【20套精选试卷合集】河北省石家庄市精英中学2019-2020学年高考数学模拟试卷含答案
2019-2020石家庄市精英中学中考数学一模试卷(带答案)
6.C
解析:C 【解析】
【分析】
设第 n 个图形中有 an 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得
出变化规律“an= n2+ n+1(n 为正整数)”,再代入 n=9 即可求出结论.
【详解】 设第 n 个图形中有 an 个点(n 为正整数), 观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,
是( )
A.8%
B.9%
C.10%
D.11%
11.若一元二次方程 x2﹣2kx+k2=0 的一根为 x=﹣1,则 k 的值为( )
A.﹣1
B.0
C.1 或﹣1
D.2 或 0
12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图
所示,则此工件的左视图是 ( )
A.
B.
C.
D.
他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图 和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角 是 °; (2)请补全条形统计图; (3)若甲、乙两人上班时从 A、B、C、D 四种交通工具中随机选择一种,则甲、乙两人恰 好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.
2.A
解析:A 【解析】 试题解析:∵x+1≥2, ∴x≥1. 故选 A. 考点:解一元一次不等式;在数轴上表示不等式的解集.
3.A
【20套试卷合集】河北省石家庄市精英中学2019-2020学年数学高一上期中模拟试卷含答案
2019-2020学年高一上数学期中模拟试卷含答案(考试时间:120分钟,满分:150分)一、选择题(每题5分,共50分)1、已知全集{}{}{}()====N M C ,N M U U 则3,2,2,1,0,4,3,2,1,0( ) A. {}2 B. {}432,, C. {}3 D. {}4321,0,,,2.下列四个图象中,不是y 关于x 的函数的图象是( )3.函数xx f -=21)(的定义域为M ,2)(+=x x g 的定义域为N ,则=⋂N M ( )A.{}2-≥x x B.{}22<<-x x C. {}22<≤-x x D. {}2<x x4.3log 9log 28的值是( )A .32 B .1 C .23 D .25.函数y =x 2+2x +3(x ≥—2)的值域为( )A .[3,+∞)B .[0,+∞)C .[2,+∞)D .R6.设⎪⎩⎪⎨⎧≥-<=-2),1(log 2,2)(231x x x e x f x ,则)]2([f f 的值为( ) A .0 B .1 C .2 D .2e 7.设3.0log ,3.0,2223.0===c b a ,则c b a ,,的大小关系为( )A .c b a <<B .c a b <<C . a b c <<D . b a c << 8.函数3log )(3-+=x x x f 零点所在大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.已知1>a ,函数)(log x y a y a x-==与的图象只可能是( )A.B.C.D.10.若偶函数f(x)在区间(-∞,-1]上是增函数,则( )A .f(-32)<f(-1)<f(2)B .f(-1)<f(-32)<f(2)C .f(2)<f(-1)<f(-32)D .f(2)<f(-32)<f(-1)二、填空题(每题5分,共20分)11、函数y =log a (x +2)+3(a >0且a ≠1)的图像过定点________.12、若函数y =(x +1)(x -a)为偶函数,则a 等于_________13.函数)(x f y =在[1,2]连续,若0)2(,0)1(<>f f ,则)(x f 在)2,1(上零点的个数为______ 14. 函数)2(log 22x x y -=的递增区间是 .三、解答题:本大题共6小题.共80分。
河北省石家庄市2019-2020学年第四次高考模拟考试数学试卷含解析
河北省石家庄市2019-2020学年第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件【答案】D 【解析】 【分析】由题意列出约束条件和目标函数,数形结合即可解决. 【详解】设购买甲、乙两种商品的件数应分别x ,y 利润为z 元,由题意*4750,,,x y x y N +≤⎧⎨∈⎩ 1.8z x y =+, 画出可行域如图所示,显然当5599y x z =-+经过(2,6)A 时,z 最大. 故选:D. 【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断x ,y 是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.2.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10 B .16C .20D .24【答案】C 【解析】 【分析】根据等差数列性质得到46582a a a +==,再计算得到答案. 【详解】已知等差数列{}n a 中,4655824a a a a +==⇒=345675520a a a a a a ++++==故答案选C 【点睛】本题考查了等差数列的性质,是数列的常考题型.3.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( )A .2493π+B .4893π+C .483π+D .144183π+【答案】C 【解析】 【分析】由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为22633()2r =+,圆锥的高22(35)3h =-截去的底面劣弧的圆心角为23π,底面剩余部分的面积为221412sin2323S r r ππ=⋅+,利用锥体的体积公式即可求得. 【详解】由已知中的三视图知圆锥底面半径为22633()62r =+=,圆锥的高22(35)36h =-=,圆锥母线226662l +=120°,底面剩余部分的面积为2222212212sin 66sin 2493323323S r r πππππ=+=⨯+⨯⨯=+11(2493)64818333V Sh ππ==⨯+⨯=+故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般. 4.已知i 是虚数单位,若1zi i=-,则||z =( )A B .2C D .3【答案】A 【解析】 【分析】 直接将1zi i=-两边同时乘以1i -求出复数z ,再求其模即可. 【详解】 解:将1zi i=-两边同时乘以1i -,得 ()11z i i i =-=+z =故选:A 【点睛】考查复数的运算及其模的求法,是基础题.5.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥vv v ,则m=( )A .−8B .−6C .6D .8【答案】D 【解析】 【分析】由已知向量的坐标求出a b +rr 的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥rr r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =1. 故选D . 【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题. 6.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a >B .b a <C .b a <D .b a >【答案】C 【解析】 【分析】令23a b t ==,则0t >,1t ≠,将指数式化成对数式得a 、b 后,然后取绝对值作差比较可得. 【详解】令23abt ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >. 故选:C. 【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题. 7.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5 B .3 C .-12 D .-13【答案】B 【解析】 【分析】由题得15a d +=-,1434162a d ⨯+=-,解得17a =-,2d =,计算可得6a . 【详解】25a =-Q ,416S =-,15a d ∴+=-,1434162a d ⨯+=-,解得17a =-,2d =, 6153a a d ∴=+=.故选:B 【点睛】本题主要考查了等差数列的通项公式,前n 项和公式,考查了学生运算求解能力.8.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为A .2B .3C D【答案】D 【解析】本题首先可以通过题意画出图像并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果。
河北省石家庄市2019-2020学年高考数学五模考试卷含解析
河北省石家庄市2019-2020学年高考数学五模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知(1,3),(2,2),(,1)a b c n ===-r r r ,若()a c b -⊥r r r,则n 等于( )A .3B .4C .5D .6【答案】C 【解析】 【分析】先求出(1,4)a c n -=-r r ,再由()a c b -⊥r r r,利用向量数量积等于0,从而求得n .【详解】由题可知(1,4)a c n -=-r r,因为()a c b -⊥r r r,所以有()12240n -⨯+⨯=,得5n =,故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.2.记n S 为数列{}n a 的前n 项和数列{}n a 对任意的*,p q ∈N 满足13p q p q a a a +=++.若37a =-,则当nS 取最小值时,n 等于( ) A .6 B .7C .8D .9【答案】A 【解析】 【分析】先令1,1p q ==,找出21,a a 的关系,再令1,2p q ==,得到213,,a a a 的关系,从而可求出1a ,然后令,1p n q ==,可得12n n a a +-=,得出数列{}n a 为等差数列,得212n n S n =-,可求出n S 取最小值.【详解】解法一:由()()3121113132137a a a a a =++=+++=-,所以111a =-,由条件可得,对任意的*11,132n n n n a a a a +∈=++=+N ,所以{}n a 是等差数列,213n a n =-,要使n S 最小,由10,0n n a a +⎧⎨≥⎩…解得111322n 剟,则6n =.取最小值. 故选:A 【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题. 3.在三角形ABC 中,1a =,sin sin sin sin b c a bA AB C++=+-,求sin b A =( )A B .3C .12D 【答案】A 【解析】 【分析】利用正弦定理边角互化思想结合余弦定理可求得角B 的值,再利用正弦定理可求得sin b A 的值. 【详解】sin sin sin sin b c a b A A B C ++=+-Q,由正弦定理得b c a ba ab c++=+-,整理得222a c b ac +-=, 由余弦定理得2221cos 22a cb B ac +-==,0B Q π<<,3B π∴=.由正弦定理sin sin a b A B =得sin sin 1sin 32b A a B π==⨯=. 故选:A. 【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.4.若单位向量1e u r ,2e u u r 夹角为60︒,12a e e λ=-r u r u u r,且a =r λ=( )A .-1B .2C .0或-1D .2或-1【答案】D 【解析】 【分析】利用向量模的运算列方程,结合向量数量积的运算,求得实数λ的值. 【详解】由于a =r 23a =r ,即()2123e e λ-=u r u u r ,2222112222cos6013e e e e λλλλ-⋅+=-⋅+=o u r u r u u r u u r ,即220λλ--=,解得2λ=或1λ=-.本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.5.设点(,0)A t ,P 为曲线x y e =上动点,若点A ,P 间距离的最小值为6,则实数t 的值为( ) A .5 B .52C .ln 222+D .ln 322+【答案】C 【解析】 【分析】设(,)xP x e ,求2AP ,作为x 的函数,其最小值是6,利用导数知识求2AP 的最小值.【详解】设(,)xP x e ,则222()x AP x t e =-+,记22()()xg x ex t =+-,2()22()x g x e x t '=+-,易知2()22()x g x e x t '=+-是增函数,且()g x '的值域是R ,∴()0g x '=的唯一解0x ,且0x x <时,()0g x '<,0x x >时,()0g x '>,即min 0()()g x g x =, 由题意02200()()6x g x ex t =+-=,而0200()22()0x g x e x t '=+-=,020x x t e -=-,∴00246x x e e +=,解得022x e =,0ln 22x =. ∴020ln 222x t ex =+=+. 故选:C . 【点睛】本题考查导数的应用,考查用导数求最值.解题时对0x 和t 的关系的处理是解题关键.6.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[20,40)(单位:元)的同学有34人,则n 的值为( )A .100B .1000C .90D .90【答案】A利用频率分布直方图得到支出在[20,40)的同学的频率,再结合支出在[20,40)(单位:元)的同学有34人,即得解 【详解】由题意,支出在[20,40)(单位:元)的同学有34人 由频率分布直方图可知,支出在[20,40)的同学的频率为34(0.010.024)100.34,1000.34n +⨯=∴==. 故选:A 【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题. 7.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .14【答案】A 【解析】 【分析】基本事件总数4520n =⨯=,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率. 【详解】解:从四个阴数和五个阳数中分别随机选取1个数, 基本事件总数4520n =⨯=,其和等于11包含的基本事件有:(9,2),(3,8),(7,4),(5,6),共4个,∴其和等于11的概率41205p ==. 故选:A .8.已知实数x,y满足约束条件2211x yy xy kx+≥⎧⎪-≤⎨⎪+≥⎩,若2z x y=-的最大值为2,则实数k的值为()A.1 B.53C.2 D.73【答案】B【解析】【分析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解k即可.【详解】可行域如图中阴影部分所示,22,111Bk k⎛⎫+⎪--⎝⎭,421,2121kCk k-⎛⎫⎪++⎝⎭,要使得z能取到最大值,则1k>,当12k<≤时,x在点B处取得最大值,即2221211k k⎛⎫⎛⎫-+=⎪ ⎪--⎝⎭⎝⎭,得53k=;当2k>时,z在点C 处取得最大值,即421222121kk k-⎛⎫⎛⎫-=⎪ ⎪++⎝⎭⎝⎭,得76k=(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.9.如图,在三棱锥D ABC-中,DC⊥平面ABC,AC BC⊥,2AC BC CD===,E,F,G分别是棱AB,AC,AD的中点,则异面直线BG与EF所成角的余弦值为A.0 B.6C3D.1【答案】B根据题意可得BC ⊥平面ACD ,EF BC ∥,则CBG ∠即异面直线BG 与EF 所成的角,连接CG ,在Rt CBG △中,cos BCCBG BG∠=,易得BD AD AB ===所以BG =所以cos CBG ∠==,故选B .10.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( ) A .()1,+∞ B .13,8⎛⎤-∞ ⎥⎝⎦C .13,8⎛⎫-∞ ⎪⎝⎭D .13,8⎛⎫+∞⎪⎝⎭【答案】B 【解析】 【分析】由题意可知函数()y f x =为R 上为减函数,可知函数()2y a x =-为减函数,且()212212a ⎛⎫-≤- ⎪⎝⎭,由此可解得实数a 的取值范围. 【详解】由题意知函数()y f x =是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤, 因此,实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. 故选:B. 【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.11.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( ) A .1427B .2C .1D .3【答案】B 【解析】解:由已知得2()322f x x mx '=-+,(1)3220f m '∴=-+=,52m ∴=,经检验满足题意. 325()22f x x x x ∴=-+,2()352f x x x '=-+. 由()0f x '<得213x <<;由()0f x '>得23x <或1x >.所以函数()f x 在20,3⎡⎤⎢⎥⎣⎦上递增,在2,13⎡⎤⎢⎥⎣⎦上递减,在[1,2]上递增.则214()327f x f ⎛⎫==⎪⎝⎭极大值,(2)2f =, 由于(2)()f f x >极大值,所以()f x 在区间[0,2]上的最大值为2. 故选:B. 【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题. 12.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB AC 、,已知以直角边AC AB 、为直径的半圆的面积之比为14,记ABC α∠=,则2cos sin 2αα+=( )A .35B .45C .1D .85【答案】D 【解析】 【分析】根据以直角边AC AB 、为直径的半圆的面积之比求得12AC AB =,即tan α的值,由此求得sin α和cos α的值,进而求得所求表达式的值. 【详解】由于直角边AC AB 、为直径的半圆的面积之比为14,所以12AC AB =,即1tan 2α=,所以【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2019-2020学年高考三诊数学试题含解析
河北省石家庄市2019-2020学年高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.命题p :存在实数0x ,对任意实数x ,使得()0sin sin x x x +=-恒成立;q :0a ∀>,()ln a xf x a x+=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧【答案】A 【解析】 【分析】分别判断命题p 和q 的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项. 【详解】对于命题p ,由于()sin sin x x π+=-,所以命题p 为真命题.对于命题q ,由于0a >,由0a xa x+>-解得a x a -<<,且()()1ln ln ln a x a x a x f x f x a x a x a x --++⎛⎫-===-=- ⎪+--⎝⎭,所以()f x 是奇函数,故q 为真命题.所以p q ∧为真命题. ()()p q ⌝∨⌝、()p q ∧⌝、()p q ⌝∧都是假命题. 故选:A 【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题. 2.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A .{}32x x -<< B .{}22x x -<< C .{}62x x -<< D .{}12x x -<<【答案】D 【解析】 【分析】利用一元二次不等式的解法和集合的交运算求解即可. 【详解】由题意知,集合}{16A x x =-<<,}{2B x x =<, 由集合的交运算可得,}{12A B x x ⋂=-<<. 故选:D 【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.3.已知函数()()()2sin 0f x x b ωϕω=++>,88f x f x ππ+=-()(),且58f π=(),则b =( ) A .3 B .3或7C .5D .5或8【答案】B 【解析】 【分析】根据函数的对称轴8x π=以及函数值,可得结果.【详解】函数()()()2sin 0f x x b ωϕω=++>,若88f x f x ππ+=-()(),则()f x 的图象关于8x π=对称, 又58f π=(),所以25b +=或25b -+=, 所以b 的值是7或3. 故选:B. 【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题 4.已知关于x 的方程3sin sin 2x x m π⎛⎫+-= ⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,1【答案】C 【解析】 【分析】先利用三角恒等变换将题中的方程化简,构造新的函数2sin()6y x π=+,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合12x x π-≥,解得m 的取值范围. 【详解】由题化简得3sin cos x x m +=,2sin()6m x π=+,作出2sin()6y x π=+的图象,又由12x x π-≥易知01m ≤<. 故选:C. 【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题. 5.如图所示的程序框图,若输入4a =,3b =,则输出的结果是( )A .6B .7C .5D .8【答案】B 【解析】 【分析】列举出循环的每一步,可得出输出结果. 【详解】4i =,3S =,22S a b >不成立,239S ==,415i =+=;22S a b >不成立,2981S ==,516i =+=; 22S a b >不成立,2816561S ==,617i =+=; 22S a b >成立,输出i 的值为7.故选:B. 【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题. 6.已知函数22log ,0()22,0x x f x x x x ⎧>=⎨++≤⎩,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,则“函数()()()F x f x kx x D =-∈有两个零点”是“12k >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】作出函数()f x 的图象,得到(D 24]=,,把函数()()()F x f x kx x D =-∈有零点转化为y kx =与()y f x =在(2,4]上有交点,利用导数求出切线斜率,即可求得k 的取值范围,再根据充分、必要条件的定义即可判断. 【详解】 作出函数()22log x ,0f x x 22,0x x x ⎧>=⎨++≤⎩的图象如图,由图可知,]D (2,4=,函数()()()F x f x kx x D =-∈有2个零点,即()f x kx =有两个不同的根,也就是y kx =与()y f x =在2,4](上有2个交点,则k 的最小值为12; 设过原点的直线与2y log x =的切点为()020x ,log x ,斜率为01x ln2, 则切线方程为()2001y log x x x x ln2-=-, 把()0,0代入,可得201log x ln2-=-,即0x e =,∴切线斜率为1eln2, ∴k 的取值范围是11,2eln2⎛⎫⎪⎝⎭, ∴函数()()()F x f x kx x D =-∈有两个零点”是“1k 2>”的充分不必要条件, 故选A .【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.7.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种【解析】 【分析】根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有246C =种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有222A =种情况, 此时有224⨯=种情况,则有6424⨯=种不同的安排方法; 故选:C . 【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.8.已知向量)a =r,)1b =-r ,则a r 与b r的夹角为( )A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果. 【详解】解:由题意得,设a r与b r的夹角为θ,311cos 222a b a bθ⋅-∴===⨯r rr r ,由于向量夹角范围为:0θπ≤≤, ∴π3θ=. 故选:B. 【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围. 9.若复数z 满足(1)12i z i +=+,则||z =( )A .2B .32C .2D .12【答案】C 【解析】 【分析】 化简得到1322z i =-+,1322z i =--,再计算复数模得到答案.【详解】(1)12i z i +=+,故()()()()121121313111222i i i i z i i i i +++-+====-+++-,故1322z i =--,z =. 故选:C . 【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.10.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( )A .y =B .y =±C .2y x =± D .2y x =±【答案】A 【解析】 【分析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a ,b 关系,即可得到双曲线的渐近线方程. 【详解】抛物线y 2=2px (p >0)的焦点坐标为(1,0),则p =2,又e =p ,所以e ca==2,可得c 2=4a 2=a 2+b 2,可得:b =,所以双曲线的渐近线方程为:y =. 故选:A . 【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.11.已知正四面体A BCD -外接球的体积为,则这个四面体的表面积为( )A .B .C .D .【答案】B 【解析】 【分析】设正四面体ABCD 的外接球的半径R ,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积. 【详解】将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则34863R ππ=,得6R =.因为正四面体ABCD 的外接球3a=226R =2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以,正四面体ABCD 2a=2224=,因此,这个正四面体的表面积为2341634a ⨯=故选:B . 【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.12.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =I ( ) A .()1,3 B .(]1,3C .[)1,2-D .()1,2-【答案】C 【解析】 【分析】解不等式得出集合A ,根据交集的定义写出A∩B . 【详解】集合A ={x|x 2﹣2x ﹣3≤0}={x|﹣1≤x ≤3},={x x<2}B,{|1<2}﹣∴⋂=≤A B x x故选C.【点睛】本题考查了解不等式与交集的运算问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。
【20套精选试卷合集】河北省2019-2020学年高考数学模拟试卷含答案
1 (A) 2
(B)
3 2
(C) -12
(D)
-
3 2
【解析】抛物线 x2=-4y 的准线为 y=1,即 A(- 3,1),所以 sin θ=12,cos θ=- 23,cos 2θ
=cos2θ-sin2θ=12,选 A.
x∈-π 12,2π3 ,
(7)已知函数 f(x)=2sin(ωx+φ)
【解析】由等差数列的求和公式及性质,可得
S2
017=2
017(a1+a2 2
017)=2
017a1
009>0,所以
a1
009>0,
同理可得
S2
018=2
018(a1+a2 2
018)=1
009(a1
009+a1
010)<0,所以
a1
009+a1
010<0,所以
a1
009>0,a1
010<0,
d<0,对任意正整数 n,都有|an|≥|ak|,则 k=1 009,故选 C.
π
π
φ= 6 +kπ,k∈,且|φ|< 2 ,所以
π φ= 6 ,则
f(x)=
2sin2x+π6 ,依据题设
f(x1)=f(x2)可得函数图像的对称轴是
x=x1+2 x2=-π 12+14π=π6 ,即
π x1+x2= 3 ,
所以 f(x1+x2)=fπ3 =1,应选答案 B.
y≥x, (8)设变量 y 满足约束条件x+3y≤4,则 z=|x-3y|的最大值为(A)
(12)设函数 f(x)=(x-a)2+(ln x2-2a)2,其中 x>0,a∈R,存在 x0 使得 f(x0)≤b 成立,则实数 b 的最 小值为(C)
河北省石家庄市2019-2020学年第二次高考模拟考试数学试卷含解析
河北省石家庄市2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知圆22670x y x +--=与抛物线()220y px p =>的准线相切,则p 的值为()A .1B .2C .12D .4【答案】B 【解析】 【分析】因为圆22670x y x +--=与抛物线()220y px p =>的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知p 的值为2,选B. 【详解】 请在此输入详解!2.已知函数2,0()0xx f x x -⎧⎪=>„,若()02f x <,则0x 的取值范围是( )A .(,1)-∞-B .(1,0]-C .(1,)-+∞D .(,0)-∞【答案】B 【解析】 【分析】对0x 分类讨论,代入解析式求出0()f x ,解不等式,即可求解. 【详解】函数2,0()0xx f x x -⎧⎪=>„,由()02f x <得00220xx -⎧<⎪⎨⎪⎩„或02x <>⎪⎩ 解得010-<x „. 故选:B. 【点睛】本题考查利用分段函数性质解不等式,属于基础题.3.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A .438π+B .238π+C .434π+D .834π+【答案】A 【解析】由题意得到该几何体是一个组合体,前半部分是一个高为23底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为21311434234238323V ππ=⨯⨯⨯+⨯⨯⨯=+故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.已知底面是等腰直角三角形的三棱锥P-ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直 B .三棱锥P-ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P-ABC 的侧面积为35【答案】C 【解析】 【分析】根据三视图,可得三棱锥P-ABC 的直观图,然后再计算可得. 【详解】解:根据三视图,可得三棱锥P-ABC 的直观图如图所示,其中D 为AB 的中点,PD ⊥底面ABC. 所以三棱锥P-ABC 的体积为114222323⨯⨯⨯⨯=, 2AC BC PD ∴===,2222AB AC BC ∴=+=,||||||2DA DB DC ∴===,()22||||||226,PA PB PC ∴===+=222PA PB AB +≠Q ,PA ∴、PB 不可能垂直,即,PA ,PB PC 不可能两两垂直,1222222PBAS ∆=⨯⨯=Q ,()22161252PBC PAC S S ∆∆==⨯-⨯=Q .∴三棱锥P-ABC 的侧面积为2522+.故正确的为C. 故选:C. 【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题. 5.已知函数()2cos sin 6f x x x m π⎛⎫=⋅++ ⎪⎝⎭(m ∈R )的部分图象如图所示.则0x =( )A .32π B .56π C .76π D .43π-【答案】C 【解析】 【分析】由图象可知213f π⎛⎫=-⎪⎝⎭,可解得12m =-,利用三角恒等变换化简解析式可得()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令()=0f x ,即可求得0x .【详解】 依题意,213f π⎛⎫=-⎪⎝⎭,即252cos sin 136m ππ⋅+=-,解得12m =-;因为()1112cos sin 2cos cos 6222f x x x x x x π⎫⎛⎫=⋅+-=⋅+-⎪ ⎪⎪⎝⎭⎝⎭211cos cos 2cos 2sin 2226x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭ 所以02262x k πππ+=+,当1k =时,076x π=. 故选:C. 【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.6.已知函数()ln 2f x x ax =-,()242ln ax g x x x=-,若方程()()f x g x =恰有三个不相等的实根,则a的取值范围为( ) A .(]0,eB .10,2e ⎛⎤ ⎥⎝⎦C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】由题意可将方程转化为ln 422ln x ax a x x -=-,令()ln xt x x=,()()0,11,x ∈+∞U ,进而将方程转化为()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,即()2t x =-或()2t x a =,再利用()t x 的单调性与最值即可得到结论.【详解】由题意知方程()()f x g x =在()()0,11,+∞U 上恰有三个不相等的实根,即24ln 22ln ax x ax x x-=-,①.因为0x >,①式两边同除以x ,得ln 422ln x axa x x-=-. 所以方程ln 4220ln x axa x x--+=有三个不等的正实根. 记()ln x t x x=,()()0,11,x ∈+∞U ,则上述方程转化为()()4220a t x a t x --+=. 即()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,所以()2t x =-或()2t x a =. 因为()21ln xt x x -'=,当()()0,11,x e ∈U 时,()0t x '>,所以()t x 在()0,1,()1,e 上单调递增,且0x →时,()t x →-∞.当(),x e ∈+∞时,()0t x '<,()t x 在(),e +∞上单调递减,且x →+∞时,()0t x →.所以当x e =时,()t x 取最大值1e,当()2t x =-,有一根. 所以()2t x a =恰有两个不相等的实根,所以102a e<<. 故选:B. 【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题. 7.已知复数168i z =-,2i z =-,则12z z =( ) A .86i - B .86i +C .86i -+D .86i --【答案】B 【解析】分析:利用21i =-的恒等式,将分子、分母同时乘以i ,化简整理得1286z i z =+ 详解:2122686886z i i i i z i i--===+-- ,故选B 点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意21i =-符号的正、负问题.8.使得()3nx n N +⎛∈ ⎝的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7【答案】B 【解析】二项式展开式的通项公式为r -n 3x n rr C (),若展开式中有常数项,则3--=02n r r ,解得5=2n r ,当r 取2时,n 的最小值为5,故选B【考点定位】本题考查二项式定理的应用.9.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】通过列举法可求解,如两角分别为2,63ππ时【详解】当2,36A B ππ==时,sin sin A B >,但tan tan A B <,故充分条件推不出; 当2,63A B ππ==时,tan tan A B >,但sin sin A B <,故必要条件推不出;所以“sin sin A B >”是“tan tan A B >”的既不充分也不必要条件. 故选:D. 【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题10.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u r u u u r u u u r,x ,y R ∈,则23x y +=( ) A .2 B .53C .43D .32【答案】B 【解析】 【分析】首先根据题中条件和三角形中几何关系求出x ,y ,即可求出23x y +的值. 【详解】如图所示过O 做三角形三边的垂线,垂足分别为D ,E ,F , 过O 分别做AB ,AC 的平行线NO ,MO ,由题知222294cos 607212AB AC BC BC BC AB AC +-++︒==⇒=⋅⋅则外接圆半径212sin 603BC r ==⋅︒, 因为⊥OD AB ,所以22212319OD AO AD =-=-=, 又因为60DMO ∠=︒,所以2133DM AM =⇒=,43MO AN ==, 由题可知AO xAB y AC AM AN =+=+u u u r u u u r u u u r u u u u r u u u r,所以16AM x AB ==,49AN y AC ==, 所以5233x y +=. 故选:D. 【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题. 11.已知复数z 满足()14i z i -=,则z =( ) A .2B .2C .4D .3【答案】A 【解析】 【分析】由复数除法求出z ,再由模的定义计算出模. 【详解】44(1)22,221(1)(1)i i i z i z i i i +===-+=--+故选:A . 【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.12.设实数x 、y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .2B .24C .16D .14【答案】D 【解析】 【分析】做出满足条件的可行域,根据图形即可求解. 【详解】做出满足1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩的可行域,如下图阴影部分,根据图象,当目标函数23z x y =+过点A 时,取得最小值,由42x x y =⎧⎨-=⎩,解得42x y =⎧⎨=⎩,即(4,2)A , 所以23z x y =+的最小值为14. 故选:D.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄精英中学2019-2020学年高一下学期第二次调研考试数学试题 Word版含答案
石家庄精英中学高一下学期第二次调研考试高一数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,考试时间120分钟,总分150分.注意事项:1. 答题前,务必用直径0.5毫米黑色墨水签字笔先将自己的姓名、班级、考号及座位号填写在答题纸相应位置.2. 请考生将所作答案填写在答题纸上,写在试卷上无效.第Ⅰ卷一、 选择题(本题共24小题;每题3分,共计72分)1. 在空间直角坐标系中,点P (4,2,3)与Q (-4,2,-3)两点的位置关系是( )A .关于原点对称B .关于xOz 平面对称C .关于y 轴对称D .以上都不对2. 在空间直角坐标系中,已知M (﹣1,2,2),N (3,﹣2,﹣4),则MN 的中点Q 到坐标原点O 的距离为( )A B C .2 D .33. 用系统抽样的方法从个体数为607的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是( ) A.112 B .1607 C.50607 D .16004. 某校针对高一,高二,高三学习情况做了一次问卷调查,回收的问卷依次为:120份,240份,x 份.因调查需要,从回收的问卷中按不同年级分层抽取容量为100的样本,其中在高二学生问卷中抽取30份,则在高三学生中抽取的问卷份数为( )A .45B .55C .800D .4405. 已知直线30x my ++=的倾斜角为4π,则m =( )A .1B .1- CD . 6. 已知直线40x ay ++=与直线480ax y +-=互相平行,则实数a 的值为( ) A .2± B .2 C .2- D .07. 经过点(1,3)P ,并且在两坐标轴上的截距的绝对值相等的直线有( ) A .0条 B .1条 C .2条 D .3条8. 已知点A (-3,-4),B (6,3)到直线l :ax -y -1=0的距离相等,则实数a 的值等于( )A .79B .-13C .-79或-13D .79或139. 设()()2,3,2,5A B -,若直线10ax y +-=与线段AB 相交,则a 的取值范围是( )A .[]2,1-B .[1,2]-C .(][),21,-∞-+∞UD .(,1][2,)-∞-⋃+∞ 10. 方程224250x y mx y m ++--=表示圆的充要条件是( )A .114m <<B .14m <或1m >C .14m >-或1m <- D .114m -<<- 11. 若直线2y kx k =-与圆2240x y mx +++=恒有公共点,则实数m 的取值范围为( )A .[4,)-+∞B .(,4]-∞C .(,4]-∞-D .(,4)-∞-12. 圆C 1:(x +2)2+(y +2)2=4与圆C 2:(x ﹣2)2+(y ﹣1)2=9的位置关系是( )A .内切B .外切C .相交D .相离13. 已知两圆221x y +=和222)(4)25x a y -++=(相切,求实数a 的值.A.或0B. 或0 D.或0 14. 圆22(3)(1)1x y -++=关于直线20x y --=对称的圆的方程为( )A .22(1)(1)1x y -+-=B .22(1)(1)1x y +++=C .22(1)(1)1x y ++-=D .22(1)(1)1x y -++=15. 已知直线l :10()x ay a R --=∈是圆22:4210C x y x y +--+=的对称轴,则2a =( )A .2B .12C .4D .116. 圆222210x y x y +--+=上的点到直线x y -=)A .2B .1+C .1D .1+17. 已知圆C:2225x y +=,直线20x y m ++=截圆C 所得的弦长为8,则正数m =( )A B .C .5 D .1018. 已知圆1C :2284100x y x y +--+=,圆2C :22(2)1x y -+=,圆1C ,2C 的公共弦为l ,求圆心2C 到l 的距离为( )A .8B .4C .2D 19. 已知圆C 1:x 2+y 2+4ax +4a 2﹣16=0和圆C 2:x 2+y 2﹣4=0只有一条公切线,则实数a=( )A .1B .3±C .1±D .20. 若直线l :ax +by =1与圆C :x 2+y 2=1无公共点,则点P (a ,b )与圆C 的位置关系是( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 21. 若直线y =x ﹣b 与曲线y =4-x 2有公共点,则b 的取值范围为( )A .[−2,2]B .[−22,22]C .[−22,2]D .[−2,22]22. 已知圆2222210x x y my m -+-+-=,当圆的面积最小时,圆上的点到直线34110x y -+=距离最小值为( )A.1B.2C.3D.423. 已知圆C :22(1)(1)1x y +++=,动点P 在直线20x y +-=上运动,过P 作圆C 的一条切线,切点为A ,则|PA |的最小值为( )A .B .3C D .24. 若P 是圆()()22:331C x y ++-=上任一点,则点P 到直线1y kx =-距离的取最大值时的直线斜率为( ) A.43 B.43- C.34 D.34- 第Ⅱ卷( 非选择题 共78分)二、 填空题(共5小题,每题3分,共计15分)25. 假设要考察某公司生产的600克袋装牛奶的质量是否达标,现从600袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将600袋牛奶按000,001,…,599进行编号,如果从随机数表第7行第8列的数开始向右读,则检测的第5袋牛奶的编号为_______________.(下面摘取了随机数表第7行至第9行)81 05 01 08 05 45 57 18 24 06 35 30 34 28 24 08 79 90 74 39 23 40 30 97 32 83 26 97 76 02 02 05 16 56 92 68 55 57 48 18 73 05 38 52 47 18 62 33 85 79 63 57 33 21 35 05 32 54 70 48 90 55 85 75 18 28 46 82 87 09 83 40 12 56 24 26. 两条互相垂直的直线l 1:3x ﹣2y +1=0与l 2:Ax +3y ﹣8=0的交点在圆C :x 2+y 2﹣4x ﹣2y +m =0上,则圆C 的半径为__________.27. 已知a ,b ∈R ,且4a +3b +3=0,则(a -1)2+(b -1)2的最小值是________. 28. 以点()3,5为圆心,且与直线4x y +=相切的圆的方程是_________________. 29. 已知圆22:1C x y +=,过点(4,3)P 引圆C 的切线,切点分别为,A B ,则直线AB 方程为______.三、 解答题(共6小题,共计63分)30. (6分)求由下列条件确定的圆222x y +=的切线方程:(1)经过点(1,1)A -;(2)切线斜率为2.31. (9分)求满足下列条件的圆的方程;(1)经过点(1,1)A --与(3,3)B -,且圆心在x 轴上的圆的标准方程;(2)过点A (3,﹣1)的圆C 与直线x -y =0相切于点B (1,1),求圆C 的标准方程.32. (9分)已知点M 是圆22:4C x y +=上的动点,点()2,0N ,(2,3)Q -,MN 的中点为P .(1)求点P 的轨迹方程.(2)过定点Q 且与曲线P 相切的直线的方程.33. (9分)已知过定点(2,0)M -的直线l 与圆22:8120C x y y +-+=交于A 、B 两点.(1)当弦AB 的长最短时,求直线l 的方程;(2)若||AB =时,求直线l 的方程.34. (15分)已知(3,2)A 和圆22:(2)(3)1C x y ++-=,一束光线从A 发出,经x 轴反射.(1)光线到达圆心C ,求光线所走过的路径长;(2)光线与圆C 相切,则反射光线所在直线的斜率.(3)若P 为圆C 上任意一点,求2226x y x y +--的最大值和最小值.35. (15分)已知圆221:28C x y x ++=,圆2222:4234C x ax y y a -++=-(1)若1a =,求两圆心连线12C C 的中垂线的一般式方程;(2)若1a =,且动点P 满足12PC =,求P 点轨迹方程;(3)若两圆相切,求a 的值. 石家庄精英中学高一下学期第二次调研考试答案四、 选择题(本题共24小题;每题3分,共计72分)1-5 CBCBB 6-10BDDCC 11-15CBAAA 16-20ABACB 21-24CACC五、 填空题(共5小题,每题4分,共计20分)25. 439 26. 27. 4 28. 22(3)(5)8x y -+-= 29. 4x +3y -1=0六、 解答题(共6小题,共计58分)30【解答】解:(1)由题意,切点为(1,1)A -,切线方程为2x y -=,即20x y --=;(3分)(2)切线斜率为2,设方程为2y x b =+,即20x y b --=,圆心到直线的距离d ==b ∴=∴切线方程为2y x =(6分)31.【解答】(1)Q 圆的圆心在x 轴上,设圆心为(,0)M a ,由圆过点(1,1)A --和(3,3)B -,即||||MA MB =可得22MA MB =,求得2a =,(2分)可得圆心为(2,0)M ,半径为||MA =∴圆的方程为22(2)10x y -+=;(4分)(2)答案:22(2)2x y -+=(9分)32.【解答】解:(1)圆的方程为:22(1)1x y -+=,(4分)(2)设过定点(2,3)-且与圆相切的直线方程为3(2)y k x +=-,即230kx y k ---=,则圆心C 到该直线的距离为1d ==, 解得43k =-,∴切线方程为43(2)3y x +=--,即4310x y ++=;(7分) 又当斜率k 不存在时,直线2x =也是圆的切线;综上,所求圆的切线为2x =或4310x y ++=.(9分)33.【解答】解:(1)圆22:8120C x y y +-+=化成标准方程为22(4)4x y +-=,则此圆的圆心为(0,4),半径为2,弦AB 的长最短时,作CM AB ⊥,2CM k =,所以12AB k =-,所以直线l 的方程为1(2)2y x =-+,即220x y ++=.(4分) (2)圆22:8120C x y y +-+=化成标准方程为22(4)4x y +-=,则此圆的圆心为(0,4),半径为2,:20l mx y m ++=过圆心C 作CD AB ⊥于D ,则根据题意和圆的性质,||CD =∴=,解得7m =-或1m =-,故所求直线方程为7140x y -+=或20x y -+=.(5分)34.【解答】解:(1)(3,2)A 关于x 轴的对称点为(3,2)A '-,由圆22:(2)(3)1C x y ++-=得圆心坐标为(2,3)C -,∴||AC ',即光线所走过的最短路径长为(5分)(2)答案:43-或34-(10分)(3)222226(1)(3)10x y x y x y +--=-+--.22(1)(3)x y -+-表示圆C 上一点(,)P x y 到点(1,3)的距离的平方, 由题意,得22[(1)(3)]4min x y -+-=,222[(1)(2)]416max x y -+-==. 因此,2226x y x y +--的最大值为6,最小值为6-.(15分)35.【答案】(1)320x y --=;(2)()()225220x y -++=;(3)a =或12a =- 【解析】(1)当1a =时,圆221:28C x y x ++=,即为()2219x y ++=,圆心为()11,0C -,圆222:4234C x x y y -++=-,即()()222:214C x y -++=,圆心为()22,1C -, 则两圆心的中点坐标为11,22⎛⎫- ⎪⎝⎭,12011123C C k +==---,两圆心连线12C C 的中垂线为:11322y x ⎛⎫=-- ⎪⎝⎭,整理得一般式为:320x y --=;(5分)(2)设(),P x y ,()11,0C -,()22,1C -,12PC =Q ,即22122PC PC =,()()()22221221x y x y ⎡⎤∴++=-++⎣⎦, 整理得P 点轨迹方程为()()225220x y -++=;(10分) (3)圆221:28C x y x ++=,即为()2219x y ++=,圆心为()11,0C -, 圆2222:4234C x ax y y a -++=-,即()()222:214C x a y -++=,圆心为()22,1C a -,若两圆相切,32=+,解得12a ±=;32=-,解得12a =-,综合得:若两圆相切,12a ±=或12a =-.(15分)。
河北省石家庄市2019-2020学年高考五诊数学试题含解析
河北省石家庄市2019-2020学年高考五诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( ) A .760B .16C .1360D .14【答案】C 【解析】 【分析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有66A 种,进而得到结果. 【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有33A 种情况,由间接法得到满足条件的情况有51235423A C A A -当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有33A 种,由间接法得到满足条件的情况有51235323A C A A -共有:5123512353235423A C A A A C A A -+-种情况,不考虑限制因素,总数有66A 种,故满足条件的事件的概率为:5123512353235423661360A C A A A C A A A -+-= 故答案为:C. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置). 2.已知命题:p 若1a <,则21a <,则下列说法正确的是( ) A .命题p 是真命题 B .命题p 的逆命题是真命题C .命题p 的否命题是“若1a <,则21a ≥”D .命题p 的逆否命题是“若21a ≥,则1a <”【答案】B 【解析】 【分析】解不等式,可判断A 选项的正误;写出原命题的逆命题并判断其真假,可判断B 选项的正误;利用原命题与否命题、逆否命题的关系可判断C 、D 选项的正误.综合可得出结论. 【详解】解不等式21a <,解得11a -<<,则命题p 为假命题,A 选项错误; 命题p 的逆命题是“若21a <,则1a <”,该命题为真命题,B 选项正确; 命题p 的否命题是“若1a ≥,则21a ≥”,C 选项错误; 命题p 的逆否命题是“若21a ≥,则1a ≥”,D 选项错误. 故选:B . 【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.3.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A .y =±B .y =C .12y x =±D .2y x =±【答案】A 【解析】 【分析】根据双曲线的焦距是虚轴长的2倍,可得出2c b =,结合22224c b a b ==+,得出223a b =,即可求出双曲线的渐近线方程. 【详解】解:由双曲线()222210,0x y a b a b-=>>可知,焦点在x 轴上,则双曲线的渐近线方程为:by x a=±, 由于焦距是虚轴长的2倍,可得:2c b =, ∴22224c b a b ==+,即:223a b =,b a =,所以双曲线的渐近线方程为:33y x =±. 故选:A. 【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.4.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( ) A .-4 B .-2C .0D .4【答案】B 【解析】 【分析】根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】奇函数()f x 是R 上的减函数,则()00f =,且2100m nm n m ≤-⎧⎪--≤⎨⎪≥⎩,画出可行域和目标函数,2z m n =-,即2n m z =-,z 表示直线与y 轴截距的相反数,根据平移得到:当直线过点()0,2,即0.2m n ==时,2z m n =-有最小值为2-. 故选:B .【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.5.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( )A .0B .2-C .52-D .3-【答案】C 【解析】 【分析】 【详解】试题分析:将参数a 与变量x 分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x 2+ax+1≥0对一切x ∈(0,12]成立,等价于a≥-x-1x 对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立, ∵y=-x-1x 在区间10,2⎛⎤⎥⎝⎦上是增函数 ∴115222x x--≤--=-∴a≥-52∴a 的最小值为-52故答案为C . 考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题6.设f(x)是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->> B .0.40.33(log 0.3)(2)(2)f f f -->> C .0.30.43(2)(2)(log 0.3)f f f -->>D .0.40.33(2)(2)(log 0.3)f f f -->>【答案】D 【解析】 【分析】利用()f x 是偶函数化简()3log 0.3f ,结合()f x 在区间()0,∞+上的单调性,比较出三者的大小关系. 【详解】()f x Q 是偶函数,()3331010log 0.3(log )(log )33f f f ∴=-=, 而0.30.4310log 12203-->>>>,因为()f x 在(0,)+∞上递减,0.30.4310(log )(2)(2)3f f f --∴<<, 即0.30.43(log 0.3)(2)(2)f f f --<<.故选:D 【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F ,,过2F 作一条直线与双曲线右支交于A B ,两点,坐标原点为O ,若22215OA a b BF a =+=,,则该双曲线的离心率为( ) A .152B .102C .153D .103【答案】B 【解析】 【分析】由题可知1212OA c F F ==,1290F AF ∠=︒,再结合双曲线第一定义,可得122AF AF a =+,对1Rt AF B V 有22211AF AB BF +=,即()()()22222235AF aAFaa +++=,解得2AF a =,再对12Rt AF F △,由勾股定理可得()()22232a a c +=,化简即可求解【详解】如图,因为15BF a =,所以2523BF a a a =-=.因为1212OA c F F ==所以1290F AF ∠=︒. 在1Rt AF B V 中,22211AF AB BF +=,即()()()22222235AF aAFaa +++=,得2AF a =,则123AF a a a =+=.在12Rt AF F △中,由()()22232a a c +=得10c e a ==.故选:B 【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题8.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b+的最大值为( ) A .94B .9C .13D .1【答案】A 【解析】 【分析】由两圆相外切,得出229a b +=,结合二次函数的性质,即可得出答案. 【详解】因为两圆()224x a y ++=和()221x y b +-=相外切3=,即229a b +=()2222222298192499a a a ab a b ⎛⎫--+⎪-⎝⎭==+当292a =时,2222a b a b+取最大值8119494⨯= 故选:A 【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.9.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( ) A .3- B .2- C .1-D .1【答案】B 【解析】 【分析】由555(1)(1)(1)(1)ax x x ax x ++=+++,进而分别求出展开式中2x 的系数及展开式中3x 的系数,令二者之和等于10-,可求出实数a 的值. 【详解】由555(1)(1)(1)(1)ax x x ax x ++=+++,则展开式中2x 的系数为1255105C aC a +=+,展开式中3x 的系数为32551010C aC a +=+,二者的系数之和为(105)(1010)152010a a a +++=+=-,得2a =-. 故选:B. 【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.10.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( ) A .156 B .124C .136D .180【答案】A 【解析】 【分析】因为711911212a a a a +==+,可得712a =,根据等差数列前n 项和,即可求得答案. 【详解】Q 711911212a a a a +==+,∴712a =, ∴()113137131313121562a a S a +===⨯=.故选:A. 【点睛】本题主要考查了求等差数列前n 项和,解题关键是掌握等差中项定义和等差数列前n 项和公式,考查了分析能力和计算能力,属于基础题. 11.“是函数()()1f x ax x =-在区间内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】()()21f x ax x ax x =-=-,令20,ax x -=解得1210,x x a==当0a ≤,()f x 的图像如下图当0a >,()f x 的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.12.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A .17 B .4C .2D .117+【答案】B 【解析】 【分析】设抛物线焦点为F ,由题意利用抛物线的定义可得,当,,P M F 共线时,MP d +取得最小值,由此求得答案. 【详解】解:抛物线焦点()0,1F ,准线1y =-, 过M 作MN l ⊥交l 于点N ,连接FM由抛物线定义MN MF d ==,244MP d MP MF PF ∴+=+≥==,当且仅当,,P M F 三点共线时,取“=”号, ∴MP d +的最小值为4. 故选:B. 【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2019-2020学年高考数学考前模拟卷(1)含解析
河北省石家庄市2019-2020学年高考数学考前模拟卷(1)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB∩CD =O ,且AB ⊥CD ,SO =OB =3,SE 14SB =.,异面直线SC 与OE 所成角的正切值为( )A .222B .53C .1316D .113【答案】D 【解析】 【分析】可过点S 作SF ∥OE ,交AB 于点F ,并连接CF ,从而可得出∠CSF (或补角)为异面直线SC 与OE 所成的角,根据条件即可求出3210SC SF CF ===,tan ∠CSF 的值. 【详解】如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF , 则∠CSF (或补角)即为异面直线SC 与OE 所成的角,∵14SE SB =,∴13SE BE =, 又OB =3,∴113OF OB ==,SO ⊥OC ,SO =OC =3,∴32SC = SO ⊥OF ,SO =3,OF =1,∴10SF = OC ⊥OF ,OC =3,OF =1,∴10CF =,∴等腰△SCF 中,2232(10)()1123322tan CSF ∠-==. 故选:D.【点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.2.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12-【答案】C 【解析】 【分析】以,BA BC u u u r u u u r 为基底,将,AD BE u u u r u u u r用基底表示,根据向量数量积的运算律,即可求解. 【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r,211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u ur u u u r u u u r u u u r22111362BC BC BA BA =-⋅-u u ur u u u r u u u r u u u r 111123622=-⨯⨯⨯=.故选:C. 【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.3.给出50个数 1,2,4,7,11,L ,其规律是:第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这50个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能( )A .i 50≤;p p i =+B .i 50<;p p i =+C .i 50≤;p p 1=+D .i 50<;p p 1=+【答案】A 【解析】 【分析】要计算这50个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②. 【详解】因为计算这50个数的和,循环变量i 的初值为1,所以步长应该为1,故判断语句①应为1i i =+,第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,这样可以确定语句②为p p i =+,故本题选A. 【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.4.已知集合A ={0,1},B ={0,1,2},则满足A ∪C =B 的集合C 的个数为( ) A .4 B .3C .2D .1【答案】A 【解析】 【分析】由A C B ⋃=可确定集合C 中元素一定有的元素,然后列出满足题意的情况,得到答案. 【详解】由A C B ⋃=可知集合C 中一定有元素2,所以符合要求的集合C 有{}{}{}{}2,2,0,2,1,2,0,1,共4种情况,所以选A 项. 【点睛】考查集合并集运算,属于简单题.5.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定【答案】C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin,[1,1]2xf x x x π=+∈-,则2()3cos022x f x x ππ'=+>, 即3()sin ,[1,1]2x f x x x π=+∈-为增函数, 又m ,[1n ∈-,1),33sin sin 22m nn m ππ-<-, 即33sin sin 22m n m n ππ+<+, 所以()()f m f n <, 所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.6.已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最大值是( )A B .1C D .2【答案】D 【解析】 【分析】如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-u u u r u u u r u u u r,计算得到答案.【详解】如图所示建立直角坐标系,则()1,0A ,1,22⎛- ⎝⎭B ,1,22C ⎛⎫-- ⎪ ⎪⎝⎭,设()cos ,sin P θθ, 则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-u u u r u u u r u u u r222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立. 故选:D .【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.7.已知向量(1,0)a =r ,3)b =r ,则与2a b -r r共线的单位向量为( )A .13,2⎛ ⎝⎭B .132⎛- ⎝⎭C .3221⎛⎫- ⎪ ⎪⎝⎭或3221⎛⎫- ⎪ ⎪⎝⎭D .13,22⎛⎫- ⎪ ⎪⎝⎭或13,22⎛-⎝⎭ 【答案】D 【解析】 【分析】根据题意得,(2=1-3a b -r r ,设与2a b -r r共线的单位向量为(),x y ,利用向量共线和单位向量模为1,列式求出,x y 即可得出答案. 【详解】因为(1,0)a =r ,3)b =r,则()22,0a =r,所以(2=1-3a b -r r,, 设与2a b -r r共线的单位向量为(),x y ,则22301x y x y ⎧-=⎪⎨+=⎪⎩,解得122x y ⎧=⎪⎪⎨⎪=-⎪⎩或12x y ⎧=-⎪⎪⎨⎪=⎪⎩所以与2a b -r r共线的单位向量为1,2⎛ ⎝⎭或12⎛- ⎝⎭. 故选:D. 【点睛】本题考查向量的坐标运算以及共线定理和单位向量的定义. 8.已知数列{}n a 的前n 项和为n S ,且14121n n S a n +-=-,11a =,*n N ∈,则{}n a 的通项公式n a =( )A .nB .1n +C .21n -D .21n +【答案】C 【解析】 【分析】利用()12n n n a S S n -=-≥证得数列21n a n ⎧⎫⎨⎬-⎩⎭为常数列,并由此求得{}n a 的通项公式. 【详解】由14121n n S a n +-=-,得1(21)41n n n a S +-=-,可得1(23)41n n n a S --=-(2n ≥).相减得1(21)(21)n n n a n a ++=-,则12121n n a an n +=-+(2n ≥),又 由14121n n S a n +-=-,11a =,得23a =,所以12211211a a =⨯-⨯+,所以21n a n ⎧⎫⎨⎬-⎩⎭为常数列,所以1121211n a a n ==-⨯-,故21n a n =-. 故选:C 【点睛】本小题考查数列的通项与前n 项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识. 9.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()U A B ⋂ð=( ) A .()(),35,-∞+∞U B .(](),35,-∞+∞U C .(][),35,-∞+∞U D .()[),35,-∞+∞U【答案】D 【解析】 【分析】先计算集合B ,再计算A B I ,最后计算()U A B ⋂ð. 【详解】解:{}27100B x x x =-+<Q {|25}B x x ∴=<<,{}37A x x =≤<Q{|35}A B x x ∴=<I …,()[)U ,35(,)A B -∞+∞∴=U I ð. 故选:D . 【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题. 10.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.11.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.12.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30°,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为()A.134 B.67 C.182 D.108【答案】B【解析】【分析】根据几何概型的概率公式求出对应面积之比即可得到结论.【详解】解:设大正方形的边长为1,则小直角三角形的边长为13,22,312-,小正方形的面积23131222S⎛⎫=-=-⎪⎪⎝⎭,则落在小正方形(阴影)内的米粒数大约为31325001500(10.866)5000.13450067112⎛⎫⨯=-⨯≈-⨯=⨯=⎪⎪⨯⎝⎭,故选:B.【点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2019-2020学年高考数学四模考试卷含解析
河北省石家庄市2019-2020学年高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线C :24y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点(A 在x 轴上方),且满足3AF BF =,则直线l 的斜率为( )A .1 BC .2D .3【答案】B 【解析】 【分析】设直线l 的方程为1x my =+代入抛物线方程,利用韦达定理可得124y y m +=,124y y =-,由3AF BF =可知3AF FB =u u u r u u u r所以可得123y y =-代入化简求得参数,即可求得结果.【详解】设()11,A x y ,()22,B x y (10y >,20y <).易知直线l 的斜率存在且不为0,设为1m,则直线l 的方程为1x my =+.与抛物线方程联立得()241y my =+,所以124y y =-,124y y m +=.因为3AF BF =,所以3AF FB =u u u r u u u r ,得123y y =-,所以2243y =,即23y =-,1y =1214m y y ==+. 故选:B. 【点睛】本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题. 2.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3 B .2C .1D .0【答案】C 【解析】 【分析】根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③. 【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越小,故③为假命题. 故选:C . 【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题. 3.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( ) A .324 B .522C .535D .578【答案】D 【解析】 【分析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号. 【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:436,535,577,348,522,535,578,324,577,L ,因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,L ,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键. 4.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i - B .2iC .1i -+D .0【答案】B 【解析】 【分析】根据复数除法的运算法则,即可求解.【详解】22(1)22,21iz i i z i i+-=+==-. 故选:B. 【点睛】本题考查复数的代数运算,属于基础题. 5.已知i 是虚数单位,若z211i i=+-,则||z =( ) A .2 B .2C .10D .10【答案】C 【解析】 【分析】根据复数模的性质计算即可. 【详解】 因为z211i i=+-, 所以(1)(21)z i i =-+,|||1||21|2510z i i =-⋅+=⨯=,故选:C 【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题. 6.执行下面的程序框图,则输出S 的值为 ( )A .112-B .2360C .1120D .4360【答案】D 【解析】 【分析】根据框图,模拟程序运行,即可求出答案. 【详解】 运行程序,11,25s i =-=,1211,3552s i =+--=,123111,455523s i =++---=,12341111,55555234s i =+++----=,12341111,55555234s i =+++----=,1234511111,6555552345s i =++++-----=,结束循环,故输出1111113743=(12345)135********s ⎛⎫++++-++++=-= ⎪⎝⎭, 故选:D. 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题. 7.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.8.如图,在正四棱柱1111ABCD A B C D -中,12AB AA =,E F ,分别为AB BC ,的中点,异面直线1AB 与1C F 所成角的余弦值为m ,则( )A .直线1A E 与直线1C F 异面,且23m =B .直线1A E 与直线1C F 共面,且23m = C .直线1A E 与直线1C F 异面,且3m =D .直线1AE 与直线1CF 共面,且3m = 【答案】B 【解析】 【分析】连接EF ,11A C ,1C D ,DF ,由正四棱柱的特征可知11EF AC P ,再由平面的基本性质可知,直线1A E与直线1C F 共面.,同理易得11AB C D P ,由异面直线所成的角的定义可知,异面直线1AB 与1C F 所成角为1DC F ∠,然后再利用余弦定理求解. 【详解】 如图所示:连接EF ,11A C ,1C D ,DF ,由正方体的特征得11EF AC P , 所以直线1A E 与直线1C F 共面. 由正四棱柱的特征得11AB C D P ,所以异面直线1AB 与1C F 所成角为1DC F ∠.设12AA =AB =122=,则5DF =,13C F =16C D 由余弦定理,得1cos m DC F =∠=2236=⨯⨯. 故选:B 【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.9.下列函数中既关于直线1x =对称,又在区间[1,0]-上为增函数的是( ) A .sin y x =π. B .|1|y x =- C .cos y x π= D .e e x x y -=+【答案】C 【解析】 【分析】根据函数的对称性和单调性的特点,利用排除法,即可得出答案. 【详解】A 中,当1x =时,sin 01y x =π=≠,所以sin y x =π不关于直线1x =对称,则A 错误;B 中,()()1,111,1x x y x x x ⎧-≥⎪=-=⎨-+<⎪⎩,所以在区间[1,0]-上为减函数,则B 错误;D 中,()xxy f x e e -==+,而()()2202,2f f e e -==+,则()()02f f ≠,所以e e x x y -=+不关于直线1x =对称,则D 错误; 故选:C. 【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.10.设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =u u u v u u u v,且1OQ AB ⋅=u u u v u u u v,则点P 的轨迹方程是( ) A .()223310,02x y x y +=>> B .()223310,02x y x y -=>> C .()223310,02x y x y -=>>D .()223310,02x y x y +=>>【答案】A 【解析】 【分析】设,A B 坐标,根据向量坐标运算表示出2BP PA =u u u r u u u r,从而可利用,x y 表示出,a b ;由坐标运算表示出1OQ AB ⋅=u u u r u u u r,代入,a b 整理可得所求的轨迹方程.【详解】设(),0A a ,()0,B b ,其中0a >,0b >2BP PA =u u u r u u u r Q ()(),2,x y b a x y ∴-=--,即()22x a x y b y ⎧=-⎨-=-⎩ 30230x a b y ⎧=>⎪∴⎨⎪=>⎩ ,P Q Q 关于y 轴对称 (),Q x y ∴-()(),,1OQ AB x y a b ax by ∴⋅=-⋅-=+=u u u r u u u r ()223310,02x y x y ∴+=>>故选:A 【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.11.已知函数()(1)(2)x e f x m x x e -=---(e 为自然对数底数),若关于x 的不等式()0f x >有且只有一个正整数解,则实数m 的最大值为( )A .32e e +B .22e e +C .32e e -D .22e e -【答案】A 【解析】 【分析】若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,利用导数求出()g x 的最小值,分别画出()y g x =与(1)y m x =-的图象,结合图象可得. 【详解】解:()(1)(2)0xf e e x m x x =--->-, ∴(1)(2)x m x x e e ->-+, 设()(2)xy g x x e e ==-+, ∴()(1)x g x x e '=-,当1x >时,()0g x '>,函数()g x 单调递增, 当1x <时,()0g x '<,函数()g x 单调递减, ∴()(1)0g x g ≥=,当x →+∞时,()f x →+∞,当x →-∞,()f x e →, 函数(1)y m x =-恒过点()1,0,分别画出()y g x =与(1)y m x =-的图象,如图所示,,若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,∴3(31)(32)e m e -≤-+且(21)(22)x m e e ->-+,即32(3)m g e e ≤=+,且m e >∴32e ee m +<≤,故实数m 的最大值为32e e+,故选:A 【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.12.以下关于()sin 2cos 2f x x x =-的命题,正确的是 A .函数()f x 在区间20,3π⎛⎫⎪⎝⎭上单调递增 B .直线8x π=需是函数()y f x =图象的一条对称轴C .点,04π⎛⎫⎪⎝⎭是函数()y f x =图象的一个对称中心D .将函数()y f x =图象向左平移需8π个单位,可得到2y x =的图象 【答案】D 【解析】 【分析】利用辅助角公式化简函数得到())4f x x π=-,再逐项判断正误得到答案.【详解】()sin 2cos 2)4f x x x x π=-=-A 选项,132(,)4413220,x x ππππ⎛⎫∈⇒ ⎪⎝⎭-∈-函数先增后减,错误 B 选项,2084x x ππ=⇒-=不是函数对称轴,错误 C 选项,2444x x πππ=⇒-=,不是对称中心,错误D 选项,图象向左平移需8π个单位得到))284y x x ππ=+-=,正确本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。
【20套精选试卷合集】河北省石家庄市2019-2020学年高考数学模拟试卷含答案
高考模拟数学试卷考生注意:本试卷共21道小题,满分100分,时量120分钟,请将答案写在答题卷上.一.选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求.1.己知一个几何体是由上、下两部分构成的组合体,其三视图如右图示, 若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是( ) A .43π B .2π C .38π D .103π 2. 一个算法的程序框图如右图所示,若该程序输出的结果是631,则判断框内 应填入的条件是( ) A.4i <B.4i >C.5i <D.5i >3.方程22(1)230a x ax +--=的两根12,x x 满足)(2121x x x -<且01>x , 则实数a 的取值范围是( )A.()3,1B. ()+∞+,31C. )31,23(--D. ),23(∞+- 4.已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是( )A .(),1-∞B .(],1-∞C .()0,1D .[)0,+∞ 5.如右图所示为函数()()2sin f x x ωϕ=+(0,2πωϕπ>≤≤)的部分图象,其中,A B 两点之间的距离为5,那么()1f -=( )A .3B .3-C .2D .2-6.如图,已知双曲线2213y x -=,, A C 分别是虚轴的上、下端点,B 是左顶点, F 为左焦点,直线AB 与FC 相交于点D ,则BDF ∠的余弦值是( )A .77 B .577 C .714 D .5714xyO12 2-AB7.已知α、β是三次函数3211()2(,)32f x x ax bx a b R =++∈的两个极值点,且(0,1)α∈,(1,2)β∈,则21b a --的取值范围是( ) A .1(,1)4B .1(,1)2C .11(,)24-D .1(0,)38. 方程1169x x y y+=-的曲线即为函数()y f x =的图像,对于函数()y f x =,有如下结论:①()f x 在R 上单调递减;②函数()4()3F x f x x =+不存在零点;③函数()y f x =的值域是R ;④若函数()g x 和()f x 的图像关于原点对称,则函数()y g x =的图像就是方程1169y y x x+=确定的曲线。
2019-2020学年河北省石家庄市高考数学一模文科试卷(A)(有答案)
河北省石家庄市高考数学一模试卷(文科)(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣2,﹣1,2,3},B={x|﹣1<x<3},则A∩B=()A.(﹣2,3)B.(﹣1,3)C.{2} D.{﹣1,2,3}2.若复数(i是虚数单位),则=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.已知双曲线的渐近线为,则该双曲线的离心率为()A.B.C.D.4.设变量,y满足约束条件,则目标函数z=3x+4y的最小值为()A.1 B.3 C.D.﹣195.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则的值为()A.B.C.D.﹣1x,若a=f(﹣3),,6.已知函数y=f(x)的图象关于直线x=0对称,且当x∈(0,+∞)时,f(x)=log2c=f(2),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b7.程序框图如图,当输入x为2016时,输出的y的值为()A.B.1 C.2 D.48.为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月11时的平均气温低于乙地该月11时的平均气温②甲地该月11时的平均气温高于乙地该月11时的平均气温③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差其中根据茎叶图能得到的正确结论的编号为()A.①③ B.①④ C.②③ D.②④9.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(8,2)为()A.B.C.D.10.某几何体的三视图如图所示,图中网格小正方形边长为1,则该几何体的体积是()A .4B .C .D .1211.A ,B ,C 是圆0上不同的三点,线段C0与线段AB 交于点D ,若=λ+μ(λ∈R ,μ∈R ),则λ+μ的取值范围是( ) A .(1,+∞)B .(0,1)C .(1,] D .(﹣1,0)12.若函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象与x 轴相切于一点A (m ,0)(m ≠0),且f (x )的极大值为,则m 的值为( ) A . B .C .D .二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知命题p :“”,则¬p 为 .14.已知椭圆的左、右焦点为F 1、F 2,点F 1关于直线y=﹣x 的对称点P 仍在椭圆上,则△PF 1F 2的周长为 . 15.已知△ABC 中,AC=4,BC=2,∠BAC=60°,AD ⊥BC 于D ,则的值为 .16.在三棱锥P ﹣ABC 中,PA=BC=4,PB=AC=5,,则三棱锥P ﹣ABC 的外接球的表面积为 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (I )求数列{a n }的通项公式; (II )若,求数列{b n }的前n 项和.18.在平面四边形ACBD (图①)中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC 沿AB 折起,构成如图②所示的三棱锥C′﹣ABC . (Ⅰ)当时,求证:平面C′AB⊥平面DAB ;(Ⅱ)当AC′⊥BD 时,求三棱锥C′﹣ABD 的高.19.某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;(Ⅱ)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记1分,否则记0分.求该运动员得1分的概率.20.已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.(Ⅰ)求抛物线C的方程;(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x﹣1)2+y2=1相切,切点分别为A,B,求证:A、B、F三点共线.21.已知函数f(x)=e x﹣3x+3a(e为自然对数的底数,a∈R).(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当,且x>0时,.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.(Ⅰ)证明:AE∥CD;(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.[选修4-4:坐标系与参数方程]23.在极坐标系中,已知曲线C 1:ρ=2cosθ和曲线C 2:ρcosθ=3,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.(Ⅰ)求曲线C 1和曲线C 2的直角坐标方程;(Ⅱ)若点P 是曲线C 1上一动点,过点P 作线段OP 的垂线交曲线C 2于点Q ,求线段PQ 长度的最小值.[选修4-5:不等式选讲]24.已知函数f (x )=|x|+|x ﹣1|.(Ⅰ)若f (x )≥|m ﹣1|恒成立,求实数m 的最大值M ;(Ⅱ)在(Ⅰ)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a+b ≥2ab .河北省石家庄市高考数学一模试卷(文科)(A卷)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣2,﹣1,2,3},B={x|﹣1<x<3},则A∩B=()A.(﹣2,3)B.(﹣1,3)C.{2} D.{﹣1,2,3}【考点】交集及其运算.【分析】直接找出两集合的交集即可.【解答】解:集合A={x|﹣2,﹣1,2,3},B={x|﹣1<x<3},则A∩B={2},故选:C.2.若复数(i是虚数单位),则=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵=,∴.故选:B.3.已知双曲线的渐近线为,则该双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,由题意可得a=4,b=3,求得c,运用离心率公式即可得到所求值.【解答】解:双曲线的渐近线方程为y=±x,由渐近线为,可得a=4,又b=3,可得c==5,检验离心率e==.故选:C.4.设变量,y满足约束条件,则目标函数z=3x+4y的最小值为()A.1 B.3 C.D.﹣19【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(﹣1,),化目标函数z=3x+4y为y=,由图可知,当直线y=过点A时,直线在y轴上的截距最小,z有最小值为3,故选:B.5.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则的值为()A.B.C.D.﹣1【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据顶点的纵坐标求A,根据周期求出ω,由五点法作图的顺序求出φ的值,从而求得f(x)的解析式,进而求得f()的值【解答】解:由图象可得A=, =﹣,解得ω=2.再由五点法作图可得2×+φ=π,解得:φ=,故f(x)=sin(2x+),故f()=sin(2×+)=﹣sin=﹣=﹣1.故选:D.6.已知函数y=f(x)的图象关于直线x=0对称,且当x∈(0,+∞)时,f(x)=logx,若a=f(﹣3),,2c=f(2),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【考点】函数的图象.【分析】根据函数的奇偶性和函数的单调性即可判断.【解答】解:函数y=f(x)的图象关于直线x=0对称,∴f(﹣3)=f(3),x,在x(0,+∞)为增函数,∵f(x)=log2∴f(3)>f(2)>f(),∴a>c>b,故选:D.7.程序框图如图,当输入x为2016时,输出的y的值为()A.B.1 C.2 D.4【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第1次执行循环体后,x=2013,满足进行循环的条件,第2次执行循环体后,x=2010,满足进行循环的条件,第3次执行循环体后,x=2007,满足进行循环的条件,…第n次执行循环体后,x=2016﹣3n,满足进行循环的条件,…第672次执行循环体后,x=0,满足进行循环的条件,第673次执行循环体后,x=﹣3,不满足进行循环的条件,故y=,故选:A8.为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月11时的平均气温低于乙地该月11时的平均气温②甲地该月11时的平均气温高于乙地该月11时的平均气温③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差其中根据茎叶图能得到的正确结论的编号为()A.①③ B.①④ C.②③ D.②④【考点】茎叶图.【分析】根据茎叶图中的数据,分别求出甲、乙两地某月11时气温这两组数据的平均数、方差即可.【解答】解:由茎叶图中的数据知,乙两地某月11时的气温分别为:甲:28,29,30,31,32乙:26,28,29,31,31;可得:甲地该月11时的平均气温为=(28+29+30+31+32)=30,乙地该月11时的平均气温为=(26+28+29+31+31)=29,故甲地该月11时的平均气温高于乙地该月11时的平均气温;①错误,②正确;又甲地该月11时温度的方差为= [(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2乙地该月14时温度的方差为= [(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6,故<,所以甲地该月11时的气温标准差小于乙地该月11时的气温标准差,③正确,④错误.综上,正确的命题是②③.故选:C.9.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(8,2)为()A.B.C.D.【考点】数列递推式.【分析】由已知中的数阵,可得第n行的第一个数和最后一个数均为:,其它数字等于上一行该数字“肩膀“上两个数字的和,结合裂项相消法,可得答案.【解答】解:由已知中:归纳可得第n行的第一个数和最后一个数均为:,其它数字等于上一行该数字“肩膀“上两个数字的和,故A(8,2)=A(7,1)+A(7,2)=A(7,1)+A(6,1)+A(6,2)=A(7,1)+A(6,1)+A(5,1)+A (5,2)=A(7,1)+A(6,1)+A(5,1)+A(4,1)+A(4,2)=A(7,1)+A(6,1)+A(5,1)+A(4,1)+A(3,1)+A(3,2)=A(7,1)+A(6,1)+A(5,1)+A(4,1)+A(3,1)+A(2,1)+A(2,2)=++++++=2()+==,故选:D.10.某几何体的三视图如图所示,图中网格小正方形边长为1,则该几何体的体积是()A.4 B.C.D.12【考点】由三视图求面积、体积.【分析】画出图形,说明几何体的形状,然后利用三视图的数据求解即可.【解答】解:由三视图可知几何体的图形如图.是三棱柱截去两个四棱锥的几何体,原三棱柱的高为:4,底面是等腰直角三角形,直角边长为2.截去的四棱锥如图:几何体的体积为:﹣=.故选:B.11.A,B,C是圆0上不同的三点,线段C0与线段AB交于点D,若=λ+μ(λ∈R,μ∈R),则λ+μ的取值范围是()A.(1,+∞)B.(0,1)C.(1,] D.(﹣1,0)【考点】平面向量的基本定理及其意义.【分析】可作图:取∠AOB=120°,∠AOC=∠BOC=60°,从而便得到四边形AOBC为菱形,这样便有,从而根据平面向量基本定理即可得到λ+μ=2,这样便可排除选项B,C,D,从而便可得出正确选项.【解答】解:∵A,B,C是圆0上不同的三点,线段C0与线段AB交于点D;∴如图所示,不妨取∠AOB=120°,∠AOC=∠BOC=60°,则四边形AOBC为菱形;∴;又;∴λ=μ=1,λ+μ=2,∴可排除B,C,D选项.故选:A.12.若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为,则m的值为()A.B.C.D.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】联立方程组,求出a,b,求出f(x)的导数,通过讨论m的范围,得到函数f(x)的单调区间,求出f(x)的极大值,得到关于m的方程,解出即可.【解答】解:∵f(x)=x3+ax2+bx(a,b∈R),∴f′(x)=3x2+2ax+b,∵f(x)的图象与x轴相切于一点A(m,0)(m≠0),∴,解得,∴f′(x)=(3x﹣m)(x﹣m),m>0时,令f′(x)>0,解得:x>m或x<,令f′(x)<0,解得:<x<m,∴f(x)在(﹣∞,)递增,在(,m)递减,在(m,+∞)递增,=f()=,解得:m=,∴f(x)极大值m<0时,令f′(x)>0,解得:x<m或x>,令f′(x )<0,解得:>x >m ,∴f (x )在(﹣∞,m )递增,在(m ,)递减,在(,+∞)递增, ∴f (x )极大值=f (m )=,而f (m )=0,不成立, 综上,m=, 故选:D .二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知命题p :“”,则¬p 为 ∀x∈R,|x|+x 2≥0 .【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可. 【解答】解:因为特称命题的否定是全称命题,所以命题p :“”,则¬p 为:∀x ∈R ,|x|+x 2≥0.故答案为:∀x ∈R ,|x|+x 2≥0.14.已知椭圆的左、右焦点为F 1、F 2,点F 1关于直线y=﹣x 的对称点P 仍在椭圆上,则△PF 1F 2的周长为 2+2 .【考点】椭圆的简单性质.【分析】设出椭圆的左焦点,关于直线y=﹣x 的对称点P (m ,n ),由两直线垂直的条件:斜率之积为﹣1,以及中点坐标公式解得m=0,n=c ,由椭圆方程可得b=c=1,进而得到a 的值,再由椭圆的定义可得周长为2a+2c .【解答】解:设椭圆的左焦点为(﹣c ,0), 点F 1关于直线y=﹣x 的对称点P (m ,n ), 由=1, =﹣,解得m=0,n=c ,即P (0,c ),由题意方程可得b=c=1,a==,由题意的定义可得△PF 1F 2的周长为2a+2c=2+2.故答案为:2+2.15.已知△ABC 中,AC=4,BC=2,∠BAC=60°,AD ⊥BC 于D ,则的值为 6 .【分析】设AB=x ,由余弦定理可得: =x 2+42﹣2x ×4ccos60°,解得x=6.设BD=m ,CD=n .由于AD ⊥BC 于D ,可得=,m+n=2,解出即可得出.【解答】解:设AB=x , 由余弦定理可得: =x 2+42﹣2x ×4ccos60°, 化为x 2﹣4x ﹣12=0, 解得x=6. 设BD=m ,CD=n . ∵AD ⊥BC 于D , ∴=,m+n=2,解得m=,n=,∴==6.故答案为:6.16.在三棱锥P ﹣ABC 中,PA=BC=4,PB=AC=5,,则三棱锥P ﹣ABC 的外接球的表面积为 26π .【考点】球内接多面体;球的体积和表面积.【分析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P ﹣ABC 外接球的直径,即可求出三棱锥P ﹣ABC 外接球的表面积. 【解答】解:∵三棱锥P ﹣ABC 中,PA=BC=4,PB=AC=5,,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P ﹣ABC 外接球的直径.设长方体的棱长分别为x ,y ,z ,则x 2+y 2=16,y 2+z 2=25,x 2+z 2=11, ∴x 2+y 2+z 2=26∴三棱锥P ﹣ABC 外接球的直径为,∴三棱锥P ﹣ABC 外接球的表面积为4=26π.故答案为:26π.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (I )求数列{a n }的通项公式; (II )若,求数列{b n }的前n 项和.【分析】(I )利用等差数列的通项公式及其前n 项和公式即可得出. (II )==,利用“裂项求和”方法即可得出.【解答】解:(I )设等差数列{a n }的公差为d ,∵2a 2+a 3+a 5=20,且前10项和S 10=100, ∴4a 1+8d=20, d=100,联立解得a 1=1,d=2. ∴a n =1+2(n ﹣1)=2n ﹣1. (II )==,∴数列{b n }的前n 项和=+…+==.18.在平面四边形ACBD (图①)中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC 沿AB 折起,构成如图②所示的三棱锥C′﹣ABC . (Ⅰ)当时,求证:平面C′AB⊥平面DAB ;(Ⅱ)当AC′⊥BD 时,求三棱锥C′﹣ABD 的高.【考点】平面与平面垂直的判定;点、线、面间的距离计算.【分析】(I )取AB 的中点O ,连C′O,DO ,利用直角三角形的性质解出OC′,DO ,利用勾股定理的逆定理得出OC′⊥OD ,由等腰三角形三线合一得OC′⊥AB ,故OC′⊥平面ABD ,于是平面C′AB⊥平面DAB ; (II )由AC′⊥BC′,AC′⊥BD 得出AC′⊥平面BC′D,故AC′⊥C′D,利用勾股定理解出C′D,由勾股定理的逆定理得出BD ⊥C′D,使用等积法求出棱锥的高. 【解答】解:(I )取AB 的中点O ,连C'O ,DO ,∵△ABC′,△ABD 是直角三角形,∠AC′B=∠ADB=90°,AB=2, ∴C′O=DO==1,又C′D=,∴C′O2+DO2=C′D2,即C′O⊥OD,∵∠BAC′=45°,∴AC′=BC′,∵O是AB中点,∴OC′⊥AB,又∵AB∩OD=O,AB⊂平面ABD,OD⊂平面ABD,∴C′O⊥平面ABD,∵OC′⊂平面ABC′,∴平面C′AB⊥平面DAB.(II)∵AC′⊥BD,AC′⊥BC′,BD⊂平面BC′D,BC′⊂平面BC′D,∴AC′⊥平面BDC′,又C′D⊂平面BDC',∴AC′⊥C′D,∴△AC′D为直角三角形.∵AB=2,∠BAC′=45°,∠BAD=30°,∠AC′B=∠ADB=90°,∴AC′=BC′=,BD=1,AD=,∴C′D==1,∴C′D2+BD2=BC′2,∴VA﹣BC′D =S△BC′D•AC′==,设三棱锥C'﹣ABD的高为h,则VC′﹣ABD===,解得.19.某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;(Ⅱ)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记1分,否则记0分.求该运动员得1分的概率.【考点】列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.【分析】(Ⅰ)由中位数两边矩形的面积相等列式求得中位数的估计值;(Ⅱ)由题意知,抽到的7次成绩中,有1次来自到篮筐的水平距离为2到3米的这一组,记作A1;有2次来自到篮筐的水平距离为3到4米的这一组,记作B1,B2;有4次来自到篮筐的水平距离为4到5米的这一组,记作C1,C2,C3,C4,然后由古典概型概率计算公式得答案.【解答】解:( I)设该运动员到篮筐的水平距离的中位数为x,∵0.05×2+0.10+0.20<0.5,且(0.40+0.20)×1=0.6>0.5,∴x∈[4,5],由0.40×(5﹣x)+0.20×1=0.5,x=4.25,∴该运动员到篮筐的水平距离的中位数是4.25(米).(II)由题意知,抽到的7次成绩中,有1次来自到篮筐的水平距离为2到3米的这一组,记作A1;有2次来自到篮筐的水平距离为3到4米的这一组,记作B1,B2;有4次来自到篮筐的水平距离为4到5米的这一组,记作C1,C2,C3,C4.从7次成绩中随机抽取2次的所有可能抽法如下:(A1,B1),(A1,B2),(A1,C1),(A1,C2),(A1,C3),(A1,C4),(B1,B2),(B1,C1),(B1,C2),(B1,C3),(B1,C4),(B2,C1),(B2,C2),(B2,C3),(B2,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4)共21个基本事件.其中两次成绩均来自到篮筐的水平距离为4到5米的这一组的基本事件有6个.所以该运动员得的概率P=.20.已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.(Ⅰ)求抛物线C的方程;(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x﹣1)2+y2=1相切,切点分别为A,B,求证:A、B、F三点共线.【考点】抛物线的简单性质;直线与圆锥曲线的综合问题.【分析】(Ⅰ)利用抛物线的定义,结合抛物线C:y2=2px(p>0)过点M(m,2),且|MF|=2,求出p,即可求抛物线C的方程;(Ⅱ)设EA:y=kx+t联立,消去y,可得k2x2+(2kt﹣4)x+t2=0,利用直线EA与抛物线C相切,得到kt=1代入,求出A的坐标;由几何性质可以判断点O,B关于直线EF:y=﹣tx+t对称,求出B的坐标,证明kAF =kBF,即A,B,F三点共线;当t=±1时,A(1,±2),B(1,±1),此时A,B,F共线.【解答】(I)解:抛物线C的准线方程为:,∴,又抛物线C:y2=2px(p>0)过点M(m,2),∴4=2pm,即…∴p2﹣4p+4=0,∴p=2,∴抛物线C的方程为y2=4x.…(II)证明;设E(0,t)(t≠0),已知切线不为y轴,设EA:y=kx+t联立,消去y,可得k2x2+(2kt﹣4)x+t2=0∵直线EA与抛物线C相切,∴△=(2kt﹣4)2﹣4k2t2=0,即kt=1.代入,∴x=t2,即A(t2,2t),…设切点B(x0,y),则由几何性质可以判断点O,B关于直线EF:y=﹣tx+t对称,则,解得:,即…直线AF的斜率为,直线BF的斜率为,∴kAF =kBF,即A,B,F三点共线.…当t=±1时,A(1,±2),B(1,±1),此时A,B,F共线.综上:A,B,F三点共线.…21.已知函数f(x)=e x﹣3x+3a(e为自然对数的底数,a∈R).(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当,且x>0时,.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;选择结构.【分析】(Ⅰ)求出函数的导数,列出变化表,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)问题等价于,设,根据函数的单调性证明即可.【解答】( I)解由f(x)=e x﹣3x+3a,x∈R知f′(x)=e x﹣3,x∈R.…令f′(x)=0,得x=ln 3,…于是当x变化时,f′(x),f(x)的变化情况如下表.x (﹣∞,ln 3)ln 3 (ln 3,+∞)f′(x)﹣0 +f(x)↓3(1﹣ln 3+a)↑故f(x)的单调递减区间是(﹣∞,ln 3],单调递增区间是[ln3,+∞),…f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=e ln3﹣3ln 3+3a=3(1﹣ln 3+a).…(II)证明:待证不等式等价于…设,x∈R,于是g'(x)=e x﹣3x+3a,x∈R.由( I)及知:g'(x)的最小值为g′(ln 3)=3(1﹣ln 3+a)>0.…于是对任意x∈R,都有g'(x)>0,所以g(x)在R内单调递增.于是当时,对任意x∈(0,+∞),都有g(x)>g(0).…而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即,故…请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.(Ⅰ)证明:AE∥CD;(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.【考点】与圆有关的比例线段.【分析】(Ⅰ)连接AB ,利用P 、B 、F 、A 四点共圆,PA 与圆O 切于点A ,得出两组角相等,即可证明:AE ∥CD ;(Ⅱ)四边形PBFA 的外接圆就是四边形PBOA 的外接圆,OP 是该外接圆的直径,由切割线定理可得PA ,即可求四边形PBFA 的外接圆的半径. 【解答】( I )证明:连接AB .∵P 、B 、F 、A 四点共圆,∴∠PAB=∠PFB . … 又PA 与圆O 切于点A ,∴∠PAB=∠AEB ,… ∴∠PFB=∠AEB ∴AE ∥CD .…( II )解:因为PA 、PB 是圆O 的切线,所以P 、B 、O 、A 四点共圆, 由△PAB 外接圆的唯一性可得P 、B 、F 、A 、O 共圆,四边形PBFA 的外接圆就是四边形PBOA 的外接圆,∴OP 是该外接圆的直径.… 由切割线定理可得PA 2=PC•PD=3×9=27 … ∴. ∴四边形PBFA 的外接圆的半径为.…[选修4-4:坐标系与参数方程]23.在极坐标系中,已知曲线C 1:ρ=2cosθ和曲线C 2:ρcosθ=3,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.(Ⅰ)求曲线C 1和曲线C 2的直角坐标方程;(Ⅱ)若点P 是曲线C 1上一动点,过点P 作线段OP 的垂线交曲线C 2于点Q ,求线段PQ 长度的最小值. 【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)根据极坐标和普通坐标之间的关系进行转化求解即可. (Ⅱ)设出直线PQ 的参数方程,利用参数的几何意义进行求解即可. 【解答】解:( I )C 1的直角坐标方程为(x ﹣1)2+y 2=1,…,C的直角坐标方程为x=3;…2( II)设曲线C与x轴异于原点的交点为A,1∴PQ过点A(2,0),设直线PQ的参数方程为,可得t2+2tcosθ=0,解得,代入C1|=|2cosθ|…可知|AP|=|t2可得2+tcosθ=3,解得,代入C2可知…所以PQ=,当且仅当时取等号,所以线段PQ长度的最小值为.…[选修4-5:不等式选讲]24.已知函数f(x)=|x|+|x﹣1|.(Ⅰ)若f(x)≥|m﹣1|恒成立,求实数m的最大值M;(Ⅱ)在(Ⅰ)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.【考点】函数恒成立问题.【分析】( I)求出函数的解析式,然后求解函数的最小值,通过|m﹣1|≤1,求解m的范围,得到m的最大值M.( II)法一:综合法,利用基本不等式证明即可.法二:利用分析法,证明不等式成立的充分条件即可.【解答】解:( I)由已知可得,所以f(x)=1,…min所以只需|m﹣1|≤1,解得﹣1≤m﹣1≤1,∴0≤m≤2,所以实数m的最大值M=2…( II)法一:综合法∴ab≤1∴,当且仅当a=b时取等号,①…又∴∴,当且仅当a=b时取等号,②…由①②得,∴,所以a+b≥2ab…法二:分析法因为a>0,b>0,所以要证a+b≥2ab,只需证(a+b)2≥4a2b2,即证a2+b2+2ab≥4a2b2,,所以只要证2+2ab≥4a2b2,…即证2(ab)2﹣ab﹣1≤0,即证(2ab+1)(ab﹣1)≤0,因为2ab+1>0,所以只需证ab≤1,下证ab≤1,因为2=a2+b2≥2ab,所以ab≤1成立,所以a+b≥2ab…。
河北省石家庄市2019-2020学年高考数学二模考试卷含解析
河北省石家庄市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 【答案】D 【解析】 【分析】利用对数函数的单调性可得235log 5log 5log 3>>,再根据()f x 的单调性和奇偶性可得正确的选项. 【详解】因为33log 5log 31>=,5550log 1log 3log 51=<<=, 故35log 5log 30>>.又2233log 5log 42log 9log 50>==>>,故235log 5log 5log 3>>. 因为当[)0,x ∈+∞时,函数()f x 是单调递减函数, 所以()()()235log 5log 5log 3f f f <<. 因为()f x 为偶函数,故()()3331log log 5log 55f f f ⎛⎫== ⎪⎝⎭-, 所以()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭<. 故选:D. 【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.2.若,x y 满足约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最大值为( )A .10B .8C .5D .3【分析】画出可行域,将2z x y =+化为122zy x =-+,通过平移12y x =-即可判断出最优解,代入到目标函数,即可求出最值. 【详解】解:由约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩作出可行域如图,化目标函数2z x y +=为直线方程的斜截式,122zy x =-+.由图可知 当直线122zy x =-+过()3,0A 时,直线在y 轴上的截距最大,z 有最大值为3. 故选:D. 【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为y ax bz =+ 的形式,在可行域内通过平移y ax =找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.3.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥vv v ,则m=( )A .−8B .−6C .6D .8【答案】D 【解析】 【分析】由已知向量的坐标求出a b +rr 的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥rr r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =1.本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.4.已知函数()cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数()g x x=的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 【答案】D 【解析】 【分析】由函数()f x 的图象关于直线3x π=对称,得1m =,进而得()cos 2sin 2cos 63f x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭,再利用图像变换求解即可【详解】由函数()f x 的图象关于直线3x π=对称,得3f π⎛⎫=⎪⎝⎭322m +=1m =,所以()cos 2sin 2cos 63f x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭,()2cos2g x x =,故只需将函数()f x 的图象上的所有点“先向左平移3π个单位长度,得2cos ,y x =再将横坐标缩短为原来的12,纵坐标保持不变,得()2cos2g x x =”即可. 故选:D 【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题5.已知关于x sin 2x x m π⎛⎫+-= ⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,1【答案】C 【解析】 【分析】先利用三角恒等变换将题中的方程化简,构造新的函数2sin()6y x π=+,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合12x x π-≥,解得m 的取值范围. 【详解】由题化简得3sin cos x x m +=,2sin()6m x π=+,作出2sin()6y x π=+的图象,又由12x x π-≥易知01m ≤<. 故选:C. 【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.6.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .2【答案】B 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,表示的可行域,如图,由20 2390x y x y +-=⎧⎨--=⎩可得31x y =⎧⎨=-⎩, 将2z x y =+变形为2y x z =-+, 平移直线2y x z =-+,由图可知当直2y x z =-+经过点()3,1-时, 直线在y 轴上的截距最大, z 最大值为2315z =⨯-=,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( ).金牌 (块) 银牌(块) 铜牌(块) 奖牌总数 24 5 11 12 28 25 16 22 12 54 26 16 22 12 50 27 28 16 15 59 28 32 17 14 63 2951212810030 38 27 23 88A .中国代表团的奥运奖牌总数一直保持上升趋势B .折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C .第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D .统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5 【答案】B 【解析】 【分析】根据表格和折线统计图逐一判断即可. 【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为545956.52+=,不正确; 故选:B 【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.8.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:mm )服从正态分布()280,5N ,则直径在(]75,90内的概率为( )附:若()2~,X N μσ,则()0.6826P X μσμσ-<+=„,()220.9544P X μσμσ-<+=„.A .0.6826B .0.8413C .0.8185D .0.9544【答案】C 【解析】 【分析】根据服从的正态分布可得80μ=,5σ=,将所求概率转化为()2P X μσμσ-<≤+,结合正态分布曲线的性质可求得结果. 【详解】由题意,80μ=,5σ=,则()75850.6826P X <=„,()70900.9544P X <=„, 所以()()185900.95440.68260.13592P X <=⨯-=„,()75900.68260.13590.8185P X <=+=„. 故果实直径在(]75,90内的概率为0.8185. 故选:C 【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.9.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 【答案】D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .10.已知α322sin αα=,则cos2α等于( ) A .23B .29C .13-D .49-【答案】C 【解析】 【分析】322sin αα=可得3cos 3α=,再利用2cos 22cos 1αα=-计算即可. 【详解】因为23cos 2sin ααα=,sin 0α≠,所以3cos 3α=,所以221cos22cos 1133αα=-=-=-. 故选:C. 【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题. 11.在三棱锥S ABC -中,4SB SA AB BC AC =====,26SC =,则三棱锥S ABC -外接球的表面积是( ) A .403πB .803πC .409πD .809π【答案】B 【解析】 【分析】取AB 的中点D ,连接SD 、CD ,推导出90SDC ∠=o ,设设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F ,可得出OE ⊥平面ABC ,OF ⊥平面SAB ,利用勾股定理计算出球O 的半径,再利用球体的表面积公式可得出结果. 【详解】取AB 的中点D ,连接SD 、CD ,由SAB ∆和ABC ∆都是正三角形,得SD AB ⊥,CD AB ⊥,则34232SD CD ==⨯=,则(((222222336SD CD SC +=+==,由勾股定理的逆定理,得90SDC ∠=o .设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F . 由球的性质可知:OE ⊥平面ABC ,OF ⊥平面SAB , 又312343OE DF OE OF =====,由勾股定理得2226OD OE DE =+=所以外接球半径为R===.所以外接球的表面积为22804433S Rπππ⎛===⎝⎭.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.12.已知符号函数sgnx100010xxx⎧⎪==⎨⎪-⎩,>,,<f(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgn x B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]【答案】A【解析】【分析】根据符号函数的解析式,结合f(x)的单调性分析即可得解.【详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g (x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g (x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g (x)]=﹣1,综合有:sgn[g (x)]=sgn(x);故选:A.【点睛】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2019-2020学年高考数学教学质量调研试卷含解析
河北省石家庄市2019-2020学年高考数学教学质量调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点()2,0A 、()0,2B -.若点P在函数y =PAB △的面积为2的点P 的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】设出点P 的坐标,以AB 为底结合PAB △的面积计算出点P 到直线AB 的距离,利用点到直线的距离公式可得出关于a 的方程,求出方程的解,即可得出结论. 【详解】设点P的坐标为(a ,直线AB 的方程为122x y-=,即20x y --=, 设点P 到直线AB 的距离为d,则11222PAB S AB d d =⋅=⨯=V,解得d =另一方面,由点到直线的距离公式得d ==整理得0a =或40a =,0a ≥Q ,解得0a =或1a =或92a +=. 综上,满足条件的点P 共有三个. 故选:C. 【点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题. 2.过圆224x y +=外一点(4,1)M -引圆的两条切线,则经过两切点的直线方程是( ). A .440x y --= B .440x y +-= C .440x y ++= D .440x y -+=【答案】A 【解析】过圆222x y r +=外一点(,)m n ,引圆的两条切线,则经过两切点的直线方程为20mx ny r +-=,故选A . 3.设{|210}S x x =+>,{|350}T x x =-<,则S T ?( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 【答案】D【解析】 【分析】集合S T ,是一次不等式的解集,分别求出再求交集即可 【详解】{}1210|2S x x x x ⎧⎫=+=>-⎨⎬⎩⎭Q ,{}5|350|3T x x x x ⎧⎫=-<=<⎨⎬⎩⎭,则15|23S T x x ⎧⎫⋂=-<<⎨⎬⎩⎭故选D 【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题. 4.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .【答案】D 【解析】 【分析】 画出曲线与围成的封闭区域,表示封闭区域内的点和定点连线的斜率,然后结合图形求解可得所求范围. 【详解】 画出曲线与围成的封闭区域,如图阴影部分所示.表示封闭区域内的点和定点连线的斜率,设,结合图形可得或,由题意得点A,B 的坐标分别为,∴,∴或,∴的取值范围为.故选D . 【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把看作两点间连线的斜率;二是要正确画出两曲线所围成的封闭区域.考查转化能力和属性结合的能力,属于基础题.5.函数()y f x =()x R ∈在(]1∞-,上单调递减,且(1)f x +是偶函数,若(22)(2)f x f -> ,则x 的取值范围是( ) A .(2,+∞) B .(﹣∞,1)∪(2,+∞) C .(1,2) D .(﹣∞,1)【答案】B 【解析】 【分析】根据题意分析()f x 的图像关于直线1x =对称,即可得到()f x 的单调区间,利用对称性以及单调性即可得到x 的取值范围。
河北省石家庄市2019-2020学年高考数学模拟试题(2)含解析
河北省石家庄市2019-2020学年高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .6【答案】A【解析】【分析】由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y =±x ,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r ,即r =.答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.2.已知直线l :320x y ++=与圆O :224x y +=交于A ,B 两点,与l 平行的直线1l 与圆O 交于M ,N 两点,且OAB V 与OMN V 的面积相等,给出下列直线1l 330x y +-=320x y +-=,③320x y -+=3230x y ++=.其中满足条件的所有直线1l 的编号有( )A .①②B .①④C .②③D .①②④ 【答案】D【解析】【分析】求出圆心O 到直线l 的距离为:112d r ==,得出120AOB ∠=︒,根据条件得出O 到直线1l 的距离1d '=或3.【详解】解:由已知可得:圆O :224x y +=的圆心为(0,0),半径为2,则圆心O 到直线l 的距离为:112d r ==, ∴120AOB ∠=︒, 而1//l l ,OAB V 与OMN V 的面积相等,∴120MON ∠=︒或60︒,即O 到直线1l 的距离1d '=或3时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.3.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A .43B .43C .23D .23【答案】B【解析】【分析】由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,1234432V =⨯⨯⨯=. 故选:B .【点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.4.设函数1()ln 1x f x x x+=-,则函数的图像可能为( ) A . B . C . D .【答案】B【解析】【分析】根据函数为偶函数排除,A C ,再计算11()22ln 30f =>排除D 得到答案. 【详解】 1()ln1x f x x x+=-定义域为:(1,1)- 11()ln ln ()11x x f x x x f x x x-+-=-==+-,函数为偶函数,排除,A C 11()22ln 30f => ,排除D 故选B【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.5.已知平面向量a r ,b r 满足()1,2a =-r ,()3,b t =-r ,且()a ab ⊥+r r r ,则b =r ( )A .3B .C .D .5【答案】B【解析】【分析】 先求出a b +r r ,再利用()0a a b ⋅+=r r r 求出t ,再求b r . 【详解】解:()()()1,23,2,2t t a b -+-=-=-+r r由()a a b ⊥+r r r ,所以()0a a b ⋅+=r r r ()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-r ,=r b 故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.6.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( )A .20B .50C .40D .60【答案】B【解析】【分析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】 由题意,30=150015001000n ⨯+,解得50n =. 故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.7.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA ==,点,E O 分别是线段1,C C BC 的中点,1113A F A A =u u u u r u u u r ,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>【答案】D【解析】【分析】 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为1AB AC ==,12BC AA ==222AB AC BC +=,即AB AC ⊥ 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则(1F ,022),1(2O ,12,0),(0E ,02),1(1B ,12), 111(,2)22OB =u u u u r ,112(,22OE =--u u u r , 1122(,)22OF =-u u u r ,12)EB =u u u r ,2)EF =u u u r , 设平面1OB E 的法向量(),,m x y z =u r ,则111·2022112·0222m OB x y z m OE x y z ⎧=++=⎪⎪⎨⎪=--+=⎪⎩u u u v v u u u v v ,取1x =,得()1,1,0m →=-, 同理可求平面1OB F 的法向量(52,2,3)n =--r ,平面OEF 的法向量272(,,3)p =-u r ,平面1EFB 的法向量2(,2,3)q =--r . ∴461cos ||||m n m n α==u r r g u r r g ,434cos ||||m p m p β==u r u r g u r u r g ,46cos ||||m q m q γ==u r r g u r r g . γαβ∴>>.故选:D .【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.8.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④【答案】B【解析】【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确;“2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误.故选:B .【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.9.数列{}n a 满足()*212n n n a a a n +++=∈N ,且1239a a a ++=,48a =,则5a =( ) A .212 B .9 C .172 D .7【答案】A【解析】【分析】先由题意可得数列{}n a 为等差数列,再根据1239a a a ++=,48a =,可求出公差,即可求出5a .【详解】数列{}n a 满足*212()n n n a a a n N +++=∈,则数列{}n a 为等差数列,1239a a a ++=Q ,48a =,1339a d ∴+=,138a d +=,52d ∴=, 54521822a a d ∴=+=+=, 故选:A .【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.10.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .()1,+∞B .13,8⎛⎤-∞ ⎥⎝⎦C .13,8⎛⎫-∞ ⎪⎝⎭D .13,8⎛⎫+∞ ⎪⎝⎭【答案】B【解析】【分析】由题意可知函数()y f x =为R 上为减函数,可知函数()2y a x =-为减函数,且()212212a ⎛⎫-≤- ⎪⎝⎭,由此可解得实数a 的取值范围.【详解】 由题意知函数()y f x =是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤, 因此,实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. 故选:B.【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.11.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A .40B .60C .80D .100 【答案】D【解析】【分析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人,故选:D .【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.12. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )A .165B .325C .10D .185【答案】D【解析】【分析】直接根据几何概型公式计算得到答案.【详解】 根据几何概型:809200S p ==,故185S =. 故选:D .【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2019-2020学年高考数学仿真第一次备考试题含解析
河北省石家庄市2019-2020学年高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的-一个公共点,且1223F PF π∠=,设椭圆和双曲线的离心率分别为12,e e ,则12,e e 的关系为( )A .2212314e e += B .221241433e e += C .2212134e e += D .221234e e +=【答案】A 【解析】 【分析】设椭圆的半长轴长为1a ,双曲线的半长轴长为2a ,根据椭圆和双曲线的定义得: 12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩ ,解得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,然后在12F PF △中,由余弦定理得:()()()()22212121212242cos3c a a a a a a a a π=++--+⋅-⋅,化简求解. 【详解】设椭圆的长半轴长为1a ,双曲线的长半轴长为 2a ,由椭圆和双曲线的定义得: 12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩ , 解得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,设121222,3π=∠=F F c F PF ,在12F PF △中,由余弦定理得: ()()()()22212121212242cos3c a a a a a a a a π=++--+⋅-⋅, 化简得2221234a a c +=,即2212314e e +=. 故选:A 【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.2.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别是()()12,0,,0,F c F c -直线2bc y a =与双曲线C 的两条渐近线分别相交于,A B 两点.若12,3BF F π∠=则双曲线C 的离心率为( )A .2B 42C 2D 23【答案】A 【解析】 【分析】 易得(,)22c bc B a -,过B 作x 轴的垂线,垂足为T ,在1FTB ∆中,利用1tan 3BT FT π=即可得到,,a b c 的方程. 【详解】由已知,得(,)22c bc B a -,过B 作x 轴的垂线,垂足为T ,故12cFT =, 又12,3BF F π∠=所以1tan 33BT FT π==,即232bcb ac a == 所以双曲线C 的离心率21()2be a =+.故选:A. 【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到,,a b c 的方程或不等式,本题属于容易题. 3.已知复数(2)1ai iz i+=-是纯虚数,其中a 是实数,则z 等于( )A .2iB .2i -C .iD .i -【答案】A 【解析】 【分析】对复数z 进行化简,由于z 为纯虚数,则化简后的复数形式中,实部为0,得到a 的值,从而得到复数z . 【详解】()()()()()221222111122ai i a i i a i a a z i i i i i +-+--+-+====+-++- 因为z 为纯虚数,所以202a-=,得2a = 所以2z i =. 故选A 项 【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题. 4.在等差数列{}n a 中,若244,8a a ==,则7a =( ) A .8 B .12C .14D .10【答案】C 【解析】 【分析】将2a ,4a 分别用1a 和d 的形式表示,然后求解出1a 和d 的值即可表示7a . 【详解】设等差数列{}n a 的首项为1a ,公差为d , 则由24a =,48a =,得114,38,a d a d +=⎧⎨+=⎩解得12a =,2d =,所以71614a a d =+=.故选C . 【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建1a 和d 的方程组求通项公式.5.已知复数z 满足()14i z i -=,则z =( ) A.B .2C .4D .3【答案】A 【解析】【分析】由复数除法求出z ,再由模的定义计算出模. 【详解】44(1)22,1(1)(1)i i i z i z i i i +===-+=--+ 故选:A . 【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.6.设点P 是椭圆2221(2)4x y a a +=>上的一点,12F F ,是椭圆的两个焦点,若12F F =12PF PF +=( )A .4B .8C .D .【答案】B 【解析】∵12F F =∵122F F c ==∴c =∵222c a b =-,24b = ∴4a =∴1228PF PF a +== 故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.7.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4π B .16πC .163πD .323π【答案】D 【解析】 【分析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积. 【详解】如图,正三棱锥A BCD -中,M 是底面BCD ∆的中心,则AM 是正棱锥的高,ABM ∠是侧棱与底面所成的角,即ABM ∠=60°,由底面边长为3得233332BM =⨯=, ∴tan 60333AM BM =︒=⨯=.正三棱锥A BCD -外接球球心O 必在AM 上,设球半径为R , 则由222BO OM BM =+得222(3)(3)R R =-+,解得2R =, ∴3344322333V R πππ==⨯=. 故选:D .【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.8.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表: 实施项目种植业养殖业工厂就业服务业参加用户比40% 40% 10% 10%脱贫率95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A .2728倍 B .4735倍 C .4835倍 D .75倍 【答案】B 【解析】 【分析】设贫困户总数为a ,利用表中数据可得脱贫率000000002409521090P =⨯⨯+⨯⨯,进而可求解. 【详解】设贫困户总数为a ,脱贫率0000000000240952109094a aP a⨯⨯+⨯⨯==,所以000094477035=. 故2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的4735倍. 故选:B 【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:422=+,633=+,835=+,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A .121B .221C .115D .215【答案】B 【解析】 【分析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求. 【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有2721C =,其和等于16的结果(3,13),(5,11)共2种等可能的结果, 故概率221P =. 故选:B. 【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.10.某设备使用年限x (年)与所支出的维修费用y (万元)的统计数据(),x y 分别为()2,1.5,()3,4.5,()4,5.5,()5,6.5,由最小二乘法得到回归直线方程为ˆˆ1.6yx a +=,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( ) A .8年B .9年C .10年D .11年【解析】 【分析】根据样本中心点(,)x y 在回归直线上,求出$a ,求解$15y >,即可求出答案.【详解】 依题意 3.5, 4.5,(3.5,4.5)x y==在回归直线上,$$ˆ4.5 1.6 3.5, 1.1, 1.6 1.1a a y x =⨯+=-∴-=,由1ˆ 1.6 1.115,1016yx x ->>=, 估计第11年维修费用超过15万元. 故选:D. 【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.11.已知函数log ()a y x c =+(a ,c 是常数,其中0a >且1a ≠)的大致图象如图所示,下列关于a ,c 的表述正确的是( )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<【答案】D 【解析】 【分析】根据指数函数的图象和特征以及图象的平移可得正确的选项. 【详解】从题设中提供的图像可以看出()01,log 0,log 10a a a c c <<>+>, 故得01,01c a <<<<, 故选:D .本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.12.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A .18B .14 C .16D .12【答案】B 【解析】 【分析】 【详解】甲同学所有的选择方案共有122412C C =种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有133C =种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率31124P ==,故选B . 二、填空题:本题共4小题,每小题5分,共20分。
【20套试卷合集】河北省石家庄市精英中学2019-2020学年数学高一上期中模拟试卷含答案
【20套试卷合集】河北省⽯家庄市精英中学2019-2020学年数学⾼⼀上期中模拟试卷含答案2019-2020学年⾼⼀上数学期中模拟试卷含答案(考试时间:120分钟,满分:150分)⼀、选择题(每题5分,共50分)1、已知全集{}{}{}()====N M C ,N M U U 则3,2,2,1,0,4,3,2,1,0( ) A. {}2 B. {}432,, C. {}3 D. {}4321,0,,,2.下列四个图象中,不是y 关于x 的函数的图象是()3.函数xx f -=21)(的定义域为M ,2)(+=x x g 的定义域为N ,则=?N M ()A.{}2-≥x x B.{}22<<-x x C. {}22<≤-x x D. {}24.3log 9log 28的值是()A .32 B .1 C .25.函数y =x 2+2x +3(x ≥—2)的值域为()A .[3,+∞)B .[0,+∞)C .[2,+∞)D .R6.设≥-<=-2),1(log 2,2)(231x x x e x f x ,则)]2([f f 的值为() A .0 B .1 C .2 D .2e 7.设3.0log ,3.0,2 223.0===c b a ,则c b a ,,的⼤⼩关系为()A .c b a <<B .c a b <<C . a b c <<D . b a c << 8.函数3log )(3-+=x x x f 零点所在⼤致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.已知1>a ,函数)(log x y a y a x-==与的图象只可能是()A.B.C.D.10.若偶函数f(x)在区间(-∞,-1]上是增函数,则()A .f(-32)B .f(-1)D .f(2)2)⼆、填空题(每题5分,共20分)11、函数y =log a (x +2)+3(a >0且a ≠1)的图像过定点________.12、若函数y =(x +1)(x -a)为偶函数,则a 等于_________13.函数)(x f y =在[1,2]连续,若0)2(,0)1(<>f f ,则)(x f 在)2,1(上零点的个数为______ 14. 函数)2(log 22x x y -=的递增区间是 .三、解答题:本⼤题共6⼩题.共80分。
2019-2020学年河北省石家庄精英中学高一下学期第二次调研考试数学试题
河北省石家庄精英中学2019-2020学年高一下学期第二次调研考试试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,考试时间120分钟,总分150分.注意事项:1. 答题前,务必用直径0.5毫米黑色墨水签字笔先将自己的姓名、班级、考号及座位号填写在答题纸相应位置.2. 请考生将所作[答案]填写在答题纸上,写在试卷上无效.第Ⅰ卷一、 选择题(本题共24小题;每题3分,共计72分)1. 在空间直角坐标系中,点P (4,2,3)与Q (-4,2,-3)两点的位置关系是( )A .关于原点对称B .关于xOz 平面对称C .关于y 轴对称D .以上都不对2. 在空间直角坐标系中,已知M (﹣1,2,2),N (3,﹣2,﹣4),则MN 的中点Q 到坐标原点O 的距离为( )A B C .2 D .33. 用系统抽样的方法从个体数为607的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是( ) A.112 B .1607 C.50607 D .16004. 某校针对高一,高二,高三学习情况做了一次问卷调查,回收的问卷依次为:120份,240份,x 份.因调查需要,从回收的问卷中按不同年级分层抽取容量为100的样本,其中在高二学生问卷中抽取30份,则在高三学生中抽取的问卷份数为( )A .45B .55C .800D .4405. 已知直线30x my ++=的倾斜角为4π,则m =()A .1B .1- CD . 6. 已知直线40x ay ++=与直线480ax y +-=互相平行,则实数a 的值为()A .2±B .2C .2-D .07. 经过点(1,3)P ,并且在两坐标轴上的截距的绝对值相等的直线有()A .0条B .1条C .2条D .3条8. 已知点A (-3,-4),B (6,3)到直线l :ax -y -1=0的距离相等,则实数a 的值等于()A .79B .-13C .-79或-13D .79或139. 设()()2,3,2,5A B -,若直线10ax y +-=与线段AB 相交,则a 的取值范围是()A .[]2,1-B .[1,2]-C .(][),21,-∞-+∞UD .(,1][2,)-∞-⋃+∞10. 方程224250x y mx y m ++--=表示圆的充要条件是()A .114m <<B .14m <或1m >C .14m >-或1m <- D .114m -<<- 11. 若直线2y kx k =-与圆2240x y mx +++=恒有公共点,则实数m 的取值范围为()A .[4,)-+∞B .(,4]-∞C .(,4]-∞-D .(,4)-∞- 12. 圆C 1:(x +2)2+(y +2)2=4与圆C 2:(x ﹣2)2+(y ﹣1)2=9的位置关系是( )A .内切B .外切C .相交D .相离 13. 已知两圆221x y +=和222)(4)25x a y -++=(相切,求实数a 的值. A.0 B. 或0 D.或0 14. 圆22(3)(1)1x y -++=关于直线20x y --=对称的圆的方程为()A .22(1)(1)1x y -+-=B .22(1)(1)1x y +++=C .22(1)(1)1x y ++-=D .22(1)(1)1x y -++=15. 已知直线l :10()x ay a R --=∈是圆22:4210C x y x y +--+=的对称轴,则2a =()A .2B .12C .4D .116. 圆222210x y x y +--+=上的点到直线x y -=A .2B .1C .1+D .1+ 17. 已知圆C:2225x y +=,直线20x y m ++=截圆C 所得的弦长为8,则正数m =()A B .C .5 D .1018. 已知圆1C :2284100x y x y +--+=,圆2C :22(2)1x y -+=,圆1C ,2C 的公共弦为l ,求圆心2C 到l 的距离为()A .8B .4C .2 D19. 已知圆C 1:x 2+y 2+4ax +4a 2﹣16=0和圆C 2:x 2+y 2﹣4=0只有一条公切线,则实数a=()A .1B .3±C .1±D .20. 若直线l :ax +by =1与圆C :x 2+y 2=1无公共点,则点P (a ,b )与圆C 的位置关系是( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 21. 若直线y =x ﹣b 与曲线y =4-x 2有公共点,则b 的取值范围为()A .[−2,2]B .[−22,22]C .[−22,2]D .[−2,22] 22. 已知圆2222210x x y my m -+-+-=,当圆的面积最小时,圆上的点到直线34110x y -+=距离最小值为()A.1B.2C.3D.423. 已知圆C :22(1)(1)1x y +++=,动点P 在直线20x y +-=上运动,过P 作圆C 的一条切线,切点为A ,则|P A |的最小值为()A .B .3C D .24. 若P 是圆()()22:331C x y ++-=上任一点,则点P 到直线1y kx =-距离的取最大值时的直线斜率为() A.43 B.43- C.34 D.34- 第Ⅱ卷( 非选择题共78分)二、 填空题(共5小题,每题3分,共计15分)25. 假设要考察某公司生产的600克袋装牛奶的质量是否达标,现从600袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将600袋牛奶按000,001,…,599进行编号,如果从随机数表第7行第8列的数开始向右读,则检测的第5袋牛奶的编号为_______________.(下面摘取了随机数表第7行至第9行)81 05 01 08 05 45 57 18 24 06 35 30 34 28 24 08 79 90 74 39 23 40 30 97 32 83 26 97 76 02 02 05 16 56 92 68 55 57 48 18 73 05 38 52 47 18 62 33 85 79 63 57 33 21 35 05 32 54 70 48 90 55 85 75 18 28 46 82 87 09 83 40 12 56 24 26. 两条互相垂直的直线l 1:3x ﹣2y +1=0与l 2:Ax +3y ﹣8=0的交点在圆C :x 2+y 2﹣4x ﹣2y +m =0上,则圆C 的半径为__________.27. 已知a ,b ∈R ,且4a +3b +3=0,则(a -1)2+(b -1)2的最小值是________. 28. 以点()3,5为圆心,且与直线4x y +=相切的圆的方程是_________________. 29. 已知圆22:1C x y +=,过点(4,3)P 引圆C 的切线,切点分别为,A B ,则直线AB 方程为______.三、 解答题(共6小题,共计63分)30. (6分)求由下列条件确定的圆222x y +=的切线方程:(1)经过点(1,1)A -;(2)切线斜率为2.31. (9分)求满足下列条件的圆的方程;(1)经过点(1,1)A --与(3,3)B -,且圆心在x 轴上的圆的标准方程;(2)过点A (3,﹣1)的圆C 与直线x -y =0相切于点B (1,1),求圆C 的标准方程.32. (9分)已知点M 是圆22:4C x y +=上的动点,点()2,0N ,(2,3)Q -,MN 的中点为P .(1)求点P 的轨迹方程.(2)过定点Q 且与曲线P 相切的直线的方程.33. (9分)已知过定点(2,0)M -的直线l 与圆22:8120C x y y +-+=交于A 、B 两点.(1)当弦AB 的长最短时,求直线l 的方程;(2)若||AB =l 的方程.34. (15分)已知(3,2)A 和圆22:(2)(3)1C x y ++-=,一束光线从A 发出,经x 轴反射.(1)光线到达圆心C ,求光线所走过的路径长;(2)光线与圆C 相切,则反射光线所在直线的斜率.(3)若P 为圆C 上任意一点,求2226x y x y +--的最大值和最小值.35. (15分)已知圆221:28C x y x ++=,圆2222:4234C x ax y y a -++=-(1)若1a =,求两圆心连线12C C 的中垂线的一般式方程;(2)若1a =,且动点P 满足12PC =,求P 点轨迹方程;(3)若两圆相切,求a 的值.——★ 参 考 答 案 ★——一、 选择题(本题共24小题;每题3分,共计72分)1-5 CBCBB 6-10BDDCC 11-15CBAAA 16-20ABACB 21-24CACC二、 填空题(共5小题,每题4分,共计20分)25. 439 26. 27. 4 28. 22(3)(5)8x y -+-= 29. 4x +3y -1=0三、 解答题(共6小题,共计58分)30[解答]解:(1)由题意,切点为(1,1)A -,切线方程为2x y -=,即20x y --=;(3分)(2)切线斜率为2,设方程为2y x b =+,即20x y b --=,圆心到直线的距离d =b ∴=∴切线方程为2y x =(6分)31.[解答](1)Q 圆的圆心在x 轴上,设圆心为(,0)M a ,由圆过点(1,1)A --和(3,3)B -, 即||||MA MB =可得22MA MB =,求得2a =,(2分)可得圆心为(2,0)M ,半径为||MA∴圆的方程为22(2)10x y -+=;(4分)(2)[答案]22(2)2x y -+=(9分)32.[解答]解:(1)圆的方程为:22(1)1x y -+=,(4分)(2)设过定点(2,3)-且与圆相切的直线方程为3(2)y k x +=-,即230kx y k ---=,则圆心C 到该直线的距离为1d ==,解得43k =-,∴切线方程为43(2)3y x +=--,即4310x y ++=;(7分) 又当斜率k 不存在时,直线2x =也是圆的切线;综上,所求圆的切线为2x =或4310x y ++=.(9分)33.[解答]解:(1)圆22:8120C x y y +-+=化成标准方程为22(4)4x y +-=,则此圆的圆心为(0,4),半径为2,弦AB 的长最短时,作CM AB ⊥,2CM k =,所以12AB k =-,所以直线l 的方程为1(2)2y x =-+,即220x y ++=.(4分) (2)圆22:8120C x y y +-+=化成标准方程为22(4)4x y +-=,则此圆的圆心为(0,4),半径为2,:20l mx y m ++=过圆心C 作CD AB ⊥于D ,则根据题意和圆的性质,||CD =,∴=,解得7m =-或1m =-,故所求直线方程为7140x y -+=或20x y -+=.(5分)34.[解答]解:(1)(3,2)A 关于x 轴的对称点为(3,2)A '-,由圆22:(2)(3)1C x y ++-=得圆心坐标为(2,3)C -,∴||AC '==,即光线所走过的最短路径长为(5分)(2)[答案]43-或34-(10分) (3)222226(1)(3)10x y x y x y +--=-+--.22(1)(3)x y -+-表示圆C 上一点(,)P x y 到点(1,3)的距离的平方, 由题意,得22[(1)(3)]4min x y -+-=,222[(1)(2)]416max x y -+-==. 因此,2226x y x y +--的最大值为6,最小值为6-.(15分)35.[答案](1)320x y --=;(2)()()225220x y -++=;(3)12a ±=或12a =- [解析](1)当1a =时,圆221:28C x y x ++=,即为()2219x y ++=,圆心为()11,0C -,圆222:4234C x x y y -++=-,即()()222:214C x y -++=,圆心为()22,1C -, 则两圆心的中点坐标为11,22⎛⎫- ⎪⎝⎭,12011123C C k +==---,两圆心连线12C C 的中垂线为:11322y x ⎛⎫=-- ⎪⎝⎭,整理得一般式为:320x y --=;(5分)(2)设(),P x y ,()11,0C -,()22,1C -,12PC =Q ,即22122PC PC =,()()()22221221x y x y ⎡⎤∴++=-++⎣⎦, 整理得P 点轨迹方程为()()225220x y -++=;(10分)(3)圆221:28C x y x ++=,即为()2219x y ++=,圆心为()11,0C -, 圆2222:4234C x ax y y a -++=-,即()()222:214C x a y -++=,圆心为()22,1C a -,若两圆相切,32=+,解得a =;32=-,解得12a =-,综合得:若两圆相切,a =或12a =-.(15分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}220A x N x x =∈--<的真子集个数为( )A .1B .2C .3D .42.若a 为实数,且231ai i i+=++,则a =( ) A .-4 B .-3 C .3 D .43.下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A .0B .2C .4D .144.一个四面体的三视图如下图所示,则该四面体的表面积是( )A .1.1+.2 D .5.已知命题“R x ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .(),1-∞- B .()1,3- C .()3,-+∞ D .()3,1-6.已知2sin 23α=,则2cos 4πα⎛⎫+= ⎪⎝⎭( ) A .16 B .13 C .12 D .237.设向量,a b r r 满足a b +=r r a b -=r r ,则a b ⋅=r r ( ) A .1 B .2 C .3 D .58.设,x y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则3z x y =+的最大值为( )A .-3B .4C .2D .59.由曲线1xy =与直线y x =,3y =所围成的封闭图形面积为( )A .2ln3-B .ln 3C .2D .4ln3-10.设2log 5a =,4log 15b =,0.52c =,则,,a b c 大小关系为( )A .a c b >>B .a b c >>C .c b a >>D .c a b >>11.等差数列{}n a 满足10a >,201620170a a +>,201620170a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2016B .2017C .4032D .403312.若存在正数x ,使()21x x a -<成立,则实数a 的取值范围是( )A .(),-∞+∞B .()2,-+∞C .()0,+∞D .()1,-+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则数列{}n a 的前n 项n S = .14.直线3y kx =+被圆()()22234x y -+-=截得的弦长为,则直线的倾斜角为 .15.函数()log 41a y x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中,m n 均大于0,则12m n+的最小值为 . 16.在锐角ABC ∆中,,,a b c 分别是角,,A B C 所对的边,ABC ∆的面积2S =,且满足()cos 1cos a B b A =+,则()()c a b c b a +-+-的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数()23f x x π⎛⎫=-- ⎪⎝⎭2sin sin 44x x ππ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最值. 18.已知函数()211f x x x =+--.(1)求不等式()2f x <的解集;(2)若关于x 的不等式()22a f x a ≤-有解,求实数a 的取值范围. 19不是有理数.20.已知数列{}n a 的前n 项和为n S ,且142n n S a +=+,11a =.(1)12n n n b a a +=-,求证数列{}n b 是等比数列;(2)设2n n n a c =,求证数列{}n c 是等差数列; (3)求数列{}n a 的通项公式及前n 项和n S .21.如图,已知多面体EABCDF 的底面ABCD 是边长为2的正方形,EA ⊥底面ABCD ,FD EA ∥,且112FD EA ==. (1)记线段BC 的中点为K ,在平面ABCD 内过点K 作一条直线与平面ECF 平行,要求保留作图痕迹,并写出该直线与CF 所成角的余弦值,但不要求证明和解答过程.(2)求直线EB 与平面ECF 所成角的正弦值.22.设函数()2ln 2a f x x x x =- (1)当()0,x ∈+∞,()02a f x x +≤恒成立,求实数a 的取值范围. (2)设()()g x f x x =-在21,e ⎡⎤⎣⎦上有两个极值点12,x x .(A )求实数a 的取值范围;(B )求证:12112ln ln ae x x +>.一、选择题1-5CDBCB 6-10AABDB 11、12:CD二、填空题13.()1n n + 14.6π或56π 15.5+.()8,8 三、解答题17.解:(1)∵()2sin 34f x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭sin sin 246x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, ∴22T ππ==, 由()262x k k πππ-=+∈Z 得()23k x k ππ=+∈Z . 函数()f x 的最小正周期为π,对称轴方程为()23k x k ππ=+∈Z . (2)∵,122x ππ⎡⎤∈-⎢⎥⎣⎦,∴52,636x πππ⎡⎤-∈-⎢⎥⎣⎦. 因为()sin 26f x x π⎛⎫=-⎪⎝⎭在区间,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,当3x π=时,()f x 取最大值1.又∵11222f f ππ⎛⎫⎛⎫-=<= ⎪ ⎪⎝⎭⎝⎭,当12x π=-时,()f x 取最小值. 18.解:(1)当1x ≥时,无解;当112x -<<时,1223x -<<; 当12x ≤-时,142x -<≤-. 综上,24,3x ⎛⎫∈- ⎪⎝⎭.(2)函数()f x 的最小值为32-,2322a a -≥-,所以[]1,3a ∈-.19为有理数那么存在两个互质的正整数,p q p q =,于是p =,两边平方得222p q = 由22q 是偶数,可得2p 是偶数.而只有偶数的平方才是偶数,所以p 也是偶数.因此可设2p s =,s 是正整数,代入上式,得:2242s q =,即222q s =.所以q 也是偶数,这样,p q 都是偶数,不互质,这与假设,p q 互质矛盾.不是有理数.20.解:(1)由题意,142n n S a +=+,2142n n S a ++=+相减,得()2114n n n n S S a a +++-=- 2144n n n a a a ++=-,∴()211222n n n n a a a a +++-=-∵12n n n b a a +=-,∴()*12n n b b n +=∈N ,2q =,又由题设,得21426a +=+=,即25a =,12123b a a =-=,∴{}n b 首项为3,公比为2的等比数列,其通项公式为132n n b -=⋅ (2)11232n n n n b a a -+=-=⋅,所以,134n n c c +-= ∴数列{}n c 是首项为12,公差为34的等差数列, ∴()2312n n a n -=-.(3)()13422n n S n -=-+.21.解:(1)取线段CD 的中点,连结KQ ,直线KQ 即为所求.(2)以A 点为原点,AB 所在直线为x 轴,AD 所在的直线为y 轴,AE 所在直线为z 轴建立空间直角坐标系,如图.由已知可得()0,0,0A ,()0,0,2E ,()2,0,0B ,()2,2,0C ,()0,2,1F ,∴()2,2,2EC =-uu u r ,()2,0,2EB =-uu r ,()0,2,1EF =-uu u r设平面ECF 的法向量为(),,n x y z =r ,得2220,20x y z y z +-=⎧⎨-=⎩,取1y =,得平面ECF 的一个法向量为()1,1,2n =r ,设直线EB 与平面ECF 22.解:(1)∵2ln 022a a x x x x -+≤,且0x >, ∴ln 022a a x x -+≤. 令()()ln 022a a U x x x x =-+>,则()12a U x x '=-.①当0a ≤时,()0U x '>,()U x 在()1,+∞上为单调递增函数,∴1x >时,()()10U x U >=,不合题意.②当02a <<时,21,x a ⎛⎫∈ ⎪⎝⎭时,()0U x '>,()U x 在21,a ⎛⎫ ⎪⎝⎭上为单调递增函数, ∴21,x a ⎛⎫∈ ⎪⎝⎭,()()10U x U >=,不合题意. ③当2a >时,2,1x a ⎛⎫∈⎪⎝⎭,()0U x '<,()U x 在2,1a ⎛⎫ ⎪⎝⎭上为单调递减函数. ∴2,1x a ⎛⎫∈ ⎪⎝⎭时,()()10U x U >=,不合题意. ④当2a =时,()0,1x ∈,()0U x '>,()U x 在()0,1上为单调递增函数.()1,x ∈+∞,()0U x '<,()U x 在()1,+∞上为单调递减函数.∴()0U x ≤,符合题意.综上,2a =.(2)()2ln 2a g x x x x x =--,21,e x ⎡⎤∈⎣⎦. ()ln g x x ax '=-.令()()h x g x '=,则()1h x a x'=- 由已知()0h x =在()21,e 上有两个不等的实根.(A )①当21ea ≤时,()0h x '≥,()h x 在()21,e 上为单调递增函数,不合题意. ②当1a ≥时,()0h x '≤,()h x 在()21,e 上为单调递减函数,不合题意. ③当211e a <<时,11,x a ⎛⎫∈ ⎪⎝⎭,()0h x '>,21,e x a ⎛⎫∈ ⎪⎝⎭,()0h x '<, 所以,()10h <,10h a ⎛⎫>⎪⎝⎭,()2e 0h <,解得221,e e a ⎛⎫∈ ⎪⎝⎭. (B )由已知11ln 0x ax -=,22ln 0x ax -=,∴()1212ln ln x x a x x -=-.不妨设12x x <,则1201x x <<,则121212112x x a x x x x ++-=-()22121212121212ln ln 122ln ln x x x x x x x x x x x x ⎡⎤--=--⎢⎥--⎣⎦1212121212ln 2x x x x x x x x x x -=---. 令()12ln G x x x x=--,()01x <<.则()()2210x G x x -'=>,∴()G x 在()0,1上为单调递增函数, ∴()1210x G G x ⎛⎫<= ⎪⎝⎭即121212ln 0x x x x x x --<, ∴121120a x x +->, ∴12112ax ax +>, ∴12112ln ln x x +>, 由(A )1ea <, ∴e 1a <,2e 2a <, ∴12112e ln ln a x x +>.高考模拟数学试卷本试卷分为试题卷和答题卷两部分,解答写在答题卷相应的位置......... 全卷共150分,考试时间为120分钟一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求的.1.设集合{}0232<++=x x x M ,集合1{|()4}2x N x =≤ , 则MUN 为 A .}{2-≥x x B .}{1->x x C .}{1-<x x D .}{2-≤x x2.在复平面内,复数13i 1i+-对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限 3. 一个几何体的三视图如图所示,则该几何体的表面积为A .226++ B.326++ C.223++ D.323++4.图中的程序框图所描述的算法称为欧几里得展转相除法.若输入121,209==n m ,则输 出m 的值为A.10B.11C.12D.135.设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为A.1B.3C.4D.56.已知函数()2sin(2)f x x ϕ=-+()ϕπ<,若()28f π=-,则()f x 的一个单调递增区间可以是 3.,88A ππ⎡⎤-⎢⎥⎣⎦ 59.,88B ππ⎡⎤⎢⎥⎣⎦ 3.,88C ππ⎡⎤-⎢⎥⎣⎦ 5.,88D ππ⎡⎤⎢⎥⎣⎦7.已知半圆的直径10AB = ,O 为圆心,C 为半圆上不同于B A ,的任意一点,若P 为半径OC 上的动点,则()PC PB PA ⋅+的最小值是A.225B.25- C.25 D.225- 8.已知正项{}n n a S 数列的前n 项和为,奇数项成公差为1的等差数列,当n 为偶数时点2122(,)321,2,{}2n n n n a a y x a a a n S +=+==在直线上,又知则数列的前项和等于 A .2163n n n +--+ B .1332n +- C .221422332n n n +--+ D .21332n n n +--+ 9.已知直三棱柱111C B A ABC -的各顶点都在球O 的球面上,且3,1===BC AC AB ,若球O 的体积为π3520,则这个直三棱柱的体积等于 23510.已知函数()sin()1(0)2f x x =--<<πϕϕ,且230(()1)0f x dx +=⎰π,则函数()f x 的一个零 点是A . 56πB . 3πC . 6πD .712π 11.椭圆E 的两个焦点分别是21,F F .若E 上的点p 满足||23||211F F PF =,则椭圆E 的离心率e 的取值范围是A.21≤eB.41≥eC.2141≤≤eD.121410<≤≤<e e 或 12.定义在实数集R 上的函数)(x f y =的图像是连续不断的,若对任意实数x ,存在实常数t 使得)()(x f t x t f ⋅-=+恒成立,则称)(x f y =是一个“关于t 函数”.有下列“关于t 函数”的结论: ①0)(=x f 是常数函数中唯一一个“关于t 函数”;②“关于21函数”至少有一个零点; ③2)(x x f =就一个“关于t 函数”.其中正确结论的个数是A .1B .2C .3D .0 二、填空题:本大题共4小题,每小题5分,共20分.13.2+2x ()521()mx x -展开式中2x 项的系数490,则实数m 的值为 . 14.函数()[]12sin(),2,41f x x x x π=-∈--且1x ≠,则函数的所有零点之和为 .15.若在区间[1,2] 上存在实数x 使1)2(2<+a x x成立,则a 的取值范围是 . 16.给出下列四个命题:①ABC ∆中,A B >是sin sin A B >成立的充要条件; ②当01x x >≠且时,有1ln 2ln x x +≥;③已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >;④若函数32y f x ⎛⎫=-⎪⎝⎭为R上的奇函数,则函数()y f x =的图象一定关于点3(,0)2F 成中心对称. 其中所有正确命题的序号为 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知数列{}n a 满足:11a =,12(1)(1)n n na n a n n +=+++(*n N ∈). (1)若1nn a b n=+,试证明数列{}n b 为等比数列; (2)求数列{}n a 的通项公式n a 及其n 项和S n .18.如图,已知直角梯形ACDE 所在的平面垂直于平面ABC ,∠BAC=∠ACD=︒90,∠EAC=︒60,AB=AC=AE. (1)在直线BC 上是否存在一点P ,使得DP//平面EAB ?请证明你的结论; (2)求平面EBD 与平面ACDE 所成的锐二面角θ的余弦值.19.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0=ξ; 当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1=ξ. (1)求概率P (0=ξ);(2)求ξ的分布列,并求其数学期望E (ξ).20.已知抛物线2y =的焦点为椭圆22221(0)x y a b a b+=>>的右焦点,且椭圆的长轴长为4,左右顶点分别为A ,B ,经过椭圆左焦点的直线l 与椭圆交于C 、D (异于A ,B )两点. (1)求椭圆标准方程;(2)求四边形ADBC 的面积的最大值;(3)若1122(,)(,)M x y N x y 是椭圆上的两动点,且满121220x x y y +=,动点P 满足2OP OM ON=+u u u r u u u u r u u u r(其中O 为坐标原点),是否存在两定点12,F F 使得12PF PF +为定值,若存在求出该定值,若不存在说明理由.21.已知函数f(x)=e x-e -x-2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln2的近似值(精确到0.001).请考生从第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,作答时 请写清题号.22.(本小题10分)选修4—1几何证明选讲如图,P 是☉O 外一点,PA 是切线,A 为切点,割线PBC 与☉O 相交于点B ,C ,又PC =2PA ,D 为PC 的中点,AD 的延长线交☉O 于点E .证明(1)BE =EC ;(2)AD ·DE =PB 22.23.(本小题10分)选修4-4参数方程选讲在直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ay ax sin cos 3(a 为参数),以原点o 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为24)4sin(=+πθρ.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值,并求此时点P 的坐标.24.(本小题10分)选修4-5不等式选讲设函数()245f x x x =-+-的最大值为M .(1)求实数M 的值;(2)求关于x 的不等式12x x M -++≤的解集.数学参考答案(理科)一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 A BABADDDBACA二填空题13.7± 14. 8 15.(-∞,-23) 16.(1)(3)17.解:(1)121)1()1(211+=+⇒+++=++na n a n n a n na nn n n , )1(222111+=+=+++nan a n a n n n 得,即n n b b 21=+,21=b 又,{}n b 所以是以2为首项,2为公比的等比数列. ……………………4分(2)由(1)知),12(212b -=⇒=+⇒=n n n nnn n a n a …………………5分∴231(21)2(21)3(21)(21)n n S n =⨯-+⨯-+⨯-++-K231222322(123)n n n =⨯+⨯+⨯++⋅-++++K K23(1)12223222n n n n +=⨯+⨯+⨯++⋅-K …………………………………7分 令231222322nn T n =⨯+⨯+⨯++⋅K , 则234121222322n n T n +=⨯+⨯+⨯++⋅K ,两式相减得:23112(12)22222212n nn n n T n n ++--=++++-⋅=-⋅-K ,22)1(2)21(211+⋅-=⋅+-=++n n n n n n T …………………………………11分∴2)1(22)1(1+-+⋅-=+n n n S n n …………………………………………12分18.(一)解:(1)线段BC 的中点就是满足条件的点P 。