应用时间序列分析报告实验报告材料
时间序列分析实验报告(3)
时间序列分析实验报告(3)《时间序列分析》课程实验报告⼀、上机练习(P124)1.拟合线性趋势12.79 14.02 12.92 18.27 21.22 18.8125.73 26.27 26.75 28.73 31.71 33.95data a;input gov_cons@@;time=intnx('year','1jan1981'd,_n_-1);format time year2.;t=_n_;cards;12.79 14.02 12.92 18.27 21.22 18.8125.73 26.27 26.75 28.73 31.71 33.95;proc gplot;plot gov_cons*time=1;symbol1c=black v=star i=join;run;proc autoreg;model gov_cons=t;output out=out p=forecast;proc gplot data=out;plot gov_cons*time=1 forecast*time=2/overlay haxis='1jan1981'd to '1jan1993'd by year;symbol2c=red v=none i=join w=2l=3;run;分析:由上图可得DW的统计量等于2.7269,R⽅等于0.9555,SBC的值为48.3900913,AIC的值为47.420278.⼀元线性模型的截距等于9.7086,系数等于1.9829,且P<0.0001,故拒绝原假设,存在显著的线性关系。
2.拟合⾮线性趋势1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95data b;input index@@; time=intnx('year','1jan1991'd,_n_-1);format time year2.;t=_n_;t2=t**2;cards;1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95;proc gplot;plot index*time=1;symbol1c=black v=star i=join;proc reg;model index=t t2;model index=t2;output out=out p=index_cup;proc gplot data=out;plot index*time=1 index_cup*time=2/overlay ; symbol2 c =red v =none i =join w =2 l =3; run ;分析:⽅差结果显⽰,8435.02=R ,说明因变量84.35%由模型确定,P<0.0001,所以模型显著。
应用时间序列分析-实验报告-
应用时间序列分析实验报告理学院统计11-1201111051026某某作业一:创建永久数据集。
程序:data sasuser.examplel_l;input time monyy7. price;format time monyy5.;cards;Jan2005 101Feb2005 82Mar2005 66Apr2005 35May2005 31Jun2005 7;run;proc print data=sasuser.examplel_l; run;结果:作业二:直接导入外部数据文件转换成SAS数据集。
第一步,建立一个Excel文件,并将其选择为要导入的外部数据,选择导入外部数据文件选项。
在菜单栏中,点击“文件”选项,下拉文件管理菜单,点击其中额输入类型选项。
第二步,选择要输入数据的类型,选择SAS软件默认的第一个数据类型即可。
选择Next选项,进行下一步。
第三步,指明该输入文件的路径,点中BROWSE选项,指明输入文件examplel-l.xls的路径,选择Next选项,进行下一步。
第四步,指定该文件转换成SAS数据集成后存放的数据库及数据集名。
excel数据如下:Obs time price1 13-Jan 1202 13-Feb 1173 13-Mar 1144 13-Apr 1105 13-May 1086 13-Jun 112运行结果:Obs time price1 JAN13 1202 FEB13 1173 MAR13 1144 APR13 1105 MAY13 1086 JUN13 112作业三:1.间隔函数程序:data example3_2;input price;logprice=log(price);time=intnx('month','01jan2014'd,_n_-1);format time monyy.;cards;35343533;proc print data=example3_2;run;结果:2.序列变换程序:data example3_3;input price;logprice=log(price);time=intnx('month','01jan2014'd,_n_-1); format time monyy.;cards;35353334;proc print data=example3_3; run;结果:3.建立子集 程序;data example3_4; set example3_3; keep time logprice;where time>=’01mar2014’d; proc print data=example3_4; run;作业四:若序列长度为100,前12个样本自相关系数如下:p1=0.02、p2=0.05、p3=0.10、p4=-0.02、p5=0.05、p6=0.01、p7=0.12、p8=-0.06、p9=0.08、p10=-0.05、p11=0.02、p12=-0.05。
第七章时间序列分析报告报告材料
第七章 时间序列分析 第一节 时间序列概述 一.时间序列的概念时间序列的概念:又称时间数列,就是把反映客观现象发展水平的统计指标数值,按时间的先后顺序排列,由此形成的数列叫时间数列(动态数列)。
构成要素:❖ 客观现象发展水平所属的时间 ❖ 客观现象发展水平的指标数值作用❖ 反映客观现象的发展变化及历史状况 ❖ 揭示客观现象的数量变化趋势 ❖ 为预测提供一些方法二.时间序列的种类时间序 列按表 现形式时期序列 相对数时间序列 平均数时间序列绝对数时间序列 时点序列时期序列与时点序列的区别三.时间序列的编制原则a)基本原则:数列中各项指标数值具有可比性b)指标数值涵盖的时间长短一致c)总体范围应当一样d)指标的经济内容应当相同e)计算方法和计算单位、价格一致现行价格:指产品在各个时间,地点、环节实现的价格。
可比价格:是为专门消除货币量中价格变动因素而设计的价格。
第二节时间序列水平指标一.发展水平:是指时间序列中每一个指标数值,又称为时间数列水平。
可表示为总量指标,相对指标与平均指标。
通分为最初水平、最末水平和中间水平。
二.平均发展水平:在时间序列中,把各个时期(或时点上)的指标数值加以平均求得的平均数,又称为序时平均数。
1.序时平均数与一般平均数的区别:❖从计算资料上看:前者是根据时间数列计算;后者是根据变量数列计算❖从说明的问题上看:前者将总体在不同时间上的时间差异抽象化,说明现象在一段时期内的平均发展水平;后者把整体各单位数量差异抽象化,反映总体在静态上的一般水平。
(一)总量指标时间序列序时平均数的计算1.时间序列序时平均数的计算2.时点序列序时平均数的计算连续时点序列的计算:①连续时点相等序列:采用简单算术平均数计算。
公式为:ā=∑a/n②连续时点不等序列:采用加权算术平均数计算。
公式为:ā=∑af / ∑f间断时点序列的计算:③间断时点相等序列:每隔一定时间登记一次,每次的间隔相等。
其计算方法间断时点不等序列:⑤(二) 相对指标时间序列与平均指标时间序列序时平均数的计算❖ 相对数时间序列:应先分清形成相对数的分子、分母数列的性质,同时视资料掌握程度,按“分子、分母分别求序时平均数,再将这两个序时平均数对比”的总原则。
《应用时间序列分析》期末上机实践报告
得分《应用时间序列分析》期末上机实践报告课程名称:应用时间序列分析《应用时间序列分析》期末课程上机报告要求六、(30分)实践题(另交3-10页的题目、程序和答案纸)要求:系统复习各章上机指导的相关内容,从问题出发,解决三个具体时间序列数据的分析处理全过程(包含:1、数据的背景和拟用到的处理方法,提供可以独立运行的SAS程序,程序的主要运行结果和结果的解读;2、每个学生都必做ARIMA过程的较完整运用,包括数据的输入、输出,时序图、自相关图、偏相关图,并建立成功的拟合模型;3、自由选择其它两个数据和用到自己熟悉的时间序列分析程序过程的处理方法(如趋势拟合、X11、GARCH模型等),但尽量不要三题都用同一个方法)。
、ARIMA模型数据来源:《应用时间序列分析》第5章习题5已知1867-1938年英国(英格兰及威尔士)绵羊的数量如表1所示(行数据),运用时间序列模型预测未来三年英国的绵羊数量。
2203236022542165202420782214229222072119 2119213721321955178517471818190919581892 19191853186819912111 21191991185918561924 1892191619681928189818501841182418231843 188019682029199619331805171317261752 1795 1717164815121338138313441384148415971686 17071640161116321775185018091653164816651627 1791(1)确定该序列的平稳性。
(2)选择适当模型,拟合该序列的发展。
(3)利用拟合模型预测1939-1945年英国绵羊的数量(1)平稳性检验建立临时数据集IhfOl data IhfOl;in put x@@; difx=dif(x);y=log(x); t=_n_; cards;220323602254216520242078 221422922207211921192137 213219551785174718181909 195818921919185318681991211121191991185918561924 189219161968192818981850184118241823184318801968 202919961933180517131726 175217951717164815121338 138313441384148415971686 170716401611163217751850 180916531648166516271791proc gplot data=lhf01;plot x*t difx*t y*t;symbol c=red i=joi n v=star; run;proc arima;iden tify var=x;run;输出时序图显示这是一个典型的非平稳序列。
时间序列报告精选
时间序列报告精选2020-11-17时间序列报告精选篇一:时间序列报告ARIMA在客货运输量预测的应用摘要:本次实验利用时间序列中ARIMA模型,建立了客货运输总量预测模型,模型确定为ARIMA(1,1,1)12和ARIMA(12,1,12)12,并对数据进行预测,通过AIC准则和SBC准则确定ARIMA(12,1,12)12为相对最优模型。
关键词:时间序列,ARIMA,AIC准则,SBC准则AbstractThe experiment applied the ARIMA model of the time series to formulate the prediction model of passenger and freight transport. With two deterministic models including ARIMA(1,1,1)12andARIMA(12,1,12)12 and data prediction, the experiment determined ARIMA(12,1,12)12as a relative optimization model by means of AIC criterion and SBC criterion.Keyword:time series, ARIMA,AIC,SBC1. 引言随着经济的高速发展,我国客货运总量数据也在逐年增高,对客货运总量数据的预测有利于制定未来运输的发展战略,合理利用资源,合理调度,使得流通更快捷便利。
2. 模型简介ARIMA模型定义ARIMA 模型(Autoregressive Integrated Moving Average model)是研究时间序列的重要方法,由自回归模型(简称AR模型)、滑动平均模型(简称MA模型)和使之成为平稳序列所做的差分次数(阶数)为基础“混合”构成。
ARIMA模型表示为:(1iL)(1L)Xt(1iLi)t idi1i1pqp0,p0E(t)0,Var(t)2,E(ts)0,stExst0,st其中L是滞后算子。
应用时间序列实验报告
河南工程学院课程设计《时间序列分析课程设计》学生姓名学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年6 月2 日目录1. 实验一澳大利亚常住人口变动分析 (1)1.1 实验目的 (1)1.2 实验原理 (1)1.3 实验内容 (2)1.4 实验过程 (3)2. 实验二我国铁路货运量分析 (8)2.1 实验目的 (8)2.2 实验原理 (8)2.3 实验内容 (9)2.4 实验过程 (10)3. 实验三美国月度事故死亡数据分析 (14)3.1 实验目的 (14)3.2 实验原理 (15)3.3 实验内容 (15)3.4 实验过程 (16)课程设计体会 (19)1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。
表1-1(1)判断该序列的平稳性与纯随机性。
(2)选择适当模型拟合该序列的发展。
(3)绘制该序列拟合及未来5年预测序列图。
1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。
1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。
(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。
(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。
1.3 实验内容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。
如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。
对自相关图进行检验时,可以用SAS 系统ARIMA 过程中的IDENTIFY 语句来做自相关图。
计量时间序列实验报告
一、实验背景时间序列分析是统计学和数据分析领域中一个重要的分支,广泛应用于经济、金融、气象、医学等领域。
通过对时间序列数据的分析,我们可以了解现象的发展变化规律,预测未来趋势,为决策提供科学依据。
本实验旨在通过实际操作,学习时间序列分析的基本方法,并运用相关软件进行时间序列分析。
二、实验目的1. 理解时间序列的基本概念和特点;2. 掌握时间序列数据的收集和整理方法;3. 学会运用时间序列分析方法对数据进行处理和分析;4. 培养运用相关软件进行时间序列分析的能力。
三、实验内容1. 数据收集本次实验采用我国某城市近10年的居民消费水平数据作为研究对象。
数据来源于国家统计局。
2. 数据整理对收集到的数据进行整理,剔除异常值和缺失值,将数据转换为适合时间序列分析的形式。
3. 时间序列分析(1)描述性分析对整理后的数据进行描述性统计分析,包括均值、标准差、最大值、最小值等。
(2)平稳性检验运用ADF(Augmented Dickey-Fuller)检验方法对时间序列数据进行平稳性检验。
(3)自相关性分析运用自相关函数(ACF)和偏自相关函数(PACF)对时间序列数据进行自相关性分析。
(4)模型选择根据自相关性分析结果,选择合适的模型对时间序列数据进行拟合。
本次实验采用ARIMA模型。
(5)模型参数估计运用最小二乘法估计模型参数,包括自回归项、移动平均项和差分阶数。
(6)模型检验运用残差分析、AIC准则等对模型进行检验。
(7)预测根据拟合的模型,对未来一段时间内的居民消费水平进行预测。
四、实验结果与分析1. 描述性分析根据描述性统计分析,我国某城市近10年的居民消费水平呈上升趋势,但波动较大。
2. 平稳性检验运用ADF检验方法对时间序列数据进行平稳性检验,结果显示该时间序列在5%的显著性水平下是平稳的。
3. 自相关性分析运用ACF和PACF对时间序列数据进行自相关性分析,发现自回归项和移动平均项的阶数分别为1和1。
时序分析实验报告
时间序列分析实验报告1、实验内容1.1问题描述用Eviews软件确定该序列的平稳性,根据数据的性质特征对其进行分析并适当模型拟合该序列的发展,最后利用所选取的拟合模型预测1939-1945年英国绵羊的数量。
2、判别原数据的平稳性2.1.画时序图在Eviews中建立workfile为1867-1938年的年度数据,通过file→ import 把数据导入Eviews中。
变量名命名为x。
在workfile中打开数据x,点击series:x窗口中的view→graph→line,则会出x的现时序图1。
时序图1从时序图1中可以看出数据为非平稳的,且大致呈现下降趋势。
因此为经一步说明该数据的平稳性,做相关分析。
2.2.自相关分析继续在该时序图窗口中点击view→correlogram,在弹出的correlogram Specification 的对话框中的lags to include中输入12,点击OK。
则x的自相关图2如下。
自相关图2从自相关图的autocorrelation的一栏可以看出自相大部分都关超出了(至少第三个自相关值要落入两倍的标准差中则为平稳的)两倍的标准差。
则可以进一步认为该数据为非平稳的。
为作出最终的判断,对数进行单位根检验。
2.3.单位根检验同样在自相关图2的窗口中点击view→unit root test在弹出的unit root test 的对话空中的automatic selection的下拉框中选择Schwarz Info,并在Include in test equation中选择intercept点击ok则有如下结果输出单位根表3。
单位根表3从表3中以看所有的ADF值没有都小于值临界值,因此结合时序图和自相关图可以判断出该数据为非平稳的。
3、对数据进行平稳化3.1.对数据做一阶差分在代码窗口中输入genr dx=d(x)并按回车键则在workfile窗体中新生成变量为dx的数据该数据即为x的一阶差分。
运用stata进行时间序列分析报告报告材料
运用stata进行时间序列分析1 时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。
在一些大规模的联立方程中,情况更是如此。
而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。
从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。
本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96.dta, clear list in 1/20 gen Lgnp = L.gnp tsset date list in 1/20 gen Lgnp = L.gnp 2)检查是否有断点:tsreport, report use gnp96.dta, clear tsset date tsreport, report drop in 10/10 list in 1/12 tsreport, report tsreport, report list /*列出存在断点的样本信息*/ 3)填充缺漏值:tsfill tsfill tsreport, report list list in 1/12 4)追加样本:tsappend use gnp96.dta, clear tsset date list in -10/-1 sum tsappend , add(5)/*追加5个观察值*/ list in -10/-1 sum 2 5)应用:样本外预测:predict reg gnp96 L.gnp96 predict gnp_hat list in -10/-1 6)清除时间标识:tsset, clear tsset, clear 1.2变量的生成与处理1)滞后项、超前项和差分项help tsvarlist use gnp96.dta, clear tsset date gen Lgnp = L.gnp96 /*一阶滞后*/ gen L2gnp = L2.gnp96 gen Fgnp = F.gnp96 /*一阶超前*/ gen F2gnp= F2.gnp96 gen Dgnp = D.gnp96 /*一阶差分*/ gen D2gnp = D2.gnp96 list in 1/10 list in -10/-1 2)产生增长率变量:对数差分gen lngnp = ln(gnp96)gen growth = D.lngnp gen growth2 = (gnp96-L.gnp96)/L.gnp96 gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/10 1.3日期的处理日期的格式help tsfmt 基本时点:整数数值,如-3, -2, -1, 0, 1, 2, 3 .... 1960年1月1日,取值为0;3 显示格式:定义含义默认格式%td 日%tdDlCY %tw 周%twCY!ww %tm 月%tmCY!mn %tq 季度%tqCY!qq %th 半年%thCY!hh %ty 年%tyCY 1)使用tsset 命令指定显示格式use B6_tsset.dta, clear tsset t, daily list use B6_tsset.dta, clear tsset t, weekly list 2)指定起始时点cap drop month generate month = m(1990-1)+ _n - 1 format month %tm list t month in 1/20 cap drop year gen year = y(1952)+ _n - 1 format year %ty list t year in 1/20 3)自己设定不同的显示格式日期的显示格式%d (%td)定义如下:%[-][t]d<描述特定的显示格式> 具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l n d j h q w _ . , :- / ' !c C Y M L N D J W 定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写)4 M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年(1 or 2)q 一年中的第几季度(1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格). display a period(句号), display a comma(逗号):display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !!to display an exclamation point)样式1:Format Sample date in format ----------------------------------- %td07jul1948 %tdM_d,_CY July 7, 1948 %tdY/M/D 48/07/11 %tdM-D-CY 07-11-1948 %tqCY.q 1999.2 %tqCY:q 1992:2 %twCY,_w 2010, 48 ----------------------------------- 样式2:Format Sample date in format ---------------------------------- %d 11jul1948 %dDlCY 11jul1948 %dDlY 11jul48 %dM_d,_CY July 11, 1948 %dd_M_CY 11 July 1948 %dN/D/Y 07/11/48 %dD/N/Y 11/07/48 %dY/N/D 48/07/11 %dN-D-CY 07-11-1948 ---------------------------------- clear set obs 100 5 gen t = _n + d(13feb1978)list t in 1/5 format t %dCY-N-D /*1978-02-14*/ list t in 1/5 format t %dcy_n_d /*1978 2 14*/ list t in 1/5 use B6_tsset, clear list tsset t, format(%twCY-m)list 4)一个实例:生成连续的时间变量use e1920.dta, clear list year month in 1/30 sort year month gen time = _n tsset time list year month time in 1/30 generate newmonth = m(1920-1)+ time - 1 tsset newmonth, monthly list year month time newmonth in 1/30 1.4图解时间序列1)例1:clear set seed 13579113 sim_arma ar2, ar(0.7 0.2)nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _t tsline ar2 ma2 * 亦可采用twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t 2)例2:增加文字标注sysuse tsline2, clear tsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in))/// ttext(3470 28nov2002 "thanks" /// 3470 25dec2002 "x-mas", orient(vert))6 3)例3:增加两条纵向的标示线sysuse tsline2, clear tsset day tsline calories, tline(28nov2002 25dec2002)* 或采用twoway line 命令local d1 = d(28nov2002)local d2 = d(25dec2002)line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd))ttitle("Date (2002)")tsline calories, tlabel(, format(%td))二、ARIMA 模型和SARMIA模型ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
时间序列分析实验报告
时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。
本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。
二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。
数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。
三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。
然后,对数据进行了平稳性检验。
采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。
如果数据不平稳,则需要进行差分处理,使其达到平稳状态。
2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。
通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。
3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。
通过对参数的估计值进行分析,判断模型的合理性和稳定性。
4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。
为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。
四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。
同时,数据的波动范围也较大,存在一定的随机性。
2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。
实验报告关于时间序列(3篇)
第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。
二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。
2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。
3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。
4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。
5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。
四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。
2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。
3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。
4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。
5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。
五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。
4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。
时间序列分析综合分析实验报告
时间序列分析综合分析一、数据处理1)将GDP、XF、TZ分别除以价格指数P,生成的新序列分别命名为GDPP、XFP、TZP;2)将GDPP、XFP、TZP分别取对数,生成的新序列分别命名为LNGP、LNXF、LNTZ。
GDPP XFP TZP LNGP LNXF LNTZ36.45218 22.39100 8.125000 3.596001127 3.108659092 2.09494572839.86829 25.70559 8.479882 3.685581382 3.246708623 2.13769656341.51255 27.17900 8.318721 3.725995742 3.302444448 2.11850857243.57808 29.49287 8.565062 3.774554379 3.384148535 2.14769141646.59485 31.79983 10.75524 3.84149005 3.459460792 2.3753935251.29007 34.45159 12.25450 3.937497238 3.539555013 2.50589311260.41494 39.15346 15.28691 4.10123648 3.667488828 2.72699662968.96061 44.03509 19.39893 4.233535542 3.784986764 2.96521801973.59870 46.86246 22.35387 4.298627429 3.847217018 3.1069993880.44469 49.74099 25.31175 4.387569912 3.906829301 3.23126867584.52402 52.61439 26.72175 4.437035744 3.962989659 3.28547798380.99533 50.29300 21.01191 4.394391459 3.917865836 3.0450894486.49872 55.87107 20.87338 4.460129584 4.023046752 3.03847478997.52547 62.96649 24.99777 4.580113539 4.142602647 3.218786455113.1343 72.25241 33.93574 4.728575596 4.280165751 3.524468774 129.1103 80.19004 47.86635 4.860667128 4.384399321 3.868412738 141.8710 86.23474 50.25686 4.9549182 4.457073101 3.917146983 150.6942 92.58806 50.43915 5.015252638 4.528160164 3.920767727 163.1600 102.1621 53.29960 5.094731424 4.626561068 3.975928912 180.6128 111.3850 57.70731 5.196355522 4.712992731 4.05538388 191.5208 119.0039 65.52757 5.254996575 4.779156447 4.182470914 203.8690 128.1956 68.78963 5.31747773 4.853557395 4.231053026 224.2573 140.7689 75.32654 5.412794198 4.947119387 4.321832591 246.5060 152.6777 84.88481 5.507386243 5.028329109 4.441295142 271.4741 163.7030 99.15637 5.603866753 5.098053725 4.59669811 305.8927 175.7988 125.7448 5.723234327 5.169340292 4.834254148 350.1246 192.0856 154.6236 5.858288972 5.257940918 5.040993537 395.7295 213.4726 191.3224 5.980730991 5.363508624 5.253960035 458.3523 239.1335 233.5418 6.127638174 5.477022164 5.453361187 539.7306 266.4305 278.2089 6.291070117 5.585113461 5.628372175 607.4657 293.5387 333.0027 6.409295749 5.682009584 5.808150591 653.1499 316.6765 429.6897 6.481806726 5.757880709 6.063063293 752.2103 348.6389 518.7874 6.623015975 5.85403664 6.251494075 835.6018 423.9604 534.3949 6.728152177 6.049640113 6.281135017二、平稳时间序列建模1)将LNTZ进行差分,生成的序列命名为DLNTZ;2)根据DLNTZ序列的自相关图判断该序列的平稳性;DLNTZ是平稳的,因为自相关图迅速衰减。
时间序列实训报告
一、实训基本情况(一)实训时间:20xx年x月x日至20xx年x月x日(二)实训单位:XX大学经济与管理学院(三)实训目的:通过本次时间序列实训,使学生掌握时间序列分析的基本原理和方法,提高学生运用时间序列模型解决实际问题的能力。
二、实训内容1. 时间序列的基本概念和性质2. 时间序列的平稳性检验3. 时间序列的分解4. 时间序列的预测方法5. 时间序列模型的应用三、实训过程1. 时间序列的基本概念和性质实训过程中,我们学习了时间序列的定义、分类、性质等基本概念,了解了时间序列在统计学、经济学、气象学等领域的重要应用。
2. 时间序列的平稳性检验我们学习了如何对时间序列进行平稳性检验,包括ADF检验、KPSS检验等,以及如何处理非平稳时间序列。
3. 时间序列的分解我们学习了时间序列分解的基本方法,包括趋势分解、季节分解、周期分解等,并运用这些方法对实际数据进行分解。
4. 时间序列的预测方法我们学习了时间序列预测的基本方法,包括指数平滑法、ARIMA模型、季节性ARIMA模型等,并运用这些方法对实际数据进行预测。
5. 时间序列模型的应用我们选取了实际数据,运用所学的时间序列模型进行预测,并分析了预测结果。
四、实训心得1. 理论与实践相结合通过本次实训,我深刻认识到理论联系实际的重要性。
在实训过程中,我们不仅学习了时间序列分析的基本原理和方法,还运用所学知识解决实际问题,提高了自己的实际操作能力。
2. 团队合作与沟通在实训过程中,我们分组进行讨论和协作,共同完成实训任务。
这使我意识到团队合作和沟通在解决问题中的重要性。
3. 严谨的科研态度在实训过程中,我们对待数据和分析结果都要严谨,力求准确。
这使我明白了科研工作中严谨态度的重要性。
4. 拓宽知识面本次实训让我了解了时间序列分析在其他领域的应用,拓宽了我的知识面。
五、实训总结通过本次时间序列实训,我掌握了时间序列分析的基本原理和方法,提高了运用时间序列模型解决实际问题的能力。
时间序列建模实验报告
一、实验背景随着信息技术的飞速发展,时间序列数据在各个领域都得到了广泛应用。
时间序列分析作为统计学和数学的一个重要分支,旨在研究随机数据序列所遵从的统计规律,以揭示现象的发展变化规律和预测未来行为。
本实验旨在通过时间序列建模,对某一现象的发展变化规律进行预测和分析。
二、实验目的1. 熟悉时间序列分析的基本原理和方法;2. 掌握时间序列建模的常用模型,如ARIMA、季节分解、指数平滑等;3. 运用时间序列模型对实际数据进行预测和分析,提高数据分析和处理能力。
三、实验数据本次实验数据为某地区近五年的GDP数据,包括2015年至2019年的年度GDP数值。
数据来源于国家统计局网站,具有较好的代表性和可靠性。
四、实验步骤1. 数据预处理首先,对实验数据进行清洗和整理,包括去除异常值、缺失值等。
然后,对数据进行归一化处理,使其符合时间序列建模的要求。
2. 时间序列平稳性检验在进行时间序列建模之前,需要检验序列的平稳性。
常用的平稳性检验方法有ADF (Augmented Dickey-Fuller)检验和KPSS(Kwiatkowski-Phillips-Schmidt-Shin)检验。
本实验采用ADF检验对GDP序列进行平稳性检验。
3. 时间序列建模根据平稳性检验结果,选择合适的时间序列模型进行建模。
本实验分别采用以下模型进行建模:(1)ARIMA模型:ARIMA模型是一种广泛应用的时间序列预测模型,由自回归(AR)、移动平均(MA)和差分(I)三个部分组成。
本实验选取ARIMA(1,1,1)模型进行建模。
(2)季节分解模型:季节分解模型适用于具有季节性的时间序列数据。
本实验采用STL(Seasonal-Trend decomposition using Loess)方法对GDP序列进行季节分解,并分别对趋势项和季节项进行建模。
(3)指数平滑模型:指数平滑模型是一种简单、实用的预测方法,适用于短期预测。
本实验采用Holt-Winters指数平滑模型进行建模。
时间序列分析综合分析实验报告
时间序列分析综合分析一、数据处理1)将GDP、XF、TZ分别除以价格指数P,生成的新序列分别命名为GDPP、XFP、TZP;2)将GDPP、XFP、TZP分别取对数,生成的新序列分别命名为LNGP、LNXF、LNTZ。
GDPP XFP TZP LNGP LNXF LNTZ36.45218 22.39100 8.125000 3.596001127 3.108659092 2.09494572839.86829 25.70559 8.479882 3.685581382 3.246708623 2.13769656341.51255 27.17900 8.318721 3.725995742 3.302444448 2.11850857243.57808 29.49287 8.565062 3.774554379 3.384148535 2.14769141646.59485 31.79983 10.75524 3.84149005 3.459460792 2.3753935251.29007 34.45159 12.25450 3.937497238 3.539555013 2.50589311260.41494 39.15346 15.28691 4.10123648 3.667488828 2.72699662968.96061 44.03509 19.39893 4.233535542 3.784986764 2.96521801973.59870 46.86246 22.35387 4.298627429 3.847217018 3.1069993880.44469 49.74099 25.31175 4.387569912 3.906829301 3.23126867584.52402 52.61439 26.72175 4.437035744 3.962989659 3.28547798380.99533 50.29300 21.01191 4.394391459 3.917865836 3.0450894486.49872 55.87107 20.87338 4.460129584 4.023046752 3.03847478997.52547 62.96649 24.99777 4.580113539 4.142602647 3.218786455113.1343 72.25241 33.93574 4.728575596 4.280165751 3.524468774 129.1103 80.19004 47.86635 4.860667128 4.384399321 3.868412738 141.8710 86.23474 50.25686 4.9549182 4.457073101 3.917146983 150.6942 92.58806 50.43915 5.015252638 4.528160164 3.920767727 163.1600 102.1621 53.29960 5.094731424 4.626561068 3.975928912 180.6128 111.3850 57.70731 5.196355522 4.712992731 4.05538388 191.5208 119.0039 65.52757 5.254996575 4.779156447 4.182470914 203.8690 128.1956 68.78963 5.31747773 4.853557395 4.231053026 224.2573 140.7689 75.32654 5.412794198 4.947119387 4.321832591 246.5060 152.6777 84.88481 5.507386243 5.028329109 4.441295142 271.4741 163.7030 99.15637 5.603866753 5.098053725 4.59669811 305.8927 175.7988 125.7448 5.723234327 5.169340292 4.834254148 350.1246 192.0856 154.6236 5.858288972 5.257940918 5.040993537 395.7295 213.4726 191.3224 5.980730991 5.363508624 5.253960035 458.3523 239.1335 233.5418 6.127638174 5.477022164 5.453361187 539.7306 266.4305 278.2089 6.291070117 5.585113461 5.628372175 607.4657 293.5387 333.0027 6.409295749 5.682009584 5.808150591 653.1499 316.6765 429.6897 6.481806726 5.757880709 6.063063293 752.2103 348.6389 518.7874 6.623015975 5.85403664 6.251494075 835.6018 423.9604 534.3949 6.728152177 6.049640113 6.281135017二、平稳时间序列建模1)将LNTZ进行差分,生成的序列命名为DLNTZ;2)根据DLNTZ序列的自相关图判断该序列的平稳性;DLNTZ是平稳的,因为自相关图迅速衰减。
时间序列分析实验报告 (4)
基于matlab的时间序列分析在实际问题中的应用时间序列分析(Time series analysis)是一种动态数据处理的统计方法。
该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。
时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象和其他现象之间的内在的数量关系及其变化规律性,而且运用时间序列模型可以预测和控制现象的未来行为,以达到修正或重新设计系统使其达到最优状态。
时间序列是指观察或记录到的一组按时间顺序排列的数据。
如某段时间内。
某类产品产量的统计数据,某企业产品销售量,利润,成本的历史统计数据;某地区人均收入的历史统计数据等实际数据的时间序列。
展示了研究对象在一定时期内的发展变化过程。
可以从中分析寻找出其变化特征,趋势和发展规律的预测信息。
时间序列预测方法的用途广泛,它的基本思路是,分析时间序列的变化特征,选择适当的模型形式和模型参数以建立预测模型,利用模型进行趋势外推预测,最后对模型预测值进行评价和修正从而得到预测结果。
目前最常用的拟合平稳序列模型是ARMA模型,其中AR和MA模型可以看成它的特例。
一.时间序列的分析及建模步骤(1)判断序列平稳性,若平稳转到(3),否则转到(2)。
平稳性检验是动态数据处理的必要前提,因为时间序列算法的处理对象是平稳性的数据序列,若数据序列为非平稳,则计算结果将会出错。
在实际应用中,如某地区的GDP,某公司的销售额等时间序列可能是非平稳的,它们在整体上随着时间的推移而增长,其均值随时间变化而变化。
通常将GDP等非平稳序列作差分或预处理。
所以获得一个时间序列之后,要对其进行分析预测,首先要保证该时间序列是平稳化的。
平稳性检验的方法有数据图、逆序检验、游程检验、自相关偏相关系数、特征根、参数检验等。
本实验中采用数据图法,数据图法比较直观。
(2)对序列进行差分运算。
一般而言,若某序列具有线性趋势,则可以通过对其进行一次差分而将线性趋势剔除掉。
时间序列实验报告
时间序列实验报告时间序列实验报告引言时间序列分析是一种重要的统计方法,用于研究数据随时间变化的规律性。
在本次实验中,我们将通过对一组时间序列数据的分析,探索其中的趋势、季节性和周期性,并尝试建立合适的模型进行预测。
数据收集与描述我们选择了一组关于某公司销售额的时间序列数据作为实验对象。
这组数据包含了从2010年到2020年的每个月的销售额,共计120个观测值。
首先,我们对数据进行了初步的描述性统计分析。
在整体上,销售额呈现出逐年增长的趋势。
平均每个月的销售额从2010年的100万元增长到2020年的200万元。
然而,在这个总体趋势之下,我们还发现了一些明显的季节性和周期性变化。
季节性分析为了更好地理解季节性变化,我们对数据进行了季节性分解。
通过应用移动平均法,我们得到了季节性指数和趋势指数的估计值。
结果显示,销售额在每年的第一季度相对较低,在第二季度有所回升,在第三季度达到峰值,然后在第四季度略有下降。
这种季节性变化可能与消费者购买行为的变化有关,例如春节期间的消费增加和年底的促销活动。
周期性分析除了季节性变化外,我们还观察到了一些周期性的波动。
为了检测这些周期性变化,我们使用了自相关函数和偏自相关函数的分析方法。
根据自相关函数的图表,我们发现销售额存在一个明显的周期为12个月的循环。
这可能与公司的年度销售策略或市场的季节性需求有关。
此外,我们还发现了一些较小的周期性变化,例如3个月和6个月。
模型建立与预测基于对数据的分析,我们选择了ARIMA模型作为预测模型。
ARIMA模型是一种常用的时间序列分析方法,它结合了自回归(AR)、差分(I)和滑动平均(MA)的特性。
通过对数据进行差分,我们使得序列变得平稳,然后通过自相关函数和偏自相关函数的分析,确定了ARIMA模型的参数。
最终,我们建立了一个ARIMA(1,1,1)模型,并使用该模型进行了未来12个月的销售额预测。
预测结果显示,未来12个月的销售额将继续保持增长的趋势,但增速可能会逐渐放缓。
应用时间序列eviews实验报告
应用时间序列eviews实验报告时间序列分析是数据分析领域中一个重要的分析方法,主要用于研究某个变量随时间变化的趋势或周期性波动模式,具有非常广泛的应用领域,如经济学、金融学、社会学、医学等领域。
Eviews是一个经济学研究软件,具有强大的时间序列分析功能,可以用于时间序列的建模、预测等操作。
本文将对Eviews在时间序列分析实验中的应用进行介绍和分析。
一、实验介绍本次实验使用的数据为GDP数据,区间为1995-2019年,数据来源为国家统计局。
实验目的为使用Eviews进行时间序列分析,研究GDP的时间序列特征,建立合适的模型进行预测。
在实验中,我们将使用Eviews进行ADF检验、白噪声检验、建立ARIMA模型等操作,以充分展示Eviews在时间序列分析中的应用。
二、实验步骤1、数据导入首先打开Eviews软件,新建一个工作文件,导入GDP数据(见下图)。
2、ADF检验ADF检验是检验时间序列平稳性的常用方法,其原理是检验时间序列是否具有单位根。
在Eviews中进行ADF检验的操作如下:依次选择"View-Graph"-"Augmented Dickey-Fuller Test"菜单,弹出窗口后选择要分析的序列名称以及置信水平,单击"OK"按钮,即可看到ADF检验结果(见下图)。
由图可知,GDP序列的ADF检验结果为-3.0949,小于95%置信水平下的临界值-2.889,说明序列是平稳的。
3、白噪声检验4、建立ARIMA模型接下来我们将使用Eviews建立ARIMA模型,对GDP序列进行预测。
首先,在Eviews中进行序列差分,将序列转为平稳序列。
操作如下:差分后的GDP序列如下图所示:我们可以看到,差分后的序列已基本平稳。
接下来,我们可以通过ACF和PACF图查找ARIMA的参数,找到最佳的ARIMA模型进行预测。
操作如下:由图可知,差分后的GDP序列的ACF和PACF图中,第一个序列的ACF和PACF都很显著,因此我们可以考虑建立AR(1) 模型。