第七章概率论答案
概率练习册第七章答案
概率练习册第七章答案在概率论的学习过程中,练习题是帮助学生巩固理论知识和提高解题技巧的重要工具。
以下是第七章概率练习册的一些答案,供参考:问题1:假设有两个骰子,每个骰子有6个面,分别掷一次。
求掷出的两个骰子点数之和为7的概率。
答案:掷出点数之和为7的情况有(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)共6种。
每个骰子有6种可能的结果,所以总共有6*6=36种可能的组合。
因此,点数之和为7的概率是6/36 = 1/6。
问题2:一个袋子里有5个红球和3个蓝球。
随机抽取2个球,求至少有一个红球的概率。
答案:至少有一个红球的情况包括:1红1蓝和2红。
1红1蓝的概率是(5/8)*(3/7),2红的概率是(5/8)*(4/7)。
所以,至少有一个红球的概率是(5/8)*(3/7) + (5/8)*(4/7) = 15/56。
问题3:一个班级有30个学生,其中15个是男生,15个是女生。
随机选择5个学生,求至少有3个男生的概率。
答案:我们可以使用组合来解决这个问题。
至少有3个男生的情况有:3男2女,4男1女,5男0女。
计算每种情况的概率并相加即可得到最终答案。
问题4:一个工厂每天生产100个零件,其中大约有2%是次品。
求至少有3个次品的概率。
答案:这是一个二项分布问题,其中n=100,p=0.02。
至少有3个次品的概率可以通过1 - P(X=0) - P(X=1) - P(X=2)来计算,其中P(X=k)是恰好有k个次品的概率。
问题5:一个随机变量X服从正态分布,其均值为μ=50,标准差为σ=10。
求P(40 < X < 60)。
答案:首先,我们需要将区间(40, 60)标准化。
计算Z值:Z1 =(40-50)/10 = -1,Z2 = (60-50)/10 = 1。
然后,使用标准正态分布表查找Z值对应的累积概率,最后相减得到P(40 < X < 60)。
概率论与数理统计第七章习题答案
解:(1)已知ξ ~N (µ, σ 2 ),取统计量U = ξ − µ ,则有U ~ N (0,1),于给定的置信概率1−α ,
n
σ/ n
可求出uα
+ (4 − 0.8)2 ×1] = 0.831.
14.设ξ1,ξ2,……,ξn是取自总体ξ的一个样本,n ≥ 2,ξ ~ B(1, p),其中p为未知,0 < p < 1, 求证:
(1)ξ12是p的无偏估计; (2)ξ12不是p2的无偏估计;
(3) ξ1ξ2是p2的无偏估计。
证明:(1)Eξ
2 1
tα /2 (4) = 2.78, S = 11.937, n = 5代入(*),求得µ的置信区间为(1244.185,1273.815).
20.假定到某地旅游的一个游客的消费额ξ~N (µ,σ 2 ),且σ = 500元,今要对 该地每一个游客的平均消费额µ进行估计,为了能以不小于95%的置信概率 确信这估计的绝对误差小于50元,问至少需要随机调查多少个游客?
乐山师范学院化学学院
1.设总体ξ 有分布律
第七章 参数估计部分习题答案
ξ
−1
0
2
p
2θ
θ
1-3θ
其中 0 < θ < 1 为待估参数,求θ 的矩估计。 3
解:总体一阶矩为Eξ = (−1) × 2θ + 0×θ + 2× (1− 3θ ) = −8θ + 2.
用样本一阶矩代替总体一阶矩得ξ = -8θˆ + 2,则θˆ = 1 (2 − ξ ). 8
概率论第七章 习题解答
第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。
概率论与数理统计课后习题答案 第七章
习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
大学概率论第七章答案
0 1
∫
1
∫
2
3 2
− θ , 所以 θ 矩 =
3 2
−X .
(2) 见本章第三节三(9). 2. 设总体 X 的概率密度为
⎧1 ⎪ 2θ , ⎪ ⎪ 1 , f ( x, θ ) = ⎨ ⎪ 2(1 − θ ) ⎪0, ⎪ ⎩
− X )2 .
∑(X
i =1
n
i
解 选(D). (2) 设 X U [0, θ ] , 其中 θ>0 为未知参数, 又 X 1 , X 2 ,L , X n 为来自总体 X 的样本, 则 θ 的矩估计量是( (A) X . (B) 2 X . 解 选(B). 2. 设总体 X 的分布律为 X P -2 1 5 ). (C) max{ X i } .
E( X ) = ∫
+∞
−∞
xf ( x )dx = ∫ (θ + 1) xθ +1dx =
0
1
θ +1 . θ +2
令 E( X ) = X , 即
2X −1 θ +1 ˆ . = X , 得参数θ的矩估计量为 θ = 1− X θ +2 设x1, x2,…, x n是相应于样本X1, X 2,… , X n的一组观测值, 则似然函数为
∑X n −1
i =1
1
n
i
和
∑(X n −1
i =1
1
i
− μ ) 2 . (D)
1
∑X n
i =1
1 n
i
∑(X
i =1
n
概率论与数理统计教程第七章答案
.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
概率论与数理统计课后习题答案第7章习题详解
习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
概率论与数理方法第七章习题答案
1 X (1) X ( n) 2
时;而欲L( X ;1 , 2 )最大,只有使 2 1最小,即使 2尽 可能小,1尽可能大,但在上式的约束下,只能取 1 X (1), 2 X ( n ) .
x x e 2 , x 0 4 设连续型总体 X 的概率密度为 p x, 0 , X1 , X 2 ,L , X n 来自总 0, x0
2
ˆ ,并讨论 ˆ 的无偏性。 体 X 的一个样本,求未知参数 的极大似然估计量
答:
似然函数为
答:首先求数学期望
从而解方程
得 的矩法估计为 似然函数为
。
令
解得
的极大似然估计为
。
3 求均匀分布 U [ 1 , 2 ] 中参数 1 , 2 的极大似然估计.
解 先写出似然函数
1 ]n , 1 X (1) X ( n ) 2 [ L(1 , 2 ) 2 1 0, 其他
概率论与数理方法第七章习题答案
1 随机地取 8 只活塞环,测得它们的直径为(以 mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002
求总体均值μ 及方差σ 2 的矩估计,并求样本方差 S2。
解:μ ,σ 2 的矩估计是
ˆ X 74.002 , ˆ2
其中
因此 的极大似然估计量 是 的无偏估计量。
1 n ( X i x ) 2 6 10 6 n i 1
S 2 6.86 106 。
2 总体 X 的概率密度为 p x,
1 x , 0 x 1 0, x 0, or , x 1
概率论与数理统计第七章课后习题及参考答案
故ˆ 是 的无偏估计.
(3)
E(X 2)
x2 f (x, )dx
0
6x3
( 3
x)
d
x
3 10
2
,
从而
D( X ) E( X 2 ) [E( X )]2 1 2 . 20
由此得 D(ˆ) D(2 X ) 4D( X ) 4 D( X ) 4 1 2 2 .
n
n 20 5n
(2) ˆ 是 的无偏估计吗? (3) 求 的方差 D(ˆ) .
解: E(X )
xf (x, )d x
0
6x2 ( 3
x)
dx
2
,
(1) 令 E( X ) X ,即 X ,由此得 的矩估计量为ˆ 2X . 2
(2) E(ˆ) E(2X ) 2E( X ) 2E( X ) 2 , 2
X
1
2
3
P
2
2 (1 )
(1 )2
其中, ( 0 1 )为未知数.已知取得了样本值 x1 1, x2 2 , x3 1 ,求 的矩估计值和最大似然估计值.
(2) 设 X1 , X 2 ,…, X n 是来自参数为 的泊松分布总体的一个样本,试求
的矩估计量和极大似然估计量.
解:(1) 因为 E( X ) 1 2 2 2 (1 ) 3(1 )2 3 2 ,
d ln L d
5n
0
,所以
ln
L(
)
是
的单调增函数,
又因为 xi ,i 1,2,, n ,故当 m1iinn{xi} 时 ln L( ) 达到最大值.由此得
的极大似然估计值为
ˆ
m1iinn{xi
}
,则其极大似然估计量为
概率论第七章 习题解答
第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。
大学概率论第7章习题答案
习 题 七 解 答1、由经验知某零件重量()2~,X N μσ,15μ=,220.05σ=,技术革新后,抽出6个零件,测得重量为(单位:g )14.7 15.1 14.8 15.0 15.2 14.6已知方差不变,试统计推断,平均重量是否仍为15g (0.05α=)?解:此题是正态总体方差220.05σ=已知时,关于总体均值μ的双侧检验,故采用U 检验。
假设 00:15H μμ== 1:15H μ≠因为 220.05σ=已知,故应选择统计量X U =又0.05α=,且~(0,1)U N ,所以查正态分布表得0.025 1.96U =,故拒绝域为1.96U ≥由题设条件知:n =6,0.05σ=,样本均值为()11114.7+15.1+14.8+15.0+15.2+14.614.96n i i x x n ====∑ 于是统计量得观测值4.902 1.96U ==≈> 即U 落在拒绝域中,故否定0H ,即认为平均重量不为15g.―――――――――――――――――――――――――――――――――――――――2.由于方差已知,用U 检验0.050.06 1.64U u ==≈<= 即U 落在接受域中,故接受0H ,即认为平均重量为100千克―――――――――――――――――――――――――――――――――――――――3.由于方差已知,用U 检验0.0250.31 1.96U u ==≈<= 即U 落在接受域中,故接受0H ,即认为平均重量为3.25―――――――――――――――――――――――――――――――――――――――4. 由于方差已知,用U 检验0.0252 1.96U u ==≈>= 即U 落在拒绝域中,故拒绝0H ,即认为平均身高不是1.67m―――――――――――――――――――――――――――――――――――――――5、已知健康人的红血球直径服从均值为7.2m μ的正态分布,今在某患者血液中随机测得9个红血球的直径如下:7.8 9.0 7.1 7.6 8.5 7.7 7.3 8.1 8.0问该患者红血球平均值与健康人的差异有无统计意义(0.05α=)?解:由于方差未知,所以采用T 检验。
概率论习题答案 第7章答案
θˆ = −1 −
n
n ln xi
i =1
从而θ 的极大似然估计量为
θˆ = −1 − n n
∑ ln X i
i =1
(2) 设 x1, x2 ,", xn 是相应于 X 1, X 2 ,", X n 的样本,则似然函数为
n
∏ L( p) =
n
p(1 −
p) xi −1
=
p n (1 −
∑ xi −n p) i=1
5. (1)
E(X ) = E(eZ ) =
∫ 1
+∞
− ( z−μ )2
e z e 2σ 2 dz
2π σ −∞
∫ =
1
∞
exp{−
1
(z 2 − (2μ + 2σ 2 )z + (μ + σ 2 )2 − 2μσ 2 − σ 4 )}dz
2π σ −∞
2σ 2
∫ = exp{μ + 1 σ 2} 2
=
1 mn
n i =1
xi
=
1 m
x
第 7 章习题答案 总 11 页第 4 页
∑ 所以 p 的极大似然估计量为
pˆ
=
1 mn
n i =1
Xi
=
1 m
X
4 (1)已知, λ 的极大似然估计值为 λˆ = x ,又 P{X = 0} = e−λ ,所以根据极大似然估计的性
质, P{X = 0}的极大似然估计值为 e−x
∏ L(σ ) =
n i =1
f
(xi ,σ )
=
1σ 2
e ∑ −n
−1 σ
n i =1
概率论与数理统计第7章参数估计习题及答案
概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。
3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。
⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。
概率论课后答案1-7章(修改版)
第1章 随机变量及其概率1,写出下列试验的样本空间:连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。
(1)4只中恰有2只白球,1只红球,1只黑球。
(2)4只中至少有2只红球。
(3)4只中没有白球。
解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。
8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃,)|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。
概率论答案chapter07
13 9
1
θ
i=1
钞
n
x i - nc .
钞
n
x i - nc
θ
2
= 0,
θ= 珚 x - c. ^ c = x1 ,
^ θ=珚 x-
(2) μ1 = 令 u= t- c
x1 . dt ,
∫
∞
- ∞
t f ( t) d t =
∫
∞ c
θ
t
e
- ( t - c)/ θ
θ
, 得
μ1 = μ2 =
令 u= t- c
θ- 1
) = θ
n/ 2
i= 1 n
∏
xi
θ- 1
,
ln L = 令
n ln θ + ( θ - 1) 钞 ln x i . 2 i= 1
n
得 θ 的最大似然估计值为
d 1 n ln L = ln x i = 0 , + dθ 2 θ 2 θ i钞 = 1
^ θ =
θ 的最大似然估计量为
i= 1
钞
其中 c ,θ ( c ,θ > 0) 为未知参数 . 自一批这种器件中随机地取 n 件进行寿命试验 . 设它们的失效时间依次为 x1 ≤ x2 ≤ … ≤ xn . (1) 求 θ 与 c 的最大似然估计值 . (2) 求 θ 与 c 的矩估计量 . 解 (1) 似然函数为 L( θ ,c) = L( x1 ,x2 ,… ,xn ;θ ,c) =
^ 2
θc x
θ
- ( θ + 1)
, x > c, 其他 ,
0,
其中 c > 0 为已知 ,θ > 1 ,θ 为未知参数 . (2) f ( x) =
统计学相关-概率论与数理统计第七章参考答案
2 00.05 , n Nhomakorabea9
,
2
(n
1)
2 0.95
(8)
2.733
拒绝域为: 2 2.733
又由题知: s2 0.00862
2 0
0.012
2
(n 1)s 2
2 0
8 0.0086 2 0.012
5.9186
2.733
2 未落入拒绝域,故接受 H 0 ,认为 0.01
10、(1)检验假设: H 0 : 3315 , H1 : 3315 这是 2 未知关于 的左边检验
拒绝 H 0 ,即认为 3315 (2) 检验假设: H 0 : 525 , H1 : 525 这是 未知,关于 2 的右边检验,则
检验统计量为: 2 (n 1)s 2
2 0
0.05 , n
30
,
2
(n
1)
2 0.05
(29)
42.557
拒绝域为: 2 42.557
又由题知: s2 4882
0.05 , n1 9 , n2 4 , t0.05 (n1 n2 2) t0.05 (11) 1.7959
拒绝域为: t
xy
sw
11 94
t 0.05
(11)
1.7959
由题,A 班、B 班考试成绩的样本均值和样本方差分别为:
x 80 , s12 110.25
y 65 , s22 174
s 27.28
0 200
t X 0 210.2 200 1.1217 1.8331
s / n 27.28 / 9
接受 H 0 ,即认为 200 。
6、检验假设: H 0 : 2 5000 , H1 : 2 5000 解:这是 未知,关于 2 的双边检验
概率论第七章习题解答(全)
概率论第七章习题解答1、随机地取8只活塞,测得它们的直径为(以mm 计)74.00174.00574.00374.00174.00073.99874.00674.002试求总体均值μ及方差2σ的矩估计值,并求样本方差2s 。
解1()E X μμ==22222()()[()]E X D X E X μσμ==+=+解得1μμ=,2221σμμ=-又81118ii A X X ===∑令1A Xμ==(一阶矩估计量)2222A X σμ==-(二阶矩估计量)代入样本值,1(74.00174.00574.00374.0018x =+++74.00073.99874.00674.002)++++74.002=ˆ74.002μ=,(一阶矩估计值)82211ˆ()8i i x x σ==-∑22222221[(0.001)0.0030.001(0.001)0.002(0.004)(0.004)0]8=-+++-++-++即26648ˆ106108σ--=⨯=⨯(二阶矩估计值)因为样本方差22211()1n ii S X X n ==--∑当8n =时,822211()7i i S X X ==-∑所以22661148ˆ()10 6.861077n i i sx x --==-=⨯=⨯∑2、设12,,,n X X X 为总体的样本,12,,,n x x x 为一相应的样本值,求下列总体的概率密度或分布律中的未知参数的矩估计量和矩估计值。
(1)(1),()0,c x x cf x θθθ-+⎧>=⎨⎩其它,其中0c >为已知,θ为未知参数。
(2)1,01()0,xx f x θθ-⎧≤≤⎪=⎨⎪⎩其它,其中0θ>,θ为未知参数。
(3){}(1)x xm xm P X x C p p -==-,0,1,2,,x m = ,其中01p <<,p 为未知参数。
解(1)()()()cE X xf x dx xf x dx∞∞-∞==⎰⎰(1)ccx c x dx c x dxθθθθθθ∞∞-+-==⎰⎰11|111c c c c x c θθθθθθθμθθθ-+∞-+====---,而ˆX μ=故1cX θθ=-,解出θ,得(1)c X θθ=-,()X c X θ-=,ˆ()XX c θ=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L=λ
取对数
n
n
∏e
i =1
n
− λ xi
=λ e
n
n
−λ
∑x
i =1
n
i
,
ln L = n ln λ − (∑ xi )λ .
i =1
令
d ln L n ˆ = 1 , λ 的极大似 = − ∑ xi = 0, 得 λ 的极大似然估计值为 λ dλ λ i =1 x
1 X
.
ˆ= 然估计量为 λ
5. 设总体 X 的概率密度为
5
3. 设总体 X 的概率密度为
⎧(θ + 1) xθ , 0 < x < 1, f ( x; θ ) = ⎨ 其它. ⎩0,
其中θ>-1 是未知参数, X1,X2,…,Xn 是来自 X 的容量为n的简单随机样本, 求: (1) θ 的矩估计量; (2) θ 的极大似然估计量. 解 总体 X 的数学期望为
zα / 2 = z0.025 = 1.96 .
所求置信区间为
(x −
σ
n
zα / 2 , x +
90 9
σ
n
zα / 2 )
90 9 × 1.96)
= (1141.11 −
× 1.96, 1141.11 +
= (1082.31,1199.91). 2. 为调查某地旅游者的平均消费水平, 随机访问了 40 名旅游者, 算得平 均消费额为 x = 105 元, 样本标准差 s = 28 元. 设消费额服从正态分布. 取置 信水平为 0.95, 求该地旅游者的平均消费额的置信区间. 解 计算可得 x = 105, s2 =282.对于α = 0.05, 查表可得
L(θ ) = ⎨ ⎩0,
⎧θ N (1 − θ )n− N , x(1) ≤x(2) ≤L ≤x( N ) < 1≤x( N +1) ≤x( N +2) ≤L ≤xn ,
其它.
考虑似然函数非零部分, 得到 ln L(θ ) = N lnθ + (n − N) ln(1−θ ), d ln L (θ ) N n − N ˆ= N . 令 = − = 0 , 解得 θ 的极大似然估计值为 θ dθ θ 1−θ n 习题 7-2 1. 选 择 题 : 设 总 体 X 的 均 值 μ 与 方 差 σ 2 都 存 在 但 未 知 , 而
2 2 2
2 0.995
χ
2 1−
α
2
( n − 1) = χ
( ( n − 1) S 2
2
(7) = 0.989 , 所以方差σ 的置信区间为
)=(
2
χ α 2 ( n − 1) χ 2 α ( n − 1)
1− 2
,
( n − 1) S 2
(8 − 1) × 2.4 2 (8 − 1) × 2.4 2 ) =(1.988, 40.768). , 20.278 0.989
1≤i ≤n
(D) min{ X i } .
1≤i ≤n
3θ
1 − 4θ
θ
其中 0<θ<0.25 为未知参数, X1, X2, …, Xn为来自总体X的样本, 试求θ的矩估 计量. 解 因为 E(X)=(-2)×3θ+1×(1-4θ)+5×θ=1-5θ, 令 1 − 5θ = X 得到 θ 的矩估
ˆ = 1− X . 计量为 θ
2σ 2 = [ E ( X 12 ) − 2 E ( X 1 X 2 ) + E ( X 2 2 )] = =σ2, 2 2
所以
1 2
( X 1 − X 2 ) 2 为 σ 2 的无偏估计.
习题 7-3 1. 选择题 (1) 总体未知参数 θ 的置信水平为 0.95 的置信区间的意义是指( ). (A) 区间平均含总体 95%的值. (B) 区间平均含样本 95%的值. (C) 未知参数 θ 有 95%的可靠程度落入此区间. (D) 区间有 95%的可靠程度含参数 θ 的真值. 解 选(D). (2) 对于置信水平 1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下 列说法不正确的是( ). (A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果 α 越小, 则可靠程度越高, 精确程度越低. (C) 如果 1-α 越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而 1-α 越小. 解 选(C) 习题 7-4 1. 某灯泡厂从当天生产的灯泡中随机抽取 9 只进行寿命测试, 取得数据 如下(单位:小时): 1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200. 设灯泡寿命服从正态分布N(μ, 902), 取置信度为 0.95, 试求当天生产的全部灯 泡的平均寿命的置信区间. 解 计算得到 x = 1141.11, σ2 =902. 对于α = 0.05, 查表可得
其中 λ > 0 为未知参数, X1, X2, …, Xn为来自总体X的样本, 试求未知参数 λ 的 矩估计量与极大似然估计量. 1 ˆ = 1 . 设x1, x2,…, x n是相 解 因为E(X)= = X , 所以 λ 的矩估计量为 λ λ X 应于样本X1, X 2,… ,X n的一组观测值, 则似然函数
4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样 本:X1,X2,…,X12及Y1,Y2,…,Y17, 算出 x = 10.6g, y = 9.5g, s1 = 2.4, s2 = 4.7 . 假设
2 2
这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别 为 μ1 , μ2 . 又设两总体方差 σ 1 = σ 2 . 求 μ1 − μ2 置信水平为 0.95 的置信区间,
− X )2 .
∑(X
i =1
n
i
解 选(D). (2) 设 X U [0, θ ] , 其中 θ>0 为未知参数, 又 X 1 , X 2 ,L , X n 为来自总体 X 的样本, 则 θ 的矩估计量是( (A) X . (B) 2 X . 解 选(B). 2. 设总体 X 的分布律为 X P -2 1 5 ). (C) max{ X i } .
3. 设总体 X 的均值为 0, 方差 σ 2 存在但未知, 又 X 1 , X 2 为来自总体 X 的 样本, 试证: 证
1 2
( X 1 − X 2 ) 2 为 σ 2 的无偏估计. 1
2
因为 E[ ( X 1 − X 2 ) ] =
1 2 1
2
E[( X 12 − 2 X 1 X 2 + X 2 2 )]
= 1.94 2
t α ( n1 + n2 − 2) = t0.025 (27) = 2.05181, 所求置信区间为
2
(( x − y ) ± tα ( n1 + n2 − 2) sw
2
1 n1
+
1 n2
) = ((10.6 − 9.5) ± 2.05181 × 1.94 ×
1 12
+
1 17
)
2 2
并说明该置信区间的实际意义. 解 由题设 x = 10.6, y = 9.5, s1 = 2.4, s2 = 4.7, n1 = 12, n2 = 17,
2 2
2 sw = 2 ( n1 − 1) s12 + ( n2 − 1) s2
n1 + n2 − 2
=
(12 − 1) × 2.4 + (17 − 1) × 4.7 12 + 17 − 2
其中 θ (0< θ <1)是未知参数. X1, X2, …, Xn为来自总体的简单随机样本, 记N 为样本值 x1 , x2 ,L , xn 中小于 1 的个数. 求: (1) θ的矩估计量; (2) θ的极大似然 估计量. 解 (1) X = E ( X ) = xθ dx + x (1 − θ )dx =
X 1 , X 2 ,L , X n 为 X 的样本, 则无论总体 X 服从什么分布, (
无偏估计量. (A) (C) 解 2.
)是 μ 和 σ 2 的
1 n
∑ Xi 和
i =1
n
1 n
∑ ( X i − X )2 .
i =1
n
(B)
1 n −1 1
∑ Xi 和
i =1 n i
n
1 n −1 1
n i =1
θ n ⎧ ⎞ n⎛ ⎪(θ + 1) ⎜ ∏ x i ⎟ , 0 < xi < 1, L=⎨ ⎝ i =1 ⎠ ⎪ 其它. ⎩0,
当 0<xi<1(i=1,2,3,…,n)时, L>0 且 ln L = n ln(θ + 1) + θ 令
∑ ln x
i =1
n
i
,
d ln L dθ
=
n
θ +1
+ ∑ ln xi =0, 得
E( X ) = ∫
+∞
−∞
xf ( x )dx = ∫ (θ + 1) xθ +1dx =
0
1
θ +1 . θ +2
令 E( X ) = X , 即
2X −1 θ +1 ˆ . = X , 得参数θ的矩估计量为 θ = 1− X θ +2 设x1, x2,…, x n是相应于样本X1, X 2,… , X n的一组观测值, 则似然函数为
习题 7-1 1. 选择题 (1) 设总体X的均值μ与方差σ2都存在但未知, 而 X 1 , X 2 ,L , X n 为来自X的 样本, 则均值μ与方差σ2的矩估计量分别是( (A) X 和S2. (C) μ和σ2. (B) X 和 (D) X 和 ).