【典型题】数学高考模拟试卷(带答案)

合集下载

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。

A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。

所以A∩B={x|x=6k,k∈Z},故选B。

2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。

根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。

故选A。

3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。

又因为S6-S3=24,得到a4+a5+a6=24。

由等差数列的性质,a3+a6=a4+a5。

将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。

解方程组a1+a3=12和a4+a5=16,得到a4=8。

故选B。

二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。

再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。

5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。

【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。

三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。

【高三上数学】浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)

【高三上数学】浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)

浙江省宁波市2024届高三上学期高考模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知12i,1i z a z b =−=+(,R a b ∈,i 为虚数单位),若12z z ⋅是实数,则( ) A .10ab −= B .10ab += C .0a b −= D .0a b +=【答案】A 【分析】根据复数乘法及复数的虚部为0计算即可.【详解】因为12(i)(1i)=()(1)i z z a b a b ab =−++−⋅+是实数, 所以10ab −=, 故选:A2.设集合R U =,集合()22{|20},{|log 1}M x x x N x y x =−≥==−,则{|2}x x <=( )A .M N ⋃B .()UN MC .U ()M ND .()UMN【答案】B【分析】化简集合,M N ,根据集合的交集、并集、补集求解.【详解】因为()22{|20}(,0][2,),{|log 1}(,1)M x x x N x y x =−≥=−∞+∞==−=−∞,所以(,1)[2,)M N ⋃=−∞+∞,()U(,1)(0,2)(,2){|2}Nx x M −∞==−∞=<,U 1(,0)][2,)(()[,)[]10,,MN −∞+∞=+∞=+∞∞−,因为(,0]M N =−∞,所以()U(0,)M N =+∞,故选:B3.若,a b 是夹角为60︒的两个单位向量,a b λ+与32a b −+垂直,则λ=( ) A .18B .14C .78D .74【答案】B【分析】由题意先分别算出22,,a b a b ⋅的值,然后将a b λ+与32a b −+垂直”等价转换为)()032a b a b λ−⋅=++,从而即可求解.【详解】由题意有22221,1,cos 60a a b b a b a b ︒====⋅=⋅=又因为a b λ+与32a b −+垂直,所以()()()22132323322a ab a a b b b λλλλ+⋅=−+−⋅+=−+⨯−+1202λ−+=,解得14λ=.B.4.已知数列{}n a 为等比数列,且55a =,则( ) A .19a a +的最小值为50 B .19a a +的最大值为50 C .19a a +的最小值为10 D .19a a +的最大值为105.已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x ⎛⎫=+=−=+ ⎪⎝⎭的零点分别为,,a b c ,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>由图象可知,a c <,所以a 故选:D6.设O 为坐标原点,12,F F 为椭圆22:142x y C +=的焦点,点P 在C 上,OP =,则12cos F PF ∠=( )A .13−B .0C .13D .3122PF PF PO +=,即可得【详解】如下图所示:不妨设12,PF m PF n ==,根据椭圆定义可得由余弦定理可知1cos 2F PF mn ∠又因为122PF PF PO +=,所以()()22122PF PF PO +=,又22122cos 1m n mn F PF ∠+=+,解得2210m n +=;()22216210n m n mn mn =+−=−=,即3mn =; 所以可得21281081cos 263m n F PF mn ∠+−===;7.已知二面角P AB C −−的大小为3π4,球O 与直线AB 相切,且平面PAB 、平面ABC 截球O 的两个截面圆的半径分别为1O 半径的最大可能值为( )AB .C .3 D的最大值即为MNE 外接圆的OMOE O =,同理可知,AB ⊥平面为MNE外接圆的一条弦,半径OE的最大值即为MNE外接圆的直径,即为π=时,4为MNE外接圆的一条弦,的最大值即为MNE 外接圆的直径,即为的半径的最大可能值为108.已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(,)a b 有( ) A .0个 B .1个 C .2个 D .无数个【点睛】关键点点睛:解题的关键是首先得到()()()212232252f f f ⎧−≤≤⎪−≤≤⎨⎪−≤≤⎩,进一步由不等式的性质通过分析即可求解.二、多选题9.已知5250125(12)x a a x a x a x −=++++,则下列说法正确的是( )A .01a =B .380a =−C .123451a a a a a ++++=−D .024121a a a ++=【答案】ABD【分析】根据二项展开式通式以及赋值法即可得到答案. 【详解】对于 A , 取 0x =, 则 01a = ,则A 正确;对B ,根据二项式展开通式得5(12)x −的展开式通项为()55C 12r r rx −−,即()5C 2rr r x ⋅−⋅,其中05,N r r ≤≤∈所以3335C (2)80a =−=−,故B 正确;对C ,取1x =,则0123451a a a a a a +++++=−, 则12345012a a a a a a ++++=−−=−,故C 错误;对D ,取=1x −,则50123453243a a a a a a −+−+−==,将其与0123451a a a a a a +++++=−作和得()0242242a a a ++=, 所以024121a a a ++=,故D 正确; 故选:ABD.10.设O 为坐标原点,直线20x my m +−−=过圆22:860M x y x y +−+=的圆心且交圆于,P Q 两点,则( )A .5PQ =B .12m =C .OPQ △的面积为D .OM PQ ⊥【答案】BCOPQS=)0,0与由直线方程11.函数()sin (0)f x x ωω=>在区间22⎡⎤−⎢⎥⎣⎦,上为单调函数,且图象关于直线2π3x =对称,则( )A .将函数()f x 的图象向右平移2π3个单位长度,所得图象关于y 轴对称 B .函数()f x 在[]π2π,上单调递减 C .若函数()f x 在区间14π(,)9a 上没有最小值,则实数a 的取值范围是2π14π(,)99− D .若函数()f x 在区间14π(,)9a 上有且仅有2个零点,则实数a 的取值范围是4π(,0)3−【答案】AB 【分析】12.已知函数:R R →,对任意满足0x y z ++=的实数,,x y z ,均有()()()3333f x f y f z xyz ++=,则( )A .(0)0f =B .(2023)2024f =C .()f x 是奇函数D .()f x 是周期函数三、填空题13.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点()1,3P ,则()sin πα+= .14.已知圆台的上、下底面半径分别为1和2,体积为14π3,则该圆台的侧面积为 .15.第33届奥运会将于2024年7月26日至8月11日在法国巴黎举行.某田径运动员准备参加100米、200米两项比赛,根据以往赛事分析,该运动员100米比赛未能站上领奖台的概率为12,200米比赛未能站上领奖台的概率为310,两项比赛都未能站上领奖台的概率为110,若该运动员在100米比赛中站上领奖台,则他在200米比赛中也站上领奖台的概率是 . )()()()710A B P A P B P A B =+−=,进而求)()3110A B P A B =−=,再利用条件概率公式求出答案【详解】设在200米比赛中站上领奖台为事件)310=,()12P B =,()110P A B =,)()()()31171021010A B P A P B P A B =+−=+−=)()3110A B P A B =−=, )()()3310152P AB B P B ===. 故答案为:3516.已知抛物线Γ:22y x =与直线:4l y x =−+围成的封闭区域中有矩形ABCD ,点A ,B 在抛物线上,点C ,D 在直线l 上,则矩形对角线BD 长度的最大值是 .【点睛】关键点点睛:本题的关键是合理设参,并通过数形结合求出参数的范围也是很重要的,至于求出目标函数表达式只需仔细计算即可.四、解答题17.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知12cos cA b =+.(1)证明:2A B =; (2)若3sin 5B =,13c =,求ABC 的面积. 的值,再利用三角形的面积公式可求得ABC 的面积sin A B =,, ABCS=18.已知数列{}n a 满足11a =,且对任意正整数m ,n 都有2.m n n m a a a mn +=++(1)求数列{}n a 的通项公式; (2)求数列{(1)}n n a −的前n 项和n S .()(112135212n n n n a a n −+−++−=++++−=,符合上式,所以2n a n =.)()2222221234(1)n n ⎡⎤−++−+++−−+⎣⎦(()()321121n n n n +−+++−=, 为奇数时,若n =,则21n n n n S S n −−=+−=时,满足1S 19.如图,已知正方体1111ABCD A B C D −的棱长为4,点E 满足3DE EA =,点F 是1CC 的中点,点G 满足135DG GD =(1)求证:,,,B E G F 四点共面;(2)求平面EFG 与平面1A EF 夹角的余弦值.,即可得出结论;,证明//EG BF 即可;,AH FH ,因为F 由3DE EA =知DE EA ,由135DG GD =知DG GH =所以DE DGEA GH=,所以/AH , 所以EG //BF ,所以,G F 四点共面;法2:如图,以D 为原点,建立空间直角坐标系⎭因为()4,0,2,3,0,BF EG ⎛=−=− ⎝,所以34EG BF =,所以//EG BF ,,,,B E G F 四点共面;)由(1)知,()()()11,4,0,1,0,4,3,4,2BE A E EF =−−=−−=−, 设平面EFG 的法向量为(),,m x y z =,m BE m BF ⎧⋅=⎪⎨⋅=⎪⎩,即40420x y x z −−=⎧⎨−+=⎩,可取()4,1,8m =−,平面1A EF 的法向量(),,n a b c =,则有1403420n A E a c n EF a b c ⎧⋅=−−=⎪⎨⋅=−+=⎪⎩,可取()8,7,2n =−设平面EFG 与平面1A EF 夹角为993m n m nθ⋅==⨯EFG 与平面 20.已知函数()()2e 4e 2x xf x a a x =+−−(e 为自然对数的底数,e 2.71828=).(1)讨论()f x 的单调性;(2)证明:当1a >时,()7ln 4.f x a a >−− 【答案】(1)答案见解析 (2)证明见解析21.某中学在运动会期间,随机抽取了200名学生参加绳子打结计时的趣味性比赛,并对学生性别与绳子打结速度快慢的相关性进行分析,得到数据如下表:(1)根据以上数据,能否有99%的把握认为学生性别与绳子打结速度快慢有关?(2)现有n ()*N n ∈根绳子,共有2n 个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.(i )当3n =,记随机变量X 为绳子围成的圈的个数,求X 的分布列与数学期望; (ii )求证:这n 根绳子恰好能围成一个圈的概率为()()212!1!.2!n n n n −⋅−附:()()()()22(),.n ad bc K n a b c d a b c d a c b d −==+++++++)(2422212C 2n n ⋅==))21!2!!n n −=本题第二小问第二步的解决关键是利用分步计数原理得到数列的递推式,从而利用数列的累乘法求得结果点(),0()t t a >的直线l 与双曲线C 的右支交于P ,Q 两点,M 为线段PQ 上与端点不重合的任意一点,过点M 且与1l 平行的直线分别交另一条渐近线2l 和C 于点,T N (1)求C 的方程; (2)求MP MQ OT MN的取值范围.试卷第21页,共21页。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

高三数学模拟考试卷(附答案解析)

高三数学模拟考试卷(附答案解析)

高三数学模拟考试卷(附答案解析)一、单选题(本大题共4小题,共20分。

在每小题列出的选项中,选出符合题目的一项)1.已知p:sinx=siny,q:x=y,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则此双曲线的渐近线方程为()A. y=±3xB. y=±2xC. y=±2xD. y=±x3.函数y=f(x)是定义域为R的奇函数,且对于任意的x1≠x2,都有f(x1)−f(x2)x1−x2<1成立.如果f(m)>m,则实数m的取值集合是()A. {0}B. {m|m>0}C. {m|m<0}D. R4.已知数列{an}满足a1+a2+⋯+an=n(n+3),n∈N*,则an=()A. 2nB. 2n+2C. n+3D. 3n+1二、填空题(本大题共12小题,共54分)5.不等式|2x+1|+|x−1|<2的解集为______.6.函数f(x)=x+9x(x>0)的值域为______.7.函数f(x)=sinx+cosx(x∈R)的最小正周期为______.8.若an为(1+x)n的二项展开式中x2项的系数,则n→+∞lim ann2=______.9.在所有由1,2,3,4,5这五个数字组成的无重复数字的五位数中,任取一个数,则取出的数是奇数的概率为______.10.若实数x,y满足x+y≤4y≤3xy≥0,则2x+3y的取值范围是______.11.已知向量a,b满足|a|=2,|b|=1,|a+b|=3,则|a−b|=______.12.已知椭圆C:x29+y2b2=1(b>0)的左、右两个焦点分别为F1、F2,过F2的直线交椭圆C于A,B两点.若△F1AB是等边三角形,则b的值等于______.13.已知等比数列{an}的前n项和为Sn,公比q>1,且a2+1为a1与a3的等差中项,S3=14.若数列{bn}满足bn=log2an,其前n项和为Tn,则Tn=______.14.已知A,B,C是△ABC的内角,若(sinA+i⋅cosA)(sinB+i⋅cosB)=12+32i,其中i为虚数单位,则C 等于______.15.设a∈R,k∈R,三条直线l1:ax−y−2a+5=0,l2:x+ay−3a−4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为.16.设函数f(x)=x2−1,x≥a|x−a−1|+a,x<a,若函数f(x)存在最小值,则a的取值范围为______.三、解答题(本大题共5小题,共76分。

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。

答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。

2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。

答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。

3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。

答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。

4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。

答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。

5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。

答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。

二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。

答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。

解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。

解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。

解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。

根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。

如果来回共耗时8小时,求行程的总长度。

2024年高考数学合格性考试仿真模拟卷02(全解全析)

2024年高考数学合格性考试仿真模拟卷02(全解全析)

2024年北京市第二次普通高中学业水平合格性考试数学仿真模拟试卷02一、选择题(本大题共20题,每小题3分,共计60分。

每小题列出的四个选项中只有一项是最符合题目要求的)1.设集合{}{}1,0,1,21,2,3M N =-=,,则M N ⋂=()A .{}1,2B .{}1,2,3C .{}1,0,1,2-D .{}1,0,1,2,3-【答案】A【分析】根据交集运算求解.【详解】由题意可得:M N ⋂={}1,2.故选:A.2.命题:“2,340x x x ∀∈-+<R ”的否定是()A .2,340x x x ∃∉-+≥RB .2,340x x x ∃∈-+>RC .2,340x x x ∃∈-+≥RD .2,340x x x ∀∉-+≥R 【答案】C【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“2,340x x x ∀∈-+<R ”的否定为:“2,340x x x ∃∈-+≥R ”.故选:C.3.设32i z =-+,则在复平面内z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限A B .1C .2D .3,,2n x =,若//m n ,则()A .1BC .D .AB .2C .2D .12A .12B .32C .1D .2【答案】C【分析】根据两角和的正弦公式求得正确答案.【详解】()sin30cos60cos30sin60sin 3060sin901︒︒+︒︒=︒+︒=︒=.故选:C8.要得到π3sin()6y x =+的图象只需将3sin y x =的图象()A .向左平移π6个单位B .向右平移π6个单位C .向左平移π2个单位D .向右平移π2个单位【答案】A【分析】根据给定条件,利用图象的平移变换求解即得.A .2B .1C .0D .2-【答案】D【分析】令()0f x =,求出方程的解,即可得到函数的零点.【详解】解:令()0f x =,即20x +=,解得2x =-,所以函数()2f x x =+的零点为2-;故选:D10.不等式24120x x +-<的解集为()A .{}62x x -<<B .{}26x x -<<C .{}62x x -<<-D .{}25x x <<2A .2B .3C .1D .-3【答案】B【分析】直接化简即可.【详解】由322log 8log 23==.故选:B.12.若函数()1y k x b =-+在()∞∞-+,上是增函数,则().A .1k >B .1k <C .1k <-D .1k >-【答案】A【分析】根据函数是增函数,求解参数范围.【详解】因为()1y k x b =-+在()-∞+∞,上是增函数,则10k ->,即1k >.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .45-B .45C.15D .15-A .()3f x x =+B .2()3f x x =+C .3()f x x =D .1()f x x=16.已知函数()56,0f x x x ⎧+≥=⎨+<⎩,若()6f a =,则=a ()A .0B .2C .3-D .2或3【答案】B【分析】由题意分类讨论0a ≥,a<0,解方程可求解a .【详解】当0a ≥时,则()26f a a a =+=,解得:2a =或3a =-(舍去)当0a <时,则()566f a a =+=,解得:0a =(舍去)综上所述:2a =故选:B.17.已知事件M 表示“3粒种子全部发芽”,事件N 表示“3粒种子都不发芽”,则M 和N ()A .是对立事件B .不是互斥事件C .互斥但不是对立事件D .是不可能事件【答案】C【分析】利用互斥事件和对立事件的定义求解即可.【详解】事件M 表示“3粒种子全部发芽”,事件N 表示“3粒种子都不发芽”,所以事件M 和事件N 不会同时发生,是互斥事件,因为3粒种子可能只发芽1粒,所以事件M 和事件N 可以都不发生,则M 和N 不是对立事件.故选:C18.若0x >,则9x x+有()A .最小值6B .最小值8C .最大值8D .最大值319.一组数据:1,1,3,3,5,5,7,7,,x y ,其中,x y 为正整数,且x y ≠.若该组数据的40%分位数为2.5,则该组数据的众数为()A .1B .3C .5D .7人,进行理论知识和实践技能两项测试(每项测试结果均分为A B C 、、三等),取得各等级的人数如下表:实践技能等级理论知识等级AB C A m124B 20202Cn65已知理论知识测试结果为A 的共40人.在参加测试的100人中,从理论知识测试结果为A 或B ,且实践技能测试结果均为C 的人中随机抽取2人,则这2人理论知识测试结果均为A 的概率是()A .35B .25C .12D .34【答案】B【分析】由题知理论知识测试结果为A ,且实践技能测试结果为C 的有4人,记为,,,A B C D ,理论知识测试结果为B ,且实践技能测试结果为C 的有2人,记为,a b ,再根据古典概型列举基本事件,求解概率即可.【详解】解:由题知理论知识测试结果为A 的共40人,故12440m ++=,解得24m =,21.已知幂函数()f x x α=的图象过点()3,9P ,则α=【答案】2【分析】将点()3,9P 代入函数()f x x α=,即可求解.【详解】因为幂函数()f x x α=的图象过点()3,9P ,所以()339f α==,解得2α=.故答案为:2.22.能说明“若a b >,则11a b<”为真命题的一组,a b 的值依次为=a ;b =.1111则该直三棱柱的体积为.【答案】24【分析】根据直三棱柱的体积公式直接求解即可..以下函数中,图象经过第二象限的函数有①.1y x-=②.ln()y x =-③.23y x =④.exy =25.(7分)已知函数()sin 2f x x =+.(1)求函数()f x 的最小正周期;(2)当x ∈[0,2π]时,求函数()f x 的最大值及取得最大值时x 的值.分别是PA ,PB 的中点,求证:(1)//MN 平面ABCD ;(2)CD ⊥平面PAD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线性质和线面平行判定定理可证;(2)利用线面垂直的性质可知PA CD ⊥,然后由矩形性质和线面垂直的判定定理可证.【详解】(1)因为M ,N 分别是PA ,PB 的中点,所以//MN AB .又因为MN ⊄平面ABCD ,AB ⊂平面ABCD ,所以//MN 平面ABCD .(2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,因为四边形ABCD 是矩形,所以CD AD ⊥.又AD PA A ⋂=,,AD PA ⊂平面PAD ,所以CD ⊥平面PAD .27.(7分)阅读下面题目及其解答过程,并补全解答过程.已知函数()2()f x x b b =-+∈R .(Ⅰ)当0b =时,判断函数()f x 的奇偶性;(Ⅱ)求证:函数()f x 在R 上是减函数.解答:(Ⅰ)当0b =时,函数()f x 是奇函数.理由如下:因为()2f x x b =-+,所以当0b =时,()f x =①.因为函数()f x 的定义域是R ,所以x ∀∈R ,都有x -∈R .所以()2()2f x x x -=--=.所以()f x -=②.所以函数()f x 是奇函数.(Ⅱ)证明:任取12,x x ∈R ,且12x x <,则③.因为()()11222,2f x x b f x x b =-+=-+,所以()()()()121222f x f x x b x b -=-+--+=④.所以⑤.所以()()12f x f x >.所以函数()f x 在R 上是减函数.以上解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的,并填写在答题卡的指定位置.空格序号选项①A .2x -B .2x ②A .()f x B .()f x -③A .120x x -<B .120x x ->④A .()122x x -B .()122x x --⑤A .()()120f x f x -<B .()()120f x f x ->【答案】①A ;②B ;③A ;④B ;⑤B .【分析】根据选项一一判断即可.【详解】①中,当0b =时,()22f x x b x =-+=-,故选:A ;②中,()()2()2f x x x f x -=--==-,故选:B ;③中,12x x <,则120x x -<,故选:A ;④中,()()()()()1212121222222f x f x x b x b x x x x -=-+--+=-+=--,故选:B ;⑤中,()()()12122f x f x x x -=--,因为120x x -<,所以()()120f x f x ->,故选:B .28.(7分)对于正整数集合{}()*12,,,,3n A a a a n n =⋅⋅⋅∈≥N ,如果去掉其中任意一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“平衡集”.(1)判断集合{}2,4,6,8,10Q =是否是“平衡集”并说明理由;(2)求证:若集合A 是“平衡集”,则集合A 中元素的奇偶性都相同;(3)证明:四元集合{}1234,,,A a a a a =,其中1234a a a a <<<不可能是“平衡集”.【答案】(1){}2,4,6,8,10Q =不是“平衡集”,利用见解析(2)证明见解析(3)证明见解析【分析】(1)根据定义直接判断即可得到结论.(2)设12n a a a M ++⋯+=,由“平衡集”定义可知(1i M a i -=,2,⋯,)n 为偶数,所以(1i a i =,2,⋯,)n 的奇偶性相同.(3)依次去掉1a ,2a 可得12a a =,显然与12a a <矛盾,所以集合1{A a =,2a ,3a ,4}a 不可能是“平衡集”.【详解】(1)集合{}2,4,6,8,10Q =不是“平衡集”,理由如下:当去掉1或5或9时,满足条件,当去掉4时,21068+≠+,不满足条件,当去掉8时,21046+≠+,不满足条件,所以集合{}2,4,6,8,10Q =不是“平衡集”.(2)设集合1{A a =,2a ,⋯,}n a ,12n a a a M ++⋯+=,由于集合A 是“平衡集”,设去掉(N )i a i *∀∈,则{}12i A A A a =⋃⋃,其中12A A =∅ ,且12,A A 中的元素和相等,不妨设1A 中的元素和为,N n n ∈,所以i 2M n a =+,12(i M n a i -==,2,⋯,)n 为偶数,(1i a i ∴=,2,⋯,)n 的奇偶性相同,方可保证()i M a -一直为偶数,即集合A 中元素的奇偶性都相同.(3)若集合1{A a =,2a ,3a ,4}a 是“平衡集”,且1234a a a a <<<,去掉1a ,则234a a a +=,去掉2a ,则134a a a +=,12a a ∴=,显然与12a a <矛盾,∴集合1{A a =,2a ,3a ,4}a 不可能是“平衡集”.。

【典型题】数学高考试卷带答案

【典型题】数学高考试卷带答案

【典型题】数学高考试卷带答案一、选择题1.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对3.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③ 4.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<< 5.若满足sin cos cos A B C a b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形C .等腰直角三角形D .有一个内角为30的等腰三角形 6.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( ) ξ0 1 2 P 12p - 12 2pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2 B .3 C .5 D .68.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( )A .43y x =±B .34y x C .35y x =± D .53y x =± 9.在下列区间中,函数()43x f x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭ 10.函数32()31f x x x =-+的单调减区间为A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)11.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .252412.函数y =2x sin2x 的图象可能是A .B .C .D .二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.15.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.16.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 17.复数()1i i +的实部为 .18.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.19.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________.20.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.三、解答题21.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.22.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.23.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.24.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?25.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.2.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x坐标相同,而y、z坐标互为相反数,所以两点关于x轴对称.考点:空间两点间的距离.3.A解析:A【解析】【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.4.C解析:C【解析】【分析】分别作出角 的正弦线、余弦线和正切线,结合图象,即可求解.【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<.故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.5.C解析:C【解析】【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状.【详解】 由正弦定理可知sin sin sin A B C a b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==. 所以45B C ==.所以180454590A =--=.所以ABC ∆为等腰直角三角形.故选C.【点睛】本题主要考查了正弦定理解三角形,属于基础题.6.D解析:D【解析】【分析】先求数学期望,再求方差,最后根据方差函数确定单调性.【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++,1(0,1)2∈,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().n n ni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑ 7.B解析:B【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可.【详解】结合题意可知,设22,,,MF x NF x MN ===则 则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得c e a == 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.A解析:A【解析】 【分析】 依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =,又直线PF 2与以C 的实轴为直径的圆相切,所以2OM PF ⊥, 所以222MF c a b =-= 由双曲线定义可得:212PF PF a -=,所以222PFc a =+, 所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+ 整理得:2b a c =+,即:2b a c -=将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题. 9.C解析:C【解析】【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增, 且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】 本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.10.D解析:D【解析】【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间.【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<,所以函数的单调减区间为(0,2),故本题选D.【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.11.C解析:C【解析】由算法流程图知s =0+12+14+16=1112.选C. 12.D解析:D【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择. 详解:令()2sin 2x f x x =, 因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B; 因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.15.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或0 11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.16.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个解析:3+【解析】21a b +=,则1111223+3b a a b a b a b a b +=++=+≥+()()11a b+的最小值为3+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.17.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.18.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.19.2【解析】试题分析:因为四边形是正方形所以所以直线的方程为此为双曲线的渐近线因此又由题意知所以故答案为2【考点】双曲线的性质【名师点睛】在双曲线的几何性质中渐近线是其独特的一种性质也是考查的重点内容解析:2 【解析】试题分析:因为四边形OABC 是正方形,所以45AOB ∠=︒,所以直线OA 的方程为y x =,此为双曲线的渐近线,因此a b =,又由题意知22OB =,所以22222(22)a b a a +=+=,2a =.故答案为2.【考点】双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.20.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴解析:【解析】 【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.三、解答题21.(1)见解析;(2)33- 【解析】 【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系Fxyz .由(1)及已知可得22A ⎛⎫ ⎪⎪⎝⎭,2P ⎛ ⎝⎭,2,1,02B ⎛⎫ ⎪ ⎪⎝⎭,22C ⎛⎫- ⎪ ⎪⎝⎭. 所以2222PC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0CB =,2222PA ⎛=- ⎝⎭,()0,1,0AB =.设(),,n x y z =是平面PCB 的法向量,则0,0,n PC n CB ⎧⋅=⎨⋅=⎩即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2n =--.设(),,m x y z =是平面PAB 的法向量,则0,0,m PA m AB ⎧⋅=⎨⋅=⎩即220,220.x z y -=⎨⎪=⎩可取()1,0,1m =. 则3cos ,n m n m n m ⋅==-, 所以二面角A PB C --的余弦值为33- 【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面: ①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.22.(Ⅰ)59[,]22;(Ⅱ)1(,2[,)2-∞-⋃+∞).【解析】【分析】【详解】试题分析:(Ⅰ)先用零点分段法将()f x表示分段函数的形式,然后再求定义域;(Ⅱ)利用函数图象求解.试题解析:(Ⅰ)72,3()34{1,3427,4x xf x x x xx x-<=-+-=->,它与直线2y=交点的横坐标为52和92,∴不等式()2()g x f x=-的定义域为59[,]22.(Ⅱ)函数1y ax=-的图象是过点(0,1)-的直线,结合图象可知,a取值范围为1(,2)[,)2-∞-⋃+∞.考点:1、分段函数;2、函数的定义域;3、函数的图象.23.(1)证明见解析;(26【解析】【分析】(1)证明1AA CD⊥,CD AD⊥,推出CD⊥平面11AA D D,得到CD AE⊥,证明AE ED⊥,即可证明AE⊥平面ECD;(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值. 【详解】(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱, ∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥, 又CD AD ⊥,1AA AD A =,∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥, ∵1AA AD ⊥,1AA AD =, ∴11AA D D 是正方形,∴AE ED ⊥, 又CDED D =,∴AE ⊥平面ECD .(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D , ∴()0,2,2E ,∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==,设平面EAC 的法向量为(),,n x y z =,则·0·0n AC n AE ⎧=⎨=⎩,即240220x y y z +=⎧⎨+=⎩,不妨取()2,1,1n =--,则直线1A C 与平面EAC 所成角的正弦值为4446=63666n AC n AC-+-==. 【点睛】本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题. 24.(1)12; (2)40; (3)选B 款订餐软件. 【解析】【分析】⑴运用列举法给出所有情况,求出结果 ⑵由众数结合题意求出平均数⑶分别计算出使用A 款订餐、使用B 款订餐的平均数进行比较,从而判定 【详解】(1)使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家共有1000.006106⨯⨯=个,分别记为甲,,,,,,a b c d e从中随机抽取3个商家的情况如下:共20种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{}{},,c d c e 甲,甲,,{},d e 甲,,{},,a b c ,{},,a b d ,{},,a b e ,{},,a c d ,{},,a c e ,{},,a d e ,{},,b c d ,{},,b c e ,{},,b d e ,{},,c d e .甲商家被抽到的情况如下:共10种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{},c d 甲,,{},c e 甲,,{},d e 甲,记事件A 为甲商家被抽到,则()101202P A ==. (2)依题意可得,使用A 款订餐软件的商家中“平均送达时间”的众数为55,平均数为150.06250.34350.12450.04550.4650.0440⨯+⨯++⨯+⨯+⨯=. (3)使用B 款订餐软件的商家中“平均送达时间”的平均数为150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=< 所以选B 款订餐软件. 【点睛】本题主要考查了频率分布直方图,平均数和众数,古典概率等基础知识,考查了数据处理能力以及运算求解能力和应用意识,属于基础题. 25.(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD =, 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD ,平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.。

2024年河北高考数学模拟试卷及答案

2024年河北高考数学模拟试卷及答案

2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。

【模拟测试】高考数学检测试卷(附答案解析)

【模拟测试】高考数学检测试卷(附答案解析)
A. B. C. D.
[答案]B
[解析]
[分析]过点 作 ,垂足为点 ,设线段 交抛物线 于点 ,求出点 的坐标,设点 ,则 ,由已知可得出 ,求出 的值,可得出点 的坐标,利用抛物线的定义可求得 的值.
[详解]过点 作 ,垂足为点 ,设线段 交抛物线 于点 ,易知点 ,
将 代入 ,可得 ,不妨取点 ,
C.当 时,圆锥 外接球表面积为
D.当 时,棱长为 的正四面体在圆锥 内可以任意转动
[答案]ACD
[解析]
[分析]根据圆锥的侧面积可得出 ,利用圆锥的侧面展开图与余弦定理可判断A选项;计算出过顶点 和两母线的截面三角形的最大面积,可判断B选项的正误;根据几何关系列等式求出圆锥 的外接球的半径,结合球体的表面积公式可判断C选项的正误;计算出圆锥 的内切球半径以及棱长为 的正四面体的外接球半径,可判断D选项的正误.
[详解]解: ,所以选项A正确;
当 时, 是增函数,所以当 时,函数的值域为 ,由于函数是偶函数,所以函数的值域为 .所以选项B正确;
当 时, 是增函数,又函数的周期是4,所以 在 上为增函数,所以选项C错误;
令 ,所以 ,由于函数的周期为4,所以 , ,所以 在 上有6个零点,所以该选项错误.
故选:AB
所以,点 在蒙日圆上,故蒙日圆的方程为 ,
因为 ,可得 .
对于A选项,蒙日圆圆心到直线 的距离为 ,
所以,直线 与蒙日圆相切,A对;
对于B选项, 的蒙日圆的方程为 ,B错;
对于C选项,由椭圆的定义可得 ,则 ,
所以, ,
因为 ,直线 的方程为 ,
点 到直线 的距离为 ,
所以, ,
当且仅当 时,等号成立,C对;
A. B. C. D.

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)本试卷共19题。

全卷满分120分。

考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。

高三数学试卷模拟题及答案

高三数学试卷模拟题及答案

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若f(x)在区间[1,2]上的最大值为f(1),则f(x)在区间[1,2]上的单调性为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 若等差数列{an}的前n项和为Sn,且S3 = 12,S6 = 36,则该数列的公差d为()A. 2B. 3C. 4D. 63. 下列各式中,正确的是()A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) = cosαcosβ - sinαsinβC. tan(α + β) = tanαtanβD. cot(α + β) = cotαcotβ4. 已知函数g(x) = 2x^3 - 3x^2 + 4,若g'(x) > 0,则g(x)的增区间为()A. (-∞, 1)和(1, +∞)B. (-∞, 1)和(1, 2)C. (-∞, 2)和(2, +∞)D. (-∞, 2)和(2, 1)5. 已知直线l的方程为2x + 3y - 6 = 0,若直线l与圆x^2 + y^2 = 9相切,则圆心到直线l的距离d为()A. 3B. 2C. √5D. √26. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,则数列{an + 1}的通项公式为()A. an + 1 = 2nB. an + 1 = 2n - 1C. an + 1 = 2n + 1D. an + 1 = 2n - 27. 若复数z = a + bi(a,b∈R),且|z| = 1,则z的共轭复数z的实部为()A. aB. -aC. bD. -b8. 已知函数f(x) = log2(x + 1),则f(x)的值域为()A. (0, +∞)B. (1, +∞)C. (-∞, +∞)D. (-∞, 0)9. 若函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1, 3),则a,b,c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 310. 已知数列{an}的前n项和为Sn,且S4 = 24,S5 = 36,则数列{an}的通项公式an为()A. an = 6B. an = 6nC. an = 6n - 1D. an = 6n + 1二、填空题(每题5分,共50分)11. 若函数f(x) = x^2 - 4x + 4在区间[1,3]上的最大值为3,则f(x)在区间[1,3]上的最小值为______。

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。

1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。

6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。

高三数学模拟试卷及答案

高三数学模拟试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^2 - 2ax + 1,若f(x)的图像关于x = a对称,则a的值为()A. 0B. 1C. 2D. 无法确定2. 下列函数中,在定义域内单调递增的是()A. y = x^3B. y = x^2C. y = -x^2D. y = x^3 + 3x^23. 若等差数列{an}的公差为d,首项为a1,则第n项an等于()A. a1 + (n - 1)dB. a1 - (n - 1)dC. a1 + ndD. a1 - nd4. 在△ABC中,若a=3,b=4,c=5,则sinA的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若log2x + log2y = 1,则x和y的取值范围是()A. x > 0, y > 0B. x > 0, y ≤ 0C. x ≤ 0, y > 0D. x ≤ 0, y ≤ 06. 已知函数f(x) = x^3 - 3x + 2,若f(x)在区间(-∞, +∞)上单调递增,则a 的取值范围是()A. a < 0B. a > 0C. a = 0D. a ≠ 07. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点Q的坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)8. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹是()A. 实轴B. 虚轴C. 圆心在原点,半径为1的圆D. 直线y = x9. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第n项an等于()A. 2 3^(n-1)B. 2 3^nC. 2^n 3D. 2^n / 310. 若函数f(x) = ax^2 + bx + c在x = 1时取得最小值,则a,b,c之间的关系是()A. a > 0, b = 0, c < 0B. a > 0, b ≠ 0, c < 0C. a < 0, b = 0, c >0 D. a < 0, b ≠ 0, c > 0二、填空题(本大题共10小题,每小题5分,共50分)11. 若等差数列{an}的前n项和为Sn,且S5 = 25,S9 = 45,则S13 = _______。

高三数学模拟考试卷及答案

高三数学模拟考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 函数f(x) = 2x^3 - 3x^2 + 4x + 1在区间[1, 2]上的零点个数为:A. 0B. 1C. 2D. 32. 若复数z满足|z-1| = |z+1|,则复数z在复平面内的几何意义是:A. 实部为0B. 虚部为0C. 到原点的距离为2D. 到x轴的距离为23. 下列各式中,正确的是:A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. sin^2x + cot^2x = 14. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S5 = 21,则首项a1为:A. 2B. 3C. 4D. 55. 已知函数f(x) = ax^2 + bx + c(a≠0)的图象开口向上,且与x轴的两个交点分别为(-1, 0)和(3, 0),则a、b、c的关系是:A. a + b + c = 0B. a - b + c = 0C. -a + b + c = 0D. -a - b + c = 06. 若平面α上的直线l与平面β所成的角为θ,平面α与平面β所成的角为β,则下列关系式中正确的是:A. θ = βB. θ + β = 90°C. θ = 90° - βD. θ = 90° + β7. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列关系式中正确的是:A. a^2 = b^2 + c^2 - 2bccosAB. b^2 = a^2 + c^2 - 2accosBC. c^2 = a^2 + b^2 - 2abcosCD. a^2 = b^2 + c^2 + 2bccosA8. 下列函数中,在区间(0, +∞)上单调递减的是:A. y = 2^xB. y = log2xC. y = x^2D. y = x^39. 已知向量a = (2, -1),向量b = (-3, 2),则向量a·b的值为:A. 5B. -5C. 0D. 710. 下列不等式中,正确的是:A. log2(3) > log2(2)B. log3(3) < log3(2)C. log2(2) < log2(3)D. log3(2) < log2(3)二、填空题(本大题共5小题,每小题10分,共50分)11. 若函数f(x) = x^3 - 3x^2 + 2x + 1的导数f'(x) = 0的解为x1、x2,则f(x)的极值点为______。

1. 《2024年高考数学模拟试题及答案》

1. 《2024年高考数学模拟试题及答案》

1. 《2024年高考数学模拟试题及答案》一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x |-2 < x < 3},B ={x | x² 5x + 4 <0},则A ∩ B =()A {x | 1 < x < 3}B {x |-2 < x < 1}C {x | 1 < x < 4}D {x |-2 < x < 4}2、复数 z =(1 + i)(2 i)在复平面内对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限3、已知向量 a =(1, 2),b =(m, -1),若 a ⊥ b,则 m =()A -2B 2C -1/2D 1/24、某中学高一年级有学生 1000 人,高二年级有学生 800 人,高三年级有学生 600 人,现采用分层抽样的方法从该校抽取一个容量为 n的样本,若从高二年级抽取了 80 人,则 n 的值为()A 200B 240C 280D 3205、函数 f(x) = log₂(x² 4x + 3)的单调递增区间是()A (∞, 1)B (∞, 2)C (2, +∞)D (3, +∞)6、若直线 l₁:ax + 2y + 6 = 0 与直线 l₂:x +(a 1)y + a² 1= 0 平行,则 a =()A -1B 2C -1 或 2D 17、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 2,S₃= S₅,则公差 d =()A -2B 0C 2D 48、已知圆 C:(x 1)²+(y 2)²= 4 与直线 l:x y + 1 = 0 相交于 A,B 两点,则弦长|AB| =()A 2√2B 2√3C 4D 69、一个几何体的三视图如图所示,则该几何体的体积为()(正视图和侧视图是等腰三角形,底边为 4,高为 4;俯视图是边长为 4 的正方形)A 32B 64C 128/3D 256/310、设函数 f(x) =sin(ωx +φ)(ω > 0,|φ| <π/2)的最小正周期为π,且f(π/8) =√2/2,则()A f(x)在(0, π/2)上单调递减B f(x)在(π/8, 3π/8)上单调递增C f(x)在(0, π/2)上单调递增D f(x)在(π/8, 3π/8)上单调递减11、已知函数 f(x) = x³ 3x,若过点 M(2, t)可作曲线 y = f(x)的三条切线,则实数 t 的取值范围是()A (-6, -2)B (-4, -2)C (-6, 2)D (0, 2)12、已知双曲线 C:x²/a² y²/b²= 1(a > 0,b > 0)的左、右焦点分别为 F₁,F₂,过 F₂作双曲线 C 的一条渐近线的垂线,垂足为 H,若|F₂H| = 2a,则双曲线 C 的离心率为()A √5B 2C √3D √2二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、已知函数 f(x) = 2sin(2x +π/6),则 f(x)的最小正周期为_____14、若 x,y 满足约束条件 x +y ≥ 1,x y ≥ -1,2x y ≤ 2,则 z= x + 2y 的最大值为_____15、已知抛物线 y²= 2px(p > 0)的焦点为 F,点 A(4, 2)在抛物线上,且|AF| = 5,则 p =_____16、已知数列{aₙ}满足 a₁= 1,aₙ₊₁= 2aₙ + 1,则 a₅=_____三、解答题(本大题共 6 小题,共 70 分)17、(10 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a = 3,b = 5,c = 7、(1)求角 C 的大小;(2)求△ABC 的面积18、(12 分)已知数列{aₙ}是等差数列,a₁= 1,a₃+ a₅=14、(1)求数列{aₙ}的通项公式;(2)设数列{bₙ}满足 bₙ = aₙ × 2ⁿ,求数列{bₙ}的前 n 项和 Sₙ19、(12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形,PA ⊥底面 ABCD,PA = AB = 2,AD = 4,∠BAD = 60°(1)证明:BD ⊥平面 PAC;(2)求二面角 P BD A 的余弦值20、(12 分)某工厂生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨,B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨,B原料 3 吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:
【解析】
【分析】
由 , ,利用正弦定理求得 .,再由余弦定理可得 ,利用基本不等式可得 ,从而利用三角形面积公式可得结果.
【详解】
因为 ,又 ,
所以 ,又 为锐角,可得 .
因为 ,
所以 ,
当且仅当 时等号成立,
即 ,
即当 时, 面积的最大值为 . 故答案为 .
【点睛】
本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题.对余弦定理一定要熟记两种形式:(1) ;(2) ,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住 等特殊角的三角函数值,以便在解题中直接应用.
【典型题】数学高考模拟试卷(带答案)
一、选择题
1.设 ,则
A. B. C. D.
2.若 ,则 ( )
A. B. C.1D.
3.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )
A.①③④B.②④C.②③④D.①②③
4. 展开式中的常数项为()
A.80B.-80C.40D.-40
【详解】
由 ,得 ,
∵ ,
∴ ,
∴ ,
又 为三角形的内角,
∴ 或 ,
又 ,
∴ ,于是 .
由余弦定理得
即 ,
解得 ,故 .
∴ .
故答案为 .
【点睛】
正余弦定理常与三角变换结合在一起考查,此类问题一般以三角形为载体,解题时要注意合理利用相关公式和三角形三角的关系进行求解,考查综合运用知识解决问题的能力,属于中档题.
5.已知集合 ,那么
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)
6.设集合 , ,则 ()
A. B. C. D.
7.函数 的图象大致为( )
A. B.
C. D.
8.已知 ,且 ,则角 是()
A.第一象限角B.第二象限角C.第三象限角D.第四象限角
9. 的内角 的对边分别是 ,若 , , ,则 ( )
【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.
当求出 后,要及时判断出 ,便于三角形的初步定型,也为排除 提供了依据.如果选择支中同时给出了 或 ,会增大出错率.
10.A
解析:A
【解析】
【分析】
由函数f(x)=2sin(ωx+φ)的部分图象,求得T、ω和φ的值.
【详解】
由函数f(x)=2sin(ωx+φ)的部分图象知,
详解:

则 ,故选c.
点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.
2.A
解析:A
【解析】
试题分析:由 ,得 或 ,所以 ,故选A.
4.C
解析:C
【解析】
【分析】
先求出展开式的通项,然后求出常数项的值
【详解】
展开式的通项公式为: ,化简得 ,令 ,即 ,故展开式中的常数项为 .
故选:C.
【点睛】
本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.
5.A
解析:A
【解析】
利用数轴,取 所有元素,得 .
【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.
解析:
【解析】
分析:由 ,可得 ,代入 ,利用复数乘法运算法则整理后,直接利用求模公式求解即可.
详解:因为 ,所以 ,
,故答案为 .
点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意 和
17.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同
6.D
解析:D
【解析】
【分析】
【详解】
试题分析:M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={ 0,2},所以
{-2,0,2},故运算.
7.A
解析:A
【解析】
【分析】
确定函数在定义域内的单调性,计算 时的函数值可排除三个选项.
【详解】
由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.
【点睛】
本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.
17.从 位女生, 位男生中选 人参加科技比赛,且至少有 位女生入选,则不同的选法共有_____________种.(用数字填写答案)
18.在 中,角 , , 的对边分别为 , , ,若 , 是锐角,且 , ,则 的面积为______.
19.已知 , 均为锐角, , ,则 _____.
20. ________.
19.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题
解析:
【解析】
【分析】
先求得 的值,然后求得 的值,进而求得 的值.
【详解】
由于 为锐角,且 ,故 , .由 ,解得 ,由于 为锐角,故 .
14.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其
解析:
【解析】
【分析】
利用复数的运算法则、模的计算公式即可得出.
【详解】
解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,
解析:D
【解析】
【分析】
由 以及绝对值的定义可得 ,再结合已知得 ,根据三角函数的符号法则可得.
【详解】
由 ,可知 ,结合 ,得 ,
所以角 是第四象限角,
故选:D
【点睛】
本题考查了三角函数的符号法则,属于基础题.
9.B
解析:B
【解析】
,
所以 ,整理得 求得 或
若 ,则三角形为等腰三角形, 不满足内角和定理,排除.
【点睛】
本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.
20.【解析】试题分析:原式=考点:1指对数运算性质
解析:
【解析】
试题分析:原式=
考点:1.指对数运算性质.
三、解答题
21.(1) , ;(2) .
【解析】
【分析】
(1)把x=ρcosθ,y=ρsinθ代入即可得出;
(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出.
(1)求角 的大小;
(2)求 的长.
25.已知矩形ABCD的两条对角线相交于点 ,AB边所在直线的方程为 ,点 在AD边所在直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数 ,然后求解复数的模.
A. B. C. D.
二、填空题
13.在 中,角 的对边分别为 , , ,且 为锐角,则 面积的最大值为________.
14.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是__________
15.函数 的定义域为________.
16.设复数 虚数单位), 的共轭复数为 ,则 ________.
解析:[2,+∞)
【解析】
分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.
详解:要使函数 有意义,则 ,解得 ,即函数 的定义域为 .
点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.
16.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和
∴|z| .
故答案为 .
【点睛】
对于复数的四则运算,要切实掌握其运算技巧和常规思路,如 .其次要熟悉复数相关概念,如复数 的实部为 、虚部为 、模为 、对应点为 、共轭复数为 .
15.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题
18.【解析】【分析】由及三角变换可得故于是得到或再根据可得从而然后根据余弦定理可求出于是可得所求三角形的面积【详解】由得∵∴∴又为三角形的内角∴或又∴于是由余弦定理得即解得故∴故答案为【点睛】正余弦定理
解析:
【解析】
【分析】
由 及三角变换可得 ,故 ,于是得到 或 ,再根据 可得 ,从而 ,然后根据余弦定理可求出 ,于是可得所求三角形的面积.
( ) ,
∴T π,解得ω=2;
又由函数f(x)的图象经过( ,2),
∴2=2sin(2 φ),
∴ φ=2kπ ,k∈Z,
即φ=2kπ ,
相关文档
最新文档