高中数学(人教B版 选修1-2)教师用书第1章 1.1独立性检验
高中数学教材新课标人教B版目录完整版
高中数学教材新课标人教B版目录完整版The final revision was on November 23, 2020高中数学(B版)必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数 3.4 函数的应用(Ⅱ)高中数学(B版)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程 2.4 空间直角坐标系高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用高中数学(B版)必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算 2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积高中数学(B版)必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题高中数学(B版)选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用高中数学(B版)选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图高中数学(B版)选修2-1基本逻辑联结词充分条件、必要条件与命题的四种形式曲线与方程椭圆双曲线抛物线高中数学(B版)选修2-2第一章导数及其应用导数导数的运算导数的应用定积分与微积分基本定理第二章推理与证明合情推理与演绎推理直接证明与间接证明数学归纳法第三章数系的扩充与复数数系的扩充与复数的概念复数的运算高中数学(B版)选修2-3第一章计数原理基本计数原理排列与组合二项式定理第二章概率离散型随机变量及其分布列条件概率与事件的独立性随机变量的数字特征正态分布第三章统计案例独立性检验回归分析高中数学(B版)选修4-4第一章坐标系直角坐标系平面上的压缩变换 2极坐标系曲线的极坐标方程圆的极坐标方程柱坐标系和球坐标系第二章参数方程曲线的参数方程直线和圆的参数方程圆锥曲线的参数方程高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式 2.2 排序不等式 2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式数学归纳法原理用数学归纳法证明不等式,贝努利不等式。
2017-2018学年高中数学人教B版 选修1-2教师用书:第1
1.1 独立性检验1.理解相互独立事件的概念,了解独立性检验的思想和方法.(重点)2.会利用2×2列联表求χ2,并能根据χ2值与临界值的比较进行独立性检验.(重点、难点)[基础·初探]教材整理1 独立事件阅读教材P 3~P 4例2以上部分,完成下列问题. 1.独立事件的定义一般地,对于两个事件A ,B ,如果有P (AB )=P (A )·P (B ),则称事件A 与B 相互独立,简称A 与B 独立.2.如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立.甲、乙两人分别独立地解一道题,甲做对的概率是12,甲、乙都做错的概率是16,则乙做对的概率是_______________________________________.【解析】 设“甲、乙做对”分别为事件A ,B ,则P (A )=12,P (A B )=16, 由P (A B )=(1-P (A ))·(1-P (B )),得⎝ ⎛⎭⎪⎫1-12·()1-P (B )=16, 解得P (B )=23. 【答案】 23教材整理2 2×2列联表与χ2统计量的计算公式 阅读教材P 4~P 5第10行以上部分,完成下列问题. 1.对于两个事件A ,B ,用下表表示抽样数据:表中:n +1=n 11+n 21,+2=n 12+n 22,1+=n 11+n 12,2+=n 21+n 22,n =n 11+n 21+n 12+n 22.形如此表的表格为2×2列联表. 2.统计量χ2的计算公式χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2.下面是一个2×2列联表:A.94,96B.52,50C.52,60D.54,52【解析】 ∵a +21=73,∴a =52. 又b =a +8=52+8=60. 【答案】 C教材整理3独立性检验思想阅读教材P4倒数第5行~P8,完成下列问题.1.用H0表示事件A与B独立的判定式,即H0:P(AB)=P(A)P(B),称H0为统计假设.2.用χ2与其临界值3.841与6.635的大小关系来决定是否拒绝统计假设H0,如下表:判断(正确的打“√”,错误的打“×”)(1)甲、乙两人分别对一目标射击一次,记“甲射击一次击中目标”为事件A,“乙射击一次击中目标”为事件B,则事件A与事件B是相互独立事件.()(2)在使用χ2统计量作2×2列联表的独立性检验时,要求表中的4个数据可以是任意的.()(3)当χ2>3.841认为两事件有99%的关系.()【解析】(1)根据题意,“甲的射击”与“乙的射击”没有关系,是相互独立.(2)由2×2列联表知,每表中的4个数据大于等于5.(3)由临界值知,当χ2>3.841时有95%的把握认为两事件有关.【答案】(1)√(2)×(3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑: 疑问3: 解惑:[小组合作型]机地抽取一粒,求:(1)两粒都能发芽的概率; (2)至少有一粒种子能发芽的概率; (3)恰好有一粒种子能发芽的概率.【精彩点拨】 甲(或乙)中的种子是否发芽对乙(或甲)中的种子是否发芽的概率是没有影响的,故“甲批种子中某粒种子发芽”与“乙批种子中某粒种子发芽”是相互独立事件.因此可以求出这两个事件同时发生的概率.对于(2)(3)应把符合条件的事件列举出来或考虑其对立面.【自主解答】 设以A ,B 分别表示“取自甲、乙两批种子中的某粒种子发芽”这一事件,A -,B -则表示“取自甲、乙两批种子中的某粒种子不发芽”这一事件,则P (A )=0.8,P (B )=0.7,且A ,B 相互独立,故有(1)P (AB )=P (A )P (B )=0.8×0.7=0.56, 故两粒都能发芽的概率为0.56.(2)法一 P (A ∪B )=P (A )+P (B )-P (AB )=0.8+0.7-0.56=0.94. 法二 至少有一粒种子能发芽的对立事件为两粒种子都不发芽,即 P (A ∪B )=1-P (A - B -)=1-P (A -)P (B -)=1-(1-0.8)×(1-0.7) =0.94.故至少有一粒种子能发芽的概率为0.94.(3)P (A B -∪A -B )=P (A B -)+P (A -B )=0.8×(1-0.7)+(1-0.8)×0.7=0.38. 故恰好有一粒种子能发芽的概率为0.38.1.求解简单事件概率的思路:(1)确定事件间的关系,即两事件是互斥事件还是对立事件; (2)判断事件发生的情况并列出所有事件;(3)确定是利用和事件的概率公式还是用积事件的概率公式计算. 2.求解复杂事件概率的思路:(1)正向思考:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的和事件或相互独立的积事件;(2)反向思考:对于含有“至少”“至多”等事件的概率问题,可转化为求其对立事件的概率.[再练一题]1.甲、乙、丙三位学生用计算机联网学习数学,每天独立完成6道数学题,已知甲及格的概率是810,乙及格的概率是610,丙及格的概率是710,三人各答一次,求三人中只有一人答题及格的概率是多少?【解】 设“甲、乙、丙三人答题及格”分别为事件A ,B ,C ,则P (A )=810,P (B )=610,P (C )=710,设“三人各答题一次只有一人及格”为事件D ,则D 的情况为A B -C -,A -B C -,A -B -C ,所以P (D )=P (A B -C -)+P (A -B C -)+P (A -B -C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)·P (C )=810×⎝ ⎛⎭⎪⎫1-610⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-810×610×⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-810⎝ ⎛⎭⎪⎫1-610×710=47250.上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用n 11n 1+与n 21n 2+判断二者是否有关系.【精彩点拨】 对变量进行分类→求出分类变量的不同取值→作出2×2列联表→【自主解答】 饮食习惯与年龄2×2列联表如下:n 11n 1+=4364≈0.67. n 21n 2+=2760=0.45. 显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.1.作2×2列联表时,注意应该是4行4列,计算时要准确无误.2.作2×2列联表时,关键是对涉及的变量分清类别.[再练一题]2.题中条件不变,尝试用|n 11n 22-n 12n 21|的大小判断饮食习惯与年龄是否有关. 【解】 将本例2×2列联表中的数据代入可得 |n 11n 22-n 12n 21|=|43×33-21×27|=852.相差较大,可在某种程度上认为饮食习惯与年龄有关系.[探究共研型]探究 【提示】 利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n越大,这个估计值越准确,如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.探究2在χ2运算后,得到χ2的值为29.78,在判断变量相关时,P(χ2≥6.635)≈0.01和P(χ2≥7.879)≈0.005,哪种说法是正确的?【提示】两种说法均正确.P(χ2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两个变量相关;而P(χ2≥7.879)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两个变量相关.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1).(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.【精彩点拨】题中给出了2×2列联表,从而可通过求χ2的值进行判定.对于(1)(3)可依据古典概率及抽样方法分析求解.【自主解答】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)χ2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法进行抽样,这比采用简单随机抽样方法更好.1.检验两个变量是否相互独立,主要依据是利用χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2公式计算χ2的值,再利用该值与3.841,6.635两个值进行比较作出判断.2.χ2计算公式较复杂,一是公式要清楚;二是代入数值时不能张冠李戴;三是计算时要细心.3.统计的基本思维模式是归纳,它的特征之一是通过部分数据的性质来推测全部数据的性质.因此,统计推断是可能犯错误的,即从数据上体现的只是统计关系,而不是因果关系.[再练一题]3.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:的饮食习惯方面有差异”.【解】 将2×2列联表中的数据代入公式计算,得χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762.因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.[构建·体系]1.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算χ2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为()A.0.1%B.1%C.99%D.99.9%【解析】因为χ2=8.01>6.635,所以有99%以上的把握认为“喜欢乡村音乐与性别有关系”.【答案】 C2.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有【解析】独立性检验的结果与实际问题有差异,即独立性检验的结论是一个数学统计量,它与实际问题中的确定性存在差异.【答案】 D3.有两个分类变量X与Y的一组数据,由其列联表计算得χ2≈4.523,则认为“X与Y有关系”犯错误的概率为()A.95%B.90%C.5%D.10%【解析】P(χ2≥3.841)≈0.05,而χ2≈4.523>3.841.这表明认为“X与Y有关系”是错误的可能性约为0.05,即认为“X与Y有关系”犯错误的概率为5%.【答案】 C4.甲、乙两人分别对一目标射击一次,记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则在A与B,A与B,A与B,A与B 中,满足相互独立的有________对.【导学号:37820000】【解析】由已知:A与B相互独立,则A与B,A与B,A与B均相互独立,故有4对.【答案】 45.已知甲、乙两袋中分别装有编号为1,2,3,4的四个小球,现从两袋中各取一球,设事件A=“两球的编号都是偶数”,B=“两球的编号之和大于6”.判断事件A,B是否相互独立.【解】P(A)=416=14,P(B)=316.又AB=“两球的编号都为4”,P(AB)=1 16.显然P(AB)≠P(A)P(B),所以事件A,B不相互独立.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
最新人教版高二数学选修1-2(B版)电子课本课件【全册】
2.1.2 演绎推理
2.2.2 反证法
阅读与欣赏
《原本》与公理化思想
第三章 数引入
3.2.2 复数的乘法和除法
阅读与欣赏
复平面与高斯
4.1 流程图
本章小结
附录 部分中英文词汇对照表
第一章 统计案例
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.1 独立性检验
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
阅读与欣赏
“回归”一
词的由来
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
最新人教版高二数学选修1-2(B 版)电子课本课件【全册】目录
0002页 0090页 0178页 0200页 0277页 0329页 0401页 0403页 0454页 0530页 0608页 0610页 0672页 0703页
第一章 统计案例
1.2 回归分析
阅读与欣赏
“回归”一词的由来
第二章 推理与证明
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.2 回归分析
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
本章小结
高中数学人教B版选修1-2课件 第1章 1.1 独立性检验
一 事件相互独立的含义 一般地,对于两个事件 A、B,如果有 P(AB)=P(A)· P(B), 就称事件 A 与 B 相互独立,简称 A 与 B 独立. (1)当事件 A 与 B 独立时,事件 A 与 B,A 与 B , A 与 B 也 独立. (2)依据定义容易验证必然事件、不可能事件与任何事件是 相互独立的.因为必然事件与不可能事件的发生与否,不受其 他任何事件的影响,也不影响其他事件是否发生.
合计 n+1 n+2
表中:n+1=n11+n21,n+2=n12+n22,n1+=n11+n12,n2+= n21+n22,n=n11+n12+n21+n22. 其中 n11、n12、n21、n22, A 与 B 及 A 与 B 时的频数,n1+,n2+分别是变量 X 取 A、 A 时的频数,n+1、n+2 分别是变量 Y 取 B、 B 时的频数,上述 表称为 2×2 列联表.
4.χ2 的两个临界值 经过对 χ2 统计量的研究, 已经得到 χ2 的两上临界值: 3.841 与 6.635.当根据具体的数据计算出的 χ2>3.841 时,有 95%的把 握说事件 A 与 B 有关;当 χ2>6.635 时,有 99%的把握说事件 A 与 B 有关;当 χ2≤3.841 时,没有理由说明它们有关. 注意:(1)作独立性检验时,要求 2×2 列联表中的 4 个数 据都要大于等于 5. (2)在统计假设 H0:P(AB)=P(A)P(B)成立时,是用事件的 频率近似代替相应的概率,因而 χ2 的结果也受到样本特征的影 响,具有随机性.
(3)从直观上可以认为不论事件 A 发生还是不发生都对事件 B 发生的概率没有影响,即事件 A 与事件 B 没有关系. (4)尽管独立性的定义用 P(AB)=P(A)· P(B)来刻画,但实际 应用时往往是从事件的实际意义出发来判断是否相互独立. (5)定义的推广:如果 P(A1A2…An)=P(A1)· P(A2)· …· P(An), 则称事件 A1,A2,…,An 相互独立.
高中数学教材人教B版目录(详细版).doc
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
数学人教B版教材目录(必修选修)
数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。
高中数学选修1-2第一章课后习题解答
新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
高中数学人教B版数学目录
必修一第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图象(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质与图象2.2.3 待定系数法2.3 函数的应用(Ⅰ)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.4 函数的应用(Ⅱ)本章小结阅读与欣赏:对数的发明必修二第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积实习作业1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的几种形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1 解三元一次方程组的算法、框图和程序附录2 Scilab部分函数指令表第二章统计2.1 随机抽样2.1.2 系统抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用本章小结阅读与欣赏:概率论的起源必修四第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划本章小结选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线级其标准方程2.3.2 抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用本章小结阅读与欣赏微积分与极限思想第一章统计案例1.1 独立性检验1.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法本章小结阅读与欣赏复平面与高斯第四章框图4.1 流程图4.2 结构图本章小结阅读与欣赏冯·诺伊曼第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)本章小结阅读与欣赏:向量的叉积及其性质第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与冥函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法2.3.1 数学归纳法2.3.2 数学归纳法应用举例本章小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章小节阅读与欣赏复平面与高斯第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角本章小结第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1 独立性检验3.2 回归分析本章小结阅读与欣赏“回归”一词的由来选修4-1第一章相似三角形定理与圆幂定理1.1 相似三角形1.1.1 相似三角形判定定理1.1.2 相似三角形的性质1.1.3 平行截割定理1.1.4 锐角三角函数与射影定理1.2 圆周角与弦切角1.2.1 圆的切线1.2.2 圆周角定理1.2.3 弦切角定理1.3 圆幂定理与圆内接四边形1.3.1 圆幂定理1.3.2 圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1 平行投影与圆柱面的平面截线2.1.1 平行投影的性质2.1.2 圆柱面的平面截线2.2 用内切球探索圆锥曲线的性质2.2.1 球的切线与切平面2.2.2 圆柱面的内切球与圆柱面的平面截线2.2.3 圆锥面及其内切球2.2.4 圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系本章小结第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
人教B版选修1-2高中数学1.1《独立性检验》word教案
§1.1.1 独立性检验
一.学习目标
1.了解独立性检验(只要求2⨯2列联表)的基本思想、方法及其简单应用
2.了解假设检验的基本思想、方法及其简单应用
重点:能够根据题目所给数据列出列联表及求2χ
难点:独立性检验的基本思想、方法及其初步应用
二、自主学习
三.合作探究
调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表
.试问能有多大把握认为
规律方法 解决一般的独立性检验问题的步骤:
(1)通过列联表确定n 11,n 12,n 21,n 22,n 的值,根据实际问题需要的可信程度确定临界值
3.841和6.635;
(2)利用2χ=
112212211212()n n n n n n n n n ++++- 求出2χ的值; (3)若2χ>3.841,有95%的把握说事件A 与B 有关;当2χ>6.635,有99%的把握说事件A 与B
有关;当2
χ≤3.841时,认为事件A 与B 是无关的.
四.自我检测
1.如果根据性别与饮酒的列联表,得到k≈3.852>3.841,那么判断性别与饮酒有关时这种判断出错的可能性为()
A. 20%
B.50%
C.10%
D.5%
2.有2⨯2列联表如下:
由上表可计算≈____________
3.为了研究性格与血型的关系,抽取80名被测试者,相关数据如下表,试判断性格与血型是否相
五、学习小结
六、自我评价
你完成本节导学案的情况为().
A. 很好
B. 较好
C. 一般
D. 较差。
高中数学人教B版选修1-2 第一章 1.1 独立性检验 课件(共33张PPT)
总计
n1 n2 n
课堂讲练互动
我们不妨作出相反的假设,H0:吸烟和患病之间没有关系 即H0:P(AB)=P(A)P(B) 其中A为某人吸烟,B为某人患病
吸烟 A
不吸烟A
总计
患病 B n11 n 21
n 1
未患病B 总计
n12 n22 n2
则P(A) P(B)
n a1 nna2nn
b c
2 n(n11n22n12n21)2
课前探究学习
课堂讲练互动
探究:
为调查患慢性气管炎是否与吸烟有关,调查 了339名50岁以上的人,调查结果如下表所示:
吸烟 不吸烟
总计
患病 43 13 56
未患病 162 121 283
总计 205 134 339
由上表能否断定:患慢性气管炎与吸烟有关?
课前探究学习
课堂讲练互动
通过图形直观判断
患病 未患病 总计
患病 未患病
总计
打鼾
30
不打鼾 24
总计
54
224 1355 1579
254 1379 1633
课前探究学习
课堂讲练互动
解:有公式得:
x2 1633301355224242 68.033
1379254541579 68.0336.635有99%的把握说,每一晚 打鼾与患心脏病有关。
课前探究学习
课堂讲练互动
∵1.871×10-4≤3.841,可以认为学生选报文、理科与对外语的兴
趣无关.
课前探究学习
课堂讲练互动
规律方法 运用独立性检验的方法: 1.列出2×2列联表,根据公式计算χ2. 2.根据临界值作出判断.
课前探究学习
高中数学北师大版选修1-2教案-§2 独立性检验_教学设计_教案
教学准备1. 教学目标1、知识与技能:通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题.2、过程与方法:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。
通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力.3、情感态度价值观:通过本节课的学习,加强数学与现实生活的联系。
以科学的态度评价两个分类变量有关系的可能性。
培养学生运用所学知识,解决实际问题的能力。
对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。
教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。
2. 教学重点/难点教学重点理解独立性检验的基本思想及实施步骤.教学难点1.了解独立性检验的基本思想;2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。
3. 教学用具4. 标签教学过程课下预习,搜集有关分类变量有无关系的一些实例。
情境引入、提出问题:1、吸烟与患肺癌有关系吗?2、你有多大程度把握吸烟与患肺癌有关?变量有定量变量、分类变量,定量变量—回归分析;分类变量—独立性检验,引出课题。
问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些量呢?列联表:分类变量的汇总统计表(频数表). 一般我们只研究每个分类变量只取两个值,这样的列联表称为2*2列联表 . 如吸烟与患肺癌的列联表:问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为________.问题3:我们还能够从图形中得到吸烟与患肺癌之间的关系吗?小结:根据列联表和等高条形图判断的标准是什么?思考:1:差异大到什么程度才能作出“吸烟与患肺癌有关”的判断?2:能否用数量刻画出“有关”的程度?前置铺垫:问题4:我们能够从多大程度上认为吸烟与患肺癌之间有关系呢?为了解决上述问题,我们先假设H0:吸烟与患肺癌没有关系。
人教B版高中数学选修1-2课件 1.1独立性检验课件2
61
4
乙厂: 分组 频数
[29.86, [29.90, [29.94, [29.98,
29.90) 29.94) 29.98) 30.02)
29
71
85
159
分组 [30.02,30.06) [30.06,30.10) [30.10,30.14)
频数
76
62Biblioteka 18(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面 2×2 列联表,并问是否有 99%的把
握认为“两个分厂生产的零件的质量有差异”.
甲厂 乙厂 合计
优质品
非优质品
合计
解 (1)甲厂抽查的产品中有 360 件优质品,从而甲厂生产的零 件的优质品率估计为356000×100%=72%; 乙厂抽查的产品中有 320 件优质品,从而乙厂生产的零件的优质 品率估计为352000×100%=64%. (2)
甲厂 乙厂 合计
优质品 360 320 680 非优质品 140 180 320
合计 500 500 1 000
χ2=1 0006×803×603×201×805-003×205×001402≈7.353>6.635. 所以有 99%的把握认为“两个分厂生产的零件的质量有差异”.
小结 本小题主要考查了统计与概率的计算、独立性检验等相 关问题.解有关统计案例问题的通法是:通过对数据的分析处 理,结合数据特征加以研究.
1.当 χ2>3.841 时,认为事件 A 与事件 B A.有 95%的把握有关 B.有 99%的把握有关 C.没有理由说它们有关 D.不确定
( A)
2.为了考察中学生的性别与是否喜欢数学课程之间的关系,在 某校中学生中随机抽取了 300 名学生,得到如下列联表:
【高考一轮复习】高中数学人教B版选修1-2配套课件:1.1.1独立性检验
8 - - - - - - P(A)P( B )P( C ) + P( A )P(B)P( C ) + P( A )P( B )P(C) = 10
6 7 8 7 8 6 47 6 7 1-101-10+1-10101-10+1-101-1010=250.
1.求解事件概率的思路: (1) 确定事件间的关系,即两事件是互斥事件还是对立事 件;
(2)判断事件发生的情况并列出所有事件;
(3) 确定是利用和事件的概率公式还是用积事件的概率公 式计算.
2.求解复杂事件概率的思路:
(1) 正向思考:通过“分类 ” 或 “ 分步 ” 将较复杂事件进
行分解,转化为简单的互斥事件的和事件或相互独立的积事 件; (2) 反向思考:对于含有 “ 至少 ”“ 至多 ” 等事件的概率 问题,可转化为求其对立事件的概率.
1.1
独立性检验
●三维目标 1.知识与技能 理解相互独立事件的概念,了解独立性检验的思想和方
法.会利用2×2列联表求χ2,并能根据χ2值与临界值的比较进
行独立性检验.
2.过程与方法
运用数形结合的方法,借助对典型案例的探究,来了解
独立性检验的基本思想,总结独立性检验的基本步骤. 3.情感、态度与价值观 (1) 通过本节课的学习,让学生感受数学与现实生活的联 系,体会独立性检验的基本思想在解决日常生活问题中的作
(1)用H0表示事件A与B独立的判定式,即
H0:P(AB)=P(A)· P(B),
称 H0 为 统计假设 . (2)用χ2与其临界值
3.841
与
6.635
的大小关系来
决定是否拒绝统计假设H0,如下表: 大小比较 χ2≤3.841 χ2>3.841 结论 无关的 事件A与B是________
2020-2021学年高二下学期数学人教B版选修1-2第一章1.1独立性检验+说课课件
五.课后反思
我想主要原因还是在于脱离了假设检验的理论知识,而独立性检验作为假设检验的一种特例单独拿出来学习就会感觉缺少许多理论支持.如何能让学生在高中的知识背景下了解独立性检验的思想,我想需要教师自己对于假设检验的思想有一个正确的理解,并且能够结合教材,正确的传达给学生.作为一名青年教师,自己一定要努力提高自己的专业素养,同时研读教材,做一名关注学生思维发展的数学教师.
一.教学内容解析
一.教学内容解析
独立性检验是考察两个变量是否独立的统计学方法,具体做法是:首先对两个变量的关系作假设,然后选取合适的统计量,并根据实测样本计算出该统计量的观测值,最后根据预先设定的显著性水平进行检验,做出接受或拒绝原假设的判断,其本质就是运用假设检验原理的一种特例.在现有的有关独立性检验(大学)教材看,都是先介绍假设检验知识,然后介绍独立性检验,即通过假设检验的原理来理解独立性检验的思想. (2)教学重点:通过典型案例的探究体会独立性检验的思想方法.
三.学生学情分析:
考虑到文科学生的知识储备及课标的要求,本节课尽量用生活中的实际例子去引导学生,让学生感受到卡方统计量构造的必要性及独立性检验思想的重要性。 (2)教学难点:独立性检验的思想。
三.学生学情分析:
小概率事件的发生?
四.教学过程
通过自习课被老师发现说话这种常见现象引题,然后通过分析学生教师的通常表现来实现以下两个目的:1.引起学生兴趣,同时初步了解对于“反证法”的思想。 2.了解小概率事件发生的可能性与否定假设把握程度之间的关系,即为独立性检验结果的概率统计含义的理解做铺垫。
高中课程标准中,要求通过对典型案例的探究,了解独立性检验的基本思想、方法及初步应用,课时安排为三课时.在高考中基本以考察操作规则,套用卡方公式进行计算为主,根据以往经验,应用公式对于学生来说较为简单,所以作为本节课的第一课时教学目标设置如下: (1)知识与技能:解两个事件相互独立的含义,通过对典型案例的探究,理清不同的样本,数据不同,比例不同,数据所体现的差异性不同,怎样针对不同样本数据设置统一的评判标准?
高中数学新人教版B版精品教案《人教版B高中数学选修1-2 1.1 独立性检验》
《独立性检验》教学设计岳娜山东省昌乐县及第中学独立性检验山东省昌乐县及第中学岳娜一、教学内容分析这一节的教学为选修1-2第一章第二节,是新课标新增的内容,课题趣味性较强,充分体现了数学在实际生活中的应用,对于提高学生的学习兴趣有较大作用。
通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系这一直觉来自于观测数据问题是这种来自数据观测能够在多大程度上代表总体,这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力。
二、教学目标知识目标:(1)通过对典型案例的研究,了解独立性检验的基本思想;(2)掌握独立性检验的基本方法及初步应用。
能力目标:(1)通过对案例的分析,提高学生分析、解决实际问题的能力;(2)培养通过收集数据,并依据独立性检验的原理作出合理推断的良好习惯。
情感目标:(1)在自主探究与讨论交流过程中,培养学生的合作意识和创新精神;(2)充分体现数学的趣味性,提高学生学习兴趣。
三、教法与学法设计1、教法设计:创设情境,提出问题——分组讨论,合作交流——共同探究,概念形成,——概念深化,重点精讲——典型例题,分析应用——课堂练习,堂堂达标2、教学方法:引导发现法、探索讨论法等引导发现法能充分调动学生的积极性和主动性;探索讨论法(1)有利于学生对知识进行主动建构;(2)有利于突出重点、突破难点。
3、采用多媒体演示,利用网络;4、采用学案(全批全改),充分保证每个学生的自主学习;5、开展积极的合作、交流,体现合作探究精神。
四、教学重点与难点1、教学重点:用独立性检验的方法判断两个分类变量的关系2、教学难点:把握独立性检验的基本思想并体会初步应用,掌握K2的公式,并根据观测值判断两各变量是否相关。
五、教学准备1、硬件环境:多媒体教室,能够接入互联网;2、多媒体课件。
高中数学教材人教B版目录(详细版)
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
【优选整合】人教B版高中数学选修1-2+1.1独立性检验(二)教案
1.1独立性检验(第二课时)一、【知识与技能目标】1.了解2×2列联表的意义和 统计量的作用.2.通过案例分析,了解独立性检验的基本思想、方法和其初步应用。
二、【情感、态度与价值目标】通过对数据的收集、整理和分析,增强学生的社会实践水平,培养学生的分析问题、解决问题的水平。
三、【学法指导】独立性检验的基本思想是统计中的假设检验思想,通过统计量的值来判定两个事件是否相关,的值越大,两个事件相关的把握越大.四、【教学过程】 (一)复习引入1、引例1:掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,试判断事件A ,事件B 的关系?解析:P (A )=36=12,P (B )=26=13,P (AB )=16=12×13,即P (AB )=P (A )P (B ),所以,事件A 与B 相互独立.2、引例2 从一副52张的扑克牌(不含大小王)中,任意抽一张出来,设事件A :“抽到黑桃”,事件B :“抽到Q”,试判断事件A 与事件B 的关系? 解析:,415213)(==A P ,521)(,131524)(===AB P B P ),()()(B P A P AB P =∴ 则:A 与B 相互独立。
(二)探究新知例2.为了了解患慢性支气管炎与吸烟是否相关,实行了一次抽样调查,共调查了339名50岁以上的人,调查结果如下:2χ2χ2χ思考一:根据这些数据能否断定“患慢性支气管炎与吸烟相关吗”? 思考二在吸烟的人中,患病的比重是 ,在不吸烟的人中,患病的比重是上面的分析,得到的直观印象是吸烟和患慢性支气管炎相关,那么事实是否真的如此呢?它们有多大的把握认为两者相关?这需要用统计观点来考察这个问题。
2、先假设:吸烟与患慢性支气管炎没相关系,看看能够推出什么样的结论。
把例题表中的数字用字母代替,得到如下列联表:如果成立,则在吸烟的人中患病的比例与不吸烟的人中患病的比例应差不多,由此可得,即n 11(n 21+n 22)≈n 21(n 11+n 12)⇒n 11n 22-n 21n 12≈0,所以,|n 11n 22-n 21n 12|越小,患病与吸烟之间的关系越弱,否则,关系越强.H 4320.1%205≈139.7%134≈112111122122n n n n n n ≈++0H为了使不同样本容量的数据有统一的评判标准,我们构造一个统计量‘‘卡方”:-----------(1)若H0 成立,即“吸烟与患支气管炎没相关系”,则 应很小。
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立性检验
.理解相互独立事件的概念,了解独立性检验的思想和方法.(重点)
.会利用×列联表求χ,并能根据χ值与临界值的比较进行独立性检验.(重点、
难点)
[基础·初探]
教材整理独立事件
阅读教材~例以上部分,完成下列问题.
.独立事件的定义
,,
对于两个事件
,
如果有
一般地
简称与
,
则称事件与相互独立
,
()=()·()
独立.
,
相互独立
,
如果
.
则
与
也相互独立.
,
与
,
与
甲、乙两人分别独立地解一道题,甲做对的概率是,甲、乙都做错的概率
是,则乙做对的概率是.
【解析】设“甲、乙做对”分别为事件,,则()=,()=,
由()=(-())·(-()),
得·=,
解得()=.
【答案】
教材整理 ×列联表与χ统计量的计算公式 阅读教材~第行以上部分,完成下列问题. .对于两个事件,,用下表表示抽样数据:
.
+++=,+=++=+,+=++=+形如此表的表格为×列联表.
.统计量χ的计算公式
χ=.
下面是一个×列联表:
)
, , ,
,
【解析】∵+=,∴=.
又=+=+=.
【答案】
教材整理 独立性检验思想。