导热体中取一微元体,能量平衡分析 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中:
[导入与导出净热量] + [内热源发热量] = [热力学能的增加]
数学模型建立基本思路 能量平衡分析
(1)导入与导出微元体的净热量
第2章-导热理论基础以及稳态导热
第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。
2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。
根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。
① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。
首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。
最后,对多维导热及有内热源的导热进行讨论。
§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。
由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。
一般地,物体的温度分布是坐标和时间的函数。
即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。
2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。
2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。
若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。
3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。
2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。
传热学 第2章 稳态导热
t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
传热学第二章稳态热传导
h h
t f t f ( )
五、 热扩散系数 (thermal diffusivity)
a
物体导热能力 c 物体蓄热能力
从导热方程看:
a
t
温度变化快 扯平能力强
故,a 是评价温度变化速度的一个指标
2.3 通过平壁及圆筒壁的一维稳态导热
一、通过单层平壁的导热
0 , 则 2. Φ
t a 2 t
2
3. 稳态:
Φ a t 0 c
,则
0 4. 稳态且 Φ
t 0
2
三、其它正交坐标
1、柱坐标: (cylinder coordinate)
x r cos ; y r sin ; z z
2 t 1 t 1 2 t 2 t t a 2 2 2 2 r r r z c r
p
各类物质导热系数的范围
导热机理
气体:分子热运动 t
金属 非金属
固体:自由电子和晶格振动
t 晶格振动 阻碍自由电子运动
液体的导热机理不清
固体> 液体 > 气 ; 取决于物质的种类和温度
热绝缘(保温)材料 insulation material:<0.2W/(mK) (50
(2)固体的热导率
(a) 金属的热导率
金属 12~418W (m K)
纯金属的导热:依靠自由电子的迁移和晶格振动; 金属导热与导电机理一致,良导体也是良导热体。
银 铜 金 铝
T
10K:Cu 12000 W (m K) 15K : Cu 7000 W (m K)
高等传热学_第二章_稳态导热
2-1 一维稳态导热
通过长圆筒壁(图2-2)的导热由傅里叶定律直接积分的方法。 若已知圆筒壁的内外壁面温度分别为t1和t2。注意到,圆筒壁的导
热面积在径向上是变化的,但单位长度上的总热流量ql(单位为 W/m)仍应是常量(不随r变化)。由傅里叶定律可得
分离变量并积分
ql
dt 2 r dr
x 0, x ,
并整理得到
t 0 t 0
(2-1-20)
代入以上得到的通解式(2-1-19),可以确定其中的两个任意常数,
qV t x( x) 2
(2-1-21)
2-1 一维稳态导热
如果给定两个表面的温度分别为t1和t2,即
t t1 x , t t 2 代入以上得到的通解式(2-1-19),可以确定其中的两个任意常数, 并整理得到
2-1 一维稳态导热
图2-1通过大平壁的导热
2-1 一维稳态导热
2-1-1 无内热源的一维导热 求解导热问题的一般思路是首先从导热微分方程和相应的定解条
件出发,解得温度场。 对于如图2-1所示的大平壁的稳态导热,已知两表面的温度分别为 t1和t2。导热微分方程简化为
其通解为
d 2t 0 2 dx
t
qv 2 r C1 ln r C2 4
(2-1-25)
2-1 一维稳态导热
r=0处温度应该有界,即 t
r 0
,可以作为一个边界条件,
由此可得C1=0。如果给定另一个边界条件是第一类边界条件, 即r=R,t=t1。代入通解可得
t t1
qv 2 2 (R r ) 4
种换热设备中,常在换热表面上增添一些肋, 以增大换热表面,达到减小换热热阻的目的。
传热学第二章--稳态导热精选全文
t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属
第二章 导热的基本定律及稳态导热
第二章导热的基本定律及稳态导热从本章开始将深入的讨论三种热量传递方式的基本规律。
研究工作基本遵循经典力学的研究方法,即提出物理现象、建立数学模型而后分析求解的处理方法,对于复杂问题亦可在数学模型的基础上进行数值求解或试验求解。
采用这种方法,我们就能够达到预测传热系统的温度分布和计算传递的热流量的目的。
导热问题是传热学中最易于用数学方法处理的热传递方式。
因而我们能够在选定的研究系统中利用能量守恒定律和傅立叶定律建立起导热微分方程式,然后针对具体的导热问题求解其温度分布和热流量。
最后达到解决工程实际问题的目的。
2-1 导热的基本概念和定律1温度场和温度梯度1.1温度场由于热量传递是物质系统内部或其与环境之间能量分布不平衡条件下发生的无序能量的迁移过程,而这种能量不平衡特征,对于不可压缩系统而言,可以用物质系统的温度来表征。
于是就有“凡是有温差的地方就有热量传递”的通俗说法。
因此,研究系统中温度随时间和空间的变化规律对于研究传热问题是十分重要的工作。
按照物理上的提法,物质系统内各个点上温度的集合称为温度场,它是时间和空间坐标的函数,记为yxft=2-1(τz),,,式中,t—为温度; x,y,z—为空间坐标; -- 为时间坐标。
如果温度场不随时间变化,即为稳态温度场,于是有yxft=2—2(z,),稳态温度场仅在一个空间方向上变化时为一维温度场,t=2—3f)(x稳态导热过程具有稳态温度场,而非稳态导热过程具有非稳态温度场。
1.2等温面温度场中温度相同点的集合称为等温面,二维温度场中则为等温线,一维则为点.取相同温度差而绘制的等温线(对于二维温度场)如图2-1所示,其疏密程度可反映温度场在空间中的变化情况。
等温面不会与另一个等温面相交,但不排除十分地靠近,也不排除它可以消失在系统的边界上或者自行封闭。
这就是等温面的特性。
1.3温度梯度温度梯度是用以反映温度场在空间的变化特征的物理量。
按照存在温差就有热传的概念,沿着等温面方向不存在热量的传递。
传热学第二章
△n
Δn0 Δn n
温度梯度和热流密度
•温度梯度是向量,垂直于等温面, 正向朝着温度增加的方向;
•温度梯度的方向是温度变化率最大的方向。
t t n m
温度梯度的解析定义:
温度场 t f (x, y, z) 中点(x, y, z) 处的温度梯度:
gradt t i t j t k x y z
温度梯度垂直于等温面吗?
设等温面方程: t f (x, y, z) c 在点 (x, y, z)处,等温面的法线向量n n ( t , t , t ) x y z gradt 平行于 n
梯度方向垂直于等温面。
两个定义一致,解析定义便于计算
(4) 热流密度
热流密度是指单位时间经过单位面积所传递的热量,用 q 表示,单位为 W / m2。
根据上面的条件可得:
x
(
t ) x
y
(
t ) y
z
(
t z
)
qv
(cp t)
d 2t dx2
0
第一类边界条件:
x 0,t t1
x ,t t2
直接积分:
dt dx
c1
带入边界条件:
t c1x c2
c1
t2
t1
c2 t1
t
t2
t1
x
t1
dt t2 t1
dx
带入傅里叶定律得
t y
qz
t z
对于一维导热问题:
q dt
dx
3 导热系数
导热系数的定义式可由傅立叶定律的表达式得出
q t n
n
(1)物理意义:
表示了物质导热能力的大小,是在单位温度梯度作用下 的热流密度。工程计算采用的各种物质的导热系数值都是由 专门实验测定出来的。
东南大学传热学 第二章 导热基本定律及稳态导热
本章重点讨论稳态导热问题。为此首先介绍 一些相关的基本知识,如温度场、温度剃度、 导热基本定律等;然后应用这些基本知识推 导出求解导热问题的微分方程;最后应用这 些微分方程求解常见的导热问题。
第一节 导热基本定律
温度场
• 定义:某一瞬间物体内的温度分布,称为温度场。 • 分类 1.按温度是否随时间而变化可分为 稳态温度场:物体内温度不随时间的变化而变化的温度场 非稳态温度场:物体内的温度随时间变化而变化的温度场 2.按温度随空间的变化可分为 一维温度场:温度只在一个方向有变化的温度场 二维温度场:温度在两个方向有变化的温度场 三维温度场:温度在三个方向有变化的温度场 • 表示:三种表示方法
n x y z
导热基本定律
• 傅立叶定律:单位时间内通过单位截面积所传 递的热量,正比例于当地垂直于截面方向上的 温度变化率,即温度剃度,其比例系数为导热 系数。
• 表示型式: A t n
n
导热系数
•
定义:
q
t n
n
• 物理意义:单位时间单位面积当温度变化率为1时,由导
热所传递的热量
• 影响因素:主要是物质的种类和物质所处的状态
第三节 通过平壁、圆筒壁、球壳和 其他变截面物体的导热
通过 平壁导热
通过 圆筒壁导热
通过 球壳导热
通过变导热 系数物体 的导热
单层平壁 多层平壁 单层圆筒壁 多层圆筒壁 单层球壳 多层球壳
通过单层平壁的导热
通过单层 平壁的导热
物理模型
数学描写
温度分布
热流量计算
数学描写
d 2t dx2 x
数学描写
温度分布
热流量计算
物理模型
《传热学》第2章-稳态导热
控制方程
边界条件
x , t tw 2
t
dt 1 2 0 ( 1 bt ) c1 0 ( t bt ) c1 x c2 tw1 dx 2
代入边界条件,得:
1 1 2 2 ( t bt ) c 0 c , ( t bt 1 2 0 w2 w 2 ) c1 c 2 0 w1 2 w1 2 1 2 c ( t bt 2 0 w1 w1 ) 2 t w1 t w 2 1 c [ 1 b( t w1 t w 2 )] 0 1 2
tw 2 tw3
2
tw3 tw4
3
tw1 tw4 tw1 tw4 3 相加可得: q R ,1 R ,2 R ,3 R ,i
i 1
例2-1:有一锅炉炉墙,三层,内层为230mm的耐火 砖层,中间为50mm厚的保温层,外层为240mm的 红砖层,导热系数分别为1.10 W/(m.K) ,0.072 W/(m.K) ,0.58W/(m.K),已知炉墙内外表面温度 为500℃与50℃,求炉墙的导热热流密度和红砖墙的 最高温度。
第二章 稳态导热
Steady-State Conduction —— One Dimension
主要内容
掌握稳态导热。
§2-1 §2-2 §2-3 §2-4 §2-5 §2-6
通过平壁的导热 通过复合平壁的导热 通过圆筒壁的导热 具有内热源的平壁导热 通过肋片的导热 通过接触面的导热
对各层直接应用单层大平壁的热量计算式 tw1 tw 2 tw1 tw 2 第一层平壁 : q1 , 变换 : q1 R ,1 t w1 t w 2 1 R ,1
传热学-第2章
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x
i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n
t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1
?
t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )
传热学第二章 【含肋片】(1)
[J]
x y z
傅里叶定律:
qx
t x
;
qy
t y
;
qz
t z
[1]
x
(
t x
)
y
(
t y
)
z
(
t z
)
dxdydzd
[J]
2、微元体中内热源的发热量
d 时间内微元体中内热源的发热量: [2] qv dxdydz d [J]
3、微元体热力学能的增量
d 时间内微元体中热力学能的增量:
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界
4、边界条件
说明导热体边界上过程进行的特点 反映过程与周围环境相互作用的条件
边界条件一般可分为:第一类、第二类、第三类边界条件
(1)第一类边界条件
已知任一瞬间导热体边界上温度值:
❖ 热阻:
r1
1 1
, , rn
n n
t1
t2
t3
t4
三层平壁的稳态导热
多层、第三类边条
q
1 h1
tf1 tf2
n
i1
i i
1 h2
tf1 h1
t2
t3
h2
tf2
单位:
W m2
传热系数?
?
?
tf1
t1
t2
t3
t2
tf2
三层平壁的稳态导热
3 单层圆筒壁的导热
圆柱坐标系:
c t
1 r
(r t ) r r
第二章 导热基本定律及稳态导热
§2-1 导热基本定律
传热学ch2稳态导热
dΦ/dA为通过该点的热流密度,傅里叶定律 的热流密度表达式写为:
t q λ n
负号表示热流方向和温度梯度方向相反,即 指向温度降低的方向。 q是沿n方向传递的热流密度(严格地说热 流密度是矢量,所以q应是热流密度矢量在 n方向的分量)单位为W/m²。 t n 是物体沿n方向的温度变化率
2.1.2导热基本定律 1)傅里叶导热定律 定义式: dΦ λ dA t
n
λ——导热系数 A——传热面积,单位为m² t ——温度,单位为K
物理意义:
通过物体内某点微元面积dA,在单位时间里传 递的热量与该点处的温度梯度以及截面面积成正 比。导热基本定律说明的是通过物体中任一点导 热量的大小,热量传递的方向和温度传递的方向相
假定前提:热扰动的传递速度无限大。 不适用范围(非傅里叶导热): 1)温度效应,导热物体的温度接近0K时; 2)时间效应,当过程的作用时间极短,与材料 本身固有的时间尺寸(松弛时间)相接近时; 3)尺度效应,当过程发生的空间尺寸极小,与 微观粒子的平均自由行程相接近时。
已知条件:无内热源、λ为定值、稳态 导热微分方程: t 0
c. 温度与热导率的关系 物体热导率随温度的变化关系比较复杂,如 图所示,但一般在某个不大的温度范围内, 可以认为二者之间成线性关系,一般写成 0 (1 bt) 其中b称为温度系数。
温度对物质的热导率具有较大的影响,同 一物体温度变化,热导率一般也发生变化。 因此,在谈论某种物体的热导率时,一般 应指明物体此时所处的温度,如果没有指 明,一般物体温度为常温。
一维稳态温度场假设肋片受到流体冷却肋基温度为t高温肋片温度沿肋高h下降由于肋片一般在长度方向肋宽方向较长所以温度在该方向不变在肋片厚度方向由于肋片很薄且大所以该方向温度也不变所以温度只在肋高方向变化是一维稳态温度场如图221则1宏观整个肋片上从肋基到肋端取为控制体则能量平衡为
传热学-第二章导热基本定律及稳态传热
d 时间X方向流入与流出微元体的热流量
dQx
- dQxdx
- qx x
dxdydz d
( t ) dxdydz d
x x
d 时间Y方向流入与流出微元体的热流量
dQy
- dQydy
- q y y
dy dxdz d
y
( t ) dxdydz d
y
2.4 导热微分方程及定解条件
影响热导率的因素:物质的种类、材料成分、温度、压力及 密度等。
2.3 导热系数
2.3.1 气体导热系数
气体导热——由于分子的无规则热运动以及分子间 的相互碰撞
1 3
vlcv
v 3RT M
V 气体分子运动的均方根 m/s L 气体分子两次碰撞之间的平均自由程 m
Cv气体的定容比热 J/kg·℃
2.3 导热系数
2.4 导热微分方程及定解条件
建立数学模型的目的:
求解温度场 t f x, y, z,
步骤: 1)根据物体的形状选择坐标系, 选取物体中的 微元体作为研究对象; 2)根据能量守恒, 建立微元体的热平衡方程式; 3)根据傅里叶定律及已知条件, 对热平衡方程式 进行归纳、整理,最后得出导热微分方程式。
通过某一微元面积dA的热流:
dA q
d
q dA
t
n
dA
t
dydz
t
dxdz
t
பைடு நூலகம்
dxdy
n
x
y
z
2.2导热的基本定律
例:判断各边界面的热流方向
2.3 导热系数
由傅里叶定律可得,导热系数数学定义的具体形式为:
q t n
《传热学》第2章_稳态热传导
三三
三三三三三三三三三 三三
三三 三三
三三三三三三三
三三
三三三三三三三三
三三
三三三三三三三三三三三
18
第2章 稳态热传导
2.1 典型一维稳态导热问题的分析解
2.3.1 通过平壁的导热:
一维、稳态、常物性、无内热源情况,考察平板的导热情况。
c t
x
t x
t x
n
中,gradt表示空间某点的温度梯度,
n表示通过该点的等温线上的法向单位矢量,温度升高的方向。
利用等温线和热流线来定量且形 象地表述一个导热过程: 等温线表示热流梯度,而热流线 是与等温线处处垂直的一组曲线, 通过平面上任一点的热流线与该 点的热流密度相切。 相邻两条热流线之间所传递的热 流量处处相等,相当于构成了一 个热流通道。 该方法用于现代工程软件应用。
2.类似于非导电固体;(倾向于此观点)
2
第2章 稳态热传导
等温场(temperature field):
温度场:物体中存在温度的场。 温度分布:各时刻物体中各点温度所组成的集合
分类:
稳态温度场:物体中各点温度不随时间而变。 t f x, y, z 瞬态温度场:物体中各点温度随时间变化。 t f x, y, z,
几何条件: 说明导热体的几何形状(平壁或圆筒壁)和大小(厚度、直径等)
物理条件:
说明导热体的物理特征如:物性参数λ、c 和 r 的数值,是否 随温度变化;有无内热源、大小和分布;是否各向同性 初始(时间)条件: 说明在时间上导热过程进行的特点 稳态导热过程不需要时间条件 — 与时间无关 对非稳态导热过程应给出过程开始时刻导热体内的温度分布
疏密可直观反映出不同区域温度热流密度的相对大小。
传热学第二章
刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。
要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。
1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。
曾于1798-1801追随拿破仑去埃及。
后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。
刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。
1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。
传热学-2 导热基本定律和稳态导热
2-2 导热微分方程和定解条件
2 圆柱坐标系中的导热微分方程:
c t
1 r
(r
r
t ) r
1 r2
(
t ) ( z
t ) & z
3 球坐标系中的导热微分方程:
2-2 导热微分方程和定解条件
1 笛卡尔坐标系中微元平行六面体
热力学第一定律(能量守恒定律):
W 0
d V U W U z
单位时间内微元体中: [导入+导出净热量] + [内热源发热量] = [热力学能的增加]
y
zdz
x
dz
dx
y
z
ydy xdx
dy x
2-2 导热微分方程和定解条件
tw1
Φ
tw2
R 1 ln d2 2l d1
2-3 一维稳态导热
第一次积分
r
dt dr
c1
t c1㏑r c2
tw1 c1㏑r1 c2;
tw2 c1㏑r2 c2
第二次积分 应用边界条件
c1
tw2 tw1
㏑r2 / r1
;
c2
tw1
tw2
tw1
㏑r1
㏑r2 / r1
获得两 个系数
t
t1
注意:①上式对稳态和非稳n态均使用; ②导热现象依 gradt 的存在而存在, 若 gradt=0,则 q=0; ③“-”不能少,“-”表示 q与 gradt 方向相
反, 若无,则违反热二定律。
2-1 导热基本定律和热导率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dQx qx dydz d
[J]
d 时间内、沿 x 轴方向、经 x+dx 表面导出的热量:
dQxdx qxdx dydz d [J]
ห้องสมุดไป่ตู้
qxdx
qx
qx x
dx
d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
气体的压力升高时:气体的密度增大、平均自由行程 减小、而两者的乘积保持不变。
除非压力很低或很高,在2.67*10-3MPa ~ 2.0*103MPa范围内, 气体的热导率基本不随压力变化
气体的温度升高时:气体分子运动速度和定容比热随T升高 而增大。 气体的热导率随温度升高而增大
混合气体热导率不能用部分求和的方法求;只能靠实验测定
热流密度矢量:等温面上某点,以通过该点处最大热流密度的
方向为方向、数值上正好等于沿该方向的热
流密度 q
直角坐标系中:
q
q
q qx i qy j qz k
q q cos
二、导热基本定律(Fourier’s law)
1822年,法国数学家傅里叶(Fourier)在实验研究基础上, 发现导热基本规律 —— 傅里叶定律
3、时间条件
说明在时间上导热过程进行的特点
x
y
z
直角坐标系:(Cartesian coordinates)
grad t t i t j t k
x
y
z
注:温度梯度是向量;正向朝着温度增加的方向
热流密度矢量 (Heat flux)
热流密度:单位时间、单位面积上所传递的热量;
不同方向上的热流密度的大小不同
q W m2
[J]
d 时间内、沿 y 轴方向导入与导出微元体净热量:
dQy
dQydy
qy y
dxdydz d
[J]
d 时间内、沿 z 轴方向导入与导出微元体净热量:
dQz
dQzdz
qz z
dxdydz d
[J]
[导入与导出净热量]:
[1] [dQx dQxdx ] [dQy dQydy ] [dQz dQzdz ]
黄铜 109w/m.0c 黄铜:70%Cu, 30%Zn
金属的加工过程也会造成晶格的缺陷
合金的导热:依靠自由电子的迁移和晶格的振动; 主要依靠后者
T
温度升高、晶格振动加强、导热增强
(2) 非金属的热导率:
非金属的导热:依靠晶格的振动传递热量;比较小 建筑隔热保温材料: 0.025~3 W (m C)
y
t k
z
qx
t x
;
qy
t y
;
qz
t z
注:傅里叶定律只适用于各向同性材料
各向同性材料:热导率在各个方向是相同的
有些天然和人造材料,如:石英、木材、叠层塑料板、叠层 金属板,其导热系数随方向而变化 —— 各向异性材料
各向异性材料中:
qx
xx
t x
第二章 导热基本定律及稳态导热
§2-1 导热基本定律
一、温度场(Temperature field) 某时刻空间所有各点温度分布的总称
温度场是时间和空间的函数,即: t = f ( r, )
稳态温度场 Steady-state conduction)
非稳态温度场 (Transient conduction)
d 时间内微元体中内热源的发热量: [2] qv dxdydz d [J]
3、微元体热力学能的增量
d 时间内微元体中热力学能的增量:
[3] c t dxdydz d [J]
(mcdt dxdydzc t d )
由 [1]+ [2]= [3]:
水和甘油等强缔合液体,分子量变化,并随温度而变 化。在不同温度下,热导率随温度的变化规律不一样
液体的热导率随压力p的升高而增大
p
3、固体的热导率
(1) 金属的热导率:
金属 12~418 W (m C)
纯金属的导热:依靠自由电子的迁移和晶格的振动 主要依靠前者
金属导热与导电机理一致;良导电体为良导热体:
xy
t y
xz
t z
qy
yx
t x
yy
t y
yz
t z
qz
zx
t x
zy
t y
zz
t z
三、热导率( Thermal conductivity )
q
-grad t
— 物质的重要热物性参数
热导率的数值:就是物体中单位温度梯度、单位时间、通过
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界
1、几何条件
说明导热体的几何形状和大小
如:平壁或圆筒壁;厚度、直径等
2、物理条件
说明导热体的物理特征
如:物性参数 、c 和 的数值,是否随温度变化;
有无内热源、大小和分布;是否各向同性
c 2 — 拉普拉斯算子
热扩散率 a 反映了导热过程中材料的导热能力( )
与沿途物质储热能力( c )之间的关系
a 值大,即 值大或 c 值小,说明物体的某一部分
一旦获得热量,该热量能在整个物体中很快扩散
热扩散率表征物体被加热或冷却时,物体内各部分 温度趋向于均匀一致的能力
在同样加热条件下,物体的热扩散率越大,物体内部各处 的温度差别越小。
[1] ( qx qy qz )dxdydzd
[J]
x y z
傅里叶定律:
qx
t ; x
qy
t y
;
qz
t z
[1]
x
(
t x
)
y
(
t y
)
z
(
t z
)
dxdydzd
[J]
2、微元体中内热源的发热量
极短时间(如10)产生极大的热流密度的热量传递现象, 如 激光加工过程。
极低温度(接近于0 K)时的导热问题。
导热过程的单值性条件
导热微分方程式的理论基础:傅里叶定律 + 热力学第一定律 它描写物体的温度随时间和空间变化的关系; 它没有涉及具体、特定的导热过程。通用表达式。
对特定的导热过程:需要得到满足该过程的补充 说明条件的唯一解
银 铜 金 铝
T
— 晶格振动的加强干扰自由电子运动 10K:Cu 12000 W (m C) 15K : Cu 7000 W (m C)
合金:金属中掺入任何杂质将破坏晶格的完整性,
干扰自由电子的运动
合金 纯金属
如常温下: 纯铜 398w/m.0c
分子质量小的气体(H2、He)热导率较大 — 分子运动速度高
2、液体的热导率 液体 0.07~0.7 W (m C)
20 C : 水 0.6 W (m C)
液体的导热:主要依靠晶格的振动 晶格:理想的晶体中分子在无限大空间里排列成周期性点
阵,即所谓晶格 大多数液体(分子量M不变): T
确定热流密度的大小,应知道物体内的温度场: t f (x, y, z, )
确定导热体内的温度分布是导热理论的首要任务 一、导热微分方程式
理论基础:傅里叶定律 + 热力学第一定律
化学反应
假设:(1) 所研究的物体是各向同性的连续介质 发射药熔
(2) 热导率、比热容和密度均为已知
化过程
(3) 物体内具有内热源;强度 qv [W/m3]; 内热源均匀分布;qv 表示单位体积的导热
q
gradt
t
i
t r
j1 r
t
k
r
1 sin
t
c
t
1 r2
r
(r2
t ) r
1 r2 sin
( sin
t )
r2
1 sin2
(
t
)
qv
导热微分方程式的不适应范围: 非傅里叶导热过程
单位面积的导热量
W (m C)
热导率的数值表征物质导热能力大小。实验测定
影响热导率的因素:物质的种类、材料成分、温度、湿度、 压力、密度等
金属 非金属; 固相 液相 气相
不同物质热导率的差异:构造差别、导热机理不同
1、气体的热导率
气体 0.006~0.6 W (m C)
c t
1 r
r
(r
t r
)
1 r2
(
t
)
z
(
t z
)
qv
球坐标系
(r, ,)
qr
t r
q
1 r
t
q
1
r sin
t
x r sin cos; y r sin sin; z r cos
t 0 t f (r)
t f (r, )
等温面与等温线