江西省新余市中考数学试卷

合集下载

江西省新余市2020年(春秋版)中考数学试卷(I)卷

江西省新余市2020年(春秋版)中考数学试卷(I)卷

江西省新余市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016七上·滨州期中) 已知|x|=4,|y|= ,且xy<0,则的值等于()A . 8B . ﹣8C .D . ±82. (2分)(2018·怀化) 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途径城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示为()A . 13×103B . 1.3×103C . 13×104D . 1.3×1043. (2分) (2017八上·上城期中) 如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为().A .B .C .D .4. (2分)若xmyn÷x3y=4x2 ,则m,n的值分别是()A . m=6,n=1B . m=5,n=1C . m=5,n=0D . m=6,n=05. (2分) (2018九下·盐都模拟) 在下列事件中,是必然事件的是()A . 买一张电影票,座位号一定是偶数B . 随时打开电视机,正在播新闻C . 通常情况下,抛出的篮球会下落D . 阴天就一定会下雨6. (2分)式子:①3<5;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2≥x+1.其中是不等式的有()A . 2个B . 3个C . 4个D . 5个7. (2分) (2016八上·路北期中) 如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A . △ABC的三条中线的交点B . △ABC三条角平分线的交点C . △ABC三条高所在直线的交点D . △ABC三边的中垂线的交点8. (2分)△ABC中,∠BAC=90°,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)(2018·黄冈模拟) 分解因式:3x2﹣6x2y+3xy2=________.10. (1分) (2017七下·三台期中) 已知∠A=60°,∠A与∠B的两边分别互相平行,则∠B=________.11. (1分) (2017八下·海珠期末) 在“一带一路,筑梦中国”合唱比赛中,评分办法采用7位评委现场打分,每个班的最后得分为去掉一个最高分、一个最低后的平均数.已知7位评委给某班的打分是:88,85,87,93,90,92,94,则该班最后得分是________.12. (1分) (2017八下·临泽开学考) 一个直角三角形,两直角边长分别为3和2,则三角形的周长为________.13. (1分)(2017·孝感模拟) 如图,矩形OABC的边OA,OC分别在坐标轴上,OA=4,OC=8,把△ABC沿着AC折叠.点B落在点B′处,AB′交y轴于点D,则点D的坐标是________.14. (1分)(2016·南京) 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.三、解答题 (共9题;共84分)15. (5分)(2019·亳州模拟) 计算:(- )-2-sin230°+(π-1)0+cos245°.16. (5分) (2019八下·杭锦旗期中) 先化简,再求值:其中17. (10分) (2019九上·揭西期末) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:∠DAF=∠CDE;(2)求证:△ADF∽△DEC;(3)若AE=6,AD=8,AB=7,求AF的长.18. (10分) (2017七上·东城期末) 某水果批发市场苹果的价格如表购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果________千克,第二次购买________千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)19. (7分) (2018七上·朝阳期中) 对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3 的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=________(用含m,n的式子表示).20. (5分)(2018·南海模拟) 滨河小区为缓解我县“停车难”问题,拟建造地下停车库,下图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18o , AB=10m,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.为标明限高,请你根据该图计算CE 的高度.(结果精确到0.1m)21. (10分) (2019七下·海安月考) 如图,直线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA? 若存在,求出∠OBA的度数;若不存在,说明理由.22. (12分)(2014·梧州) 某校体育老师为了解该校八年级学生对球类运动项目的喜爱情况,进行了随机抽样调查(每位学生必须且只能选择一项最喜爱的运动项目),并将调查结果进行整理,绘制了如图不完整的统计图表.请根据图表中的信息解答下列问题:类别频数A.乒乓球16B.足球20C.排球nD.篮球15E.羽毛球m(1)填空:m=________,n=________;(2)若该年级有学生800人,请你估计这个年级最喜爱篮球的学生人数;(3)在这次调查中随机抽中一名最喜爱足球的学生的概率是多少?23. (20分)(2017·广丰模拟) 如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12、答案:略13-1、14-1、三、解答题 (共9题;共84分)15-1、16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。

2024届江西省新余一中学中考数学模拟精编试卷含解析

2024届江西省新余一中学中考数学模拟精编试卷含解析

2024学年江西省新余一中学中考数学模拟精编试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差2.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()A.B.C.D.3.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.43m C.3m D.103m4.下列二次根式,最简二次根式是()A.8B.12C.13D.0.15.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>56.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°7.已知一次函数y=﹣12x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为()A.﹣2 B.﹣1 C.1 D.2 8.a的倒数是3,则a的值是()A.13B.﹣13C.3 D.﹣39.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199810.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.下列几何体中三视图完全相同的是()A.B.C.D.12.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.14.比较大小:4 17(填入“>”或“<”号)15.已知反比例函数y=kx在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且12CDOD,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.16.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.1711_____1.18.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO =_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)反比例函数y=kx(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).求反比例函数的解析式;若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.20.(6分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?21.(6分)解不等式组12342xx+>⎧⎨-≤⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_____.22.(8分)(1)解方程:+=4(2)解不等式组并把解集表示在数轴上:.23.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.24.(10分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C 作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.25.(10分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.26.(12分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC 的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD 的长.27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解题分析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、B【解题分析】根据题意,在实验中有3个阶段,①、铁块在液面以下,液面得高度不变;②、铁块的一部分露出液面,但未完全露出时,液面高度降低;③、铁块在液面以上,完全露出时,液面高度又维持不变;分析可得,B符合描述;故选B.3、B【解题分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD 的长即可.【题目详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴EGAG=EHCH=EG GHCH+,即24.5=27.5GH+,解得:GH=43,则BD=GH=43 m,故选:B.【题目点拨】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.4、C【解题分析】根据最简二次根式的定义逐个判断即可.【题目详解】A=B2=,不是最简二次根式,故本选项不符合题意;CD =,不是最简二次根式,故本选项不符合题意. 故选C . 【题目点拨】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.5、C【解题分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k 、b 的关系式;然后将k 、b 的关系式代入k (x ﹣3)﹣b >0中进行求解即可.【题目详解】解:∵一次函数y=kx ﹣b 经过点(2,0),∴2k ﹣b=0,b=2k .函数值y 随x 的增大而减小,则k <0;解关于k (x ﹣3)﹣b >0,移项得:kx >3k+b ,即kx >1k ;两边同时除以k ,因为k <0,因而解集是x <1.故选C .【题目点拨】本题考查一次函数与一元一次不等式.6、D【解题分析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.7、C【解题分析】根据题意得出旋转后的函数解析式为y=-12x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.【题目详解】∵一次函数y=﹣12x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),∴设旋转后的函数解析式为y=﹣12x﹣1,在一次函数y=﹣12x+2中,令y=1,则有﹣12x+2=1,解得:x=4,即一次函数y=﹣12x+2与x轴交点为(4,1).一次函数y=﹣12x﹣1中,令y=1,则有﹣12x﹣1=1,解得:x=﹣2,即一次函数y=﹣12x﹣1与x轴交点为(﹣2,1).∴m=242-+=1,故选:C.【题目点拨】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.8、A【解题分析】根据倒数的定义进行解答即可.【题目详解】∵a的倒数是3,∴3a=1,解得:a=13.故选A.【题目点拨】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.9、B【解题分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【题目详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【题目点拨】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10、D【解题分析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.11、A【解题分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【题目详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.【题目点拨】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.12、A【解题分析】先将抛物线解析式化为顶点式,左加右减的原则即可.【题目详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【题目点拨】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2 3【解题分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【题目详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴AD DEAD DB BC=+,即1124DE=+,解得:DE=43,∵DF=DB=2,∴EF=DF-DE=2-43=23,故答案为2 3 .【题目点拨】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.14、>【解题分析】∴4考点:实数的大小比较.【题目详解】请在此输入详解!15、1.【解题分析】连结AD,过D点作DG∥CM,∵12CDOD=,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×49=203,∴四边形AMGF的面积=203,∴△BOE的面积=△AOM的面积=203×95=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.16、13.【解题分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可.【题目详解】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=21=63.故答案为13.【题目点拨】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17、>【解题分析】先将1化为根号的形式,根据被开方数越大值越大即可求解.【题目详解】解:93=,,故答案为>.【题目点拨】本题考查实数大小的比较,比较大小时,常用的方法有:①作差法,②作商法,③如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.18、1.【解题分析】试题分析:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=12BD=OB , ∴∠OHB=∠OBH ,又∵AB ∥CD ,∴∠OBH=∠ODC ,在Rt △COD 中,∠ODC+∠DCO=90°,在Rt △DHB 中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12×50°=1°. 考点:菱形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=1x;(2)y=﹣1655x +或y=1677x + 【解题分析】 试题分析:(1)把A (1,2k-1)代入y=k x 即可求得结果; (2)根据三角形的面积等于3,求得点B 的坐标,代入一次函数y=mx+b 即可得到结果.试题解析:(1)把A (1,2k ﹣1)代入y=k x 得, 2k ﹣1=k ,∴k=1,∴反比例函数的解析式为:y=1x ; (2)由(1)得k=1,∴A (1,1),设B (a ,0),∴S △AOB =12•|a|×1=3, ∴a=±6,∴B (﹣6,0)或(6,0),把A (1,1),B (﹣6,0)代入y=mx+b 得: 106m b m b =+⎧⎨=-+⎩,∴1767m b ⎧=⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为:y=17x+67, 把A (1,1),B (6,0)代入y=mx+b 得:106m b m b =+⎧⎨=+⎩, ∴1565m b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为:y=﹣1655x +. 所以符合条件的一次函数解析式为:y=﹣1655x +或y=17x+67. 20、(1)y 1=273x -+;y 2=13x 2﹣4x+2;(2)5月出售每千克收益最大,最大为73. 【解题分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y 1和y 2的解析式;(2)由收益W=y 1-y 2列出W 与x 的函数关系式,利用配方求出二次函数的最大值.【题目详解】 解:(1)设y 1=kx+b ,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩. ∴y 1=﹣23x+1. 设y 2=a (x ﹣6)2+1,把(3,4)代入得,4=a (3﹣6)2+1,解得a =13. ∴y 2=13(x ﹣6)2+1,即y 2=13x 2﹣4x+2. (2)收益W =y 1﹣y 2, =﹣23x+1﹣(13x 2﹣4x+2) =﹣13(x ﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【题目点拨】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.【解题分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【题目详解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:1<x≤1.【题目点拨】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.22、(1)x=1(2)4<x≤【解题分析】(1)先将整理方程再乘以最小公分母移项合并即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.【题目详解】(1)+=4,方程整理得:=4,去分母得:x﹣5=4(2x﹣3),移项合并得:7x=7,解得:x=1;经检验x=1是分式方程的解;(2)解①得:x≤解②得:x>4∴不等式组的解集是4<x≤,在数轴上表示不等式组的解集为:.【题目点拨】本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.23、(1)①证明见解析;②25;(2)为2532或503+1.【解题分析】(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【题目详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=12AB=5,∵点F是AB的中点,∴AF=12AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE ,∴△AEF ≌△ADC (SAS );②∵△AEF ≌△ADC ,∴∠AEF=∠C=90°,EF=CD=x ,又∵点F 是AB 的中点,∴AE=BE=y ,在Rt △AEF 中,勾股定理可得:y 2=25+x 2,∴y 2﹣x 2=25.(2)①当点在线段CB 上时, 由∠DAB=15°,可得∠CAD=45°,△ADC 是等腰直角三角形,∴AD 2=50,△ADE 的面积为21253sin 6022ADE S AD ∆=⋅⋅︒=; ②当点在线段CB 的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt △ACD 中,勾股定理可得AD 23, 21sin 60503752ADE S AD ∆=⋅⋅︒= 综上所述,△ADE 253或50375. 【题目点拨】 此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.24、(1)证明见解析;(2)258. 【解题分析】试题分析:(1)证明:如图1,连接OB ,由AB 是⊙0的切线,得到OB ⊥AB ,由于CE 丄AB ,的OB ∥CE ,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.25、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为10 3.【解题分析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【题目详解】(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,22512,∴DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=103.答:⊙O的半径为103.【题目点拨】本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.26、【小题1】见解析【小题2】见解析【小题3】【解题分析】证明:(1)连接OF∴FH切·O于点F∴OF⊥FH ………………………… 1分∵BC | | FH∴OF⊥BC ………………………… 2分∴BF="CF" ………………………… 3分∴∠BAF=∠CAF即AF平分∠BAC…………………4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF ………………………… 6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB………………………… 7分∴BF="DF" ………………………… 8分(3)∵∠BFE=∠AFB ∠FBE=∠FAB∴ΔBEF∽ΔABF………………………… 9分∴即BF2=EF·AF …………………… 10分∵EF=4 DE=3 ∴BF="DF" =4+3=7AF=AD+7即4(AD+7)=49 解得AD=27、(1)24.2米(2) 超速,理由见解析【解题分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【题目详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒==,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.。

江西省新余市2020版中考数学试卷A卷(新版)

江西省新余市2020版中考数学试卷A卷(新版)

江西省新余市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2017七上·张掖期中) 下列各组数中,互为相反数的是()A . 2与B . (﹣1)2与1C . ﹣1与(﹣1)2D . 2与|﹣2|2. (2分)若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A . 6B . 7C . 8D . 93. (2分)下面的几何体中,主视图为三角形的是()A .B .C .D .4. (2分)射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 =0.51,=0.41, =0.62, 2=0.45,则四人中成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁5. (2分) (2019九上·温州开学考) 方程(x2+x+1)x+2019=1的整数解的个数是()。

A . 2B . 3C . 4D . 56. (2分) (2019八上·西安月考) 如图,以两条直线l1 , l2的交点坐标为解的方程组是()A .B .C .D .7. (2分) (2017八上·临海期末) 如图,已知ABC=ABD,要使,下列所添条件不一定成立的是()A . C= DB . CAB=DABC . BC=BDD . AC=AD8. (2分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于 MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD平分∠BAC;②作图依据是SAS;③∠ADC=60°;④点D在AB的垂直平分线上.A . 1个B . 2个C . 3个D . 4个9. (2分) (2019八下·合肥期末) 11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A . 平均数B . 中位数C . 众数D . 方差10. (2分)(2020·乐清模拟) 已知抛物线的对称轴为直线,记,则下列选项中一定成立的是()A .B .C .D .11. (2分) (2015九上·汶上期末) 已知抛物线y=ax2+b(a≠0)在平面直角坐标系中的位置如图所示,那么一元二次方程ax2﹣x+b=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法判断12. (2分)校服裙子的展开图可近似看做是()A .B .C .D .13. (2分) (2019九上·保定期中) 若关于的方程的解为,则关于的方程的解为()A . -2B . 0或3C . 1或2D . 214. (2分)(2018·绍兴模拟) 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2 ,P2P3 , P3P4 ,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A . (﹣6,24)B . (﹣6,25)C . (﹣5,24)D . (﹣5,25)二、填空题 (共6题;共8分)15. (3分) (2019七上·柯桥期中) 的平方根是________,的立方根是________,|1- |=________.16. (1分) (2018八上·右玉月考) 已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2018的值为________.17. (1分)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则= ________18. (1分) (2019八上·双台子期末) 若关于x的分式方程﹣2m=无解,则m的值为________.19. (1分) (2020九下·吉林月考) 已知一个扇形的圆心角是60°,面积是6π,那么这个扇形的弧长是________.20. (1分)(2020·安阳模拟) 如图,在正方形ABCD中,E是CD边上一点,DE=2,过B作AE的垂线,垂足为点F,BF=3,将△ADE沿AE翻折,得到△AGE,AG与BF于点M,连接BG,则△BMG的周长为________三、解答题 (共7题;共69分)21. (5分) (2019八上·攸县期中) 先化简,再求值:,其中x=4.22. (6分) (2018九上·南召期末) 在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同.(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是________;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.(请利用树状图或列表法说明.)23. (10分) (2018九上·丰台期末) 如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF 之间的数量关系,并证明.24. (10分)(2020·上饶模拟) 已知y=y1+y2 , y1与x+1成正比例,y2与x+1成反比例,当x=0时,y=﹣5;当x=2时,y=﹣7.(1)求y与x的函数关系式;(2)当x=5时,求y的值.25. (12分) (2018八上·裕安期中) 某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2M N 设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=________,n=________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?26. (15分) (2019九上·长沙期中) 如图,是的直径,点是弧上一点,且,与交于点.(1)求证:是的切线;(2)若平分,求证:;(3)在(2)的条件下,延长,交于点,若,,求的长.27. (11分) (2016八上·扬州期末) 近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:(1)写出点M的实际意义________;(2)求第1小时内,y与t的一次函数表达式;(3)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共6题;共8分)15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共69分)21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。

2022年江西新余中考数学试题及答案

2022年江西新余中考数学试题及答案

2022年江西新余中考数学试题及答案说明:1.全卷满分120分,考试时间120分钟. 2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分) 1.下列各数中,负数是A.-1B.0C.2D.2.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是A.a>bB.a=bC.a<bD.a=-b3.下列计算正确的是A.236m m m ⋅= B.()m n m n --=-+ C.2()m m n m n +=+ D.222()m n m n +=+4.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是A.9B.10C.11D.125.如图是四个完全相同的小正方体搭成的几何体,它的俯视图为6.甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至℃时,甲的溶解度比乙的溶解度大 C .当温度为0℃时,甲、乙的溶解度都小于20g D .当温度为30℃时,甲、乙的溶解度相等二、填空题(本大题共6小题,每小题3分,共18分)7.因式分解:a 2-3a =8.正五边形的外角和为度.9.关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值为 .10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为。

11.沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为12.已知点A 在反比例函数12xy =(x >0)的图象上,点B 在x 轴正半轴上,若ΔOAB 为等腰三角形,且腰长为5,则AB 的长为三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:0|2|42-+-(2)解不等式组:>2 <6352x x x ⎧⎨⎩-+14.以下是某同学化简分式2113()422x x x x +-÷-+-的部分运算过程:(1)上面的运算过程中第步出现了错误; (2)请你写出完整的解答过程.15.某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是事件: A.不可能 B.必然 C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16.如图是4×4的正方形网格,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线1,使点A,B到直线l的距离相等.17.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:ΔABC∽ΔAEB;(2)当AB=6,AC=4时,求AE的长.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,点A(m,4)在反比例函数的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.19.课本再现(1)在OO中,∠AOB是AB所对的圆心角,∠C是AB所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明12C AOB∠∠=;(2)如图4,若ΘO的半径为2,PA,PB分别与ΘO相切于点A,B,∠C=60°,求PA的长.20.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知A B / / C D / / F G。

江西省新余市2020版中考数学试卷D卷

江西省新余市2020版中考数学试卷D卷

江西省新余市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A . a<-a<<a2B . -a<<a<a2C . <a<a2<-aD . <a2<a<-a2. (2分)(2017·陵城模拟) 如果不等式的解集是x<2,那么m的取值范围是()A . m=2B . m>2C . m<2D . m≥23. (2分) (2016七上·怀柔期末) 如图所示的圆柱体从左面看是()A .B .C .D .4. (2分)(2020·梧州模拟) 某射击运动员在训练中射击了10次,成绩如图,下列结论正确的是()A . 平均数是8B . 众数是8C . 中位数是9D . 方差是15. (2分)利用加减消元法解方程组,下列做法正确的是()A . 要消去y,可以将B . 要消去x,可以将C . 要消去y,可以将D . 要消去x,可以将6. (2分)(2020·北碚模拟) 已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4 ,则△ABC是()A . 直角三角形B . 等腰三角形C . 等腰三角形或直角三角形D . 等腰直角三角形7. (2分)函数y=kx+b(k≠0)中,当x的值增加2时,y的值减小3,则k的值为()A . -B . -C . -2D . -38. (2分)(2019·岳麓模拟) 若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A . 12B . 10C . 8或10D . 69. (2分)(2013·扬州) 如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A . 50°B . 60°C . 70°D . 80°10. (2分)如图,在中,AB=AC=8,∠A=36°,BD平分交AC于点D,则AD=()A . 4B . 4 -4C . -4 +4D . 4 -4或-4 +4二、填空题 (共8题;共8分)11. (1分)(2020·铜仁模拟) 世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为________m.12. (1分) (2016九上·苍南期末) 如图,过正五边形ABCDE的顶点D作直线l∥AB,则∠1的度数是________.13. (1分) (2016九上·南昌期中) 在半径为的圆中,60°的圆心角所对的弧长等于________14. (1分)(2018·安阳模拟) 如图,反比例函数y= 的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k=________15. (1分) (2019九上·巴南期末) 在数-1,0,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数图像上的概率是________.16. (1分) (2017七下·射阳期末) 一个多边形的每个外角都是60°,则这个多边形的边数为________17. (1分) (2020八下·新昌期末) 对于任意不相等的两个实数a,b,定义运算:,如,那么的运算结果为________.18. (1分) (2019八上·重庆月考) A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距________千米.三、解答题 (共8题;共75分)19. (5分)(2020·洞头模拟)(1)计算:(﹣2)2+| ﹣1|﹣.(2)化简:﹣20. (5分)(2018·淅川模拟) 先化简,再求值:,其中.21. (5分) (2019八上·尚志期中) 如图:点、、、在一条直线上,、,,求证:.22. (15分)(2017·邹平模拟) 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)根据以上信息,解答下列问题(1)该班共有多少名学生,其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应的扇形圆心角的大小.23. (10分) (2019九下·萧山开学考) Jack同学从点A出发,沿着坡角为α的斜坡向上走了650米到达点B,且sinα=,然后又沿着坡比i=1:3的斜坡向上走了500米到达点C。

江西省新余市2020年(春秋版)中考数学试卷(II)卷

江西省新余市2020年(春秋版)中考数学试卷(II)卷

江西省新余市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数比-3小的数是()A . 0B . 1C . ﹣4D . ﹣12. (2分)(2017·香坊模拟) 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B .C .D .3. (2分)据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()A . 2.02×102B . 202×108C . 2.02×109D . 2.02×10104. (2分) (2019七下·西安期中) 下列运算正确的是()A .B .C .D .5. (2分) (2019九上·简阳期末) 在一个布袋里装着只有颜色不同,其他都相同的红、黄、黑三种小球各一个,从中任意摸出一个球;记下颜色后放回并搅匀,再摸出一个球,两次摸球所有可能的结果如图,则摸出的两个球中,一个是红球,一个是黑球的概率是()A .B .C .D .6. (2分)下列约分正确的是()A . =-1B . =0C .D . =37. (2分) (2015八下·嵊州期中) 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A . 2B . 4C . 4D . 88. (2分)(2019·赤峰模拟) 某地区2010年投入教育经费2500万元,预计到2012年共投入8000万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确是()A . 2500+2500(1+x)+2500(1+x)2=8000B . 2500x2=8000C . 2500(1+x)2=8000D . 2500(1+x)+2500(1+x)2=80009. (2分)(2018·灌云模拟) 如图,长方形纸片的宽为1,沿直线BC折叠,得到重合部分,,则的面积为A . 1B . 2C .D .10. (2分) (2019九下·常熟月考) 如图,已知BA是⊙O的切线,切点为A,连接OB交⊙O于点C,若∠B =45°,AB长为2,则BC的长度为()A . 2 -1B .C . 2 -2D . 2-二、填空题 (共6题;共6分)11. (1分)(2019·衡水模拟) 若m2-n2=6,且m-n=3,则m+n=________ .12. (1分) (2019七上·松江期末) 如图,在长方形ABCD中,AB=7cm , BC=10cm ,现将长方形ABCD向右平移3m ,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E , A'D'交DC于点F ,那么长方形A'ECF的周长为________cm .13. (1分)(2017·虎丘模拟) 如图,△ABC是⊙O的内接三角形,若⊙O的半径为2,∠BOC与∠A互补,则BC的长为________.14. (1分)小明有三件上衣,五条长裤,则他有________种不同的穿法.15. (1分)(2019·河北模拟) 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC= ,AC=6,则BD的长是________.16. (1分)校运动会小明参加铅球比赛,若某次投掷,铅球飞行的高度y(米)与水平距离x(米)之间的函数关系式为,那么小明这次投掷的成绩是________米.三、解答题 (共8题;共86分)17. (5分) (2019七上·浦东月考) 计算:- x4+(2008-x)2+(-3)-2+()-2-(-23)18. (10分) (2019八下·重庆期中)(1)解方程: .(2)化简:19. (15分) (2017八下·重庆期中) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)20. (5分)(2020·上饶模拟) 一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?21. (11分)(2018·乌鲁木齐) 小明根据学习函数的经验,对y=x+ 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=x+ 的自变量x的取值范围是________.(2)下表列出y与x的几组对应值,请写出m,n的值:m=________,n=________;x…﹣3﹣2﹣1﹣﹣1234…y…﹣﹣﹣2﹣﹣m2n…(3)如图.在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象.请完成:①当y=﹣时,x=________.②写出该函数的一条性质________.③若方程x+ =t有两个不相等的实数根,则t的取值范围是________.22. (20分)(2017·柘城模拟) 在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m,n的值;(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册?23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上求作一点P,使P到C的距离与P到AB的距离相等(不写作法,保留作图痕迹);(2)连结AP,求AP的长.24. (10分) (2017八上·郑州期中) 在平面直角坐标系中,点P(m,n)在第一象限,且在直线y=-x+6上,点A的坐标为(5,0),O是坐标原点,△PAO的面积是S.(1)求S与m的函数关系式,并画出函数S的图象;(2)小杰认为△PAO的面积可以为15,你认为呢?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共86分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、21-4、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、。

江西省新余市中考数学试卷

江西省新余市中考数学试卷

江西省新余市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2019·扬州模拟) 下列计算错误的是()A . 4x3•2x2=8x5B . a4﹣a3=aC . (﹣x2)5=﹣x10D . (a﹣b)2=a2﹣2ab+b22. (2分) (2019九上·郑州期中) 下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A . 1个B . 2个C . 3个D . 4个3. (2分) (2019八上·昆山期末) 若式子有意义,则一次函数y=(2﹣k)x+k﹣2的图象可能是()A .B .C .D .4. (2分) (2019九上·丹江口期中) 如图,四边形内接于,是上一点,且,连接并延长交的延长线于点,连接,若,,则的度数为()A .B .C .D .5. (2分) (2017九上·哈尔滨期中) 抛物线y=3(x-1)2+2的顶点坐标是()A . (1,-2)B . (-1,2)C . (1,2)D . (-1,-2)6. (2分)如图,小正方形的边长均为1,有格点△ABC,则sinC=()A .B .C .D .二、填空题 (共12题;共12分)7. (1分)(2019·天台模拟) -2的倒数等于________.8. (1分) (2019八下·宜兴期中) 当 ________时,代数式有意义.9. (1分) (2018八上·兰考期中) 计算:(3a﹣b)(﹣3a﹣b)=________.10. (1分) (2015九下·武平期中) 上海世博会的主题馆与中国馆利用太阳能发电,年发电量可达2 840 000度.2 840 000用科学记数法可表示为________.(保留两个有效数字)11. (1分) (2019八上·松江期中) 方程:的根是________.12. (1分)(2020·舟山模拟) 如图,随机闭合开关中的两个,能让灯泡发光的概率是________.13. (1分)(2020·呼伦贝尔模拟) 如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作一个圆锥的侧面和底面,则扇形的面积为________.14. (1分) (2019八下·太原期中) 如图所示的美丽图案,绕着它的旋转中心至少旋转________度,能够与原来的图象重合.15. (1分) (2017七上·拱墅期中) 若关于的多项式与的和是一个单项式,且,则的值为________.16. (1分)(2017·漳州模拟) 如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E处.若∠B=25°,则∠BDE=________度.17. (1分)(2019·张家界) 为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本)345710人数5710117该班学生平均每人捐书________本.18. (1分)已知三角形的两边长为5和2,若该三角形的周长为奇数,则第三条边长为________.三、解答题 (共10题;共99分)19. (10分) (2017七下·河东期中) 计算:(1) + ﹣(2)解方程(3)解方程.20. (10分) (2020八下·锡山期中) 解下列分式方程:(1)(2)21. (10分) (2020八上·潜山期末) 如图,,、相交于点,交于点 .(1)求证:;(2)求证:⊥ , .22. (10分)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.其中A地20张,B地40张,C地30张,D地10张.(1)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(2)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?23. (6分)(2020·鞍山) 甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是________;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.24. (5分)(2016·新化模拟) 数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα= ,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.25. (11分) (2019九上·叙州期中) 如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90º,E为AB的中点,求证:(1)AC2=AB·AD;(2)CE∥AD.26. (10分) (2019九上·台江期中) 已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ 上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,BP=2 时,求⊙O的半径。

江西省新余市2020年(春秋版)中考数学试卷(II)卷

江西省新余市2020年(春秋版)中考数学试卷(II)卷

江西省新余市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·沛县期末) 实数,在数轴上的位置如图所示,下列各式中不成立的是()A .B .C .D .2. (2分)(2017·台州) 下列计算正确的是()A .B .C .D .3. (2分)如图所示几何体的俯视图是()A .B .C .D .4. (2分)(2020·如皋模拟) 某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A . 中位数是4,众数是4B . 中位数是3.5,众数是4C . 平均数是3.5,众数是4D . 平均数是4,众数是3.55. (2分)(2011·嘉兴) 两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()A . 两个外离的圆B . 两个外切的圆C . 两个相交的圆D . 两个内切的圆6. (2分) (2017七下·南平期末) 如图,已知,点P在边OA上,OP=10,点M、N在边OB上,PM=PN,若MN=2,则OM=()A . 3B . 4C . 5D . 67. (2分)如图示是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象经过A(3,0) ,二次函数图象对称轴为x=l,给出四个结论:①b2>4ac ②bc<0 ③2a+b=0 ④a+b+c=0.其中正确的是()A . ②④B . ①③C . ②③D . ①④8. (2分)若a>b,则下列不等式一定成立的是()A . a﹣b<0B .C . ﹣a>﹣bD . ﹣a+1<﹣b+1二、填空题 (共9题;共11分)9. (1分) (2017九下·丹阳期中) ﹣6的绝对值是________。

江西省新余市2020年中考数学试卷D卷

江西省新余市2020年中考数学试卷D卷

江西省新余市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2011·湖州) ﹣5的相反数是()A . 5B .C . ﹣5D . -2. (2分)当a = -2时,a2-2a+1的值为()A . 1B . 9C . -9D . -73. (2分) (2017七·南通期末) 下列计算正确的是()A .B . 3aC . 2aD .4. (2分)(2018·淮南模拟) 右面的三视图对应的物体是()A .B .C .D .5. (2分) (2015八上·龙华期末) 如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A . 20°B . 40°C . 50°D . 70°6. (2分)如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A . 1号袋B . 2 号袋C . 3 号袋D . 4 号袋7. (2分)(2012·鞍山) 据分析,到2015年左右,我国纯电驱动的新能源汽车销量预计达到250000辆,250000用科学记数法表示为()A . 2.5×106B . 2.5×104C . 2.5×10﹣4D . 2.5×1058. (2分) (2017八上·扶沟期末) 已知分式的值为0,那么x的值是()A . ﹣1B . ﹣2C . 1D . 1或﹣29. (2分) (2018八上·青山期末) 一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A . 5,5,6B . 9,5,5C . 5,5,5D . 2,6,510. (2分)(2018·山西) 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A .B .C .D .11. (2分)如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A . 四边形ACEF是平行四边形,它的周长是4B . 四边形ACEF是矩形,它的周长是2+2C . 四边形ACEF是平行四边形,它的周长是4D . 四边形ACEF是矩形,它的周长是4+412. (2分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A . 95°B . 90°C . 85°D . 75°13. (2分) The coordinates of the three points A.B.C on the plane are (﹣5,﹣5),(﹣2,﹣1)and(﹣1,﹣2)respectively,the triangle ABC is()(英汉小词典:right直角的;isosceles等腰的;equilateral等边的;obtuse钝角的)A . a right trisngleB . an isosceles triangleC . an equilateral triangleD . an obtuse triangle14. (2分)(2017·满洲里模拟) 已知反比例函数y= ,下列结论中不正确的是()A . 图象经过点(﹣1,﹣1)B . 图象在第一、三象限C . 两个分支关于原点成中心对称D . 当x<0时,y随着x的增大而增大二、填空题 (共4题;共4分)15. (1分)解不等式:x﹣1>3x﹣2,其解集为________16. (1分)写出一个一次函数,使该函数的图象不经过第三象限:________.17. (1分)在Rt△ABC中,∠A=90°,AB=2,若sinC=,则BC的长度为________18. (1分) (2017九下·盐城期中) 如图,直线与半径为2的⊙O相切于点是⊙O上点,且,弦,则的长度为________三、解答题 (共6题;共49分)19. (5分)(2017·平川模拟) 计算:2﹣2﹣(π﹣)0+|﹣3|﹣cos60°.20. (5分) (2017九下·莒县开学考) 一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:第一次第二次甲种货车辆数(辆)25乙种货车辆数(辆)36累计运货吨数(吨)15.535现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?21. (9分) (2015九上·重庆期末) 本期开学以来,初2015级开展了轰轰烈烈的体育锻炼,为了解考体育科目训练的效果,九年级学生中随机抽取了部分学生进行了以此中考体育科目测试(把测试结果分为四个等级,A 等:优秀;B等:良好;C等:及格;D等:不及格),并将结果汇成了如图1、2所示两幅不同统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________;(2)图1扇形图中D等所在的扇形的圆心角的度数是________,并把图2条形统计图补充完整________;(3)我校九年级有1800名学生,如果全部参加这次中考体育科目测试,请估计不及格的人数为________;(4)已知得A等的同学有一位男生,体育老师想从4为同学中随机选择两位同学向其他同学介绍经验,请用列表法或画树形图的方法求出选中的两人刚好是一男一女的概率.22. (5分)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高23. (10分)(2014·防城港) 如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M 顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.24. (15分)(2017·十堰模拟) 已知抛物线经过点A(﹣1,0),B(3,0),C(1,4),与y轴交于点E.(1)求抛物线的解析式(2)点F在第三象限的抛物线上,且S△BEF=15,求点F的坐标(3)点P是x轴上一个动点,过P作直线l∥AE交抛物线于点Q,若以A,P,Q,E为顶点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;如果没有,请通过计算说明理由.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共49分)19-1、20-1、21-1、21-2、21-3、21-4、22-1、23-1、23-2、24-1、24-2、24-3、。

江西省新余市2020年中考数学试卷(I)卷

江西省新余市2020年中考数学试卷(I)卷

江西省新余市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共15个小题,共45分) (共15题;共45分)1. (3分) (2019六下·黑龙江月考) 3的相反数是()A . -3B . -C . 3D .2. (3分) (2018八下·灵石期中) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3. (3分) (2020八上·奉化期末) 实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A .B .C .D .4. (3分)(2019·河南模拟) 如图所示的几何体的左视图是()A .B .C .D .5. (3分)(2019·蒙自模拟) 党的十八大以来,我国精准扶贫已经实施了六年,脱贫攻坚战已经打了三年,情况到底怎么样?从今年“两会”新闻中心获知,脱贫攻坚取得了显著成就,我国贫困人口从2012年的9899万人减少到2018年的1660万人,6年时间减少了8000多万人,连续6年平均每年减贫1300多万人.数字1660万用科学记数法表示为()A . 1.66×107B . 1.66×103C . 166×105D . 1.3×1076. (3分)(2018·玄武模拟) 如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB于点G,若∠1=72°,则∠2的度数为()A . 36°B . 30°C . 34°D . 33°7. (3分)(2017·南岸模拟) 下列计算正确的是()A . 2m+3m=5m2B . 2m•3m2=6m2C . (m3)2=m6D . m6÷m2=m38. (3分)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A . 25,23B . 23,23C . 23,25D . 25,259. (3分)(2019·南充) 下列各式计算正确的是()A . x+x2=x3B .C .D .10. (3分) (2016七下·宝丰期中) 尺规作图是指()A . 用直尺规范作图B . 用刻度尺和圆规作图C . 用没有刻度的直尺和圆规作图D . 直尺和圆规是作图工具11. (3分)(2017·丰润模拟) 如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6 .其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A . 86B . 64C . 54D . 4812. (3分) (2018九上·宝应月考) 下列问题中,错误的个数是()( 1 )三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A . 1个B . 2个C . 3个D . 4个13. (3分)(2019·金华) 一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A .B .C .D .14. (3分)在直角三角形ABC中,CD是斜边上的高线,则下列各式能成立的是()A .B .C .D .15. (3分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,设点A的坐标为(﹣3,﹣4)则点A′的坐标为()A . (3,2)B . (3,3)C . (3,4)D . (3,1)二、解答题(本大题共有9个小题,共75分) (共9题;共75分)16. (6分)(2017·平房模拟) 先化简,再求值:,其中x=2sin45°+1.17. (6分) (2019七下·海拉尔期末) 解不等式组,并求出它的整数解18. (7.0分)(2017·黑龙江模拟) 如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,连接AF,BF,DE,CE,分别交于H,G.求证:(1) EF与GH互相平分;(2)在不添加任何辅助线和字母的条件下,请直接写出图中所有的全等的三角形.19. (7.0分)(2018·内江) 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元.(1)若商场用50000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?20. (8分) (2016九上·姜堰期末) 雾霾天气严重影响市民的生活质量.在去年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n(1)本次被调查的市民共有多少人?(2)求m、n的值,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?21. (8.0分)(2017·岳池模拟) 如图,AB是⊙O的直径,C是⊙O上一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且AC平分∠BAD.(1)求证:直线MN是⊙O的切线;(2)若CD=4,AC=5,求⊙O的直径.22. (10分)(2019·莲湖模拟) 随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)23. (11.0分)(2017·新吴模拟) 如图,一次函数y= x+m与坐标轴交于A,B两点,点C在直线AB上,且AC=2AB,以A为旋转中心,逆时针旋转线段AC,使得点C恰好落在Y轴正半轴上点C′处.(1)求∠CAC′的正切值;(2)点E是直线AC′上一点,连接CE,BE,若△ACE与△BCE相似,且m=1,求此时点E的坐标;(3)在(2)的条件下,作CD垂直于X轴,将△AOC′沿Y轴向下以每秒2个单位长度的速度向下运动,将△ACD沿着CA方向在直线AC上衣每秒单位长度的速度运动,求出在此运动过程中两三角形重叠部分面积的最大值以及当时的t值.24. (12分)(2017·莲池模拟) 已知抛物线l:y=(x﹣h)2﹣4(h为常数)(1)如图1,当抛物线l恰好经过点P(1,﹣4)时,l与x轴从左到右的交点为A、B,与y轴交于点C.①求l的解析式,并写出l的对称轴及顶点坐标.②在l上是否存在点D,使S△ABD=S△ABC,若存在,请求出D点坐标,若不存在,请说明理由.③点M是l上任意一点,过点M做ME垂直y轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点M的坐标.(2)设l与双曲线y= 有个交点横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.参考答案一、选择题(每题3分,共15个小题,共45分) (共15题;共45分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、解答题(本大题共有9个小题,共75分) (共9题;共75分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-2、。

江西省新余市2021年中考数学试卷(II)卷

江西省新余市2021年中考数学试卷(II)卷

江西省新余市2021年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四个等式:①=4;②(﹣)2=16;③()2=4;④=4.正确的是()A . ①②B . ③④C . ②④D . ①③2. (2分)函数中,自变量的取值范围是()A .B .C .D .3. (2分)(2018·滨州模拟) 下列计算正确的是()A . a+a2=a3B . (a3)2=a5C . a•a2=a3D . a6÷a2=a34. (2分)图中不是正方体的展开图的是()A .B .C .D .5. (2分) (2015八上·番禺期末) 下列几何图形中,一定是轴对称图形的有()A . 5个B . 4个C . 3个D . 2个6. (2分)(2019·和平模拟) 已知三点,,都在反比例函数的图象上,若,,则下列式子正确的是()A .B .C .D .7. (2分)某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是()A .B .C .D .8. (2分) (2015九上·丛台期末) 如图,在四边形ABCD中,∠BAD=25°,∠ADC=115°,O为AB的中点,以点O为圆心、AO长为半径作圆,恰好点D在⊙O上,连接OD,若∠EAD=25°,下列说法中不正确的是()A . D是劣弧的中点B . CD是⊙O的切线C . AE∥ODD . ∠DOB=∠EAD9. (2分)如图,在4×4的正方形网格中,cosα=()A .B . 2C .D .10. (2分)如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A . 28个B . 56个C . 60个D . 124个二、填空题 (共7题;共9分)11. (2分) (2016七上·射洪期中) 5的相反数的平方是________,﹣1的倒数是________.12. (1分)(2017·广州模拟) 3 120 000用科学记数法表示为________.13. (1分)方程﹣=0的解是________ .14. (1分)如果|x﹣y+2|+(x+y﹣6)2=0,那么x+y=________ .15. (2分) (2016八上·六盘水期末) 命题“同位角相等,两直线平行”的条件是________,结论是________.16. (1分) (2017九下·萧山开学考) 如图,是半圆的直径,,则的大小是________度17. (1分) (2018八上·四平期末) 如图,在中,为斜边AB的中点, AC=6 cm, BC=8 cm,则 CD的长为________cm.三、解答题 (共11题;共75分)18. (1分)三角形三个内角度数之比是1:2:3,最大边长是12,则它的最小边的长是________.19. (5分)对于任何实数,我们规定符号的意义是:=ad﹣bc.(1)按照这个规定请你计算:的值.(2)按照这个规定请你计算:当x2﹣3x+1=0时,的值.20. (5分) (2015八下·深圳期中) 解不等式组:,并写出其整数解.21. (5分)(2016·泸州) 如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.22. (15分)(2018·平房模拟) 随着2018年两会的隆重召开,中学校园掀起了关注时事政治的热潮我区及时开展“做一个关心国家大事的中学生”主题活动。

2024年江西新余中考数学试题及答案

2024年江西新余中考数学试题及答案

2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本. (2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ; (2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.。

新余市2020版中考数学试卷(II)卷

新余市2020版中考数学试卷(II)卷

新余市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)当1<a<2时,代数式的值是()A . -1B . 1C . 2a-3D . 3-2a2. (2分)如果的倒数是3,那么x的值是()A . ﹣3B . ﹣1C . 1D . 33. (2分) (2020八上·丹江口期末) 下列运算正确的是:()A .B .C .D .4. (2分)在2014年“汕头市初中毕业升学体育考试”测试中,参加男子掷实心球的10名考生的成绩记录如下(单位:米):7.5、6.5、8.2、7.8、8.8、8.2、8.6、8.2、8.5、9.5,则该组数据的众数、中位数、平均数依次分别是()A . 8.2、8.0、7.5B . 8.2、8.5、8.1C . 8.2、8.2、8.15D . 8.2、8.2、8.185. (2分)下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是()A .B .C .D .6. (2分)运用湘教版初中数学教材上使用的某种电子计算器求+的近似值,其按键顺序正确的是()A .B .C .D .7. (2分) (2017七上·庄浪期中) 将150000000千米用科学记数法表示为()A . 0.15×109千米B . 1.5×108千米C . 15×107千米D . 1.5×107千米8. (2分) (2017·河南) 如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A . AC⊥BDB . AB=BCC . AC=BDD . ∠1=∠29. (2分)(2014·绵阳) 在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A .B .C .D .10. (2分)(2017·邢台模拟) 春节期间嘉嘉去距家10千米的电影院看电影,计划骑自行车和坐公交车两种方式,已知汽车的速度是骑车速度的2倍,若坐公交车可以从家晚15分钟出发恰好赶上公交车,结果与骑自行车同时到达,设骑车学生的速度为x千米/小时,则所列方程正确的是()A . ﹣ =15B . ﹣ =15C . ﹣ =D . ﹣ =11. (2分)在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有这些图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案是轴对称图形的是()A .B .C .D .12. (2分)图中∠BOD的度数是()A . 55°B . 110°C . 125°D . 150°13. (2分) (2018八下·广东期中) 如图,下列四组条件中,能判定□ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A . 1个B . 2个C . 3个D . 4个14. (2分)如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于().A .B .C .D .二、填空题 (共4题;共4分)15. (1分)(2014·温州) 因式分解:a2+3a=________.16. (1分)(2014·南京) 已知反比例函数y= 的图象经过点A(﹣2,3),则当x=﹣3时,y=________.17. (1分)如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B=________.18. (1分) (2016九上·浦东期中) 如图,梯形ABCD中,AD∥BC,对角线AC,DB交于点O,如果S△AOD=1,S△BOC=3,那么S△AOB=________.三、解答题 (共6题;共72分)19. (20分) (2020七下·无锡期中) 计算或化简:(1) (-1)2021-2-1+(π-3.14)0 ;(2) (x+2)2-x(x-3) ;(3)a8÷a2-(-3a2)3(4) (a-b) (a+b)-(a-2b) 2.20. (12分)(2020·盐城) 在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如下统计图:图为A地区累计确诊人数的条形统计图,图为B地区新增确诊人数的折线统计图.(1)根据图中的数据,A地区星期三累计确诊人数为________,新增确诊人数为________;(2)已知A地区星期一新增确诊人数为14人,在图中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析,推断?21. (10分) (2018九上·朝阳期中) 如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1 .(2)求点B旋转到点B1所经过的路线长(结果保留π)22. (5分)人民公园售出两种门票,成人票每张8元,儿童票每张5元,现在共售出3500张,总金额为23500元,这两种门票各售出多少张?23. (10分)(2017·广水模拟) 如图,▱ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE.(1)求证:△AED≌△DCA;(2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.24. (15分) (2019九上·普陀期末) 如图,点O在线段AB上,AO=2OB=2 ,,点C是射线OP上的一个动点.(1)如图①,当,OC=2,求的值;(2)如果②,当AC=AB时,求OC的长(用含的代数式表示);(3)在第(2)题的条件下,过点A作AQ//BC,并使,求的值.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共72分)19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、。

2024年江西省新余市中考模拟数学试题

2024年江西省新余市中考模拟数学试题

2024年江西省新余市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中,绝对值最大的是( ) A .3−B .0C .πD2.如图,将一个圆柱体垂直切去右边一部分,左边部分的左视图是( )A .B .C .D .3.下列运算中,正确的是( ) A .246+=a a aB .()323628ab a b −=− C .222()a b a b +=+ D .326a a a ⋅=4.一把直尺和一个含45︒角的直角三角板按如图方式叠合在一起(三角板的直角顶点在直尺的边上),若128∠=︒,则2∠的度数是( )A .62︒B .56︒C .45︒D .28︒5.《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有一个“酒分醇醨”问题:务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗七,一十九客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,试问好酒、薄酒各有多少升?若设好酒有x 升,薄酒有y 升,根据题意列方程组为( )A .1713193x y x y +=⎧⎪⎨+=⎪⎩B .1913173x y x y +=⎧⎪⎨+=⎪⎩C .1913173x y x y +=⎧⎪⎨+=⎪⎩D .1713193x y x y +=⎧⎪⎨+=⎪⎩6.如图,半径为5的扇形AOB 中,90AOB ∠=︒,C 是AB 上一点,,CD OA CE OB ⊥⊥,垂足分别为D ,E ,若2AC BC =,则图中阴影部分面积为( )A .56πB .512π C .256πD .2512π二、填空题7.分解因式:224x y −= .8.如果一个正多边形的一个外角是30︒,那么这个正多边形的边数为 . 9.点(),1A x y +与点()2,B y −关于原点对称,则点A 的坐标为10.已知关于x 的一元二次方程22200x mx +−=的一个根是5−,则它的另一个根是 . 11.七巧板是一种拼图玩具,体现了我国古代劳动人民的智慧.如图,若七巧板中标有3的平行四边形的面积32S =,则图中标有5的正方形的面积5S 的值为 .12.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,4BC =,D 为AB 的中点,F 为AC 上的动点,将ADF △沿直线DF 折叠得到EDF ,若DE 与ABC 的边垂直,则AF 的长是 .三、解答题13.(1()04sin 452π︒+−;(2)如图,在ABC 中,点D ,E 分别在,AB AC 上,DE BC ∥,若2,6,5AE AC BC ===,求DE 的长.14.以下是小新解不等式组32,31x x −<⎧⎪⎨−+≥⎪①②的解答过程.小新的解答过程从第__________步开始出现错误,请写出正确的解答过程.15.如图,这是55⨯的正方形网格,小正方形的顶点为格点,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作格点C ,连接AC ,使45BAC ∠=︒;(2)在图2中作四边形ABDE ,使点D 、E 在格点上,且四边形ABDE 既是中心对称图形,又是轴对称图形.16.江西省将于2024年整体实施高考综合改革.其中,考试科目将不再分文理科,改为“312++”模式:“3”为全国统一考试科目语文、数学、外语;“1”为首选科目,考生从物理、历史2门科目中自主选择1门:“2”为再选科目,考生从思想政治、地理、化学、生物4门科目中自主选择2门.(1)首选科目选择物理的概率是__________;(2)某同学在选择再选科目时,求选中化学和地理的概率.(请用画树状图或列表的方法表示) 17.如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()3,2,,6A B n −−两点.(1)求一次函数与反比例函数的解析式; (2)求AOB 的面积;18.下面是小余学习“分式方程的应用”后所作的学习笔记,请认真阅读并完成相应的任务.任务:(1)解法一所列方程中的x 表示__________,解法二所列方程中的x 表示__________; A . 甲种图书每本单价x 元 B . 乙种图书每本单价x 元 C . 甲种图书购买x 本 (2)请选择一种解法,求出甲、乙两种图书的单价.19.如图,AB 是O 的直径.四边形ABCD 内接于O AD CD =,,对角线AC 与BD 交于点E ,在BD 的延长线上取一点F ,使DF DE =,连接AF .(1)求证:AF 是O 的切线;(2)若58AD AC ==,,求O 的半径.20.安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查: 活动前骑电瓶车戴安全帽情况统计表(1)宣传活动前,在抽取的市民中__________的人数最多,占抽取人数的__________%; A .每次戴 B .经常戴 C . 偶尔戴 D .都不戴(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“经常戴”安全帽的总人数; (3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,仅比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.21.一抽纸纸筒被安装在竖直墙面上,图1是其侧面示意图,其中AB BC ⊥,AB CE DF ∥∥,AD EF BC ∥∥,纸筒盖CMP 可以绕着点C 旋转,关闭时点P 与点F 重合,CM PM ⊥,30cm AB =,6cm DF =,7cm CM EF ==.(1)若150BCM ∠=︒,求纸筒盖关闭时点P 运动的路径长;(2)如图2,当一卷底面直径为10cm 的圆柱体纸巾恰好能放入纸筒内时,求纸筒盖要打开的最小角PCF ∠的度数.(参考数据:1sin11.545︒≈,1cos78.465︒≈,7sin16.2625︒≈,7cos73.7425︒≈) 22.已知抛物线()21:430C y ax ax a =−−≠(1)当1a =时,求抛物线1C 的顶点坐标.(2)无论a 为何值,直线y m =与抛物线1C 相交所得的线段EF (点E 在点F 左侧)的长度都不变,求m 的值和EF 的长;(3)在(2)的条件下,将抛物线1C 沿直线y m =翻折,得到抛物线2C ,抛物线12,C C 的顶点分别记为P ,Q .是否存在实数a ,使得以点E ,F ,P ,Q 为顶点的四边形为正方形?若存在,请求出a 的值;若不存在,请说明理由.23.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个直角三角板按照如图1所示的方式摆放.其中90ACB DEB ∠=∠=︒,30B ∠=︒,6BE AC ==.【问题探究】小昕同学将三角板DEB 绕点B 按顺时针方向旋转.(1)如图2,当点E 落在边AB 上时,延长DE 交BC 于点F ,求BF 的长; (2)若点C 、E 、D 在同一条直线上,求点D 到直线BC 的距离;(3)如图4,连接CD ,G 为CD 的中点,则在三角板DEB 旋转过程中,点G 到直线AB 的距离的最大值是 .。

新余市2020年(春秋版)中考数学试卷(I)卷

新余市2020年(春秋版)中考数学试卷(I)卷

新余市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)-0.5的相反数是()A . 0.5B . -0.5C . 2D . -22. (2分) 2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学记数法表示,其结果()A . 3.8×104B . 38×104C . 3.8×105D . 3.8×1063. (2分)(2017·蜀山模拟) 图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A .B .C .D .4. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分)(2018·遵义模拟) 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A . 55°B . 125°C . 135°D . 140°6. (2分) (2019八上·安顺期末) 如图,能根据图形中的面积说明的乘法公式是()A .B .C .D .7. (2分)(2019·福建) 如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB 等于()A . 55°B . 70°C . 110°D . 125°8. (2分)(2020·宁波模拟) 如图,EF过□ABCD对角线的交点O交AD于点E,交BC于点F,若□ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A . 14B . 13C . 12D . 10二、填空题 (共6题;共6分)9. (1分) (2020八下·淮安期中) 计算: ________.10. (1分) (2019八下·北京期末) 若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=________.11. (1分)如图,AB∥CD,AD与BC交于点O,已知AB=4,CD=3,OD=2,那么线段OA的长为________.12. (1分)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为________ .13. (1分) (2019八上·连云港期末) 如图,,,,则加固小树的木棒DE的长是________14. (1分) (2019七下·乌兰浩特期中) 如图在平面直角坐标系上有点,点A第一次跳动至点,第四次向右跳动5个单位至点,,依此规律跳动下去,点A第200次跳动至点的坐标是________.三、解答题 (共10题;共122分)15. (20分)计算:(1)(﹣x2+3y2)2;(2)(﹣a2﹣2b)2;(3)(0.2x+0.5y)2 .(4)( a﹣ b)216. (5分)(2020·黑山模拟) 七巧板是我国流传已久的一种智力玩具.小鹏在玩七巧板时用它画成了3幅图案并将它贴在3张完全相同的不透明卡片上,如图.小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图(树形图)法,帮助小鹏求出两张卡片上的图案都是小动物的概率(卡片名称可用字母表示).17. (5分)(2020·台州模拟) 高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)18. (5分) (2017八下·德惠期末) 由于强降雨,某地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品送往该地区,已知每件甲种物品的价格必每件乙种物品的价格高10元,用350元购买甲种物品的件数与用300元购买乙种物品的件数相同,求甲、乙两种救灾物品每件的价格.19. (12分)如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是________,∠AOB1的度数是________;(3)连接AA1 ,求证:四边形OAA1B1是平行四边形.20. (15分)(2017·涿州模拟) 为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?21. (15分) (2019九上·南开月考) 小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.22. (15分)(2016·江西) 设抛物线的解析式为y=ax2 ,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点Bn(()n﹣1 , 0)(n为正整数)作x轴的垂线,交抛物线于点An ,连接AnBn+1 ,得Rt△AnBnBn+1 .(1)求a的值;(2)直接写出线段AnBn , BnBn+1的长(用含n的式子表示);(3)在系列Rt△AnBnBn+1中,探究下列问题:①当n为何值时,Rt△An BnBn+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.23. (15分)(2017·道外模拟) 如图,抛物线y= x(x﹣k)经过原点O,交x轴正半轴于A,过A的直线交抛物线于另一点B,AB交y轴正半轴于C,且OC=OA,B点的纵坐标为9(1)求抛物线的解析式;(2)点P为第一象限的抛物线上一点,连接PB、PC,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;(3)在(2)的条件下,连接OP、AP,若∠APO=45°,求点P的坐标.24. (15分)(2018·青羊模拟) 已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求之值(用含m的代数式表示);(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ 与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共122分)15-1、15-2、15-3、15-4、16-1、17-1、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

江西省新余市2020版中考数学试卷(I)卷

江西省新余市2020版中考数学试卷(I)卷

江西省新余市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020八下·禹城期末) 的倒数是()A .B .C .D .2. (2分)(2017·合肥模拟) 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A .B .C .D .3. (2分) (2019八上·铁西期末) 下列各式中正确的是A .B .C .D .4. (2分)如图,已知AB∥CD,∠C=35°,BC平分∠ABE,则∠ABE的度数是()A . 17.5°B . 35°C . 70°D . 105°5. (2分) (2017九下·泉港期中) 某工厂现在平均每天比原计算多生产30台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A . =B . =C . =D . =6. (2分)有下列4个命题:①方程x2﹣(+)x+=0的两个根是与;②点P(x,y)坐标x,y 满足x2+y2+4x﹣2y+5=0,若P点在y=上,则k=﹣2;③在△ABC中,∠ACB=90°,CD⊥AB于D,若AD=4,BD=,则CD=3;④若实数b,c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大根x0满足﹣1<x0<0.其中真命题的个数为()A . 4B . 3C . 2D . 17. (2分)(2020·南充模拟) 如图A,B,C是上顺次3点,若,,分别是内接正三角形、正方形、正n边形的一边,则()A . 9B . 10C . 12D . 158. (2分) (2017九上·萝北期中) 如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q 两点,则函数y=ax2+(b-1)x+c的图象可能是()A .B .C .D .9. (2分) (2017七上·黔东南期末) 如图,2条直线相交有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点…按这样的规律若n条直线相交交点最多有28个,则此时n的值为()A . 18B . 10C . 8D . 710. (2分) (2018九上·渠县期中) 如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE= AC,连接CE、OE,连接AE交OD于点F,若AB=2,∠ABC=60° ,则AE的长为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)地球上七大洲的总面积约为149480000km2 ,用科学记数法表示为________ km2 .(精确到10000000)12. (1分)(2019·临泽模拟) 分解因式:﹣3x2+6x﹣3=________.13. (1分) (2020九上·德城期末) 小明有两双不同的运动鞋,上学时,小明从中任意拿出两只,恰好能配成一双的概率是________.14. (1分) (2019九下·盐都月考) 已知:如图,∠MON=90°,四边形ABCD为矩形,A、B两点分别在射线ON、OM上,AD=2,AB=4,A、B两点在ON、OM上滑动时,C、D点随之运动,则线段OD的最大值为________.15. (1分)(2018·广水模拟) 在一条笔直的高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的横坐标表示两车第二次相遇的时间;⑤点E的坐标为(7,180)其中正确的有________(把所有正确结论的序号都填在横线上).16. (1分)(2017·昆山模拟) 在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为________(用含a的式子表示).三、解答题 (共9题;共100分)17. (20分) (2017七上·山西月考) 计算(1) (-3.6)+(+2.5)(2);(3)(4) .18. (12分) (2019七下·越城期末) 中华文明,源远流长:中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题(1)图1条形统计图中D组人数有多少?(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为________,表示C组扇形的圆心角的度数为________度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?19. (10分)解下列不等式或不等式组(1) 3x﹣2>5x+4(并把解集在数轴上表示出来)(2).20. (10分) (2020八下·中山期末) 如图,□ABCD的对角线AC、BD相交于点O , AC平分∠BAD , DP//AC ,CP//BD .(1)求证:四边形ABCD是菱形;(2)若AC=4,BD=6,求OP的长.21. (5分) (2020八下·海原月考) 如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求这块草坪的面积.22. (15分) (2018九上·永康期末) 上海世博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施。

江西省新余市2020年中考数学试卷D卷

江西省新余市2020年中考数学试卷D卷

江西省新余市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·雁塔期中) 下列说法中,正确的是()A . 两个有理数的和一定大于每个加数B . 两数相乘,积一定大于每一个乘数C . 倒数等于本身的数有1,0,﹣1D . 0减去任何有理数,都等于此数的相反数2. (2分)在以下四个图形中,∠1和∠2是对顶角的共有()A . 0个B . 1个C . 2个D . 3个3. (2分)(2020·白云模拟) 一组数据: 3, 4, 5, 6, 6.这组数据的众数是()A . 3B . 4C . 5D . 64. (2分) (2019八下·乌兰浩特期中) 已知a<b,则化简二次根式的符合题意结果是()A .B .C .D .5. (2分)一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A .B .C .D .6. (2分)在△ABC中, ∠A的相邻外角是70°,要使△ABC为等腰三角形, 则∠B为()A . 70°B . 35°C . 110° 或35°D . 110°7. (2分)已知关于的方程有两个不等的实数根,则实数的取值范围为()A .B .C . 且不等于2D . 且不等于28. (2分)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A . (2,4)B . (-2,-4)C . (-4,2)D . (4,-2)9. (2分)(2017·南宁) 如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A . 60 n mileB . 60 n mileC . 30 n mileD . 30 n mile10. (2分)(2020·呼伦贝尔) 如图,的垂直平分线交于点D,若,则的度数是()A . 25°B . 20°C . 30°D . 15°二、填空题 (共8题;共8分)11. (1分) (2017七上·云南月考) 若x ,y互为相反数,a、b互为倒数,则代数式2x+2y- 的值为________ .12. (1分)(2017·淮安模拟) 据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数法表示电站的总装机容量,应记为________千瓦.13. (1分)如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是________ .14. (1分) (2016八上·扬州期末) 王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择统计________图.15. (1分)(2018·柳州模拟) 在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)16. (1分)根据下图给出的信息,求出买1件T恤衫和2瓶矿泉水的价格为________元.17. (1分)(2014·台州) 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为________ cm.18. (1分)(2017·邳州模拟) 如图,两个同心圆,若大圆的弦AB与小圆相切,大圆半径为10,AB=16,则小圆的半径为________.三、解答题 (共11题;共115分)19. (5分)(2017·福田模拟) 计算:|﹣9|+(﹣3)0﹣(﹣)﹣2+ sin45°.20. (5分)(2016·张家界) 求不等式组的解集,并把它们的解集在数轴上表示出来.21. (15分)(1)先化简,再求值:( + )÷ + ,其中a=2+ ;(2)化简:• ﹣,并求值,其中a与2,3构成△ABC的三边,且a为整数;(3)先化简,再求值:(﹣)÷ ,其中x满足x2﹣x﹣2=0.22. (5分)解方程(1)(2).23. (10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.(1)求证:DF=AE(2)求证:DF⊥AC24. (10分) (2020八下·大庆期中) 已知直线l经过点(-1,5),且与直线y=-x平行.(1)求直线l的函数关系式;(2)若直线l分别交x轴、y轴于A , B两点,求△AOB的面积.25. (5分)如图,有两个可以自由转动的均匀转盘A、B,转盘A被分为3等份,分别标有1、2、3三个数字;转盘B被分为4等份,分别标有3、4、5、6四个数字;有人为甲、乙两人设计了一个游戏规则:自由转动转盘A和B,转盘停止后,指针各指向一个数字(若指针恰好停在分界线上时,当作指向右边的数字),将指针所指的两个数字相加,如果和为6,那么甲获胜,否则乙获胜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省新余市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题: (共6题;共12分)
1. (2分)下列各组数中,不相等的一组是()
A . ﹣(+7),﹣|﹣7|
B . ﹣(+7),﹣|+7|
C . +(﹣7),﹣(+7)
D . +(+7),﹣|﹣7|
2. (2分)(2017·三台模拟) 如图,几何体的三视图对应的正三棱柱是()
A .
B .
C .
D .
3. (2分)(2017·台湾) 若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()
A .
B .
C .
D .
4. (2分)(2019·封开模拟) 一组数据3,4,5,6,6的众数是()
A . 3
B . 4
C . 5
D . 6
5. (2分)
已知2x3y2和-x3my2是同类项,则m的值是()
A . 1
B . 2
C . 3
D . 4
6. (2分) (2016九上·岳池期中) 二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()
A . y=(x﹣1)2+1
B . y=(x+1)2+1
C . y=(x﹣1)2﹣3
D . y=(x+1)2+3
二、填空题 (共10题;共11分)
7. (1分) (2016七上·长兴期末) 请写出一个负无理数________.
8. (1分) (2016九上·婺城期末) 因式分解:ab2﹣64a=________
9. (1分)(2018·江都模拟) 两会期间,百度APP以图文、图案、短视频、直播等多种形式展现两会内容,据统计,直播内容237场,峰值观看人数一度达3800000人,将3800000用科学记数法表示________.
10. (1分)若代数式有意义,则x的取值范围是________
11. (1分)在一个不透明的口袋中,装有5个红球4个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为________.
12. (1分)(2018·苏州) 如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为________°.
13. (2分)如果一元二次方程x2+ax+b=0的两个根是3和﹣2,则a=________,b=________.
14. (1分) (2019九上·柯桥月考) 如图,AB为的直径,CD为的弦,,∠BCD=34°,则∠ABD=________.
15. (1分)如图,△ABC中,∠C=90°,AC=BC,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则∠ABC′=________.
16. (1分)(2018·淅川模拟) 如图,A,B是反比例函数图象上的两点,过点A作轴,垂足为C,AC交OB于点若D为OB的中点,的面积为6,则k的值为________
三、解答题 (共11题;共119分)
17. (5分)(2019·通辽) 计算:
18. (5分)解不等式组:.
19. (5分)先化简,再求值:,其中a的值在0,1,﹣1,2,5中选出一个合适的值.
20. (17分) (2017·河南模拟) 某校为了解全校2000名学生每周去图书馆时间的情况,随机调查了其中的100名学生,对这100名学生每周去图书馆的时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周去图书馆的时间在6≤x<8小时的学生人数占20%.根据以上信息及统计图解答下列问题:
(1)本次调查属于________调查,样本容量是________;
(2)请补全频数分布直方图中空缺的部分;
(3)若从这100名学生中随机抽取1名学生,求抽取的这个学生每周去图书馆的时间恰好在8﹣10小时的概
率;
(4)估计全校学生每周去图书馆的时间不少于6小时的人数.
21. (8分)(2017·无锡) 某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:
时间第1天第2天第3天第4天第5天
新加入人数(人)153550653 b725
累计总人数(人)33533903a51565881
(1)表格中a=________,b=________;
(2)请把下面的条形统计图补充完整;
(3)根据以上信息,下列说法正确的是________(只要填写正确说法前的序号).
①在活动之前,该网站已有3200人加入;
②在活动期间,每天新加入人数逐天递增;
③在活动期间,该网站新加入的总人数为2528人.
22. (10分)(2017·磴口模拟) 如图,已知矩形OABC中,OA=3,AB=4,双曲线y= (k>0)与矩形两边AB,BC分别交于D,E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
23. (15分)(2016·鸡西模拟) 学校计划选购甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书单价比乙种图书贵4元,用3000元购进甲种图书的数量与用2400元购进乙种图书的数量相同.
(1)甲、乙两种图书的单价分别为多少元?
(2)学校计划购买这两种图书共100本,请求出所需经费W(单位:元)与购买甲种图书m(单位:本)之间的函数关系式;
(3)在(2)的条件下,要使投入的经费不超过1820元,且使购买的甲种图书的数量不少于乙种图书数量,则共有几种购买方案?
24. (4分) (2018·江苏模拟) 如图,,以点A为圆心,1为半径画与OA的延长线交于点C,过点A画OA的垂线,垂线与的一个交点为B,连接BC
(1)线段BC的长等于________;
(2)请在图中按下列要求逐一操作,并回答问题:
以点________为圆心,以线段________的长为半径画弧,与射线BA交于点D,使线段OD的长等于
连OD,在OD上画出点P,使OP的长等于,请写出画法,并说明理由.________
25. (20分)(2017·杭州模拟) 如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B 点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E (0,3).
(1)
求抛物线的解析式及顶点B的坐标;
(2)
求证:CB是△ABE外接圆的切线;
(3)
试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)
设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.
26. (15分) (2016八上·海门期末) 如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.
(1)求证:△ACD是等边三角形;
(2)若△OAM是等腰三角形,求点M的坐标;
(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
27. (15分)(2018·甘肃模拟) 如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
参考答案一、选择题: (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共10题;共11分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共11题;共119分)
17-1、
18-1、
19-1、20-1、
20-2、20-3、20-4、
21-1、
21-2、21-3、
22-1、
22-2、
23-1、
23-2、
23-3、
24-1、
24-2、25-1、
25-2、
25-3、
25-4、
26-1、
26-2、
26-3、
27-1、
27-2、
27-3、。

相关文档
最新文档