高中数学椭圆超经典知识点+典型例题讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生姓名性别男年级高二学科数学
授课教师
上课时
间2014年12月13
日
第()次课
共()次课
课时:课时
教学课题椭圆
教学目标
教学重点
与难点
选修2-1椭圆
知识点一:椭圆的定义
平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.
注意:若,则动点的轨迹为线段;
若,则动点的轨迹无图形.
讲练结合一.椭圆的定义
1.方程()()10222222=++++-y x y x 化简的结果是
2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是
3.已知椭圆22
169
x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为
知识点二:椭圆的标准方程
1.当焦点在轴上时,椭圆的标准方程:,其中;
2.当焦点在轴上时,椭圆的标准方程:,其中;
注意:
1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;
2.在椭圆的两种标准方程中,都有
和
;
3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,
;
当焦点在轴上时,椭圆的焦点坐标为
,。
圆的标准方程;
知识点三:椭圆的简单几何性质
椭圆的的简单几何性质
(1)对称性
对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换
成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围
椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。
(3)顶点
①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),
A2(a,0),B1(0,―b),B2(0,b)。
③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长
和短半轴长。
(4)离心率
①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。
②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而越小,因
此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当
a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。
注意:
椭圆的图像中线段的几何特征(如下图):
(1),,; (2),
,
;
(3)
,
,;
讲练结合四.焦点三角形
1.椭圆22
1925
x y +=的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则2ABF ∆的周长是 。
2.设1F ,2F 为椭圆400251622=+y x 的焦点,P 为椭圆上的任一点,则21F PF ∆的周长是多少21F PF ∆的面积的最大值是多少
3.设点P 是椭圆22
12516
x y +=上的一点,12,F F 是焦点,若12F PF ∠是直角,则12F PF ∆的面
积为 。
讲练结合六.最值问题
1.椭圆2
214
x y +=两焦点为F 1、F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值为_____,
最小值为_____
2、椭圆22
12516
x y +=两焦点为F 1、F 2,A(3,1)点P 在椭圆上,则|PF 1|+|PA|的最大值为
_____,最小值为 ___
3、已知椭圆2
214
x y +=,A(1,0),P 为椭圆上任意一点,求|PA|的最大值 最
小值 。
4.设F 是椭圆
32
2x +
24
2y =1的右焦点,定点A(2,3)在椭圆内,在椭圆上求一点P 使
|PA|+2|PF|最小,求P 点坐标 最小值 .
知识点四:椭圆与(a >b >0)的区别和联系
标准方程图形
性质焦点,,焦距
范围,,对称性关于x轴、y轴和原点对称
顶点,,轴长轴长=,短轴长=
离心率
准线方
程
焦半径,,
注意:椭圆,(a>b>0)的相同点为形状、大小都相同,参数间的关系都有a>b>0和,a2=b2+c2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。
1.如何确定椭圆的标准方程
任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。
确定一个椭圆的标准方程需要三个条件:两个定形条件a、b,一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。
2.椭圆标准方程中的三个量a、b、c的几何意义
椭圆标准方程中,a、b、c三个量的大小与坐标系无关,是由椭圆本身的形