矩形的判定2课件
1.2 课时2 矩形的判定 课件 (共26张PPT) 数学北师版九年级上册
矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形才是矩形呢?
猜想 一个四边形至少有3个角是直角时,这个四边形是矩形.
探究3:有三个角是直角的四边形是矩形
分析:利用同旁内角互补,两直线平行来证明四边形是平行四边形,可使问题得证.
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.
有一个角是直角的平行四边形是矩形.
用矩形的定义判定:一个平行四边形有一个角是直角,这个图形是矩形.
探究2:对角线相等的平行四边形是矩形
动手操作,拿一个可以活动的平行四边形教具,轻轻拉动一个点.
思考:(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?
答:随着∠α的增大,较长的对角线会变短,较短的对角线会变长.
(2)当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?
矩形
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
已知:如图,在□ABCD中,对角线AC=BD.求证:平行四边形ABCD是矩形.
证明:∵四边形ABCD是平行四边形. ∴AB=CD, AB∥CD. 又∵AC=DB, BC=CB. ∴ △ABC≌△DCB. ∴∠ABC=∠DCB. 又∵AB∥CD. ∴∠ABC+∠DCB=180°. ∴∠ABC=∠DCB=90°. ∴□ABCD是矩形.(矩形的定义).
AC=BD (答案不唯一)
3.如图,□ABCD的四个内角的平分线分别相交于E,F,G,H四点.求证:四边形EFGH是矩形.
证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵□ABCD的四个内角平分线分别相交于E,F,G,H四点,由角平分线性质,得∠HAB= ∠DAB,∠ABH= ∠ABC,∴∠HAB+∠ABH= (∠DAB+∠ABC)=90°,∴∠H=90°.同理可求得∠HEF=∠F=90°,∴四边形EFGH是矩形.
矩形的判定课件PPT2
(3)要判定一个四边形是矩形只要说明几个角
是直角?为什么?
3个
八年级 数学
猜想加证明
有三个角是直角的四边形是矩形吗?
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
证明: ∵ ∠A=∠B=∠C=90°,
A
D
∴∠A+∠B=180°,∠B+∠C=180°.
O
∴△BAD≌△CDA(SSS)
∴∠BAD=∠CDA
B
C
∵AB∥CD
∴∠BAD +∠CDA=180° ∴∠BAD=90°
∴四边形ABCD是矩形(有一个内角是直角的平行四边形 是矩形)
活动:
1、为了庆祝十一国庆节,八年级(3)班同学 要在广场上布置一个矩形的花坛。计划用“串 红”摆成两条对角线。如果一条对角线用了37 盆“串红”,还 需要从花房运来多少盆“串 红”?为什么?如果一条对角线用了48盆呢? 为什么?
2.5.2矩形的判定
矩形的判定
矩形的定义 有一个角是直角的平行四边形叫做矩形
平行四边形
一个角是直角
矩形
边
矩形的对边平行且相等
矩
形
的
角
性
质
矩形的四个角都是直角
对角线 矩形的 两条对角线相等且互相平分
矩形的判定
合作 & 学习☞
(1)命题”矩形的四个角都是直角”的逆命 题是_“__四__个__角__都__是__直__角__的__四__边__形__是__矩__形__”__
∴AD∥BC,AB∥CD.
B
C
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
§19.1.3 矩形的判定(二)
课题§19.1.4 矩形的判定(二)教学目标知识目标:通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
能力目标:通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。
培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
情感目标:使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
教学重点矩形的性质及其推论.教学难点矩形的本质属性及性质定理的综合应用.教具学具多媒体课件教学内容及教师活动二次备课创设情境直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.矩形的定义:有一个角是直角的平行四边形是矩形.矩形的判定定理1:对角线相等的平行四边形是矩形。
几何语言:∵四边形ABCD是平行四边形AC=BD(或OA=OC=OB=OD)∴四边形ABCD是矩形矩形的判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°∴四边形ABCD是矩形实践应用例4:如果平行四边形四个内角的平分线能够围成一个四边形,那么这个四边形是矩形.已知:如图,ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.检测反馈1、能够判断一个四边形是矩形的条件是()A 对角线相等B 对角线垂直C对角线互相平分且相等D对角线垂直且相等2、矩形的一组邻边长分别是3cm和4cm,则它的对角线长是cm3、如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、∠MCA、∠ACN、∠CAF的角平分线,则四边形ABCD是()A 菱形B 平行四边形C 矩形D 不能确定4、如图,ABCD中,AB=6, BC=8, AC=10.求证四边形ABCD是矩形.5、如图,△ABC中,AB=AC, AD、AE分别是∠A与∠A的外角的平分线,BE⊥AE.求证:AB=DE.6、如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边长AB、BC分别为8和15,求点P到矩形的两条对角线AC和BD的距离之和.交流反思这节课你有哪些收获?作业设计评价与反思。
矩形的判定方法ppt课件
你能证明上述结论吗?
8
矩形的识别方法:
有三个角是直角的四边形是矩形 。
A
D
几何语言:
∵ ∠A=∠B=∠C=90°
∴四边形ABCD是矩形
B
C
9
你能归纳矩形的几种识别方法吗?
方法1:
有一个角是直角的平行四边形是矩形。
方法2:
对角线相等的平行四边形是矩形 。
(对角线互相平分且相等的四边形是矩形。)
线长是 5
cm
3、如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、
CB、CD、AD分别是∠ EAC、 ∠ MCA、 ∠ ACN、
∠ CAF的角平分线,则四边形ABCD是( C )
A 菱形 C 矩形
B 平行四边形 D 不能确定
E
AP F
B
D
M
C
N20
Q
方法3:
有三个角是直角的四边形是矩形 。
10
下列各句判定矩形的说法是否正确?
(1)对角线相等的四边形是矩形;
X
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
X
(4)有三个角都相等的四边形是矩形;
X
(5)有三个角是直角的四边形是矩形; (6)四个角都相等的四边形是矩形;
∴四边形ABCD是矩形
6
矩形的识别方法:
对角线相等的平行四边形是矩形 。
(对角线互相平分且相等的四边形是矩形。)
几何语言:
A
D
∵四边形ABCD是平行四边形
O
AC=BD
(或OA=OC=OB=OD)
B
C
《矩形》PPT课件(第2课时)
第2课时
第二十二章 四边形
1 课堂讲解 由直角的个数判定矩形
由对角线的关系判定矩形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识回顾 四边形
四边形
平行四边形□
矩形
平行 四边形
一个角 是直角
矩形
∟
探究新知 木工朋友在制作窗框后,需要检测所制作的窗框
是否是矩形,那么他需要测量哪些数据,其根据又是 什么呢? 你现在有方法帮他吗?
(来自《典中点》)
知2-练
9 如图,要使▱ABCD成为矩形,需添加的条件
是( B ) A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD
(来自《典中点》)
知2-练
10 【中考·黑龙江】如图,在▱ABCD中,延长AD到
点E,使DE=AD,连接EB,EC,DB,请你添 加一个条件__E_B__=__D_C__(答__案__不__唯__一__)_,使四边形 DBCE是矩形.
(来自《典中点》)
1 知识小结
矩形的判定方法: 方法1:有一个角是直角的平行四边形是矩形. 方法2:有三个角是直角的四边形是矩形 . 方法3:对角线相等的平行四边形是矩形.
(对角线互相平分且相等的四边形是矩形.)
2 易错小结
在一组对边平行的四边形中,添加下列条件中的哪一个, 可判定这个四边形是矩形( C ) A.另一组对边相等,对角线相等 B.另一组对边相等,对角线互相垂直 C.另一组对边平行,对角线相等 D.另一组对边平行,对角线互相垂直 易错点:对矩形的判定方法理解错误导致出错
∵D为BC的中点,∴BD=DC,∴AE=CD,
又∵AE∥CD,∴四边形AECD是平行四边形.
(课件) 19.1.2矩形的判定2
又∵AE∥DC ∴四边形ADCE是平行四边形
B
C
D
∴四边形ADCE是矩形(对角线相等的平行四边形是矩形)
湖北鸿鹄志文化传媒有限公司——助您成功
本节课你学习图,AB=AC,AE=AF,且∠EAB=∠FAC, EF=BC.求证:四边形EBCF是矩形.
例6 如图,在△ABC中,AB=AC,AD⊥BC垂足为点
D,AG是△ABC的外角∠FAC的平分线,DE∥AB交
AG于点E,求证:四边形ADCE是矩形。
证明:∵AB=AC,AD⊥BC ∴∠B=∠ACB,BD=CD 又∵AG是∠FAC的平分线,
F
A
1E
G
2
1 1 CAF 1 (B ACB) B B
证明:∵△ABD和△BCD是全等的正三角D 形。
∴∠AOB=∠CDB=60°
C
又∵M,N是BC,AD边的中点。
N
M
∴BN⊥AD,DM⊥BC, ∠BDM=30° A ∴∠DNB=∠DMB=90 °
B
∠MDN=∠ADB+∠BDM=90°
∴四边形BMDN是矩形(三个角都是直角的四边形是矩形)
湖北鸿鹄志文化传媒有限公司——助您成功
2
2
∴AE∥BC
又∵ DE∥AB
∴四边形ADCE是平行四边形
C D
湖北鸿鹄志文化传媒有限公司——助您成功
例6 如图,在△ABC中,AB=AC,AD⊥BC垂足为点
D,AG是△ABC的外角∠FAC的平分线,DE∥AB交
AG于点E,求证:四边形ADCE是矩形。 F
A
E
G
∴AE=BD,AB=DE
∴AC=DE,AE=DC
湖北鸿鹄志文化传媒有限公司——助您成功
2_矩形的性质与判定_第2课时_课件2(15p)
有三个角是直角的四边形是矩形吗?
已知:如图,在四边形ABCD,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
A
D
证明: ∵∠A=∠B=∠C=90°, B
C
∴∠A+∠B=180°,∠B+∠C=180°.
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形判定方法二
D
O
M
B
C
课堂小结
矩形的判定方法: 有一个角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
布置作业
课本P16 1,2,3.
于点O,△ABO是等边三角形,AB=4.
求□ABCD的面积.
A
D
O
B
C
练一练1
已知:如图,M为平行四边形ABCD边AD的中点,
且MB=MC.
求证:四边形ABCD是矩形.
A
M
D
B
C
练一练2
已知:如图,菱形ABCD中,对角线AC和BD相较
于点O,CM∥BD,DM∥AC.
求证:四边形OCMD是矩形.
A
证明:
B
C
矩形判定方法一
对角线相等的平行四边形是矩形.
A
D
B
ABCD AC = BD
C
四边形ABCD是矩形
情境二
李芳同学用四步画出了一个 四边形,她的画法是“边— —直角、边——直角、边— —直角、边” ,她说这就是 一个矩形,她的判断对吗? 为什么?
猜想:有三个角是直角的四边形是矩形.
你能证明上述结论吗?
1.2.2矩形的判定 课件(共19张PPT)
2.动手操作,拿一个活动的平行四边形教具,轻轻拉动一对不相邻的顶点(如图).
思考:①随着∠α的变化,两条对角线的长度是否发生变化? (发生了变化)
②当两条对角线的长度相等时,平行四边形有什么特征?
(对角线相等的平行四边形是矩形)
③矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个
框符不符合我的要求?”王子听后,找来一把三角尺,用三角尺量了量
门框的三个角,然后对国王说:“父王,我量了门框的三个角,它们都
是90度,因此,这个门框是矩形.”
(1)问:你认为王子说得对吗?请同学们分组讨论并给出老师答案.(让其中的
一组来讲)
(2)有三个角是直角的四边形是矩形吗?
自主探究 (10min)
中点, ∴ = =
,
∥ .
∴四边形 DECF 是平行四边形.
∵∠ACB=90°,∴四边形 DECF 是矩形,∴EF=CD=6cm.
典例精讲
例 6: 如图,在四边形 ABCD 中,AC,BD 相交于点 O,O 是 AC 的中点,AD∥BC.
(1)求证:四边形 ABCD是平行四边形;
四边形就是矩形?
(一个四边形至少有三个角是直角时,这个四边形就是矩形)
小组讨论(4min)
①如果仅有一根足够长的绳子,如何判定一个四边形是平行四边形?
(两组对边分别相等为平行四边形)
②如果仅有一根足够长的绳子,如何判定一个四边形是菱形?
(四边相等为菱形)
③如果仅有一根足够长的绳子,如何判定一个四边形是矩形?
测量…?
李芳同学用“边——直角、边——直角、边——直角、边”
这样四步,画出了一个四边形,她说这就是一个矩形,她的判断
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、四边形的内角和定理? 四内角和360度
2.平行四边形的判定方法
边:1. 两组对边分别 平行的四边形是平行四边形
2. 两组对边分别 相等的四边形是平行四边形 3. 一组对边平行且相等 的四边形是平行四边形
角 4. 两组对角分别 相等的四边形是平行四边形
对角线 5. 对角线互相平分 的四边形是平行四边形
1.一个角是直角的平行四边形是矩形 2.三个角是直角是四边形是矩形 3.对角线相等的平行四边形是矩形
你会怎样检查一个四边形 门框是不是矩形吗?
方法1: 若量得有三个角是直角则可判定它是矩形.
方法2:⑴、先测量两组对边相等,则可判定 它是平行四边形,
⑵、若再测得两条对角线也相等,则可 判 定它是矩形。
判断题:
1、内角都相等的四边形是矩形。( √ )
2、对角线相等的四边形是矩形。 ( ╳ )
√ 3、对角线相等的平行四边形是矩形。 ( ) √ 4、对角线互相平分且相等的四边形是矩形( ) √ 5、邻角相等的平行四边形是矩形。 ( )
√ 6、对角互补的平行四边形是矩形。 ( )
7、 ABCD 中,AB=6,BC=8,AC=10, 则四边形
1.一个角是直角的平行四边形是矩形 2.三个角是直角是四边形是矩形 3.对角线相等的平行四边形是矩形
一同学回答 :只要测量两条对角线 ,若两条对角线 相等,则这个四边形是矩形 .
你认为他的说法对吗 ?
已知:在 ABCD 中,AC=DB 求证: ABCD 是矩形。
方法三
对角线相等的平行四边形是矩形.
A
D
∵ ABCD
AC=BD
B
C ∴四边形ABCD是矩形
思考: 对角线相等的四边形是矩形吗?
反例: 如等腰梯形
ABCD是矩形 。
(√ )
例1、BD、BE分别是∠ABC与它的邻 补角的平分线,AE⊥BE,AD⊥BD, B
A D C
例2、AC、BD是矩形ABCD的两条 对角线,且AE=CG=BF=DH,求证: 四边形EFGH是矩形。
D
H
C
G
O
E
A
F
B
例题3:已知: ABCD的对角线 AC、BD相交于点O, △ AOB是 等边三角形, AB=4㎝,求这个平 行四边形的面积。
方法一.
根据定义:有一个角是直角的平行四边形是矩 形.
A
D
∵ ABCD
∠B=90°
B
C ∴四边形ABCD是矩形
有一个角是直角 有两个角是直角 有三个角是直角
的 四边形是矩形吗?
方法二
有三个角是直角的四边形是矩形.
A
D ∵∠A=∠B=∠C=90°
B
C ∴四边形ABCD是矩形
老师给出了一个平行四边形 ,考考同学们用什么方法 可以判定它是矩形 .