向量及其运算

合集下载

向量的概念及运算

向量的概念及运算

b
)
MD
1 2
(b
a
)
若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行,记作 a∥b ; 规定: 零向量与任何向量平行 ;
与 a 的模相同, 但方向相反的向量称为 a 的负向量, 记作-a ;
因平行向量可平移到同一直线上, 故两向量平行又称 两向量共线 .
若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .
a4
a5
a3 s
a2 a1
2. 向量的减法
a
三角不等式
3. 向量与数的乘法
是一个数 , 与 a 的乘积是一个新向量, 记作 a .
规定 :
总之:
a a
运算律 : 结合律 ( a ) ( a) a
分配律
可见 1a a
1a a ;
(a b) a b
则有单位向量 ea
“ ” 已知 b= a , 则
b=0 a , b 同向 a , b 反向
a∥b
例1. 设 M 为 ABCD 对角线的交点,
试用a 与b 表示 MA, MB , MC , MD.
解: a b AC
2 MA
D
C
b a BD2 MBbM源自MA1 2(
a
b)
MB
1 2
(
b
a
)
A
a
B
MC
1 2
(
a
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
表示法: 有向线段 M1 M2 , 或 a , 或 a .
向量的模 : 向量的大小,
自由向量: 与起点无关的向量. 单位向量: 模为 1 的向量, 记作 e 或e . 零向量: 模为 0 的向量,

线性代数第二章2-2向量及其线性运算

线性代数第二章2-2向量及其线性运算

代数形象:向 量 的 坐 标 表 示 式
a a1 a2
an

解析几何
点空间:点的集合

线性代数
向量空间:向量的集合
( n 3)
坐 标
几 何 形 象: 空间直线、曲线、 空间平面或曲面

代 数 形 象: 向量空间中的平面
( x, y, z ) ax by cz d r ( x , y, z )

四、向量空间 1、定义 设V为n维非空向量组,且满足
①对加法封闭
if V , V V ; if V , R V . ②对数乘封闭 那么就称向量组V为向量空间(Vector Space).
例1 全体n维向量所组成的集合是一个向量空间, 记作 :
第二节 向量及其线性运算
1、引入 确定小鸟的飞行状态, 需要以下若干个参数: 小鸟身体的质量m 小鸟身体的仰角ψ 鸟翼的转角ψ 鸟翼的振动频率t 小鸟身体的水平转角θ 小鸟重心在空间的位置参数 P ( x , y , z ) 还有… 所以,为确定小鸟的飞行状态,会产生一组有序数组 m t x y z
i 1,2,
, n
5、负向量: (a1, a2 ,
, an ), (a1, a2 , , an )
二、向量的运算 1、加法 a1
a2 an , b1 a2 b2 b2 bn ,
规定 a1 b1
an bn an bn
所以 V2不是一个向量空间.
例3
V3 x x1

k R,
V4 x x1

判别下列集合是否为向量空间.

向量的基本运算

向量的基本运算

向量的基本运算在数学和物理中,向量是一个具有大小和方向的量。

向量可以进行多种基本运算,如相加、相减、数乘等。

本文将详细介绍向量的基本运算及其性质。

1. 向量的表示方法向量通常用带箭头的字母表示,例如$\vec{A}$,箭头表示向量的方向。

向量也可以用坐标表示,如$\vec{A}=(x,y,z)$表示三维向量。

在向量上还有一些常用记号,例如向量的模表示向量的大小,记作$|\vec{A}|$或$||\vec{A}||$。

2. 向量的加法向量的加法是将两个向量的对应分量相加。

设有两个向量$\vec{A}=(x_1,y_1,z_1)$和$\vec{B}=(x_2,y_2,z_2)$,则它们的和为$\vec{A}+\vec{B}=(x_1+x_2,y_1+y_2,z_1+z_2)$。

向量的加法满足交换律和结合律。

3. 向量的减法向量的减法是将两个向量的对应分量相减。

设有两个向量$\vec{A}=(x_1,y_1,z_1)$和$\vec{B}=(x_2,y_2,z_2)$,则它们的差为$\vec{A}-\vec{B}=(x_1-x_2,y_1-y_2,z_1-z_2)$。

求向量的差可以看作是求向量的和再乘以$-1$。

4. 数乘运算数乘是指将向量的每个分量都乘以一个实数。

设有一个向量$\vec{A}=(x,y,z)$和一个实数$k$,则$k\vec{A}=(kx,ky,kz)$。

数乘的运算性质包括交换律和结合律。

5. 内积内积是向量的一种重要的运算,它可以用来计算两个向量之间的夹角。

设有两个向量$\vec{A}=(x_1,y_1,z_1)$和$\vec{B}=(x_2,y_2,z_2)$,它们的内积表示为$\vec{A}\cdot\vec{B}=x_1x_2+y_1y_2+z_1z_2$。

内积满足交换律、结合律和分配律。

6. 外积外积是向量的另一种运算,它用于计算向量之间的垂直分量和面积。

设有两个向量$\vec{A}=(x_1,y_1,z_1)$和$\vec{B}=(x_2,y_2,z_2)$,它们的外积表示为$\vec{A}\times\vec{B}=(y_1z_2-y_2z_1,z_1x_2-z_2x_1,x_1y_2-x_2y_1)$。

10.1向量及其运算(1-30)

10.1向量及其运算(1-30)

数乘运算的性质 :
例 设 AD , BE ,CF 是三角形 ABC 的中线 ,
求 解
AD BE CF
1 AD ( AC AB) 2
F A E
B
因为
D
C
1 BE ( BA BC ) 2 1 CF (CB CA) 2
1 AD BE CF ( AC AB BA BC CB CA) 2 1 ( AC AB AB BC BC AC ) 0 2
(5)
(b )a
a b cos (a ,ˆ b ) b cos (a ,ˆ b ) a
1 ab b a b a a a
ba (b )a
(6)
ab cos (a ,ˆ b ) ab
(5) 外积与混合积
外积: 两个向量 a 与 b 的外积 a b 是一个向量,
它的长度为
a b a b sin(a ,ˆ b )
b , a b ) 形成 右手系 . 若 a , b 中有一是零向量 , 则外积规定为
例 设 M 点是三角形 ABC 的重心 , 证明 : 对
任意一点 O , M 点相对于 O 的位置向量
1 OM (OA OB OC ) 3
F A E
O
C
B
M
D
解 由于 OM OA AM
OM OB BM OM OC CM
将三式相加得
3OM OA OB OC AM BM CM
OC OB (OA OB ) BC BA ( ) AB

向量及向量的基本运算

向量及向量的基本运算
(A)a=b (B)a∥b (C)a⊥b (D)|a|=|b|
4.下列算式中不正确的是( (A) AB+BC+CA=0 (C) 0· AB=0
B )
(B) AB-AC=BC (D)λ(μa)=(λμ)a
5. 已知正方形 ABCD 边长为 1 , AB=a,BC=b,AC=c, 则 a+b+c 的模等于( C ) (A)0 (B)3 (C)22 (D)2
2)向量加法 ①求两个向量和的运算叫做向量的加法。设 a b+ AB ,则 = BC AC = AB a, BC b 。向量加法有“三角形法则”与“平行四边 0a 0 a 形法则”。 说明:( 1a ) ; (2)向量加法满足交换律与结合律;
【课堂小结】 1)向量的有关概念: ①向量②零向量③单位 向量④平行向量(共线向量)⑤相等向量 2)向量加法减法: 3)实数与向量的积 4)两个向量共线定理
5)两个向量共线定理 a 向量 b与非零向量 共线 实数 ,使得 b = a 。

有且只有一个
例1、判断下列各命题是否正确 (1)零向量没有方向 (2)若 a b , 则a b (3)单位向量都相等 (4) 向量就是有向线段 (5)两相等向量若共起点 ,则终点也相同 a c (6)若a , ,则 ; b b c (7)若a // b ,b // c ,则 a // c (8) 四边形ABCD是平行四边形,则 AB CD, BC DA (9)已知A(3,7),B(5,2),将 AB按向量 a =(1,2)平移后得到的向量 AB 的坐标为 (3,-3 ) (10) a b 的充要条件是| a || b | 且 a // b ;

向量及其加减法,向量与数的乘法

向量及其加减法,向量与数的乘法
一、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以M1为起点,M2 为终点的有向线段.
向量的模: 向量的大小.| a| 或 | M1M2 |
单位向量:模长为1的向量. a0

M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
证 AM MC BM MD
D b
A
a
C
M
B
AD AM MD MC BM BC
AD 与 BC 平行且相等, 结论得证.
四、小结
向量的概念(注意与标量的区别) 向量的加减法(平行四边形法则) 向量与数的乘法(注意数乘后的方向)
思考题
已知平行四边形ABCD的对角线
AC a,
BD b
10、把平行于某一直线的一切单位向量归结到共同的
11、始 要使点,a则b终点a构 b成成__立__,__向__量_a__,_b_应__满__足_____;_____
12、_要__使__a___b___a____b_成_;立,向量a,
b 应满足_______
___________ .
二、用向量方法证明:对角线互相平分的四边形是平 行四边形 .
a
b
负向量:大小相等但方向相反的向量. a
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
二、向量的加减法
[1]
加法:a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若 a‖
a b

向量及其运算

向量及其运算

№2向量及其运算1. 向量的生成①逐个元素直接输入向量元素需要有“[ ]”括起来,元素之间可以用空格、逗号或分号分隔。

用空格和逗号分隔生成行向量,用分号分隔生成列向量。

例:a=[1 2 3 0 -4 5.1]b=[0.1;3;5;8]②利用冒号表达式生成通过设定“步长(step)”,生成一维行向量,通用格式为:x=x0:step:x n。

x0表示向量的首元素值,x n表示尾元素数值限,step表示从第个元素开始,每一个元素与前一个元素的差值. step=1时,可省略此项的输入,直接写成x=x0:x n。

例:x=0:2:10y=1:2:10z=1:5③定数线性采样生成设定总点数n下,均匀采样生成一维行向量。

通用格式为x=linspace(a,b,n)。

a,b分别是生成向量的第一个和最后一个元素,n是采样总点数。

该指令生成的数组相当于由a:(a-b)/(n-1):b生成的数组。

缺省n时,生成100维的行向量。

clear %清除工作空间中的所有变量.x=linspace(-5,5,11)y=-5:10/10:5z=linspace(-5,5)④定数对数采样生成向量设定总点数n下,经“常用对数”均匀采样生成一维行向量。

通用格式为x=logspace(a,b,n) 。

生成数组的第一个元素值为10a,最后一个元素值为10b,n为采样总点数,缺省时,生成50维的行向量。

例如:clear %清除工作空间中的所有变量.x=logspace(1,5,5)y=1:(5-1)/(5-1):5xx=10.^yz=logspace(1,5)2. 向量元素的引用格式为:向量名(下标范围或元素所满足的条件)。

例:clearrand('state',0) %把均匀分布伪随机发生器置为初始状态x=rand(1,5) %产生(1×5)的均匀分布随机数组x(3) %引用数组x的第三个元素y=x([1 2 5]) %引用数组x的第一、二、五个元素z=x(1:3) %引用数组x的前三个元素w=x(3:end) %引用数组x的从第三个元素以后的元素v=x(3:-1:1) %由数组x的前3个元素倒排构成的了数组u=x(find(x>0.5)) %数组x中大于0.5的元素构成的子数组t=x([1 2 3 4 4 3 2 1]) %重复引用数组x中的元素构成的数组3. 向量与标量、向量与向量的运算①四则运算(+- * / \ .* ./ .\)标量a与向量x进行四则运算是a分别与x中的每个元素进行四则运算并生一个与x 等长的向量。

向量及其运算

向量及其运算
解 如同解二元一次线性方程组, 可得 x=2a-3b, y=3a-5b.
以a、b的坐标表示式代入, 即得 x=2(2, 1, 2)-3(-1, 1, -2) =(7, -1, 10), y=3(2, 1, 2)-5(-1, 1, -2) =(11, -2, 16).
首页
上页
返回
下页
结束

四、利用坐标作向量的线性运算
首页
上页
返回
下页
结束

•向量的平行 两个非零向量如果它们的方向相同或相反, 就称这两个
向量平行. 向量a与b平行, 记作a//b. 零向量认为是与任何向量都平行.
•共线向量与共面向量
a//b//c
当两个平行向量的起点放在同一点时, 它们的终点和公
共的起点在一条直线上. 因此, 两向量平行又称两向量共线.
(2) 数 轴 的 的 正 向 通 常 符 合 右手规则.
原点
y轴 x轴
首页
上页
返回
下页
结束

•坐标面 在空间直角坐标系中, 任意两个坐标轴可以确定一个平
面, 这种平面称为坐标面. 三个坐标面分别称为xOy 面, yOz面和zOx面.
首页
上页
返回
下页
结束

•坐标面
在空间直角坐标系中, 任意两个坐标轴可以确定一个平 面, 这种平面称为坐标面.
❖空间直角坐标系
在空间取定一点O和三个两两垂直的单位向量i、j、k, 就 确定了三条都以O为原点的两两垂直的数轴, 依次记为x轴(横 轴)、y轴(纵轴)、z轴(竖轴), 统称为坐标轴. 它们构成一个空 间直角坐标系, 称为Oxyz坐标系.
z轴
说明:
(1)通常把x轴和y轴配置在水 平面上, 而z轴则是铅垂线;

向量的运算与性质

向量的运算与性质

向量的运算与性质本文将围绕向量的运算与性质展开论述,探讨向量的基本概念、运算法则以及相关性质。

向量是数学中重要的基本概念之一。

它可以用有向线段表示,具有大小和方向。

向量的运算包括向量的加法和数乘。

一、向量的加法向量的加法满足交换律、结合律和对称律。

设有向量a和向量b,它们的加法运算可表示为a+b。

在几何上,向量a+b的结果是由向量a 和向量b依次相连形成的新向量,它的起点与向量a的起点重合,终点与向量b的终点重合。

向量加法满足交换律,即a+b=b+a;结合律,即(a+b)+c=a+(b+c);对称律,即a+b=b+a。

二、数乘向量的数乘是指将向量与实数相乘的运算。

设有向量a和实数k,它们的数乘运算可表示为ka。

在几何上,向量ka是由向量a按照倍数k进行拉伸或收缩得到的新向量,其大小和a的大小相差k倍,方向与a的方向相同(当k>0)或相反(当k<0)。

三、向量的性质1. 零向量:零向量是指大小为0的向量,记作0或O,它的方向可以是任意的。

2. 负向量:设有向量a,其负向量记作-a,它们的大小相等、方向相反。

3. 相等向量:两个向量a和b相等,当且仅当它们的大小相等、方向相同。

4. 平行向量:如果两个向量a和b的方向相同或相反,即a∥b,它们被称为平行向量。

5. 零向量与任何向量的运算:对于任意向量a,都有a+0=a和a+(-a)=0。

6. 数乘的性质:设有向量a和b,实数k和m,有以下性质:(1)k(a+b)=ka+kb;(2)(k+m)a=ka+ma;(3)k(ma)=(km)a;(4)1a=a,其中1表示实数1。

7. 向量的数量积:向量a和向量b的数量积(也称为点积或内积)记作a·b或(a,b),其结果是一个实数。

数量积的计算公式为a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和向量b的大小,θ表示向量a和向量b之间的夹角。

8. 向量的数量积的性质:设有向量a、向量b和向量c,实数k和m,有以下性质:(1)a·b=b·a(交换律);(2)(ka)·b=k(a·b);(3)(a+b)·c=a·c+b·c;(4)a·a=|a|^2(非负性)。

向量的四则运算

向量的四则运算
向量的四则运算
向量的线性运算
1、向量的加法
三角形法则 已知a、b,作 = a , = b ,则为a与b的和
向量,如图7-1(a)所示.
平行四边形法则
设O为任意一点,作OA= a , OB= b ,以OA、OB为邻边作
平行四边形OACB,则OC为a与b的和向量,如图7-1(b)所示.
2、向量的减法
当λ<0时, λa的方向与a的方向相反;
当λ=0时, λa =0.
4、向量共线的条件
向量共线的充要条件:
向量a与非零向量b共线的充要条件是
有且只有一个实数λ,使得a =λ b.
5、运算法则
λ (μa) =( λμ)a
(λ + μ) a = λa + μa
λ( a + b) = λa + λb
a+b=b+a
D三点共线.
解析
技巧
点拨
因为 + = =3a+8b+(a-2b)=4a+6b,
所以 =-2(-2a-3b)=-2 = ,
又因为 ∩ =B,所以A、B、D三点共线.
考查了平面向量的线性运算.
典例解析
例4 化简下列各式:
(1) 2(a+3b)-4(a-b);
单位向量的模都等于1,所以(2)为真命题;
对于(3),只要b=0,就不一定能得到a∥c,所以
(3)为假命题;
两个相等向量的方向一定相同,所以(4)为真命题.
所以正确答案选B.
技巧
点拨
本题考查向量的概念及单位向量、零向量、向量的模(长
度)等知识点.解决此类问题的关键是弄清向量的有关概念.

§7.1向量及其运算1

§7.1向量及其运算1

设有两非零向量
a

b
O
,任取空间一点
b
O

B
作 OA a , OB b ,规定不超过 的角 AOB
(设 q
AOB,
0
q
)称为向量
a

b

夹角。记为
(a,
b)

(a
b)
,即
(a,
b)
q

如果向量a
与b
中有一个是零向量,规定
它们的夹角可在0 与 之间任意取值。
类似地可以规定向量与一轴 的夹角或空间两轴的夹角。
§7.1向量及其运算
7.1.1 向量的概念
B
向量: 既有方向又有大小的量。
常用有向线段来表示向量。
AB A
以 A为 起点,B为 终点的有向线段所表示的向量
记作 AB ,或a 。
向量的模:向量的大小,记作
a

单位向量:模等于 1 的向量。与非零向量a同 向的单
位向量称为向量a
的单位向量,记作a

零向量:模等于零的向量,记为0 ,其方向不定。

a (a b )
0

a
(c
a
)
0


a (b c )
0
,故a ,
b, c
共面。
作业
习 题 一 (P67)
3(做在书上); 4 ;5 ;6 。
设物体在常力F 作用下沿某直线移动,其位移为S ,
则作用在物体上的常力F 所作的功为
F
W F S cos q 。 W F ·S 。
其中q 定义 3
为两力向F 量与a位、移bS的的模夹及角其。夹角的A 余弦q的乘S 积,

向量的四则运算公式

向量的四则运算公式

向量的四则运算公式一、向量加法。

1. 三角形法则。

- 已知向量→a与→b,将→b的起点平移至→a的终点,则从→a的起点指向→b的终点的向量就是→a+→b。

- 公式:设→a=(x_1,y_1),→b=(x_2,y_2),则→a+→b=(x_1 + x_2,y_1 + y_2)。

2. 平行四边形法则。

- 以同一点O为起点的两个已知向量→a,→b为邻边作平行四边形,则以O 为起点的对角线向量就是→a+→b。

二、向量减法。

1. 三角形法则。

- 已知向量→a与→b,将→a与→b的起点平移到同一点,则从→b的终点指向→a的终点的向量就是→a-→b。

- 公式:设→a=(x_1,y_1),→b=(x_2,y_2),则→a-→b=(x_1 - x_2,y_1 - y_2)。

三、向量数乘。

1. 定义。

- 实数λ与向量→a的乘积是一个向量,记作λ→a。

- 当λ>0时,λ→a与→a方向相同;当λ = 0时,λ→a=→0;当λ<0时,λ→a 与→a方向相反。

2. 公式。

- 设→a=(x,y),则λ→a=(λ x,λ y)。

四、向量的数量积(内积)1. 定义。

- 已知两个非零向量→a与→b,它们的夹角为θ(0≤slantθ≤slantπ),则→a·→b=|→a||→b|cosθ。

2. 坐标表示。

- 设→a=(x_1,y_1),→b=(x_2,y_2),则→a·→b=x_1x_2 + y_1y_2。

向量没有除法运算,因为向量之间的除法没有唯一确定的结果,但是在一些特殊情况下,可以通过向量的数量积和向量的模等概念来求解类似的问题。

第一节 向量及其运算(知识梳理)

第一节 向量及其运算(知识梳理)

第一节向量及其运算复习目标学法指导1.平面向量的实际背景及基本概念(1)向量的物理背景与概念向量的概念.(2)向量的几何表示零向量、单位向量、向量模的概念.(3)相等向量、平行向量、共线向量的概念.2.平面向量的线性运算(1)①向量加法的定义及几何意义.②向量加法的交换律和结合律.(2)①相反向量的概念.②向量减法的定义及几何意义.(3)①向量的数乘运算.②向量数乘运算的几何意义. 1.熟记概念,对于概念中的前提条件引起重视.2.解决向量的概念问题要注意两点,一是考虑大小,更要考虑方向;二是考虑零向量的特殊性.3.向量的线性运算,要在所表达的图形上多思考、多联系相关几何图形.一、平面向量的有关概念1.向量的有关概念(1)定义既有大小又有方向的量叫做向量.(2)表示方法①用字母表示:如a,b,c等;②用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.如AB u u u r,CD u u u r等.(3)模向量的大小叫做向量的模,记作|a|,|b|或|AB u u u r|,|CD u u u r|.2.特殊向量相反向量长度相等且方向相反的向量0的相反向量为01.概念理解(1)仅从向量的模定义零向量和单位向量,它们方向不确定,因此解题时注意特殊性.(2)按照方向相同或相反定义平行向量和共线向量,因此两个向量方向相同或相反即可判定是否为共线向量.2.与零向量有关的结论(1)零向量与任意向量为共线向量;(2)0·a=0.二、平面向量的线性运算向量运算定义法则(或几何意义) 运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差数乘求实数λ与向量a的积的运算|λa|=|λ||a|.当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb概念理解(1)利用三角形法则进行加法运算时,要注意两向量的首尾相连,在几何图形中求和向量时,一般要进行向量的平移让两个向量首尾相连.(2)减法运算必须要求两向量有相同起点,差向量即为从减数终点指向被减数终点的向量,如:AB u u u r-AC u u u r= CB u u u r.三、共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa. 1.概念理解(1)向量的平行和直线平行不同,两向量所在直线重合也可以称平行向量.(2)注意定理中a ≠0的条件. 2.与共线向量相关联的结论(1)若a,b,c 均不为零向量,则平行具有传递性. (2)在a(a ≠0)方向上的单位向量:a a.(3)利用共线向量定理证明三点共线的步骤: 第1步:三点构造两个向量; 第2步:证明两向量之间成倍数关系.1.如图,e 1,e 2为互相垂直的单位向量,则向量a-b 可表示为( C )(A)3e 2-e 1 (B)-2e 1-4e 2 (C)e 1-3e 2 (D)3e 1-e 2解析:由题图可知a=-4e 2,b=-e 1-e 2, 则a-b=e 1-3e 2. 故选C.2.设两个非零向量e 1和e 2,且e 1与e 2不共线,AB u u u r =e 1-e 2, BC u u u r=3e 1+2e 2,CD u u u r=-8e 1-2e 2,则下列三点共线的是(D )(A)A,B,C (B)A,B,D (C)B,C,D (D)A,C,D 解析:AB u u u r =e 1-e 2,AC u u u r =AB u u u r + BC u u u r=4e 1+e 2, 因为AC u u u r=-12CD u u u r,且有公共点C,所以A,C,D 三点共线.故选D.3.在△ABC 中,点M,N 满足AM u u u u r =2MC u u u u r ,BN u u u r =NC u u u r .若MN u u u u r =x AB u u u r +y AC u u u r,则x= ,y= . 解析:由题中条件得MNu u u u r =MC u u u u r +CN u u u r=13ACu u u r+12CB u u u r =13AC u u u r +12(AB u u u r -AC u u u r)=12AB u u u r -16ACu u u r=x AB u u u r +y AC u u u r,所以x=12,y=-16. 答案:12 -16考点一 平面向量的基本概念 [例1] (1)下列有关向量相等的命题: ①若|a|=|b|,则a=b;②若A,B,C,D 是不共线的四点,则AB u u u r =DC u u u r是四边形ABCD 为平行四边形的充要条件; ③若a=b,b=c,则a=c;④a=b 的充要条件是|a|=|b|且a ∥b. 其中正确命题的序号是( )(A)②③ (B)①② (C)③④ (D)②③④(2)设a,b 都是非零向量,则“a=2b ”是“a a=b b”成立的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(3)下列与共线向量有关的命题:①相反向量就是方向相反的向量;②若a与b同向,且|a|>|b|,则a>b;③λ,μ为实数,若λa=μb,则a与b共线;④两向量平行是这两个向量相等的必要不充分条件.其中错误命题的序号为.(填序号)解析:(1)①不正确.两个向量的长度相等,它们的方向不一定相同.②正确.因为AB u u u r=DC u u u r,所以|AB u u u r|=|DC u u u r|且AB u u u r∥DC u u u r,又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则AB u u u r∥DC u u u r且|AB u u u r|=|DC u u u r|,AB u u u r与DC u u u r方向相同,因此,AB u u u r= DC u u u r.③正确,因为a=b,所以a,b的长度相等且方向相同,又b=c,所以b,c 的长度相等且方向相同,所以a,c的长度相等且方向相同,故a=c.④不正确.当a∥b且|a|=|b|,不一定a=b,也可以是a=-b.故|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.解析:(2)因为aa =bb,则向量a与向量b方向相同,但它们的模没有关系.因此“a=2b”是“aa =bb”成立的充分不必要条件.故选A.解析:(3)①不正确.相反向量满足方向相反,长度相等.②不正确,两向量不能比较大小;③不正确.当λ=μ=0时,a与b可能不共线;④正确.答案:(1)A (2)A (3)①②③(1)相等向量具有传递性,共线向量不具有传递性,只有当非零向量之间才具有传递性.(2)注意0的特殊性,验证命题为假命题时,通常采用举反例的方式,在向量概念问题的判定上,反例通常可以选取0.(3)向量可以平移,平移后的向量与原向量相等.下列命题中正确的个数为( B )①向量a与向量b平行,则a与b的方向相同或相反;②若向量a与b满足a+b=0,则a与b共线;③若向量a与b均为非零向量,则|a+b|与|a|+|b|一定相等;④设e为单位向量,若a与e平行,则a=|e|·a.(A)1 (B)2 (C)3 (D)4解析:①不正确,若向量a与向量b中有一个为零向量,则两个向量方向不一定相同或相反;③不正确,因为|a+b|≤|a|+|b|,所以|a+b|与|a|+|b|不一定相等;④正确,因为|e|=1,所以a=|e|a成立.故选B.考点二平面向量的线性运算[例2] 下列各式不能化简为PQ u u u r的是( )(A)AB u u u r+(PA u u u r+ BQ u u u r)(B)(AB u u u r+PC u u u r)+(BA u u u r-QC u u u r)(C)QC u u u r-QP u u u r+CQ u u u r(D) PA u u u r+AB u u u r-BQ u u u r解析:选项A,AB u u u r+(PA u u u r+BQ u u u r)= AB u u u r+BQ u u u r+PA u u u r=AQ u u u r+PA u u u r=PQ u u u r;选项B,( AB u u u r+PC u u u r)+(BA u u u r-QC u u u r)=(AB u u u r+BA u u u r)+(PC u u u r-QC u u u r)=PQ u u u r;选项C,QC u u u r-QP u u u r+CQ u u u r=QC u u u r+CQ u u u r- QP u u u r= PQ u u u r;选项D,PA u u u r+ AB u u u r-BQ u u u r=PB u u u r-BQ u u u r得不到PQ u u u r.故选D.三角形法则和平行四边形法则是向量线性运算的主要方法,在运算时,要注意两种法则的适用条件.在三棱锥O-ABC中,若D为BC的中点,则AD u u u r等于( C )(A)12OAu u u r+12OCu u u r-OBu u u r(B)12OAu u u r+12OBu u u r+OCu u u r(C)12OBu u u r+12OCu u u r-OAu u u r(D)12OB u u u r +12OC u u u r +OA u u u r解析:如图根据向量加法三角形法则,AD u u u r =12(AC u u u r +AB u u u r )=12(OC u u u r -OA u u u r +OB u u u r -OA u u u r),所以AD u u u r =12OC u u u r+12OB u u u r-OA u u u r.故选C.考点三 共线向量定理及应用 [例3] 设两个非零向量a 与b 不共线, (1)若AB u u u r =a+b,BC u u u r =2a+8b,CD u u u r=3(a-b), 求证:A,B,D 三点共线;(2)试确定实数k,使ka+b 和a+kb 同向. (1)证明:因为AB u u u r =a+b,BC u u u r =2a+8b,CD u u u r=3(a-b), 所以BD u u u r =BC u u u r +CD u u u r=2a+8b+3(a-b) =2a+8b+3a-3b =5(a+b)=5AB u u u r. 所以AB u u u r,BD u u u r 共线, 又因为它们有公共点B, 所以A,B,D 三点共线. (2)解:因为ka+b 与a+kb 同向,所以存在实数λ(λ>0),使ka+b=λ(a+kb), 即ka+b=λa+λkb.所以(k-λ)a=(λk-1)b.因为a,b 是不共线的两个非零向量,1,10,k k λλ-=⎧⎨-=⎩解得1,1k λ=⎧⎨=⎩或1,1,k λ=-⎧⎨=-⎩ 又因为λ>0,所以k=1.(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别:只有两向量有公共点且共线时,才能得出三点共线.(2)a 与b 共线是指存在不全为零的λ1,λ2,使λ1a+λ2b=0,若λ1a+λ2b=0,当且仅当λ1=λ2=0时成立,则a 与b 不共线.1.设a,b 是不共线的两个非零向量,若OA u u u r=ka+12b,OB u u u r =4a+5b,OC u u u r=-ka+10b,且点A,B,C 三点共线,则k= .解析:AB u u u r =OB u u u r -OA u u u r=(4-k)a-7b,CB u u u r =OB u u u r -OC u u u r=(4+k)a-5b,因为A,B,C 三点共线,所以44k k -+=75--,k=-23. 答案:-232.在△ABC 所在平面内有一点P,如果PA u u u r +PB u u u r +PC u u u r =AB u u u r,则△PAB 与△ABC 的面积之比是 . 解析:因为PA u u u r +PB u u u r +PC u u u r =AB u u u r =PB u u u r -PA u u u r, 所以2PA u u u r +PC u u u r=0,PC u u u r =-2PA u u u r =2AP u u u r ,所以点P 是线段AC 的一个靠近点A 的三等分点. 所以△PAB 与△ABC 的面积之比是1∶3.答案:1∶3类型一平面向量的基本概念1.以下给出了4个命题:(1)两个长度相等的向量一定相等;(2)相等的向量起点必相同;(3)若a·b=a·c,且a≠0,则b=c;(4)若向量a的模小于b的模,则a<b.其中正确命题共有( D )(A)3个(B)2个(C)1个(D)0个解析:长度相等方向相同的向量是相等向量,故(1)错误;根据相等向量的定义知,相等向量起点不一定相同,故(2)错误;因为a·b=a·c,所以a·(b-c)=0,又因为a≠0,所以必有a⊥(b-c),而b=c不一定成立,故(3)错误;向量不能比较大小,故(4)错误.故选D.2.如图,在正方形ABCD中,M是BC的中点,若AC u u u r=λAM u u u u r+μBD u u u r (λ,μ∈R),则λ+μ等于( B )(A)43(B)53(C)158(D)2解析:根据向量的平行四边形加法法则,AC u u u r =AB u u u r +AD u u u r, 又根据向量的三角形加法法则,AMu u u u r =AB u u u r +AM u u u u r =AB u u u r +12BC u u ur =AB u u u r +12AD u u u r ,BD u u u r =AD u u u r -AB u u u r ,所以AC u u u r =λAM u u u u r +μBD u u u r= λ(AB u u u r +12AD u u u r 0+μ(AD u u u r -AB u u u r )=(λ-μ)AB u u u r +(12λ+μ)AD u u u r, 所以1,11,2λμλμ-=⎧⎪⎨+=⎪⎩ 解得4,31,3λμ⎧=⎪⎪⎨⎪=⎪⎩所以λ+μ=53. 故选B.类型二 平面向量的线性运算3.在平行四边形ABCD 中,AC 与BD 相交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F,若AC u u u r=a,BD u u u r =b,则AF u u u r等于( B )(A)14a+12b (B)23a+13b (C)12a+14b (D)13a+23b 解析:AF u u u r =AD u u u r +DF u u u r,DE ∶BE=1∶3=DF ∶AB,所以DF u u u r =13AB u u ur ,所以AF u u u r=12a+12b+13(12a-12b)=23a+13b. 故选B.4.在△ABC 中,G 为△ABC 的重心,D 在边AC 上,且CD u u u r =3DA u u u r,则( B )(A)GD u u u r =13AB u u u r +712AC u u u r(B)GD u u u r=-13AB u u u r -112AC u u u r(C)GD u u u r =-13AB u u u r +712AC u u u r (D)GD u u u r=-13AB u u u r+112AC u u u r解析:如图所示,GD u u u r =GA u u u r +AD u u u r,AG u u u r =23×12(AB u u u r +AC u u u r)=13(AB u u ur +AC u u u r ),AD u u u r =14ACu u ur .所以GD u u u r=-(13AB u u u r+13AC u u u r)+14AC u u u r=-13AB u u u r-112AC u u u r. 故选B.5.任意四边形ABCD 中,E,F 分别是AD,BC 的中点,则EF u u u r= (用向量AB u u u r,DC u u u r表示).解析:因为EF u u u r =EA u u u r +AB u u u r +BF u u u r,EF u u u r =ED u u u r +DC u u u r +CF u u u r ,所以2EF u u u r =AB u u u r +DC u u u r +BF u u u r +CF u u u r +EA u u u r +ED u u u r =AB u u u r +DC u u u r, 所以EF u u u r =12(AB u u u r +DC u u u r). 答案:12(AB u u u r+DC u u u r) 类型三 共线向量定理6.已知O 为△ABC 内一点,且AO u u u r =12(OB u u u r +OC u u u r ),AD u u u r =t AC u u u r,若B,O,D 三点共线,则t 等于( B ) (A)14(B)13(C)12(D)23解析:设E 是BC 边的中点, 则12(OB u u u r +OC u u u r )=OE u u u r,由题意得AO u u u r =OE u u u r,所以AO u u u r =12AE u u ur =14(AB u u u r +AC u u u r )=14AB u u u r +14AD tu u ur ,又因为B,O,D 三点共线,所以14+14t =1,解得t=13, 故选B.7.已知点P 是△ABC 所在平面内一点,边BC 的中点为D,若2PD u u u r=(1-λ)PA u u u r +CB u u ur ,其中λ∈R,则P 点一定在( C )(A)AB 边所在的直线上 (B)BC 边所在的直线上 (C)AC 边所在的直线上 (D)△ABC 的内部 解析:因为D 为边BC 的中点, 所以2PD u u u r =PB u u u r +PC u u u r=(1-λ)PA u u u r +CB u u u r=(1-λ)PA u u u r+PB u u u r -PC u u u r, 即2PC u u u r=(1-λ)PA u u u r, 故A,P,C 三点共线,即点P 在AC 边所在的直线上. 故选C.8.已知平面上不共线的四点O,A,B,C,若OA u u u r -4OB u u u r +3OCu u u r=0,则AB BCu u u r u u u r 等于( A )(A)3 (B)4 (C)5 (D)6 解析:由OA u u u r-4OB u u u r+3OC u u u r=0,得OA u u u r -OB u u u r =3(OB u u u r -OC u u u r ),即BA u u u r =3CB u u u r, 所以AB u u u r =3BC u u u r, 所以|AB u u u r |=3|BC u u u r|, 所以AB BCu u u r u u u r =3.故选A.。

10.1 向量及其运算

10.1 向量及其运算




负向量 (1) a 称为 a 的负向量,记为 a .




差运算 a 与 b 的和称为 a 与 b 的差,

记为 a b.
C

b

b
A

a

a b
B
C

b

D
a b

a b
A

a
B
三角形法则
平行四边形法则
向量满足下列运 算规律:
(1)
交换律

a b b a
a
b
(3)
Prj b a


a b



e
a

b
|a|
Prj a b


a b


e
b

a
|b|
例 1.设
a, b, c
是三个任意向量,若分别以OA, OB 和OC表示,
点P,Q, R, S 分别是线段 OA, AB, BC,CO 的中点.试分别
求出OP
,OQ ,OR,OS与a,
b,
c的关系式,从而推证
PQ

SR.

显然,OP

1 2
OA

1 2
a
,OS

1 2
OC

1 2
c

b
)


时, 则称

a


b
垂 直(正 交 ) ,记

a b.
2

定义

给定向量 a

2.向量及其运算

2.向量及其运算
9
设 a 为一向量, 与 a 的模相同而方向相反 的向量叫做 a 的负向量 , 记作 a.
两个向量 b 与 a 的差
a ba b a
b a b (a ).
B
O
b a
ba
A
三角不等式 a b a b, a b a b.
10
其中等号在 a 与 b 同向或反向时成立.
如图知a M 1 M 2 M 1 P M 1Q M 1 R ( x 2 x1 )i ( y2 y1 ) j ( z 2 z1 )k a x i a y j az k 其中向量a x i,a y j,a z k 分别称为向量a在x轴, y轴, z轴上的分向量,
z
R
P
M1

M2
Q
o
x
y
27
z
R
M1
由图分析可知
o
x
P


M2
Q
y
a y | M 1 M 2 | cos | a | cos
a x | M1 M 2 | cos | a | cos
az | M1 M 2 | cos | a | cos
2
向量也可用粗体字母表示, 如 a , i , v , F 等等, 向量还可用在上面 加箭头的书写体字母 表示, 如a , i , v , F 等等.
向量的大小叫做向 量的模.向量 M1 M 2、a、a 的模依次记作 M1 M 2 、 a、 a.
向量的模
单位向量
模等于1 的向量叫做单位向量 , 用ea 表示与 非零向量a同方向的单位向量.
§2 向量及其运算
向量及其线性运算

向量及线性运算

向量及线性运算


(a)

0.
[2]
减法
a

b

a

(b)

a

b
b
a
三角不等式
a

b
(1)
|
a

b
||
a
(2)
|
a

b
||
a
| |

| |
b b c
c a



a
b|

b|

a
(b ) b
b
2、向量与数的乘法
设 是一个数,向量a 与 的乘积a 规定为
(2)分配律:( )a a a
(a

b)

a


b
例1
化简
a

b

5

1
b

b

3a


a

b

5

1
b

2 b

3a
5

2
5

(1
3)a



1

5 2

1 5

5
b

2a
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6, M2M3 M3M1 , 原结论成立.

向量的运算法则公式

向量的运算法则公式

向量的运算法则公式1. 向量的加法。

向量的加法遵循以下法则:若有两个向量a和b,它们的加法表示为a + b,其结果为一个新的向量c。

c的每个分量等于a和b对应分量的和,即c = (a1 + b1, a2 + b2, ..., an + bn)。

2. 向量的减法。

向量的减法遵循以下法则:若有两个向量a和b,它们的减法表示为a b,其结果为一个新的向量c。

c的每个分量等于a和b对应分量的差,即c = (a1 b1, a2b2, ..., an bn)。

3. 向量的数量乘法。

向量的数量乘法遵循以下法则:若有一个向量a和一个标量k,它们的数量乘法表示为ka,其结果为一个新的向量b。

b的每个分量等于a对应分量乘以k,即b = (ka1, ka2, ..., kan)。

4. 向量的点积。

向量的点积遵循以下法则:若有两个向量a和b,它们的点积表示为a·b,其结果为一个标量c。

c等于a和b对应分量的乘积之和,即c = a1b1 + a2b2 + ... + anbn。

5. 向量的叉积。

向量的叉积遵循以下法则:若有两个三维向量a和b,它们的叉积表示为a×b,其结果为一个新的向量c。

c的每个分量分别为a和b的对应分量按照右手定则计算得出。

6. 向量的混合积。

向量的混合积遵循以下法则:若有三个三维向量a、b和c,它们的混合积表示为(a×b)·c,其结果为一个标量d。

d等于a、b和c构成的平行六面体的有向体积。

这些向量的运算法则是线性代数中的基本概念,它们在物理学、工程学、计算机图形学等领域中有着广泛的应用。

通过这些法则,可以对向量进行加法、减法、数量乘法、点积、叉积和混合积的运算,从而解决各种实际问题。

在实际应用中,向量的运算法则可以帮助我们描述物体的运动、力的作用、空间的几何关系等。

例如,在物理学中,利用向量的加法可以描述多个力合成的结果;利用向量的点积可以计算功和投影;利用向量的叉积可以描述力矩和磁场等。

向量的概念及其运算

向量的概念及其运算
O 为在坐标原点,终点A 坐标为 x, y ,则 x, y 称为 OA 的
坐标,记为 OA = x, y .
注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.
3.相等向量:长度相等且方向相同的向量. 向量可以自由平移,平移前后的向量相等.两向量
a 与 b 相等,记为 a b .
课堂练习:
4.正方形 PQRS 对角线交点为 M,坐标原点 O 不在正方形内部,
A 且

OP
=(0,3),

OS
=(4,0),则

RM
=(
)
(A)( 7 , 1 ) (B)( 7 , 1 ) (C)(7,4) (D)( 7 , 7 )
22
22
22



5.已 知 a (1,2),b x,1 ,且 a 2b 与 2a b 平 行,则 x 等 于
OA AB OB
实数与 向量的 乘积
三角形法则
两个向 量的数 量积


AB =λ a
λ ∈R

记 a =(x,y)

则 a =(λ x,λ y)
ab a b cos a,b 记 a (x1, y1),b (x2, y2)

则 a · b =x1x2+y1y2
向量的加减法,实数与向量的乘积,两个向量 的数量积运算.
当基底 i, j 是两个互相垂直的单位向量时,
就建立了平面直角坐标系.如图
a xi y j 一一对应(x, y)
⑴当向量起点在原点时,定义向量坐标
为终点坐标,即若 A(x,y),则 OA =(x,y);
⑵当向量起点不在原点时,向量 AB 坐标为终点坐标减

向量及其线性运算

向量及其线性运算
China Institute of Industrial Relations
中国劳动关系学院
高等数学
由图上可以看出
a = M 1 M 2 = M 1 B + BM 2 = M 1 A + AB + BM 2
而 M 1 A = P1 P2
R2 R1
M2 M1
A
B
k
AB = Q1Q2 BM 2 = R1 R2 ⇒
∵ a ≠ 0, 故 λ − µ = 0, 即 λ = µ .
China Institute of Industrial Relations
中国劳动关系学院
高等数学
此定理是建立数轴的理论依据 数轴: 数轴:点、方向、单位长度 方向、 点P 向量 OP = xi

O
1
x . P
i
x
实数 x
轴上点P的坐标为 的充分必要条件是 轴上点 的坐标为x的充分必要条件是 OP = xi . 的坐标为 另外 设a 0 表示与非零向量 a 同方向的单位向量, 同方向的单位向量, 按照向量与数的乘积的规定, 按照向量与数的乘积的规定, a 0 = a0 . a =| a | a |a| 上式表明: 上式表明:一个非零向量除以它的模的结果是一 个与原向量同方向的单位向量. 个与原向量同方向的单位向量
在 x 轴上的投影 的值
M2 M1
A
B
y2 − y1
P1 P2
k
Q1
Q2
为向量 M 1 M 2 在 y 轴上的投影 有向线段 R1 R2 的值 z2 − z1 为向量 M 1 M 2 依次记作 a x
i
o
j
y
x
在 z 轴 上的投影
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三个坐标面分别称为xOy 面, yOz面和zOx面.
•卦限 坐标面把空间分成八个部分, 每 一部分叫做卦限, 分别用字母I、II、 III、IV等表示.
首页
上页
返回
下页
结束

向量的坐标分解式
任给向量 r, 对应有点 M, 使 OM = r . 以OM为对角线、三条坐标轴为棱作长方体, 有

r = OM = OP+ PN+ NM = OP+ OQ+ OR ,


首页
上页
返回
下页
结束

四、利用坐标作向量的线性运算
设a=(ax, ay, az), b=(bx, by, bz), 则
ab=(axbx, ayby, azbz), a=(ax, ay, az).
提示: a=axi+ay j+azk, b=bxi+by j+bzk, a+b =(ax+bx)i+(ay+by)j+(az+bz)k,
首页 上页 返回 下页 结束 铃
2.向量与数的乘法 向量a与实数的乘积记作a, 规定a是一个向量, 它的模 |a|=|||a|, 它的方向当>0时与a相同, 当<0时与a相反. 当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
首页Leabharlann 上页返回下页结束

•向量的平行 两个非零向量如果它们的方向相同或相反 , 就称这两个 向量平行. 向量a与b平行, 记作a//b. 零向量认为是与任何向量都平行. •共线向量与共面向量 当两个平行向量的起点放在同一点时 , 它们的终点和公 共的起点在一条直线上. 因此, 两向量平行又称两向量共线.
•向量与数的乘积的运算规律 (1)结合律 (a)=(a)=()a; (2)分配律 (+)a=a+a; (a+b)=a+b. •向量的单位化 a 设a0, 则向量 是与a同方向的单位向量, 记为ea. |a | 于是a=|a|ea.
首页 上页 返回 下页 结束 铃
例1 例 1 在平行四边形 ABCD 中, 设 AB = a , AD = b . 试用
点 M 、向量 r 与三个有序 x 、 y 、 z 之间有一一对应的关系

M r = OM = xi + yj + zk (x, y, z) . •有序数x、y、z称为向量r的坐标, 记作r=(x, y, z);
•有序数x、y、z也称为点M的坐标, 记为M(x, y, z).
首页 上页 返回 下页 结束 铃
首页
上页
返回
下页
结束

一、向量概念
向量 既有大小, 又有方向的量叫做向量. 向量的表示法
•向量用一条有方向的线段(称为有向线段)表示.
→ •以A为起点、B为终点的有向线段所表示的向量记作AB. •向量可用粗体字母、 或加箭头的书写体字母表示.
例如, a、r、v、F 或 a 、 r 、 v 、 F .
OM - OA = (OB- OM ) , 1 OM = (OA+ OB) 从而 1+ x1 + x2 x1 + x2 x1 + x2 =( , , ), 1+ 1+ 1+ 这就是点M的坐标.
因此
首页 上页 返回 下页 结束 铃




五、向量的模、方向角、投影
对于轴上任一点 P, 必有唯一的实数 x, 使 OP =xi, 并且 并且轴上的点P与实数x有一一对应的关系: 点P实数x. 实数x称为轴上点P的坐标.
定理证明 首页 上页 返回 下页 结束 铃

三、空间直角坐标系
空间直角坐标系 在空间取定一点O和三个两两垂直的单位向量i、j、k, 就 确定了三条都以O为原点的两两垂直的数轴, 依次记为x轴(横 轴)、y轴(纵轴)、z轴(竖轴), 统称为坐标轴. 它们构成一个空 间直角坐标系, 称为Oxyz坐标系. z轴 说明: (1)通常把x轴和y轴配置在水 平面上, 而z轴则是铅垂线; (2) 数轴的的正向通常符合 右手规则.


a 和 b 表示向量 MA 、 MB 、 MC 、 MD , 其中 M 是平行四边 形对角线的交点.
解 由于平行四边形的对角线互相平分, 所以 于是




a + b =AC = 2AM = -2 MA , MA= - 1 (a + b) ; 2 MC = - MA= 1 (a + b) . 2
5x - 3 y = a 例 2 例 2 求解以向量为未知元的线性方程组 , 3x - 2 y = b 其中a=(2, 1, 2), b=(-1, 1, -2).
解 如同解二元一次线性方程组, 可得
x=2a-3b, y=3a-5b.
以a、b的坐标表示式代入, 即得 x=2(2, 1, 2)-3(-1, 1, -2) =(7, -1, 10), y=3(2, 1, 2)-5(-1, 1, -2) =(11, -2, 16).
•向量的模 向量的大小叫做向量的模.
向量 a、 a 、 AB 的模分别记为|a|、 | a | 、 |AB | . •单位向量 模等于1的向量叫做单位向量. •零向量
模等于 0 的向量叫做零向量, 记作 0 或 0 . 零向量的起点与终点重合, 它的方向可以看作是任意的.
首页 上页 返回 下页 结束 铃
设有k(k3)个向量, 当把它们的起点放在同一点时, 如果k 个终点和公共起点在一个平面上, 就称这k个向量共面.
首页
上页
返回
下页
结束

二、向量的线性运算
1.向量的加法
设有两个向量a与b, 平移向量, 使b的起点与a的终点重合, 则从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b.

向量的坐标分解式 任给向量r, 存在点M及xi、yj、zk, 使
则 r = OM = xi + yj + zk . •上式称为向量r的坐标分解式. • xi、yj、zk称为向量r沿三个坐标轴方向的分向量.
•有序数x、y、z称为向量r的坐标, 记作r=(x, y, z); •有序数x、y、z也称为点M的坐标, 记为M(x, y, z). •向量 r = OM称为点M关于原点O的向 径.
首页 上页 返回 下页 结束 铃
四、利用坐标作向量的线性运算
设a=(ax, ay, az), b=(bx, by, bz), 则
ab=(axbx, ayby, azbz), a=(ax, ay, az).
平行四边形法则
三角形法则
利用坐标判断两个向量的平行 设a=(ax, ay, az)0, b=(bx, by, bz), 因为 b//a b=a, 即 b//a (bx, by, bz)=(ax, ay, az ), 所以 b//a bx = by = bz . ax ay az
首页 上页 返回 下页 结束 铃


坐标轴上及坐标面上点的特征 • 坐标面上和坐标轴上的点, 其坐标各有一定的特征. 例如: 点M在yOz面上, 则x=0; 点M在zOx面上的点, y=0; 点M在xOy面上的点, z=0. 点M在x轴上, 则y=z=0; 点M在y轴上,有z=x=0; 点M在z轴上的点, 有x=y=0. 点M为原点, 则x=y=z=0.
1.向量的模与两点间的距离公式
设向量 r=(x, y, z), 作 OM = r , 则

r = OM = OP+ OQ+ OR , 按勾股定理可得
| r |=|OM |= |OP |2 + |OQ |2 + |OR |2 ,





由 OP = xi , OQ = yj , OR = zk , 有 |OP|=|x|, |OQ|=|y|, |OR|=|z|, 于是得向量模的坐标表示式
§7.1 向量及其运算
一、向量概念
二、向量的线性运算
三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向解、投影
首页
上页
返回
下页
结束

一、向量概念
向量 既有大小, 又有方向的量叫做向量. 向量的表示法
•向量用一条有方向的线段(称为有向线段)表示. 有向线段的长度表示方向的大小 , 有向线段的方向表示 向量的方向.
•自由向量 与起点无关的向量 , 称为自由向量 , 简称向量.
首页 上页 返回 下页 结束 铃




•向量的相等 如果向量a和b的大小相等, 且方向相同, 则说向量a和b是 相等的, 记为a=b.
相等的向量经过平移后可以完全重合.
首页
上页
返回
下页
结束

•向量的相等 如果向量a和b的大小相等, 且方向相同, 则说向量a和b是 相等的, 记为a=b.
>>>
首页
上页
返回
下页
结束

2.向量与数的乘法 向量a与实数的乘积记作a, 规定a是一个向量, 它的模 |a|=|||a|, 它的方向当>0时与a相同, 当<0时与a相反. 当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
AB = OB- OA =(x2, y2, z2)-(x1, y1, z1) =(x2-x1, y2-y1, z2-z1),



因为 - a + b = BD = 2 MD ,
相关文档
最新文档