高中数学椭圆超经典知识点+典型例题讲解

合集下载

椭圆经典例题讲解

椭圆经典例题讲解

椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对12222=+b y a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== 。

4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知|OA |=.)(221||211r a r a PF -=-⨯=故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。

《椭圆》方程典型例题20例(含标准答案解析)

《椭圆》方程典型例题20例(含标准答案解析)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳椭圆是平面内与两个定点距离之和等于常数的点的轨迹。

这两个定点被称为椭圆的焦点,椭圆的焦距是两个焦点之间的距离。

另外,椭圆也可以被定义为平面内一个点到一个定直线距离与到一个定点距离之比等于常数的轨迹。

这个定点是椭圆的焦点,定直线是椭圆的准线,这个常数是椭圆的离心率。

需要注意的是,当两个定点之间的距离等于常数时,椭圆的轨迹是线段,而当两个定点之间的距离小于常数时,椭圆的轨迹不存在。

椭圆的标准方程有两种形式,一种是焦点在x轴上的形式,另一种是焦点在y轴上的形式。

这些方程可以用来确定椭圆的形状和位置。

需要注意的是,椭圆的焦点位置可以通过方程中分母的大小来判断。

如果分母中x的系数大于y的系数,那么焦点在y轴上,反之则在x轴上。

如果椭圆过两个定点,但焦点位置不确定,可以设椭圆方程为mx+ny=1,其中m和n都是正数。

在解题时,需要牢记椭圆的几何性质。

例如,如果一个点到椭圆的左焦点的距离是到右焦点距离的两倍,那么这个点的横坐标可以通过解方程得到。

又例如,如果一个点在椭圆上,那么它到两个焦点的距离之和等于椭圆的长轴长度。

1.椭圆的基本性质椭圆方程为x2/a2 + y2/b2 = 1 (a>b>0),其中a和b分别为长轴和短轴长。

椭圆的中心在原点(0,0)处,长轴与x轴平行。

椭圆的顶点分别为(a,0)。

(-a,0)。

(0,b)。

(0,-b),离心率为e=c/a,其中c为焦点到中心的距离,焦距为2c。

椭圆的准线方程为y=±(b/a)x,通径方程为y=kx或x=h,其中k和h为常数。

椭圆关于x轴和y轴对称,且具有中心对称性。

椭圆上任意一点到两焦点的距离之和等于长轴长,即PF1 + PF2 = 2a。

椭圆上任意一点到两焦点的距离之差等于该点到准线的距离,即PF1 - PF2 = 2b。

椭圆上点的横坐标的范围为-x ≤ x ≤ x,纵坐标的范围为-y ≤ y ≤ y。

2.典型练1) 题目描述:给定椭圆方程x2/a2 + y2/b2 = 1,已知长轴位于x轴上,长轴长为8,短轴位于y轴上,短轴长为6,焦点在x轴上,焦点坐标为(5,0)和(-5,0),求离心率e、左顶点坐标、下顶点坐标和椭圆上点的横坐标的范围、纵坐标的范围以及x+y的取值范围。

椭圆知识点以及题型总结

椭圆知识点以及题型总结

椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。

其中的定点F1和F2称为焦点,常数2a称为长轴的长度。

椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。

椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。

1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。

其中(h,k)是椭圆的中心坐标。

2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。

而椭圆的半短轴的长度等于b。

3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。

即PF1+PF2=2a。

4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。

离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。

5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。

其中θ的取值范围一般为0≤θ≤2π。

二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。

解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。

2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。

解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。

3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析椭圆是高中数学中一个重要的几何图形,它有着独特的性质和应用。

本文将从椭圆的定义、性质以及相关题目解析等方面进行阐述,帮助高中学生更好地理解和应用椭圆。

一、椭圆的定义与性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,线段F1F2的长度为2c,a和c之间的关系为a > c。

椭圆的长轴是通过焦点的直线段,长度为2a;短轴是与长轴垂直的直线段,长度为2b,且满足a > b > c。

椭圆的离心率e定义为e = c / a,离心率决定了椭圆的形状。

当e < 1时,椭圆是一个封闭曲线;当e = 1时,椭圆变成一个抛物线;当e > 1时,椭圆变成一个双曲线。

椭圆的焦点和准线的性质也是我们需要了解的。

焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度,即PF1 + PF2 = 2a;准线是与长轴平行且过焦点的直线,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即PD =e * PF。

二、椭圆的相关题目解析1. 题目:已知椭圆的长轴长为10,短轴长为8,求椭圆的离心率。

解析:根据椭圆的定义,我们知道a = 5,b = 4。

将a和c的值代入离心率公式e = c / a,可得e = 4 / 5。

2. 题目:已知椭圆的焦点坐标分别为F1(-3, 0)和F2(3, 0),且焦点到准线的距离为2,求椭圆的方程。

解析:根据椭圆的性质,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即2 = e * a。

由于焦点到准线的距离为2,而椭圆的长轴长度为2a,所以a = 1。

再根据焦点的坐标,可得椭圆的中心为O(0, 0)。

因此,椭圆的方程为x^2 + y^2 / 1^2 = 1,即x^2 + y^2 = 1。

3. 题目:已知椭圆的焦点坐标分别为F1(-2, 0)和F2(2, 0),准线方程为x = 3,求椭圆的方程。

高中数学:学霸归纳总结椭圆性质及最经典题型讲解

高中数学:学霸归纳总结椭圆性质及最经典题型讲解

高中数学:学霸归纳总结椭圆性质及最经典题型讲解
展开全文
1.椭圆的概念
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
第1课时椭圆及其性质
思维提升:
椭圆定义的应用技巧
(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.
(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.
思维提升:
(1)利用椭圆几何性质的注意点及技巧
①注意椭圆几何性质中的不等关系
在求与椭圆有关的一些范围问题时,经常用到x,y的范围,离心率的范围等不等关系.
②利用椭圆几何性质的技巧
求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.
(2)求椭圆的离心率问题的一般思路
求椭圆的离心率或其范围时,一般是依据题设得出一个关于a,b,c的等式或不等式,即可得离心率或离心率的范围.。

高中椭圆知识点归纳

高中椭圆知识点归纳

高中椭圆知识点归纳一、椭圆的定义1. 椭圆的数学定义- 椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。

- 椭圆的标准方程。

2. 椭圆的基本要素- 焦点(F1, F2)- 长轴(2a)- 短轴(2b)- 焦距(2c)- 离心率(e)二、椭圆的性质1. 焦点性质- 焦点位于主轴上。

- 焦点到椭圆上任意一点的距离之和是常数,等于长轴的长度。

2. 离心率- 离心率是衡量椭圆形状的一个参数。

- 离心率的计算公式:e = c/a。

3. 椭圆的对称性- 椭圆关于长轴和短轴具有对称性。

三、椭圆的几何关系1. 长轴和短轴的关系- b^2 = a^2 - c^2。

2. 焦点与椭圆的关系- 焦点到椭圆上任意一点的距离之和等于长轴的长度。

四、椭圆的方程1. 标准方程- 椭圆的标准方程形式为:(x^2/a^2) + (y^2/b^2) = 1。

2. 椭圆的参数方程- 参数方程的形式:x = a * cos(t), y = b * sin(t),其中t为参数。

五、椭圆的应用1. 天文学- 行星轨道的描述。

2. 工程学- 轮轴和凸轮设计。

3. 物理学- 电场和磁场中的某些路径。

六、椭圆的图形绘制1. 绘制方法- 使用绘图工具(如圆规)绘制椭圆。

2. 椭圆的变换- 平移和旋转椭圆。

七、椭圆与圆的关系1. 特殊情形- 当离心率为0时,椭圆变为圆。

- 当两个焦点重合时,椭圆退化为抛物线。

八、练习题1. 椭圆方程的求解。

2. 焦点性质的应用。

3. 椭圆的几何关系计算。

以上是关于高中椭圆知识点的归纳文档的大纲和示例内容。

在实际编写文档时,每个部分都应包含详细的解释、公式推导、图示和实例。

此外,文档应使用专业的排版和格式,确保清晰易读,并且方便编辑和打印。

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

考点38 高中数学-椭圆-考点总结和习题

考点38 高中数学-椭圆-考点总结和习题

考点38椭圆【命题趋势】椭圆是高考考查的重点,难点,可能在小题中出现,也经常出现在高考中的压轴题位置,是高考高分的分水岭.我们复习时必须掌握以下几点:(1)了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单性质.(3)了解椭圆的简单应用.(4)理解数形结合的思想.【重要考向】一、椭圆定义的应用二、求椭圆的标准方程三、椭圆的几何性质及应用四、直线与椭圆的位置关系椭圆定义的应用平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =.定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.【巧学妙记】1.(2020·深圳实验学校高二月考)在ABC 中,点()2,0A -、点()2,0B ,且||AB 是||AC 和||BC 的等差中项,则点C 的轨迹方程是()A .2211612x y +=B .2211612x y +=(4)x ≠±C .2216460x y +=D .2216460x y +=(8)x ≠±【答案】B 【分析】由A 、B 的坐标求出||AB ,代入2||||||AB AC BC =+,可知点C 的轨迹是以(2,0)A -,(2,0)B 为焦点,半长轴长是8的椭圆,由此求出其轨迹方程.【详解】解: 点(2,0)A -、点(2,0)B ,||4AB ∴=,||AB 是||AC 和||BC 的等差中项,则2||||||8AB AC BC =+=,∴点C 的轨迹是以(2,0)A -,(2,0)B 为焦点,半长轴长是4的椭圆(去掉长轴上的顶点).则4a =,2c =,22212b a c ∴=-=.∴点A 的轨迹方程是:221(4)1612x y x +=≠±故选:B .2.(2021·安徽宿州市·高二期末(理))在ABC 中,已知()3,0B -,()3,0C 且ABC 的周长为16,则顶点A 的轨迹方程是()A .()22102516x y x +=≠B .()22101625x y x +=≠C .()22102516x y y +=≠D .()22101625x y y +=≠【答案】C 【分析】由周长得到106AB AC +=>,利用椭圆定义写出点A 的轨迹方程.【详解】由条件可知16AB AC BC ++=,6BC =,106AB AC ∴+=>,∴点A 是以,B C 为焦点的椭圆,除去左右顶点,并且210,26a c ==,2225,9a c ∴==,225916b =-=∴顶点A 的轨迹方程是()22102516x y y +=≠.故选:C3.(2021·浙江高二期末)已知12,F F 分别为椭圆2221(010)100x y b b +=<<的左、右焦点,P是椭圆上一点.(1)12PF PF +的值为________;(2)若1260F PF ∠=︒,且12F PF △的面积为6433,求b 的值为________.【答案】208【分析】(1)根据椭圆的定义,直接求即可得解;(2)根据焦点三角形的性质,利用面积公式结合余弦定理,即可得解.【详解】(1)由2221(010)100x y b b+=<<知2100,10a a ==,12220PF PF a +==,(2)设12,PF m PF n ==,21222122cos F F m n F F mn P =+-⋅∠,可得2224()343c m n mn a mn =+-=-,所以243b mn =,所以12122133643sin 2433F PF F PF S mn mm b =⋅∠===,所以8b =,故答案为:(1)20;(2)8.求椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.【巧学妙记】4.(2021·四川凉山彝族自治州·高三二模)已知中心在原点,对称轴为坐标轴的椭圆C ,其长轴长为4,焦距为2,则C 的方程为()A .2211612x y +=B .2211612x y +=或2211612y x +=C .22143x y +=D .22143x y +=或22143y x +=【答案】D 【分析】由椭圆中a ,b ,c 的关系求出短半轴长b 的值,再按焦点位置分别写出所求方程.【详解】因椭圆C 中心在原点,其长轴长为4,焦距为2,则2a =,1c =,b ==当椭圆的焦点在x 轴上时,椭圆方程为:22143x y+=,当椭圆的焦点在y 轴上时,椭圆方程为:22143y x+=.故选:D5.(2021·全国高二单元测试)已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是()A .221167x y +=B .221167y x +=C .2212516x y +=D .221259y x +=【答案】B 【分析】根据题意设出椭圆的标准方程,由已知可得3c =,由椭圆定义求得a ,由b 2=a 2-c 2,求得b ,即可得出结果.【详解】解:∵椭圆的焦点在y 轴上,∴可设它的标准方程为22221(0)y x a b a b+=>>.∵28,a ==∴a =4,又c =3,∴b 2=a 2-c 2=16-9=7,故所求的椭圆的标准方程为221167y x +=.故选:B .6.(2021·全国高二单元测试)写出适合下列条件的椭圆的标准方程:(1)两个焦点在坐标轴上,且经过A(,-2)和B (-2,1)两点;(2)a =4,c(3)过点P (-3,2),且与椭圆22194x y +=有相同的焦点.【答案】(1)221155x y +=;(2)22116x y +=或22116y x +=;(3)2211510x y +=.【分析】(1)利用待定系数法求得椭圆方程;(2)求得b ,根据焦点所在坐标轴写出椭圆方程;(3)首先求得2c ,然后利用P 点坐标求得22,a b ,由此求得椭圆方程.【详解】(1)设所求椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),由)2A-和()B -两点在椭圆上可得2222(2)1(11m n m n ⎧⋅+⋅-=⎪⎨⎪⋅-+⋅=⎩,即341121m n m n +=⎧⎨+=⎩,解得11515m n ⎧=⎪⎪⎨⎪=⎪⎩.故所求椭圆的标准方程为221155x y +=.(2)因为a =4,c =所以b 2=a 2-c 2=1,1b =所以当焦点在x 轴上时,椭圆的标准方程是22116x y +=;当焦点在y 轴上时,椭圆的标准方程是22116y x +=.(3)因为所求的椭圆与椭圆22194x y +=的焦点相同,所以其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为()222210x y a b a b+=>>.因为所求椭圆过点P (-3,2),所以有22941a b +=①又a 2-b 2=c 2=5,②由①②解得a 2=15,b 2=10.故所求椭圆的标准方程为2211510x y +=.椭圆的几何性质及应用i)图形焦点在x 轴上焦点在y 轴上ii)标准方程几何性质范围顶点焦点对称性离心率椭圆22221x y a b +=(0)a b >>x a ≤y b≤(,0)a ±,(0,)b ±(,0)c ±对称轴:x 轴,y 轴,对称中心:原点01e <<,c e a=22221y x a b+=(0)a b>>y a ≤x b≤(0,)a ±,(,0)b ±(0,)c±【巧学妙记】7.(2020·全国高二课时练习)已知椭圆方程为22916144x y +=,则它的长轴长为________,短轴长为________,焦距为________,离心率为______.【答案】8674【分析】将椭圆方程化为标准方程,求出a 、b 、c 的值,即可得出结果.【详解】把椭圆方程化成标准方程为221169x y +=,所以4a =,3b =,c ==所以椭圆的长轴长为8,短轴长为6,焦距为74c e a ==.故答案为:8;6;74.8.(2021·福建龙岩市·高二期末)已知椭圆22212x y a +=的一个焦点为()F ,则这个椭圆的方程是()A .22132x y +=B .22142x y +=C .22152x y +=D .22162x y +=【答案】C 【分析】利用椭圆的简单几何性质求解.【详解】解: 椭圆22212x ya +=的一个焦点为(F ,22b ∴=,c =222325a b c ∴=+=+=,∴椭圆方程为22152x y +=.故选:C .9.(2021·山西高三三模)设椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,过2F 的直线与C 交于A ,B 两点,若1ABF 为等边三角形,则C 的离心率为()A .3B .2C .3D .12【答案】A 【分析】判断出12AB F F ⊥,利用22ce a=求得离心率.【详解】由于1ABF 为等边三角形,根据椭圆的对称性可知12AB F F ⊥,在12Rt AF F △中,126AF F π∠=,2112::1:2AF AF F F =所以2332123c e a ===+.故选:A直线与椭圆的位关系设直线:0l Ax By C ++=,椭圆22221x y a b+=,把二者方程联立得到方程组,消去()y x 得到一个关于()x y 的方程220(0)ax bx c ay by c ++=++=.0∆>⇔方程有两个不同的实数解,即直线与圆锥曲线有两个交点;0∆=⇔方程有两个相同的实数解,即直线与圆锥曲线有一个交点;0∆<⇔方程无实数解,即直线与圆锥曲线无交点.10.(2021·四川省内江市第六中学高二月考)已知直线:30l x y +-=,椭圆2214x y +=,则直线与椭圆的位置关系是()A .相交B .相切C .相离D .相切或相交【答案】C 【分析】将直线方程和椭圆方程联立,解方程组,由解的个数即可判断直线与椭圆的位置关系【详解】解:由223014x y x y +-=⎧⎪⎨+=⎪⎩,得22(3)14x x +-=,化简得2524320x x -+=,因为2244532640∆=-⨯⨯=-<,所以方程无解,所以直线与椭圆的位置关系是相离,故选:C11.(2020·河南高二月考(理))直线y kx k =-与椭圆22194x y +=的位置关系为()A .相交B .相切C .相离D .不确定【答案】A 【分析】求得直线y kx k =-恒过的定点,判断定点与椭圆的位置关系,由此可得直线y kx k =-与椭圆的位置关系.【详解】直线y kx k =-可化为(1)y k x =-,所以直线恒过点(1,0),又2210194+<,即(1,0)在椭圆的内部,∴直线y kx k =-与椭圆22194x y+=的位置关系为相交.故选:A.12.(2021·莆田第十五中学高二期末)直线0x y m --=与椭圆2219x y +=有且仅有一个公共点,求m 的值.【答案】m =【分析】将直线方程代入椭圆方程,消去x 得到2210290y my m -++=,令0∆=,计算即可求得结果.【详解】解:将直线方程0x y m --=代入椭圆方程2219x y +=,消去x 得到:2210290y my m -++=,令0∆=,即()22441090m m -⨯-=解得m =一、单选题1.已知椭圆C :22195x y +=的左焦点为F ,点M 在椭圆C 上,点N 在圆E :()2221x y -+=上,则MF MN +的最小值为()A .4B .5C .7D .82.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F ,2F ,直线y kx =与椭圆C 交于A ,B 两点,113AF BF =,且1260F AF ∠=︒,则椭圆C 的离心率是()A .716B .74C .916D .343.过椭圆C :22221(0)x y a b a b+=>>右焦点F 的直线l :30x y --=交C 于A 、B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22163x y +=B .22175x y +=C .22184x y +=D .22196x y +=4.已知12,F F 是椭圆22143x y +=的左,右焦点,点A 是椭圆上的一个动点,则12AF F △的内切圆的半径的最大值是()A .1B .12C .13D .335.已知椭圆22:1(0)9x y C m m+=>的长轴长与短轴长之差为2,则C 的焦距为()A 7B .5C .27D .25276.椭圆22221(0)x y a b a b +=>>的上、下顶点分别为12,B B ,右顶点为A ,右焦点为F ,12B F B A ⊥,则椭圆的离心率为()A .12B .22C .512-D .512+7.已知A ,B ,C 是椭圆2222Γ:1(0)x y a b a b +=>>上不同的三点,且原点O 是△ABC 的重心,若点C 的坐标为3,22b ⎛⎫ ⎪ ⎪⎝⎭,直线AB 的斜率为33-,则椭圆Γ的离心率为()A .13B .223C .3D .738.已知1F ,2F 是椭圆2222:154x y G +=的两个焦点,过1F 作直线l 交G 于A ,B 两点,若325AB =,则2F AB 的面积为()A .245B .485C .965D .16415二、多选题9.已知椭圆C :22148x y +=内一点M (1,2),直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是()A.椭圆的焦点坐标为(2,0)、(-2,0)B .椭圆C 的长轴长为C .直线l 的方程为30x y +-=D .433AB =10.嫦娥奔月是中华民族的千年梦想.2020年12月我国嫦娥五号“探月工程”首次实现从月球无人采样返回.某校航天兴趣小组利用计算机模拟“探月工程”,如图,飞行器在环月椭圆轨道近月点制动(俗称“踩刹车”)后,以km/s v 的速度进入距离月球表面km n 的环月圆形轨道(月球的球心为椭圆的一个焦点),环绕周期为s t ,已知远月点到月球表面的最近距离为km m ,则()A .圆形轨道的周长为()2km vt πB .月球半径为km 2vt n π⎛⎫-⎪⎝⎭C .近月点与远月点的距离为kmt m n νπ⎛⎫-+ ⎪⎝⎭D .椭圆轨道的离心率为m nm n-+三、填空题11.写出一个长轴长等于离心率8倍的椭圆标准方程为______.12.已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,直线2a x =与C 交于A ,B 两点,若120AFB ∠=︒,则椭圆C 的离心率为_______.四、双空题13.椭圆2221x y +=的长轴长为______,焦点坐标是________.五、解答题14.求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点坐标和顶点坐标.15.已知地球运行的轨道是长半轴长81.5010km a =⨯,离心率0.0192e =的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.16.已知椭圆的长轴在x 轴上,长轴长为4,离心率为32,(1)求椭圆的标准方程,并指出它的短轴长和焦距.(2)直线220x y --=与椭圆交于,A B 两点,求,A B 两点的距离.17.地球围绕太阳公转的轨道是一个椭圆,太阳位于该椭圆的一个焦点,每单位时间地球公转扫过椭圆内区域的面积相同.我国古代劳动人民根据长期的生产经验总结创立了二十四节气,将一年(地球围绕太阳公转一周)划分为24个节气,规则是:任意2个相邻节气地球与太阳的连线成15︒.地球在小寒前约三四天到达近日点,在小暑前约三四天到达远日点.(1)从冬至到小寒与从夏至到小暑,哪一段时间更长?并说明理由.(2)以立春为始,排在偶数位的12个节气又称为中气,农历规定没有中气的那个月为闰月.经统计,1931年至2050年间,闰月最多的3个月份是:闰4月7次,闰5月9次,闰6月8次;闰月最少的3个月份是:闰11月1次,闰12月0次,闰1月0次.为什么会出现这种现象?请说明理由一、单选题1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .62.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .2,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .20,2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、多选题4.(2020·海南高考真题)已知曲线22:1C mx ny +=.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线三、双空题5.(2021·浙江高考真题)已知椭圆22221(0)x y a b a b +=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.四、解答题6.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =.7.(2021·北京高考真题)已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.8.(2020·山东高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.9.(2020·全国高考真题(文))已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.10.(2020·全国高考真题(文))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.参考答案跟踪训练1.B 【分析】根据椭圆的定义把求MF MN +的最小值转化为求ME MN -的最大值,利用三角形的两边之差小于第三边即可求得.【详解】易知圆心E 为椭圆的右焦点,且3,2a b c ===,由椭圆的定义知:26MF ME a +==,所以6MF ME =-,所以()66MF MN ME MN ME MN+=-+=--,要求MF MN +的最小值,只需求ME MN -的最大值,显然,,M N E 三点共线时ME MN -取最大值,且最大值为1,所以MF MN +的最小值为615-=.故选:B.2.B 【分析】根据椭圆的对称性可知,21AF BF =,设2AF m =,由113AF BF =以及椭圆定义可得132a AF =,22a AF =,在12AF F △中再根据余弦定理即可得到22744a c =,从而可求出椭圆C 的离心率.【详解】由椭圆的对称性,得21AF BF =.设2AF m =,则13AF m =.由椭圆的定义,知122AF AF a +=,即32m m a +=,解得2a m =,故132aAF =,22a AF =.在12AF F △中,由余弦定理,得122212121222cos F F AF AF A F A F A F F =+∠-,即2222931742442224a a a a a c =+-⨯⨯=,则222716c e a ==,故74e =.故选:B.3.A 【分析】由题意,可得右焦点F 的坐标,联立直线l 与椭圆的方程,利用韦达定理,求出AB 的中点P 的坐标,由直线OP 的斜率可得a ,b 的关系,再由椭圆中a ,b ,c 的关系求出a ,b的值,进而可得椭圆的方程.【详解】解:直线:0l x y --=中,令0y =,可得x =F 0),设1(A x ,1)y ,2(B x ,2)y ,则A ,B 的中点1212,22x x y y P ++⎛⎫⎪⎝⎭,联立222201x y x y ab ⎧-=⎪⎨+=⎪⎩,整理得2222222()30a b y y b a b +++-=,所以2122223b y y a b +=-+,212122223x x y y a b +=+++,所以21221212OP y y b k x x a +==-=-+,所以222a b =,又222a b c =+,23c =,所以26a =,23b =,所以椭圆的方程为22163x y +=,故选:A .【点睛】关键点点睛:本题解题的关键是联立直线和椭圆的方程,然后利用韦达定理求出12y y +,12x x +,进而根据12OP k =-由两点间的斜率公式得a ,b 的关系.4.D利用椭圆的定义即可求解.【详解】设12AF F △的内切圆的半径为r ,由22143x y +=,则2a =,b =1c ==所以1224AF AF a +==,1222F F c ==,由12121211112222A F F r AF r AF r F F y ++=,即()121211222A r F F AF AF y ++=⨯,即3A r y =,若12AF F △的内切圆的半径最大,即A y 最大,又A y ≤≤所以max 33r =.故选:D 5.D 【分析】分椭圆的焦点在x 轴上和在y 轴上分别得出,a b ,根据条件先求出m ,再求焦距.【详解】当C 焦点在x 轴上,此时3,a b ==62-=,解得4m =此时焦距为2c ==当C 的焦点在y 轴上,此时3a b ==,则62=,解得16m =此时C 的焦距为=.故选:D .6.C 【分析】求出椭圆的焦点坐标,顶点坐标,利用垂直关系列出方程,转化求解即可.解:椭圆22221(0)x y a b a b+=>>的上、下顶点分别为12(0,),(0,)B b B b -,右顶点为A (a ,0),右焦点为F (c ,0),12BF B A ⊥,可得b bc a-⋅=﹣1,22a cac -=1,解得e =12-.故选:C.7.B 【分析】根据椭圆的第三定义22OC AB b k k a⋅=-,可求得,a b 的关系,进而求得离心率;【详解】设AB 的中点D ,因为原点O 是△ABC 的重心,所以,,C O D 三点共线,所以OD OC k k =,由于22223133OC AB b b b k k a a a ⎛⎫⋅=-⇒-=-⇒= ⎪ ⎪⎝⎭,所以223e =,故选:B.8.C 【分析】判断出AB x ⊥轴,直接由三角形面积公式计算即可.【详解】由2222:154x y G +=知2222543c =-=,所以1(3,0)F -,把3x =-代入椭圆方程可得42425y =,故165y =±,又325AB =,所以AB x ⊥轴,则2113296||22255F AB AB d c ==⨯⨯=△S ,故选:C 9.BCD 【分析】根据椭圆方程可直接判断A 、B 的正误,设直线l 为(2)1x k y =-+,11(,)A x y ,22(,)B x y ,且124y y +=,联立椭圆方程应用韦达定理即可求k 值,写出直线方程,进而应用弦长公式可求AB ,即可判断C 、D 的正误.【详解】A :由椭圆方程知:其焦点坐标为(0,2)±,错误;B :28a =,即椭圆C 的长轴长为2a =,正确;C :由题意,可设直线l 为(2)1x k y =-+,11(,)A x y ,22(,)B x y ,则124y y +=,联立椭圆方程并整理得:222(21)4(12)8860k y k k y k k ++-+--=,M 为椭圆内一点则0∆>,∴1224(21)421k k y y k -+==+,可得1k =-,即直线l 为30x y +-=,正确;D :由C 知:124y y +=,12103y y =,则433AB ==,正确.故选:BCD.10.BC 【分析】根据题意结合椭圆定义和性质分别求出各量即可判断.【详解】由题,以km/s v 的速度进入距离月球表面km n 的环月圆形轨道,环绕周期为s t ,则可得环绕的圆形轨道周长为vt km ,半径为2vtπkm ,故A 错误;则月球半径为km 2vt n π⎛⎫-⎪⎝⎭,故B 正确;则近月点与远月点的距离为km t m n νπ⎛⎫+- ⎪⎝⎭,故C 正确;设椭圆方程为22221x y a b +=,则,m R a c n R a c +=++=-(R 为月球的半径),22,2a m n R c m n ∴=++=-,故离心率为+2m nm n R-+,故D 错误.故选:BC.【点睛】本题考查椭圆的应用,解题的关键是正确理解椭圆的定义.11.22143x y +=(答案不唯一)【分析】不妨设椭圆的焦点在x 轴上,标准方程为()222210x ya b a b+=>>,进而根据题意得24a c =,再令1c =即可得到一个满足条件的椭圆方程.【详解】不妨设椭圆的焦点在x 轴上,椭圆的标准方程为()222210x ya b a b+=>>因为长轴长等于离心率8倍,故28ca a=,即24a c =不妨令1c =,则224,3a b ==,所以满足条件的一个椭圆方程为22143x y +=.故答案为:22143x y +=(答案不唯一)【点睛】本题解题的关键在于再求解之前,需要考虑椭圆焦点所在轴,进而设出椭圆的标准方程,根据题意求解.12.45【分析】先不妨设A的坐标,22a ⎛⎫ ⎪ ⎪⎝⎭,再求出F 到直线2ax =的距离为2a c -,利用等腰三角形的性质,列出31202tan 22a c ==-,解出即可.【详解】根据题意,把2a x =代入22221x y a b +=中,得2y =±,不妨设A3,22a ⎛⎫⎪ ⎪⎝⎭,且(),0F c ,则F 到直线2ax =的距离为2a c -,由120AFB ∠=︒,得31202tan22a c ==-,则2b a c =-,平方计算得45c a =.故答案为:45.【点睛】思路点睛:1.不妨设A 的坐标3,22a ⎛⎫ ⎪⎪⎝⎭,再求出F 到直线2ax =的距离为2a c -,2.AFB △为等腰三角形,且120AFB ∠=︒,列出1202tan 22a c ==-,解出45c a =.13.220,2⎛⎫± ⎪ ⎪⎝⎭【分析】将椭圆化为标准方程可得22112x y +=,从而可求出,,a b c 的值,进而可求出椭圆的长轴长及焦点坐标.【详解】由题意,椭圆方程可化为22112x y +=,则2211,2a b ==,所以22211122c a b =-=-=,即221,,22a b c ===,故椭圆的长轴长为22a =,焦点坐标为220,,0,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.故答案为:2;20,2⎛⎫± ⎪ ⎪⎝⎭.14.长轴长和短轴长分别是8和6,离心率74,焦点坐标分别是(,0),,0),顶点坐标分别是(-4,0),(4,0),(0,-3),(0,3).【分析】化方程为标准方程,得,a b ,再求得c 后可得结论.【详解】把已知方程化成标准方程为221169x y +=,所以a =4,b =3,c,所以椭圆的长轴长和短轴长分别是2a =8和2b =6;离心率e =74c a =;两个焦点坐标分别是(,0),,0);四个顶点坐标分别是(-4,0),(4,0),(0,-3),(0,3).15.1.5288×108km ,1.4712×108km【分析】根据地球到太阳的最大距离是a +c ,最小距离是a ﹣c ,即可求得结论.【详解】∵椭圆的长半轴长约为a =1.5×108km ,离心率e =0.0192,∴半焦距约为c ae ==2.88×106km ,∴地球到太阳的最大距离是1.5×108+2.88×106=1.5288×108km ,最小距离是1.5×108﹣2.88×106=1.4712×108km .16.(1)2214x y +=,短轴长为2,焦距为(2.【分析】(1)由长轴得a ,再由离心率求得c ,从而可得b 后可得椭圆方程;(2)直线方程与椭圆方程联立方程组求得交点坐标后可得距离.【详解】(1)由已知:2a =,32c a =,故c =1b =,则椭圆的方程为:2214x y +=,所以椭圆的短轴长为2,焦距为.(2)联立2222014x y x y --=⎧⎪⎨+=⎪⎩,解得1101x y =⎧⎨=-⎩,2220x y =⎧⎨=⎩,所以(0,1)A -,(2,0)B ,故||AB =17.(1)从夏至到小暑的时间长,理由见解析;(2)答案见解析.【分析】(1)小寒(最接近近日点),夏至,小暑(最接近远日点)四个节气时地球所在的位置,每单位时间地球公转扫过椭圆内区域的面积相同,则在远日点转过相同的角度面积较大,得出答案.(2)由(1)知,远日点附近两个相邻节气之间的时间间隔长于近日点附近两个相邻节气之间的时间间隔,从而得出近日点和远日点附近农历一个月内含中气的概率的大小,得出答案.【详解】(1)如图所示,太阳处于地球公转椭圆轨道的一个焦点F ,A ,B ,C ,D 分别为冬至,小寒(最接近近日点),夏至,小暑(最接近远日点)四个节气时地球所在的位置,则FB FA FC FD <<<,因此椭圆轨道内椭圆扇形FCD 的面积大于椭圆扇形FAB 的面积,根据“每单位时间地球公转扫过椭圆内区域的面积相同”可知从夏至到小暑的时间长于从冬至到小寒的时间.(2)农历从朔日到下一个朔日前一日为一个月,大约是月亮围绕太阳地球转一周的时间(约29天半).由(1)知,远日点附近两个相邻节气之间的时间间隔长于近日点附近两个相邻节气之间的时间间隔,所以远日点附近农历一个月内不含中气的概率较高,出现闰月较多;而近日点附近农历一个月内不含中气的概率较低,出现闰月较少.真题再现1.C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤=⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】椭圆上的点与椭圆的两焦点的距离问题,常常从椭圆的定义入手,注意基本不等式得灵活运用,或者记住定理:两正数,和一定相等时及最大,积一定,相等时和最小,也可快速求解.2.C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即202e <≤;当32b b c ->-,即22b c <时,42222maxb PB a bc =++,即422224b a b b c++≤,化简得,()2220cb-≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.3.B 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得32n =,从而可求解.【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.4.ACD 【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C表示圆心在原点,半径为n的圆,故B 不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线,由220mx ny +=可得y =,故C 正确;对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.5.25555【分析】不妨假设2c =,根据图形可知,122sin 3PF F ∠=,再根据同角三角函数基本关系即可求出12tan k PF F =∠=;再根据椭圆的定义求出a ,即可求得离心率.【详解】如图所示:不妨假设2c =,设切点为B ,12112sin sin 3AB PF F BF A F A∠=∠==,12tan PF F ∠==所以255k =,由21212,24PF k F F c F F ===,所以2855PF =,21255PF =,于是122PF a PF +==,即a =,所以5c e a ===.故答案为:5;5.6.(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭22413k=+1k =±,即可得解.【详解】(1)由题意,椭圆半焦距c =且63c e a ==,所以a =又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k-+=-⋅=++,所以MN==213k=+=化简得()22310k-=,所以1k=±,所以1kb=⎧⎪⎨=⎪⎩或1kb=-⎧⎪⎨=⎪⎩,所以直线:MN y x=或y x=-,所以直线MN过点F,M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是||MN=.【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.7.(1)22154x y+=;(2)[3,1)(1,3]--⋃.【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b,从而可求椭圆的标准方程.(2)设()()1122,,,B x yC x y,求出直线,AB AC的方程后可得,M N的横坐标,从而可得PM PN+,联立直线BC的方程和椭圆的方程,结合韦达定理化简PM PN+,从而可求k的范围,注意判别式的要求.【详解】(1)因为椭圆过()0,2A-,故2b=,因为四个顶点围成的四边形的面积为1222a b⨯⨯=,即a=,故椭圆的标准方程为:22154x y+=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠,故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+.直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=,故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k+==++,故120x x >,所以0M N x x >又1212=22M N x xPM PN x x y y +=++++()()2212121222212121222503024545=5253011114545k kkx x x x x x k k kk k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.8.(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+,联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,可得122412km x x k +=-+,21222612m x x k-=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭,整理化简得()()231210k m k m +++-=,因为2,1A ()不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫-⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由·0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫-⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫ ⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP 的斜边,故12223DQ AP ==,若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.【点睛】关键点点睛:本题的关键点是利用AM AN ⊥得·0AM AN =,转化为坐标运算,需要设直线MN 的方程,点()()1122,,,M x y N x y ,因此需要讨论斜率存在与不存在两种情况,当直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,与椭圆方程联立消去y 可12x x +,12x x 代入·0AM AN =即可,当直线MN 的斜率不存在时,可得()11,N x y -,利用坐标运算以及三角形的性质即可证明,本题易忽略斜率不存在的情况,属于难题.9.(1)221612525x y +=;(2)52.【分析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1) 222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,。

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题〔解析版〕1、定义:平面内与两个定点,的距离之和等于常数〔大于〕的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置 焦点在轴上焦点在轴上 图形标准方程 范围且 且 顶点、、、、轴长 短轴的长长轴的长焦点 、、焦距对称性 关于轴、轴、原点对称离心率e 越小,椭圆越圆;e 越大,椭圆越扁题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;通径 过椭圆的焦点且垂直于对称轴的弦称为通径:2b 2/a焦半径公式⎪⎭⎫ ⎝⎛-2325,【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合以下条件的椭圆标准方程:〔1〕与椭圆2212x y +=有相同的焦点,且经过点3(1,)2〔2〕经过(2,(22A B 两点 【详解】〔1〕椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.〔2〕设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如下图,因为2c =,那么(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C 〔1〕求椭圆C 的标准方程;〔2〕O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,假设存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由得c a =21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.〔Ⅱ〕假设0m =,那么()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 假设0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:〔特别注意〕要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

高中数学椭圆经典考点及例题讲解 (1)

高中数学椭圆经典考点及例题讲解 (1)

椭圆考纲解读 1.利用椭圆的定义、几何性质求椭圆方程;2.利用椭圆的几何性质研究直线与椭圆的关系.[基础梳理]1.椭圆的定义(1)平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质x2y2y2x2[三基自测]1.已知椭圆x2m-2+y210-m=1的焦点在x轴上,焦距为4,则m等于()A.8B.7C .6D .5答案:A2.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7答案:D3.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.答案:x 24+y 23=14.过椭圆x 225+y 216=1的右焦点F 2作直线交椭圆于A 、B 两点,则△AF 1B 的周长为________.答案:205.(2017·高考全国卷Ⅰ改编)A 、B 是椭圆x 23+y 2m =1长轴的两个端点,M 为短轴的一个端点,且∠AMB =120°,求m 值.答案:1或9考点一 椭圆的定义及应用|思维突破[例1] (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 (2)设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12(3)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74 C.72D.752[解析] (1)点P 在线段AN 的垂直平分线上, 故|P A |=|PN |.又AM 是圆的半径,∴|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |, 由椭圆定义知,点P 的轨迹是椭圆.(2)如图所示,因为到两个圆心恰好是椭圆的焦点,由椭圆的定义可知|PF 1|+|PF 2|=10,易知|PM |+|PN |=(|PM |+|MF 1|)+(|PN |+|NF 2|)-2,则其最小值为|PF 1|+|PF 2|-2=8,最大值为|PF 1|+|PF 2|+2=12,故选C.(3)由题意得a =3,b =7,c =2,∴F 1F 2=22,AF 1+AF 2=6.∵AF 22=AF 21+F 1F 22-2AF 1·F 1F 2cos 45°=AF 21-4AF 1+8,∴(6-AF 1)2=AF 21-4AF 1+8.∴AF 1=72.∴S =12×72×22×22=72.[答案] (1)B (2)C (3)C [思维升华]椭圆定义应用技巧思路应用 解读求方程 条件转化后满足椭圆定义,直接求轨迹方程求焦点三角形 求焦点三角形周长或面积,根据椭圆定义、正余弦定理,其中|PF 1|+|PF 2|=2a .平方是常用技巧求最值 利用|PF 1|+|PF 2|=2a 为定值,利用基本不等式求|PF 1|·|PF 2|最值或利用三角形求最值.如a +c 、a -c[跟踪训练]1.已知圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 解析:设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.答案:D2.椭圆C :x 2a 2+y 2=1(a >0)的左、右焦点分别为F 1、F 2、P 为椭圆上异于端点的任意一点,PF 1,PF 2的中点分别为M ,N .O 为坐标原点,四边形OMPN 的周长为23,则△PF 1F 2的周长是( )A .2(2+3) B.2+23 C.2+ 3D .4+23解析:因为O ,M 分别为F 1F 2和PF 1的中点,所以OM ∥PF 2,且|OM |=12|PF 2|,同理,ON ∥PF 1,且|ON |=12|PF 1|,所以四边形OMPN 为平行四边形,由题意知,|OM |+|ON |=3,故|PF 1|+|PF 2|=23,即2a =23,a =3,由a 2=b 2+c 2知c 2=a 2-b 2=2,c =2,所以|F 1F 2|=2c =22,故△PF 1F 2的周长为2a +2c =23+22,选A.答案:A3.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|P A |+|PF |的最大值为________,最小值为________.解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|P A |+|PF |=|P A |-|PF 1|+6.利用-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|P A |+|PF |≤6+2, |P A |+|PF |≥6- 2.故|P A |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+2 6-2考点二 椭圆的标准方程及应用|方法突破[例2] (1)△ABC 的两个顶点为A (-4,0),B (4,0),周长为18,则C 点轨迹为( ) A.x 225+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.y 216+x 29=1(y ≠0) (2)已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.求椭圆C 2的方程.[解析] (1)(定义法)由A ,B 坐标可知|AB |=8,由△ABC 的周长为18可知AC +BC =10,由椭圆的定义可知,点C 在焦点为A (4,0),B (-4,0),长半轴长为5的椭圆上运动,则椭圆方程为x 225+y 29=1,当点C 在横轴上时,点A ,B ,C 共线,不能构成三角形,所以y ≠0,所以点C 的轨迹方程为x 225+y 29=1(y ≠0).(2)法一:(待定系数法):由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,解得a =4,故椭圆C 2的方程为y 216+x 24=1.法二:(椭圆系法):因椭圆C 2与C 1有相同的离心率,且焦点在y 轴上,故设C 2:y 24+x 2=k (k >0),即y 24k +x 2k=1. 又2k =2×2,故k =4, 故C 2的方程为y 216+x 24=1.[答案] (1)A [方法提升]求椭圆标准方程的方法[母题变式]1.本例(1)变为:一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1 B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12.得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1. 答案:A2.本例(2)变为:与椭圆x 24+y 23=1有相同离心率且经过点(2,-3),求椭圆方程.解析:法一:因为e =ca =a 2-b 2a =1-b 2a2=1-34=12,若焦点在x 轴上,设所求椭圆方程为x 2m 2+y 2n2=1(m >n >0),则1-⎝⎛⎭⎫n m 2=14.从而⎝⎛⎭⎫n m 2=34,n m =32. 又4m 2+3n2=1,所以m 2=8,n 2=6. 所以方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 2h 2+x 2k 2=1(h >k >0),则3h 2+4k 2=1,且k h =32, 解得h 2=253,k 2=254.故所求方程为y 2253+x 2254=1.法二:若焦点在x 轴上,设所求椭圆方程为 x 24+y 23=t (t >0),将点(2,-3)代入,得 t =224+(-3)23=2.故所求方程为x 28+y 26=1. 若焦点在y 轴上,设方程为y 24+x 23=λ(λ>0),代入点(2,-3),得λ=2512,故所求方程为y 2253+x 2254=1.考点三 椭圆的几何性质|模型突破角度1 求离心率(或范围)[例3] (1)若椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 是抛物线y 2=4x 的焦点,两曲线的一个交点为P ,且|PF |=4,则该椭圆的离心率为( )A.7-23B.2+13C.23D.12(2)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1D.⎝⎛⎦⎤0,13 (3)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 在椭圆上且满足PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤13,12D.⎝⎛⎭⎫0,22 [解析] (1)(直接法)设P (x ,y ),由题意,得F (1,0),|PF |=x +1=4,所以x =3,y 2=12,则9a 2+12b2=1,且a 2- 1=b 2,解得a 2=11+47,即a =7+2,则该椭圆的离心率e =c a =17+2=7-23.故选A.(2)(几何法)如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=F 1F 2=2c ,即椭圆上存在一点P ,使得PF 2=2c . ∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎡⎭⎫13,1.故选C. (3)(直接法)设P (x ,y ),则x 2a 2+y 2b 2=1,y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ).所以PF 1→·PF 2→=x 2-c 2+y 2=⎝⎛⎭⎫1-b 2a 2x 2+b 2-c 2=c 2a 2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1→·PF 2→≤b 2. 所以b 2-c 2≤c 2≤b 2.所以2c 2≤a 2≤3c 2. 所以33≤c a ≤22.故选B. [答案] (1)A (2)C (3)B [模型解法][高考类题]1.(2016·高考全国卷Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34解析:|OB |为椭圆中心到l 的距离,设l 与椭圆交于顶点A 和焦点F ,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.答案:B角度2 根据椭圆性质求值或范围[例4] (1)已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的一动点,F 1,F 2为椭圆的两个焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M →·PM →=0,则|OM →|的取值范围为( )A .[0,3)B .(0,22)C .[22,3)D .[0,4)(2)(2018·合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点.则PF →·P A →的最大值为________.[解析] (1)由题意得c =22,当点P 在椭圆的短轴端点处时,M 与点O 重合,|OM →|取得最小值0;当点P 在椭圆的长轴端点处时,点M 与F 1重合,|OM →|取得最大值22,由于x ≠0,y ≠0,故|OM →|的取值范围是(0,22).(2)设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,c =1,∴b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 即当x 0=-2时,PF →·P A →取得最大值4. [答案] (1)B (2)4 [模型解法][高考类题]2.(2017·高考全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:依题意得,⎩⎪⎨⎪⎧3m ≥tan ∠AMB 20<m <3或⎩⎪⎨⎪⎧ m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3或⎩⎪⎨⎪⎧m 3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 答案:A3.(2014·高考福建卷)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+2 C .7+ 2D .62 解析:设圆的圆心为C ,则C (0,6),半径为r =2,点C 到椭圆上的点Q (10cos α,sin α)的距离|CQ |=(10cos α)2+(sin α-6)2=46-9sin 2α-12sin α=50-9(sin α+23)2≤50=52,当且仅当sin α=-23时取等号,所以|PQ |≤|CQ |+r =52+2=62,即P ,Q 两点间的最大距离是62,故选D.答案:D考点四 直线与椭圆的综合问题|方法突破[例5] (1)(2018·新乡模拟)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________.(2)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.①求椭圆C 的方程;②设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.[解析] (1)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有x 212+y 21=1,x 222+y 22=1. 两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-x 02y 0. 即2=-x 02y 0,所以x 0+4y 0=0.故所求的轨迹方程为x +4y =0,将x +4y =0代入x 22+y 2=1得:x 22+⎝⎛⎭⎫-x 42=1,解得x=±43,又中点在椭圆内,所以-43<x <43.(2)①设T (x ,y ),由题意知A (-4,0),B (4,0),设直线TA 的斜率为k 1,直线TB 的斜率为k 2,则k 1=y x +4,k 2=y x -4.由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立,得⎩⎪⎨⎪⎧x 216+y 212=1y =kx +2,消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)(y 2-2)]=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3.所以-20<OP →·OQ →+MP →·MQ →≤-523.当直线PQ 的斜率不存在时,OP →·OQ →+MP →·MQ →的值为-20. 综上,OP →·OQ →+MP →·MQ →的取值范围为[-20,-523].[答案] (1)x +4y =0⎝⎛⎭⎫-43<x <4 3 [方法提升][跟踪训练]1.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 解析:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得x 21-x 22a 2+y 21-y 22b2=0,∴x 1+x 2a 2+y 1-y 2x 1-x 2·y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=-2,k AB =-1-01-3=12, ∴2a 2+12×-2b 2=0,即a 2=2b 2. 又c =3=a 2-b 2,∴a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D.答案:D2.(2018·林州模拟)已知椭圆E :x 24+y 22=1,直线l 交椭圆于A ,B 两点,若AB 的中点坐标为⎝⎛⎭⎫12,-1,则l 的方程为( ) A .2x +y =0 B .x -2y -52=0C .2x -y -2=0D .x -4y -92=0解析:设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,x 224+y 222=1,两式作差并化简整理得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2,而x 1+x 2=1,y 1+y 2=-2,所以y 1-y 2x 1-x 2=14,直线l 的方程为y +1=14⎝⎛⎭⎫x -12,即x -4y -92=0.故选D.答案:D3.(2018·河北三市联考)已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F且与x 轴垂直的直线与椭圆交于A 、B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C 、D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解析:(1)设焦距为2c , ∵e =c a =63,a 2=b 2+c 2,∴b a =33, 由|AB |=233,易知b 2a =33,∴b =1,a =3, ∴椭圆方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0,又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1.设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2, 若以CD 为直径的圆过E 点,则EC →·ED →=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4,则(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1.1.[考点二、三、四](2016·高考全国卷Ⅲ)已知O 为坐标原点, F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:法一:设点M (-c ,y 0),OE 的中点为N ,则直线AM 的斜率k =y 0a -c ,从而直线AM 的方程为y =y 0a -c (x +a ),令x =0,得点E 的纵坐标y E =ay 0a -c.同理,OE 的中点N 的纵坐标y N =ay 0a +c.因为2y N =y E ,所以2a +c =1a -c,即2a -2c =a +c ,所以e =c a =13.故选A.法二:如图,设OE 的中点为N ,由题意知|AF |=a -c ,|BF |=a +c ,|OF |=c ,|OA |=|OB |=a ,∵PF ∥y 轴,∴|MF ||OE |=|AF ||AO |=a -c a ,|MF ||ON |=|BF ||OB |=a +ca, 又∵|MF ||OE |=|MF |2|ON |,即a -c a =a +c 2a ,∴a =3c ,故e =c a =13.答案:A2.[考点一、二、三](2015·高考全国卷Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B. 答案:B。

高中数学必修2椭圆常见题型与典型方法归纳

高中数学必修2椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳考点一 椭圆的定义椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e=ac(0<e<1)的动点M 的轨迹叫做椭圆.这个定点是椭圆的焦点,这条定直线叫做椭圆的准线,这个常数e 是椭圆的离心率.注意:当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F =的点的轨迹是线段12FF ; 当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F <的点的轨迹不存在. 例 动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为 ( ) A 、椭圆 B 、线段12,F F C 、直线12,F F D 、不能确定考点二 椭圆的标准方程一 标准方程1焦点在x 轴上 标准方程是:22221x y a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(,0),(,0)c c -2焦点在y 轴上 标准方程是:22221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(0,),(0,)c c -3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22179x y +=的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>)例 已知椭圆过两点1),(2)A B -,求椭圆标准方程5 与12222=+b y a x (a >b >0)共焦点的椭圆为12222=+++kb y k a x二 重难点问题探析: 1.要有用定义的意识例 已知12,F F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点若2212F A F B += 则AB =________。

高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版

高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版

可编辑修改精选全文完整版学生姓名 性别 男 年级 高二 学科 数学 授课教师 上课时间2014年12月13日 第( )次课 共( )次课课时: 课时教学课题椭圆教学目标教学重点与难点选修2-1椭圆知识点一:椭圆的定义ﻫ 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.ﻫ 注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是3.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为知识点二:椭圆的标准方程ﻫ 1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:ﻫ 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;ﻫ 2.在椭圆的两种标准方程中,都有和;ﻫ 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

讲练结合二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。

4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

讲练结合三.待定系数法求椭圆标准方程1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。

高二数学椭圆专题详细解析

高二数学椭圆专题详细解析

朗培教育椭圆专题解析1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).2.椭圆的方程与几何性质:标准方程 )0(12222>>=+b a by a x )0(12222>>=+b a b x a y 性 质参数关系 222c b a +=焦点 )0,(),0,(c c -),0(),,0(c c -焦距 c 2范围 b y a x ≤≤||,|| b x a y ≤≤||,||顶点 ),0(),,0(),0,(),0,(b b a a --)0,(),0,(),,0(),,0(b b a a --对称性 关于x 轴、y 轴和原点对称离心率)1,0(∈=ace 准线ca x 2±=ca y 2±=考点1 椭圆定义及标准方程 题型1:椭圆定义的运用[例1 ] (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4aB .2(a -c)C .2(a+c)D .以上答案均有可能[解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c);Ox yDPAB C(3)A Q B P A ----此时小球经过的路程为4a,故选D 【名师指引】考虑小球的运行路径要全面 【新题导练】1.短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24[解析]C. 长半轴a=3,△ABF 2的周长为4a=122.已知P 为椭圆2212516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为( )A . 5B . 7C .13D . 15[解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来[解析]设椭圆的方程为12222=+b y a x 或)0(12222>>=+b a ay b x ,则⎪⎩⎪⎨⎧+=-=-=222)12(4c b a c a c b , 解之得:24=a ,b =c =4.则所求的椭圆的方程为1163222=+y x 或1321622=+y x . 【名师指引】准确把握图形特征,正确转化出参数c b a ,,的数量关系.[警示]易漏焦点在y 轴上的情况. 【新题导练】3. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.[解析](0,1). 椭圆方程化为22x +ky 22=1. 焦点在y 轴上,则k 2>2,即k <1.又k >0,∴0<k <1.4.已知方程),0(,1sin cos 22πθθθ∈=+y x ,讨论方程表示的曲线的形状 [解析]当)4,0(πθ∈时,θθcos sin <,方程表示焦点在y 轴上的椭圆,当4πθ=时,θθcos sin =,方程表示圆心在原点的圆,当)2,4(ππθ∈时,θθcos sin >,方程表示焦点在x 轴上的椭圆5. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程.[解析] ⇒⎩⎨⎧==-c a c a 23⎪⎩⎪⎨⎧==332c a ,3=∴b ,所求方程为122x +92y =1或92x +122y =1.考点2 椭圆的几何性质题型1:求椭圆的离心率(或范围)[例3 ] 在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .【解题思路】由条件知三角形可解,然后用定义即可求出离心率 [解析] 3sin ||||21=⋅=∆A AC AB S ABC , 32||=∴AC ,2cos ||||2||||||22=⋅-+=A AC AB AC AB BC 2132322||||||-=+=+=BC AC AB e 【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定 (2)只要列出c b a 、、的齐次关系式,就能求出离心率(或范围) (3)“焦点三角形”应给予足够关注【新题导练】6.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 A .45 B .23 C .22D .21[解析]选B7.已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+n y m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222m n n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 题型2:椭圆的其他几何性质的运用(范围、对称性等)[例4 ] 已知实数y x ,满足12422=+y x ,求x y x -+22的最大值与最小值 【解题思路】 把x y x -+22看作x 的函数[解析] 由12422=+y x 得22212x y -=,2202122≤≤-∴≥-∴x x ]2,2[,23)1(212212222-∈+-=+-=-+∴x x x x x y x当1=x 时,x y x -+22取得最小值23,当2-=x 时,x y x -+22取得最大值6【新题导练】9.已知点B A ,是椭圆22221x y m n+=(0m >,0n >)上两点,且BO AO λ=,则λ=[解析] 由BO AO λ=知点B O A ,,共线,因椭圆关于原点对称,1-=∴λ10.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点则1234567PF P F PF P F P F P F P F ++++++=________________ [解析]由椭圆的对称性知:352536271==+=+=+a F P F P F P F P F P F P .考点3 椭圆的最值问题[例5 ]椭圆191622=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________.【解题思路】把动点到直线的距离表示为某个变量的函数[解析]在椭圆上任取一点P,设P(θθsin 3,cos 4). 那么点P 到直线l 的距离为:|9)sin(5|2211|12sin 3cos 4|22-+=+-+ϕθθθ.22≥ 【名师指引】也可以直接设点),(y x P ,用x 表示y 后,把动点到直线的距离表示为x 的函数,关键是要具有“函数思想” 【新题导练】11.椭圆191622=+y x 的内接矩形的面积的最大值为 [解析]设内接矩形的一个顶点为)sin 3,cos 4(θθ, 矩形的面积242sin 24cos sin 48≤==θθθS12. P 是椭圆12222=+by a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ⋅的最大值与最小值[解析] ],[||,)|(||)|2(||||||12211121c a c a PF a a PF PF a PF PF PF +-∈+--=-=⋅当a PF =||1时,||||21PF PF ⋅取得最大值2a , 当c a PF ±=||1时,||||21PF PF ⋅取得最小值2b13.已知点P 是椭圆1422=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B , O 是原点,则四边形OAPB 的面积的最大值是_________.[解析] 设)2,0(),sin ,cos 2(πθθθ∈P ,则θθcos 221sin 21⋅+⋅=+=∆∆OB OA S S S OPB OPA OAPB 2cos sin ≤+=θθ考点4 椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题[例6 ] 已知椭圆C 的中心为坐标原点O ,一个长轴端点为()0,1,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且PB AP 3=. (1)求椭圆方程; (2)求m 的取值范围.【解题思路】通过PB AP 3=,沟通A 、B 两点的坐标关系,再利用判别式和根与系数关系得到一个关于m 的不等式[解析](1)由题意可知椭圆C 为焦点在y 轴上的椭圆,可设2222:1(0)y x C a b a b+=>>由条件知1a =且b c =,又有222a b c =+,解得 21,2a b c ===故椭圆C 的离心率为22c e a ==,其标准方程为:12122=+x y (2)设l 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧y =kx +m 2x 2+y 2=1得(k 2+2)x 2+2kmx +(m 2-1)=0 Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0 (*) x 1+x 2=-2km k 2+2, x 1x 2=m 2-1k 2+2∵AP =3PB ∴-x 1=3x 2 ∴⎩⎪⎨⎪⎧x 1+x 2=-2x 2x 1x 2=-3x 22 消去x 2,得3(x 1+x 2)2+4x 1x 2=0,∴3(-2km k 2+2)2+4m 2-1k 2+2=0整理得4k 2m 2+2m 2-k 2-2=0m 2=14时,上式不成立;m 2≠14时,k 2=2-2m 24m 2-1, 因λ=3 ∴k ≠0 ∴k 2=2-2m 24m 2-1>0,∴-1<m <-12 或 12<m <1容易验证k 2>2m 2-2成立,所以(*)成立 即所求m 的取值范围为(-1,-12)∪(12,1)【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能 【新题导练】14.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是 ( )A. ()0,0132322>>=+y x y xB. ()0,0132322>>=-y x y x C. ()0,0123322>>=-y x y x D. ()0,0123322>>=+y x y x[解析] ),(),3,23(y x OQ y x AB-=-=132322=+∴y x ,选A.15. 如图,在Rt △ABC 中,∠CAB=90°,AB=2,AC=22。

椭圆知识点总结加例题

椭圆知识点总结加例题

椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。

1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。

(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。

(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。

(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。

(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。

1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。

通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。

1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。

椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。

二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。

2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。

椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。

2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。

高中数学 椭圆专题 弦长、面积与范围

高中数学 椭圆专题 弦长、面积与范围
(2)令 ,则 ,且点O到直线 的距离 ,设 的,面积为 ,所以 ,当且仅当 时,等号成立,故 面积的最大值为
石室中学高2020届解析几何专题
(弦长、面积与范围)
一、典型例题:
1.如图,直线y=kx+b与椭圆 交于A、B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
【答案】(1) (2) 或 .
5、 已知某椭圆的焦点是 . ,过点 并垂直于 轴的直线与椭圆的一个交点为 ,且 ,椭圆上不同的两点 , 满足条件:
成等差数列.
(Ⅰ)设P点的坐标为 ,证明: ;
(Ⅱ)求四边形ABCD的面积的最小值.
7. (选做).如图,在平面直角坐标系xOy中,已知椭圆 的离心率为 ,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
5、 已知某椭圆的焦点是 . ,过点 并垂直于 轴的直线与椭圆的一个交点为 ,且 ,椭圆上不同的两点 , 满足条件:
成等差数列.
(I)求该椭圆方程;
(II)求弦 中点的横坐标;
(III)设弦 的垂直平分线的方程为 ,求 的取值范围.
6.已知椭圆 的左、右焦点分别为F1、F2.过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P.
因为AC与BD相交于点P,且AC的斜率为 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生姓名性别男年级高二学科数学
授课教师
上课时
间2014年12月13

第()次课
共()次课
课时:课时
教学课题椭圆
教学目标
教学重点
与难点
选修2-1椭圆
知识点一:椭圆的定义
平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.
注意:若,则动点的轨迹为线段;
若,则动点的轨迹无图形.
讲练结合一.椭圆的定义
1.方程()()10222222=++++-y x y x 化简的结果是
2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是
3.已知椭圆22
169
x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为
知识点二:椭圆的标准方程
1.当焦点在轴上时,椭圆的标准方程:,其中;
2.当焦点在轴上时,椭圆的标准方程:,其中;
注意:
1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;
2.在椭圆的两种标准方程中,都有


3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,

当焦点在轴上时,椭圆的焦点坐标为
,。

圆的标准方程;
知识点三:椭圆的简单几何性质
椭圆的的简单几何性质
(1)对称性
对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换
成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围
椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

(3)顶点
①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),
A2(a,0),B1(0,―b),B2(0,b)。

③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。

a和b分别叫做椭圆的长半轴长
和短半轴长。

(4)离心率
①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。

②因为a>c>0,所以e的取值范围是0<e<1。

e越接近1,则c就越接近a,从而越小,因
此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。

当且仅当
a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。

注意:
椭圆的图像中线段的几何特征(如下图):
(1),,; (2),


(3)
,
,;
讲练结合四.焦点三角形
1.椭圆22
1925
x y +=的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则2ABF ∆的周长是 。

2.设1F ,2F 为椭圆400251622=+y x 的焦点,P 为椭圆上的任一点,则21F PF ∆的周长是多少21F PF ∆的面积的最大值是多少
3.设点P 是椭圆22
12516
x y +=上的一点,12,F F 是焦点,若12F PF ∠是直角,则12F PF ∆的面
积为 。

讲练结合六.最值问题
1.椭圆2
214
x y +=两焦点为F 1、F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值为_____,
最小值为_____
2、椭圆22
12516
x y +=两焦点为F 1、F 2,A(3,1)点P 在椭圆上,则|PF 1|+|PA|的最大值为
_____,最小值为 ___
3、已知椭圆2
214
x y +=,A(1,0),P 为椭圆上任意一点,求|PA|的最大值 最
小值 。

4.设F 是椭圆
32
2x +
24
2y =1的右焦点,定点A(2,3)在椭圆内,在椭圆上求一点P 使
|PA|+2|PF|最小,求P 点坐标 最小值 .
知识点四:椭圆与(a >b >0)的区别和联系
标准方程图形
性质焦点,,焦距
范围,,对称性关于x轴、y轴和原点对称
顶点,,轴长轴长=,短轴长=
离心率
准线方

焦半径,,
注意:椭圆,(a>b>0)的相同点为形状、大小都相同,参数间的关系都有a>b>0和,a2=b2+c2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。

1.如何确定椭圆的标准方程
任何椭圆都有一个对称中心,两条对称轴。

当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。

此时,椭圆焦点在坐标轴上。

确定一个椭圆的标准方程需要三个条件:两个定形条件a、b,一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。

2.椭圆标准方程中的三个量a、b、c的几何意义
椭圆标准方程中,a、b、c三个量的大小与坐标系无关,是由椭圆本身的形
状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:a>b>0,a>c>0,且a2=b2+c2。

可借助下图帮助记忆:
a、b、c恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。

3.如何由椭圆标准方程判断焦点位置
椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上。

4.方程Ax2+By2=C(A、B、C均不为零)表示椭圆的条件
方程Ax2+By2=C可化为,即,
所以只有A、B、C同号,且A≠B时,方程表示椭圆。

当时,椭圆的焦点在x轴上;
当时,椭圆的焦点在y轴上。

5.求椭圆标准方程的常用方法:
①待定系数法:由题目条件确定焦点的位置,从而确定方程的类型,设出标准方程,再由条件确定方
程中的参数、、的值。

其主要步骤是“先定型,再定量”;
②定义法:由题目条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。

6.共焦点的椭圆标准方程形式上的差异
共焦点,则c相同。

与椭圆(a>b>0)共焦点的椭圆方程可设为(k>-b2)。

此类问题常用待定系数法求解。

7.判断曲线关于x轴、y轴、原点对称的依据:
①若把曲线方程中的x换成―x,方程不变,则曲线关于y轴对称;
②若把曲线方程中的y换成―y,方程不变,则曲线关于x轴对称;
③若把曲线方程中的x、y同时换成―x、―y,方程不变,则曲线关于原点对称。

8.如何解决与焦点三角形△PF1F2(P为椭圆上的点)有关的计算问题与焦点三角形有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角()结合起来,建立、之间的关系.
9.如何研究椭圆的扁圆程度与离心率的关系
长轴与短轴的长短关系决定椭圆形状的变化。

离心率,因为c2=a2-b2,
a>c>0,用a、b表示为,当越小时,椭圆越扁,e越大;当越大,椭圆趋近圆,e越小,并且0<e<1。

16.已知P 是椭圆90025922=+y x 上的点,若P 到椭圆右准线的距离为,则P 到左焦点的距离为_________.
17.椭圆116
252
2=+y x 内有两点()2,2A ,()0,3B ,P
为椭圆上一点,若使53
PA PB +最小,则最
小值为
18、椭圆
3
2x +
2
2y =1与椭圆
2
2x +
3
2y =(0)有
(A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对 19、椭圆
192522=+y x 与125922
=-+-λ
λy x (0<k<9)的关系为 (A)相等的焦距 (B)相同的的焦点 (C)相同的准线 (D)有相等的长轴、短轴 20、椭圆
12
62
2=+y x 上一点P 到左准线的距离为2,则点P 到右准线的距离为
21、点P 为椭圆116
252
2=+y x 上的动点,21,F F 为椭圆的左、右焦点,则21PF PF ⋅的最小值为
__________ ,此时点P 的坐标为________________.。

相关文档
最新文档