第11届小机灵杯五年级决赛解析
奥数重点:和差倍问题讲解
奥数重点:和差倍问题讲解1 考点分析和差倍问题是已知几个数的和或差以及它们的倍数关系,分别求几个数的应用题。
为了帮助我们理解题意,弄清量与量之间的关系,常采用画线段图的方法,以便找到解题的途径。
和差倍问题也是年龄问题的基础,经常出现在杯赛中。
基本功1、会画线段图2、公式(1)和倍问题:小数=和÷(倍数+1)大数=小数×倍数或大数=和-小数(2)差倍问题:小数=差÷(倍数-1)大数=小数×倍数或大数=小数+差一般解题步骤1、画线段图(先画倍数关系,再标明数量)2、求一倍数(数量与倍对应好才能相除!)根据题目要求求相应的解2 真题回放“1、(第一届小机灵杯第8题)有一堆围棋子,白子的个数是黑子的2倍,拿走96个白子后,黑子的个数是白子的2倍,原来黑子有()个。
2、【第11届三年级中环杯初赛第5题】有甲乙两支人数相等的运动队,由于训练的需要,从甲队调10人到乙队,这时乙队人数正好是甲队人数的3倍,甲队原有()人。
”3 经典解析1、【解析】根据题意可画出如下线段图:由此可得黑子个数为:96÷(2+1)×2=64考点:和差倍+移多补少2、【解析】从甲队调10人到乙队,所以现在的乙比甲多20人。
甲队现在有:20÷2=10人甲队原有:10+10=20人4 巩固练习1、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?2、果园里有桃树、梨树、苹果树共552棵。
桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?3、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?4、549是甲、乙、丙、丁4个数的和。
如果甲数加上2,乙数减少2.,丙数乘以2,丁数除以2以后,则4个数相等。
求4个数各是多少?5 练习详解1、【解析】把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。
第六周 质数合数,因数倍数(上海四年级竞赛版)(1)
第六周质数合数,因数倍数1.【第13届中环杯初赛第6题】养兔场有一些大兔子和小兔子,小兔子的数量是大兔子的4倍。
过了一段时间后,一些。
小兔子长成了大兔子。
结果有60只小兔子长成了大兔子,且这时大兔子与小兔子一样多。
那么原来共有大兔子()只。
2.【第12届中环杯决赛第8题】某公司有100名员工,现有一笔奖金要分发给每名员工。
但为了提高大家的工作积极性,将先评出若干名优秀员工,每名优秀员工的奖金是普通员工的2倍。
如果评出20名优秀员工,那么每名优秀员工的奖金将是3300元。
如果只评10名优秀员工,那么每名优秀员工的奖金将是()元。
3.【第9届中环杯初赛第9题】妈妈给小明一把花生,小明对妈妈说:“好多花生啊,应该有100粒吧!”妈妈告诉小明:“没有这么多,吃这么多花生对身体不好。
如果我把给你的花生数量加上同样多的花生,再加上一半的数量,再加上四分之一的数量,再加上2粒,就有90粒。
”妈妈给小明的花生数量有()粒。
4.【第11届中环杯决赛第二部分第1题】有一笔奖金,要把它分成一等奖,二等奖,三等奖来颁发。
每个一等奖奖金是每个二等奖奖金的2倍,每个二等奖奖金是每个三等奖奖金的2倍。
如果一、二、三等奖各设置两人,那么每个一等奖的奖金是616元。
如果设置一个一等奖、两个二等奖,三个三等奖,那么每个一等奖的奖金是多少元?5.【第14届中环杯决赛第2题】各位数码之和(例如231的数码和为2+3+1=6)等于7的所有质数中,比10大的最小质数是________。
6.【第12届小机灵杯初赛第11题】一个三位数各位数字的乘积是18,满足条件的所有三位数的总和是________。
7.【第11届小机灵杯决赛第11题】110除以一个两位数的余数是5,符合条件的所有两位数是________.8.【第12届小机灵杯初赛第13题】A、B、C三人定期去图书馆看书,其中A每隔1天去一次,B每隔2天去一次,C每隔3天去一次,在2月的最后一天三人在图书馆相聚,那么从3月1日到6月30日只有1个人来图书馆的日子有________天。
第三周 最值+抽屉原理(上海五年级强化班)
第三周最值问题,抽屉、最不利原理1.【第8届小机灵杯初赛第12题】一个小公司有7位职工,这7位职工的月平均工资是2850元。
已知职工中最高工资是最低工资的1.5倍,那么最低工资的职工最多是()元。
2.【第10届小机灵初赛第5题】下图中,两只母鸡正在盘算着,要使每行、每列、每斜行中的鸡蛋不超过2个。
它们最多能在这蛋格子里下()个蛋,蛋格子中已经下好了2个蛋。
3.【第12届小机灵杯初赛第11题】从三位数100、101、102、 (699)700中任意取出n个不同的数,使得总能找到其中三个数,他们的数字和相同。
那么n的最小值是()。
4.【第14届中环杯初赛第3题】黑箱中有60块大小、形状都相同的木块,每15块涂上相同的颜色。
一次性至少取出()块才能保证其中至少有2块木块颜色相同。
5.【第13届中环杯初赛第4题】一个口袋中有50个编上号码的相同的小球,其中编号为1、2、3、4、5的小球分别有2、6、10、12、20个。
任意从口袋中取球,至少要取出()个小球,才能保证其中至少有7号码相同的小球?解析:1.【考点】最值问题【解析】7个人的总工资为2850×7=19950元,要使最低工资的职工的工资最多,那么除了最高工资的那个人之外,其余的职工都要拿最低工资,所以最低工资的职工的工资最多是:19950÷(1.5+6)=2660元。
2.【考点】离散最值——构造法【解析】一共有6行,每行最多有2个蛋,故最多12个蛋。
如下下蛋即可符合要求。
3.【考点】组合——抽屉原理【解析】在100到700中,数字和最小的数为100,它的数字和为1,且其中数字和为1的数仅有1个;数字和最大的数为699,它的数字和为24,且其中数字和为24的数仅有1个。
剩下的数的数字和为1到23中其中的一个,且2到23的每种数字和至少都有2个数。
所以n的最小值是1+1+2×22+1=47。
4.【考点】抽屉原理【解析】共60÷15=4种颜色,需要取出4+1=5块。
小机灵杯1-14届试题及详解
2003年2004年2005年2006年2007年2008年2009年2010年2,4593,2284,35,306,43157,328,169,6610,11 11,10 12,2660 13,60 14,792 15,116,49/4 17,G18,44 19,12 20,1536,72012年2013年第十一届小机灵杯五年级初赛试题1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.92、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。
那么,五(1)班的男生人数是女生人数的多少倍?3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、4、5、6、7七个数字。
如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。
乙跑完一圈需要几秒?5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?6、把正整数排成下列数阵:1 2 5 10 …4 3 6 11 …9 8 7 12 …16 15 14 13 ………………第21行第21列的数是多少?7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。
那么剩下的这张卡片是原来200张卡片里的第几张?8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。
可以肯定至少有多少人四项运动都会?9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?第十一届"小机灵"杯数学竞赛决赛五年级试题第一项,每题4分。
小机灵杯五年级试卷【含答案】
小机灵杯五年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种动物属于哺乳动物?A. 青蛙B. 猫头鹰C. 老虎D. 鲨鱼2. 植物进行光合作用的主要器官是?A. 根B. 叶C. 花D. 果实3. 地球自转的方向是?A. 自西向东B. 自东向西C. 自南向北D. 自北向南4. 下列哪个不是我国的传统节日?A. 春节B. 中秋节C. 愚人节D. 端午节5. 下列哪个行星离太阳最近?A. 金星B. 地球C. 水星D. 火星二、判断题(每题1分,共5分)1. 鸟类是卵生的。
()2. 水在0℃时会结冰。
()3. 光的速度比声音的速度慢。
()4. 人体共有206块骨骼。
()5. 蚂蚁是靠触角进行交流的。
()三、填空题(每题1分,共5分)1. 地球上面积最大的洲是______洲。
2. 人体最大的器官是______。
3. 我国历史上第一个皇帝是______。
4. 一年中有______个季节。
5. 水的化学式是______。
四、简答题(每题2分,共10分)1. 请简述光合作用的过程。
2. 请解释什么是可再生能源。
3. 简述地球自转和公转的区别。
4. 请列举三种不同的地形类型。
5. 请简述人体的呼吸过程。
五、应用题(每题2分,共10分)1. 一个长方形的长度是8厘米,宽度是4厘米,请计算它的面积。
2. 小明有5个苹果,他吃掉了2个,现在还剩几个苹果?3. 一个班级有20个男生和25个女生,请计算班级中女生的比例。
4. 如果一辆汽车以每小时60公里的速度行驶,那么它行驶100公里需要多少小时?5. 一个正方形的边长是5厘米,请计算它的周长。
六、分析题(每题5分,共10分)1. 请分析为什么在夏天白天比冬天长。
2. 请分析为什么植物需要光合作用。
七、实践操作题(每题5分,共10分)1. 请设计一个简单的实验来证明植物进行光合作用需要光。
2. 请制作一个简易的指南针。
八、专业设计题(每题2分,共10分)1. 设计一个简易的太阳能热水器。
9数的整除2(学生)
第九讲数的整除(2)知识概述一、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除。
2.一个数各位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除。
3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被被7、11或13整除。
二、整除的性质1.如果数a和数b都能被数c整除,那么它们的和或差也能被c整除。
2.如果数a能被数b整除,b又能被数c整除,那么a也能被c整除。
3.如果数a能被数b与数c的积整除,那么a也能被b或c整除。
4.如果数a能被数b整除,也能被数c整除,且数b和数c互素,那么a一定能被b与c的乘积整除。
5.如果数a能被数b整除,那么am也能被bm整除。
(m为非0整数)6.如果数a能被数b整除,数c能被数d整除,那么bd也能被ac整除。
例题精讲【例1】判断下面11个数的整除性:23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407⑴这些数中,有哪些数能被4整除?有哪些数能被8整除?⑵这些数中,哪些数能被25整除?哪些数能被125整除?⑶这些数中,哪些数能被3整除?哪些数能被9整除?⑷这些数中,哪些数能被11整除?【拓展】五位数abcde是9的倍数,其中abcd是4的倍数,那么abcde的最小值是。
【拓展】(2013年第十一届“小机灵杯”四年级决赛)把一个三位数的百位与个位上的两个数字交换,十位数不变,所得的新数与原数相等,这样的数共有()个,其中能被4整除的有()个。
【例2】(2011年第九届“小机灵杯”四年级决赛)某三位数是9的倍数,而且在300~400之间,它的百位与个位数字和为10,问这个数是()。
第十一届华杯赛初赛试题及解答
第十一届华杯赛初赛试题及解答1. 如下图,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD,取AB的中点M和BC的中点N,剪掉△MBN,得五边形AMNCD。
则将折叠的五边形AMNCD纸片展开铺平后的图形是〔〕。
2. 2008006共有( )个质因数。
〔A〕4 〔B)5 (C)6 (D)73、奶奶告诉小明:“2006年共有53个星期日”。
聪敏的小明立到告诉奶奶:2007年的元旦一定是()。
(A)星期一(B)星期二(C)星期六(D)星期日4、如图,长方形ABCD中AB∶BC=5∶4。
位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C →B→A→D→C的方向同时出发,分别沿着长方形的边爬行。
如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在( )边上。
(A)AB (B)BC (C)CD5、图中ABCD是个直角梯形(∠DAB=∠AB C=90°),以AD为一边向外作长方形ADEF,其面积为6.36平方厘米。
连接BE 交AD于P,再连接PC。
则图中阴影部分的面积是()平方厘米。
(A)6.36 (B)3.18 (C)2.12 〔D〕1.596、五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目。
如果贝贝和妮妮不相邻,共有( )种不同的排法。
(A)48 (B)72 (C)96 (D)120二、A组填空题7、在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立。
则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于____。
8、全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,假设已知全班共有女生31人,那么有直尺的女生有____人。
9、下列图是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内。
第十四届“小机灵杯”数学竞赛初赛试题(五年级组)最新版
爱
【第 12 题】 有 45 个工人,若每人每小时能生产甲零件 30 个,或乙零件 25 个,或丙零件 20 个。现在用甲零件 3 个,乙 零件 5 个, 丙零件 4 个装配某种机器, 那么安排生产甲、 乙、 丙零件人数分别是 ________ 人,________ 人, ________ 人时,才能使每小时生产的零件刚好配套。
1 ,小玲第 9
________ 天读完这本书。
【分析与解】分数应用题。
1 第 6 天读了这本书的 ; 9 1 1 第 1 ~ 5 天读了这本书的 2 ; 9 18
第 1 ~ 6 天读了这本书的
1 1 1 ; 18 9 6
小玲第 8 天读完这本书。
【分析与解】比例应用题
设安排生产甲、乙、丙零件人数分别是 x 人, y 人, z 人时,才能使每小时生产的零件刚好配套; 则 30 x : 25 y : 20 z 3 : 5 : 4 ;则 x : y : z
第十四届“小机灵杯”数学竞赛初赛(五年级组)
答案仅供参考,一些以官方公布为准
(第 1 题~第 5 题,每题 6 分) 【第 1 题】 已知 128 x 75 x 57 x 6.5 ,那么 x ________ 。 【分析与解】解方程;除法性质。
128 x 75 x 57 x 6.5 128 75 57 6.5 x x x 128 75 57 6.5 x 260 6.5 x x 260 6.5 x 40
4.8 x 6.6 y 167.4 ; 由题意,得 6.2 x y 167.4
x6 解得 ; y 21
2 7 6 块,巧克力蛋糕买了 27 21 块。 27 27
数学竞赛小机灵杯五年级决赛解析
第十二届“小机灵杯”智力冲浪展示活动决赛试卷(五年级组)2014年1月19日8:30~9:50时间:80分钟总分:120分一、判断题(每题1分)【第1题】小数点在十进制中用来隔开整数部分和小数部分。
中国魏晋时代的数学家刘徽第一个将“小数”这一概念用文字表达出来。
……………………………………………………………………………………………()【分析与解】中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。
第一个将这一概念用文字表达出来的是魏晋时代的刘徽。
他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。
填“√”。
【第2题】做小数加减法时要把小数点对齐。
在小数乘法法则中,两个因数中一共有几位小数,就要从积的左边向右数几位点上小数点。
…………………………………………………………………………………………()【分析与解】在小数乘法法则中,两个因数中一共有几位小数,就要从积的右边向左数几位点上小数点。
故填“×”。
第十二届“小机灵杯”智力冲浪展示活动决赛试卷五年级组中国古代数学最重要的典籍应当是《九章算术》,魏晋数学家刘徽用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。
……………………………………………………………………………( )【分析与解】所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。
“圜,一中同长也”。
意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。
早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。
认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。
我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。
【精品】第11届小学五年级“希望杯”培训题及解析(1)
第11届小学五年级“希望杯”培训题及解析(1)2013年第11届小学“希望杯”培训题(五年级)及解析一、填空题(共100小题,每小题1分,满分100分)1.计算:31.8÷2.3+386÷46-4.88÷0.23=解:31.8÷2.3+386÷46-4.88÷0.23,=318÷23+(386÷2)÷(46÷2)-488÷23,=318÷23+193÷23-488÷23,=(318+193-488)÷23,=23÷23,=16.比较大小(填“>”、“<”或“=”): 20122012×20132013 () 20112011×20142014解:因为20122012×20132013=2012×2013×100012,20112011×20142014=2011×2014×100012,2012×2013=4050156,2011×2014=4050154,4050156>4050154,所以20122012×20132013>20112011×201420147.a和b(a>b)是两个不同的三位小数,四舍五入取近似值都是2.38,则a和b最大相差()解:“四舍”得到的2.38最大是2.384,“五入”得到的最小是2.375,所以a和b最大相差:2.384-2.375=0.0098.规定运算“⊗”:a是b的倍数时,a⊗b=a÷b+1;b是a的倍数时,a⊗b=b÷a+1;a不是b的倍数时,b也不是a的倍数时,a⊗b=13.根据上面的规定,计算14⊗266⊗26⊗296⊗286=解:14⊗266⊗26⊗296⊗286,=(266÷14+1)⊗26⊗296⊗286,=20⊗26⊗296⊗286,=13⊗296⊗286,=13⊗286,=286÷13+1,=239.定义新运算:a◎b=5a+mb,其中a,b是任意两个不同的数,m为常数.如2◎7=5×2+m×7.(1)已知2◎3=19,则3◎5= ,5◎3= ;(2)当m= 时,该运算满足交换律解:(1)因为2◎3=19,所以5×2+m×3=19,10+3m=19,3m=9,m=3,3◎5,=5×3+3×5,=30,5◎3,=5×5+3×3,=25+9,=34,(2)因为a◎b=5a+mb,所以要满足交换律,m=510.3333333与33333333乘积的各位数字中有()个奇数解:3333333×333333333,=(3×1111111)×(3×11111111)=1111111×9×11111111,=1111111×99999999=111111100000000-1111111,=111111098888889;因此,乘积中有8个奇数数字11.555……5(2013个5)被13除,余数是。
行程问题(小机灵)
1 )=48m+24 2
因为速度相同,所以相同时内路程相同,起点相同,所以 30n=48m+24; 即 5n=8m+4,有不定方城知识,解出有 n=4,m=2, 所以小甲虫跑了 2 圈后,大小甲虫相距最远。 【练习 3】 【解析】
A
O B
C
当乙和丙相遇时,乙已经走了 30+15=45 千米。由于甲乙两人的速度比是 8:9,因此这时 甲已经走了 45×8÷9=40 千米。 当甲和丙相遇时,甲已经走了 30+20×2-6=64(千米) ,因此两次相遇之间的时间是全部 时间的(64-40)÷64=
【例题突破】
【例 1】 A 、 B 两地相距 2400 米,甲从 A 地、乙从 B 地同时出发,在 A 、 B 两地间往返 锻炼。甲每分钟跑 300 米,乙每分钟跑 240 米。在 30 分钟后停止运动,甲、乙两人第几 次相遇时距 A 地最近?最近距离是多少? 【例 2】甲乙二人从 A 、 B 两地同时出发相向而行,甲每分钟行 80 米,乙每分钟行 60 米. 出发一段时间后,二人在距离中点 120 米处相遇.如果甲出发后在途中某地停留了一会儿, 二人还将在距中点 120 米处相遇.问:甲在途中停留了多少分钟? 【例 3】一条小河流过 A 、 B 、 C 三镇, A 、 B 两镇之间有汽船来往,汽船在静水中的速
【例题突破】
【例 1】 【解析】
B 乙
10
20 3
30
40 5
50
1 2 4 A 甲 10 20 30 40 50
利用折线图来讲解甲走一个全程需要 2400÷300=8 (分钟) , 乙走一个全程需要 2400÷240 =10(分钟) ,通过画图如上知道第二次相遇离 A 点最近,此时甲乙共走了 3 个全程,乙走 的路程为:2400×3÷(300+240)×240=3200(米) ,由图可知乙走了一个全程多距 A 的距离,所以距离 A 地为:3200-2400=800(米) 。 【例 2】 【 解 析 】 第 一 次 , 甲 比 乙 多 走 的 路 程 S差 120 2 240 米 , 根 据 公 式
五年级下册数学试题-竞赛专题:第1讲-速算巧算(含答案)人教版
知识概述一、运用运算律简化运算:(1)乘法交换律:a b b a⨯⨯=(2)乘法结合律:()()a b c a b c a b c⨯⨯⨯⨯⨯⨯==(3)乘法分配律:()a b c a c b c+⨯=⨯+⨯,()a b c a c b c-⨯=⨯⨯-(4)除法分配性质:()a b c a c b c+÷=÷+÷,()-a b c a c b c-÷=÷÷二、计算中变换的规律:(1)和不变的规律:如果一个加数增加,另一个加数减少同一个数,它们的和不变。
(2)差不变的规律:如果减数和被减数同时增加或减少相同的数,差不变。
(3)积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。
(4)商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变。
三、常用的技巧和方法:拆分、凑整和分组。
四、在小数计算中,可利用小数点位置的变化简化运算。
速算巧算历届杯赛考试中,对学生的计算能力的考察是必不可少的。
这部分的题目难度不大,但是方法很巧妙,目的是考察大家的基本运算和巧算的能力。
要做好这些题目,就需要同学们在掌握好最基本的计算知识和方法的基础上多做题,从而锻炼自己的运算能力。
在计算的过程中也有许多技巧方法可以帮助我们加快计算速度、提高正确率。
名师点题计算:(1)67×200+254×33+54×67(2)9999×8+1111×28【解析】(1)67×200+254×33+54×67 (2)9999×8+1111×28=(67×200+54×67)+254×33 =1111×72+1111×28=67×(200+54)+254×33 =1111×(72+28)=67×254+254×33 =1111×100=254×(67+33)=111100=25400计算:(1)37÷36+105÷36+146÷36(2)11÷17+17÷19+20÷17+40÷19+37÷17【解析】(1)37÷36+105÷36+146÷36 (2)11÷17+17÷19+20÷17+40÷19+37÷17 =(37+105+146)÷36 =(11÷17+20÷17+37÷17)+(17÷19+40÷19)=288÷36 =(11+20+37)÷17+(17+40)÷19=8 =7计算:2008×20022002-2002×20082008【解析】2008×20022002-2002×20082008=2008×2002×10001-2002×2008×10001=0【巩固拓展】计算:(1)9999×2222+3333×3334(2)1994×19931993-1992×19941994例3例2例1【解析】(1)9999×2222+3333×3334 (2)1994×19931993-1992×19941994 =3333×6666+3333×3334 =1994×1993×10001-1992×1994×10001=3333×(6666+3334)=1994×10001×(1993-1992)=3333×10000 =1994×10001=33330000 =19941994(3)42×39+296÷37+83÷37+37×39-9÷37+39×21=(42×39+37×39+39×21)+(296÷37+83÷37-9÷37)=(42+37+21)×39+(296+83-9)÷37=100×39+370÷37=3910(第十届“中环杯”五年级决赛试题)计算:11×91+125×999+250【解析】()1191125999125210011259992100112510011261001126126=⨯+⨯+⨯=+⨯+=+⨯=⨯=原式【巩固拓展】计算:99×22+88×33+77×44+66×55【解析】()992288337744665511111811112411112811113011111824283012110012100=⨯+⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯+++=⨯=原式例1计算:1.83320183 6.718.3⨯+⨯+【解析】()18.33218.36718.3118.33267118.31001830=⨯+⨯+⨯=⨯++=⨯=原式【巩固拓展】计算:1.2567.8751250.675 1.2524.625⨯+⨯+⨯【解析】()1.2567.875 1.2567.5 1.2524.6251.2567.87567.524.6251.251601.258201020200=⨯+⨯+⨯=⨯++=⨯=⨯⨯=⨯=原式计算:296297-298295⨯⨯【解析】()()()296297-298295296298-1-298295296298-296-298295296298-298295-296298296-295-296298-2962=⨯⨯=⨯⨯=⨯⨯=⨯⨯=⨯==原式【巩固拓展】计算:1234234512332346⨯-⨯例3例2【解析】()()()123423451233234612342346-1-1233234612342346-1234-1233234612342346-12332346-123423461234-1233-12342346-12341112=⨯-⨯=⨯⨯=⨯⨯=⨯⨯=⨯==原式计算:200420052006-200320052007⨯⨯⨯⨯【解析】()()[][][]()[]2005200532005200420062003200720052004200712003200720052004200720042003200720052004200720042003200720042003200720046015==⨯⨯⨯⨯-⨯=⨯⨯--⨯=⨯⨯--⨯=⨯⨯--⨯-⨯-==原式【巩固拓展】(第十一届“中环杯”五年级决赛试题)计算:201120111949195019502009⨯⨯-【解析】()()()[]2011100011949-19501000120091000120111949-200919501000120111950-2011-200919501000119502011-2009-201110001188918891889=⨯⨯⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=⨯=原式计算:0.10.30.50.70.9 1.1 1.3 1.5 1.7 1.9 +++++++++例5例4【解析】()0.1 1.9102210210=+⨯÷=⨯÷=原式【巩固拓展】计算:0.10.20.30.90.100.110.120.980.99 ++++++++++【解析】()() ()()0.10.20.30.90.100.110.120.980.990.10.9920.100.999024.549.0553.55=++++++++++=+⨯÷++⨯÷=+=原式(第八届“中环杯”五年级初赛试题)计算:1000999998997996995994993104103102101+--++--+++--【解析】()()() ()[]100099999899799699599499310410310210141000-1011449004900=+--++--+++--=⨯+÷=⨯÷=原式【巩固拓展】计算:20062005-200420032002-200154-321++++++++【解析】()()()()()()[]()20062005-200420032002-200154-32120072004200163200732007-3312200736692672345=++++++++=+++++=+⨯÷+÷=+⨯÷=原式例6计算:(1)37.5×3×0.112+35.5×12.5×0.224(第十届“中环杯”五年级初赛试题) (2)3.6×42.3×3.75 – 12.5×0.423×28(第十一届“中环杯”五年级初赛试题)【解析】 (1)()()12.50.112971 12.59710.112 10000.112 112=⨯⨯+=⨯+⨯=⨯=原式 (2)()()()()3.642.3 3.75 1.2542.3 2.842.3 3.6 3.75 1.25 2.8 42.3 3.63 1.25 1.25 2.8 42.310.8 1.25 1.25 2.8 42.310.8 2.8 1.25 423=⨯⨯-⨯⨯=⨯⨯-⨯=⨯⨯⨯-⨯=⨯⨯-⨯=⨯-⨯=原式计算:(1)41.2×8.1+53.7×19+1.1×12.5(2)31.3×7.7+11×8.85+0.368×230(第十三届“中环杯”五年级初赛试题)【解析】 (1)()()()41.28.141.212.5 1.9 1.112.5 41.28.141.2 1.912.5 1.9 1.112.541.28.1 1.912.5 1.9 1.1 41237.5 449.5=⨯++⨯+⨯=⨯+⨯+⨯+⨯=⨯++⨯+=+=原式(2)()()()3.137755 1.77 3.68233.13770.55177 3.130.55233.1377230.5517723 313110 423=⨯+⨯+⨯=⨯+⨯++⨯=⨯++⨯+=+=原式例3例2例1计算:(1)6.1+6.3+6.5+…+9.9-6.2-6.4-6.6 -…-9.8 (第九届“中环杯”五年级初赛试题) (2)(第十届“小机灵杯”五年级复赛试题)0.1-(0.1+0.3)+(0.1+0.3+0.5)-(0.1+0.3+0.5+0.7)+…-(0.1+0.3+…+9.5)+(0.1+0.3+0.5+…+9.7)【解析】 (1)()()()() 6.10.1 6.10.1 86.1 6.3 6.2 6.5 6.49.99.89.9 6.30.2119==+⨯=+⨯=+-+-++--÷+⎡⎤⎣⎦原式(2)()()[]()()[]()()[]()()[]0.1+0.10.30.50.10.30.10.30.50.7+0.90.10.30.50.7 0.10.30.59.70.10.39.5 0.10.50.99.70.19.79.70.10.412 9.8252 122.5=++-+++++-+++++++++-+++=++++=+⨯-÷+÷=⨯÷=原式(第二届“走美杯”五年级试题) 计算:100×101-99×100+98×99-97×98+96×97-95×96+…+2×3-1×2【解析】()()()()()() 10098962 10098962 100101991009899979896979596231210199999797953122221002100221225100==⨯+⨯+⨯++⨯=⨯+⨯+⨯++⨯=⨯-⨯+⨯-⨯+⨯-⨯++⨯-⨯----+⨯-÷+÷⨯⎡⎤⎣⎦=原式观察:()()()()234-1234-123345-2345-234456-3456-345567-4567-456⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯计算:122334989999100⨯+⨯+⨯++⨯+⨯【解析】 观察发现:()()()()23234-123334345-234345456-345356567-4563⨯=⨯⨯⨯⨯÷⨯=⨯⨯⨯⨯÷⨯=⨯⨯⨯⨯÷⨯=⨯⨯⨯⨯÷()()()()()()[]()12233498999910012234-1233345-234399100101-9899100312234-123345-23499100101-98991003299100101-12332991001013-12339910010139931⨯+⨯+⨯++⨯+⨯=⨯+⨯⨯⨯⨯÷+⨯⨯⨯⨯÷++⨯⨯⨯⨯÷=⨯+⨯⨯⨯⨯+⨯⨯⨯⨯++⨯⨯⨯⨯÷=+⨯⨯⨯⨯÷=+⨯⨯÷⨯⨯÷=⨯⨯÷=÷⨯01100333300⨯=【练习1】 计算:(1)()()1351989-2461988++++++++(2)()()()()()2-24246-2468-24962498+++++++++++++++【解析】 (1)()()()1989-19881987-19863-21119902995=++++=⨯÷=原式(2)()()()()()()[]2246-24246810-24682498-2496 261098(298)(98-2)412100252 1250++++++++++++++++=++++=+⨯÷+÷=⨯÷==⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤⎣⎦++++原式【练习2】 计算:(1)200720082008200820072007⨯-⨯ (2)200320022001200120022003⨯-⨯(3)2011201020122013201120112012201210002⨯⨯+-【解析】 (1)2007200810001-2008200710001 0=⨯⨯⨯⨯=原式(2)()()()()200320022003-2-200120022003 200320022003-20032-200120022003200320022003-200120022003-20032 2003-200120022003-20032 20022003-20032 40040000=⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=⨯=原式(3)()() 20112011-2012201310002 20112011-2012201310002 020112011-12012201320112011201220121000220122013-20122012==⨯+=+=⨯⨯+原式-【练习3】 计算:(1)4.820.590.411.590.323 5.9⨯⨯⨯+-(2)7.816 1.45 3.14 2.184 1.697.816⨯+⨯+⨯(3)3.47 6.9 6.53 3.1 3.06 1.9⨯+⨯+⨯【解析】 (1)()()4.820.59-3.230.590.41 1.594.82 3.230.590.41 1.591.590.590.41 1.59=⨯⨯+⨯=⨯+⨯=⨯+=原式-(2)()()()7.816 1.45 1.697.816 3.14 2.1841.45 1.697.816 3.142.1843.147.816 2.184 31.4=⨯+⨯+⨯=+⨯+⨯=⨯+=原式(3)()()()()()3.47 6.9 3.47 3.06 3.1 3.06 1.9 3.47 6.9 3.47 3.1 3.06 3.1 3.06 1.93.47 6.9 3.47 3.1 3.06 3.1 3.06 1.9 3.47 6.9 3.1 3.06 3.1 1.9 3.4710 3.0656.945 3.0=⨯+⨯+⨯=⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯=⨯++⨯+=⨯+⨯=⨯+原式+6510550⨯=⨯=【练习4】 计算:0.10.30.50.70.90.110.130.150.970.99++++++++++【解析】 ()()()[]0.10.9520.110.990.990.110.02122.5 1.1452 27.25=+⨯÷++⨯-÷+÷=+⨯÷=原式【练习5】 如果6267*=+,53567*=++,4545678*=++++,…,那么556575105_____*+*+*++*=【解析】 ()()()()()()5565751055678967891078910111011121314758595125789125712625285*+*+*++*=++++++++++++++++++++=⨯+⨯+⨯++⨯=++++⨯=+⨯÷⨯=。
【第十届小机灵杯辅导资料五年级综合练习6
若干个 0 相加
第十届小机灵杯数学竞赛 2011 年辅导资料 五年级综合练习(6)
城隍喵
【第 9 题】 把 100 拆成两个自然数的和, 其中一个是 7 的倍数, 另一个是 13 的倍数, 那么这两个自然数的差是 _______ 。 【分析与解】 (方法一) 因为把 100 拆成两个自然数的和,其中一个是 7 的倍数,另一个是 13 的倍数; ; 所以设这两个自然数分别是 7 x 、 13 y ( x 、 y 为自然数) 7 x 13 y 100 ; 当 y 0 时, x 当 y 1 时, x 当 y 2 时, x 当 y 3 时, x 当 y 4 时, x
城隍喵
【第 10 题】 两个正整数相除,商是 7 ,余数是 5 ,如果被除数、除数都扩大到原来的 4 倍,那么被除数、除数、商、 余数的和等于 1039 。原来的被除数是 _______ ,除数是 _______ 。 【分析与解】 被除数、除数都扩大到原来的 4 倍时,商与原来的相同,余数扩大到原来的 4 倍,即商是 7 ,余数是 20 ; 被除数、除数都扩大到原来的 4 倍时,被除数是除数的 7 倍多 20 ; 被除数、除数都扩大到原来的 4 倍时,被除数、除数的和等于 1039 7 20 1012 ; 被除数、除数都扩大到原来的 4 倍时,除数是 1012 20 1 7 124 ; 原来的除数是 124 4 31 ; 原来的被除数是 7 31 5 222 。 【第 11 题】 A 箱里只有伍角的硬币, B 箱里只有贰角的硬币, A 箱里的钱数比 B 箱的钱数多 1.50 元, B 箱里的硬币比 A 箱里的硬币多 24 个。 A 箱和 B 箱里共有 _______ 个硬币。 【分析与解】 (方法一) 假设 A 箱里的硬币增加 24 个,则 A 箱里的硬币与 B 箱里的硬币一样多; 此时 A 箱里的钱数比 B 箱的钱数多 1.5 0.5 24 13.5 元; 因为每个伍角的硬币比每个贰角的硬币多 0.3 元; 所以 B 箱里有 13.5 0.3 45 个硬币; 所以 A 箱里有 45 24 21 个; A 箱和 B 箱里共有 21 45 66 个硬币。 (方法二) 假设 B 箱里的硬币减少 24 个,则 B 箱里的硬币与 A 箱里的硬币一样多; 此时 A 箱里的钱数比 B 箱的钱数多 1.5 0.2 24 6.3 元; 因为每个伍角的硬币比每个贰角的硬币多 0.3 元; 所以 A 箱里有 6.3 0.3 21 个硬币; 所以 A 箱里有 21 24 45 个; A 箱和 B 箱里共有 21 45 66 个硬币。
第十二届小机灵杯智力冲浪展示活动初赛试卷详解五年
第十二届“小机灵杯”智力冲浪展示活动初赛试卷详解(五年级组)时间:80分钟 总分:120分一、选择题(每题1分) 1、世界数学最高奖是( C )。
它于1932年在第九届国际数学家大会上设立,于1936年首次颁奖,是数学家的最高荣誉奖。
A 、诺贝尔数学奖B 、拉马努金奖C 、菲尔兹奖2、他是古希腊最负盛名、最有影响的数学家之一。
他最著名的著作《几何原本》是欧洲数学的基础,被誉为“几何之父”。
在牛津大学自然历史博物馆还保留着他的石像,他是( A )。
A 、欧几里得 B 、丢番图 C 、毕达哥拉斯 此题曾在ICS 五年级ICS 课件中小机灵杯智力故事中出现过3、对圆周率的研究最早发源于( A )。
A 、中国B 、罗马C 、希腊4、“=”号是由英国人( B )发明的。
A 、狄摩根B 、列科尔德C 、奥特雷德 此题曾在ICS 五年级ICS 课件中小机灵杯智力故事中出现过5、古时候的原始人捕猎,捕到一只野兽对应一根手指。
等到10根手指用完,就在绳子上打一个结,这就是运用现在数学中的( C )。
A 、出入相补原理B 、等差数列求和C 、十进制计数法二、填空题(每题8分)6、已知:[(11.2 1.2)451.2]0.19.1-÷⨯+⨯=W ,那么=W 。
【考点】代数——解方程 【解析】(11.2 1.2)451.291-÷⨯+=W(11.2 1.2)439.811.2 1.29.951.2 1.251.2 1.250.96-÷⨯=-÷=÷==÷=W W W W W7、分母是两位数、分子是1,且能化成有限小数的分数有个 。
【考点】数论——分数性质【解析】一个最简分数,若能化为最简分数,那么它的分母只能含有质因子2、5,而分母为两位数,分子是1的分数显然是最简分数所以这些分数的分母分解质因数后应该形如25a b⨯ 1、当0b =时,a 可取4到6,共3种 2、当1b =时,a 可取1到4,共4种 3、当2b =时,a 可取0到1,共2种 当3b ≥时,325599ab⨯≥> 综上,共3429++=个。
小机灵杯数学竞赛
第十三届“小机灵杯”数学竞赛初赛试题(五年级组)时间:60分钟总分:120分一、判断题(正确的打“√”,错误的打“×”。
每题1分)1.“几何学”起源于割地法或测地学。
()【答案】√几何学:简称几何,是研究空间区域关系的数学分支。
“几何学”这个词,是来自阿拉伯文,原来的意义是“测量土地技术”。
名称来源:几何这个词最早来自于阿拉伯语,指土地的测量,即测地术。
后来拉丁语化为“geometria”。
中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。
当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO 的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。
2.远在公元前春秋战国时代的“九九歌”就是我们现在使用的乘法口诀。
()【答案】√九九歌(乘法口诀):九九歌是汉族民间谚语,在汉族传统文化中,九为极数,乃最大、最多、最长久的概念。
九个九即八十一更是“最大不过”之数。
古代汉族人民认为过了冬至日的九九八十一日,春天肯定经已到来。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。
在当时的许多著作中,都有关于九九歌的记载。
最初的九九歌是从“九九八十一”到“二二如四”止,共36句。
因为是从“九九八十一”开始,所以取名九九歌。
大约在公元五至十世纪间,九九歌才扩充到“一一如一”。
大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”到“九九八十一”止。
九九歌就是我们现在使用的乘法口诀。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
3.数论最初是从研究整数开始的,所以叫作整数论。
()【答案】√数论:是纯粹数学的分支之一,主要研究整数的性质。
整数可以是方程式的解(丢番图方程)。
三年级小机灵杯1-12届初赛7-8届决赛真题及答案
小机灵杯1-12届复赛真题试卷小机灵杯1-11届复赛真题答案小机灵杯7届决赛真题小机灵杯8届决赛真题第一届小机灵杯邀请赛1、按规律填数:901 812 723 634 545 ( ) ( )2、在一个减法算式中,把被减数,减数,差这三个数相加,所得的和除以被减数(不等于0),商等于( ).3、右式中,不同的字母表示不同的数字,那么ABC表示的三位数是( ).4、如果2只白兔2天吃白菜2千克,照这样计算,那么8只白兔8天吃白菜()千克.5、右面算式中的被除数是( )6、甲,乙两人今年的年龄和是33岁,4年后,甲比乙大3岁,问甲今年( )岁.7、把边长分别为10厘米,9厘米,8厘米和7厘米的4个正方形按照从大到小的顺序排成一行(如图)排成的图形的周长是( )厘米.8、有一堆围棋子,白子的个数是黑子个数的2倍,拿走96个白子后,黑子的个数是白子个数的2倍,原来黑子有( )个.9、有1张伍元币,4张贰元币,8张壹元币.要拿出8元钱可以有( )种不同的方法.10、亮亮和聪聪玩“石头、剪刀、布”的游戏,两人用同样多的石子做记录,输一次就给对方一颗石子,结果亮亮胜了3次,聪聪比原来多了9颗石子,他们共做了( )次游戏.11、任取自然数2,3,4,5,6,7中的三个数(不能重复)组成一个和,那么不相同的和共有( )个.12、新华小学的电表显示的用电量是61111,要使电表显示的用电量的五位数中有四个数码相同,学校至少再用( )度.13、黑、白两种颜色的珠子,一层黑,一层白,排成正三角形的形状(如图),当白珠子比黑珠子多10颗时,共用了( )颗白珠子.14、公园里有一排彩旗,按3面黄旗,2面红旗,4面绿旗的顺序排列,小明看到这排彩旗的尽头是一面绿旗,已知这排彩旗不超过200面,这排旗子最多有( )面.15、将写有数码的纸片倒过来看,0、1、8三个数字不变,6倒过来是9,9倒过来是6,而其余的数字倒过来则没有意义,某种游戏卡片是从001,002,003,004,……,998,999共有999张,那么,所有的卡片倒过来看,与原卡片数值保持不变的共有( )张.第二届小机灵杯邀请赛1.在右面竖式的各个方框中填上适当的数字,使竖式成立.2.推算是24,是28,那么是( )3.按下面的规律摆五角星,第82个五角星是( )色的.在这种颜色的五角星中,它是第( )个.★★★☆☆★☆★★★☆☆★☆★★4.学校有60人要参加“金孔雀”舞蹈比赛,比赛时要求每排人数即不能少于4人,也不能多于16人,问共有( )中排法.5.根据前面三个算式的启发,括号里面应当填上( )4.5.6.7.8.9.6.一个电影院的第一排有15个座位,以后每一排都比前一排多2个座位,最后一排有73个座位,这个电影院一共有( )个座位.7.下图中不含“★”的三角形比含“★”的三角形多( )个.8.把21分拆成两个自然数之和,且使这两个自然数的乘积最大,这个最大的乘积是( ).9.如图,在长方形ABCD 中,EFGH 是正方形.如果AF=11厘米,HC=14厘米,那么长方形ABCD 的周长是()厘米.10.将不大于12且互不相同八个自然数天使右图八个放个中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.在一道减法算式里,被减数、减数与差的和是360,而差比减数的4倍还多20.被减数是 (),减数是(),差是().12.有两个完全一样的长方形,拼成两种长方形,一种长方形的周长是100厘米,另一种长方形的周长是140厘米,原来长方形的长是()厘米,宽是()厘米.13.某商场里面花布的米数是白布的3倍,如果每天卖20米白布和45米花布.()天以后,白布全部卖完,而花布还剩下180米,原来有花布()米.14.1996年爸爸的年龄是姐姐和妹妹年龄和的4倍,2004年爸爸的年龄是姐姐和妹妹年龄和的2倍,爸爸是()年出生的.15.书架上、下两层摆放着若干本书.如果从上层拿10本放到下层,则下层的本数是上层的2倍,如果从下层拿到10本放到上层,则上层的本数是下层的3倍,上层原来有图书()本,下层原来有图书()本.第三届小机灵杯邀请赛1、用简便方法计算下面的题目:100+99989796959465432-+-+-+-+-+-2、不同的余数有多少个?24? ①余数共有()个;②不同的余数共有()个.3、用40米的铁丝围成一个长和宽不相等的而且是整米的长方形,一共有( )种不同的围法.4、时钟现在是整点,再过112小时,钟面上恰好是1点整.请你判断,现在是()整.5、把一张正方形的纸对折,再对折,这样连续几次,写出对折了4次时长方形的块数是()块.6、在下面一列数中,第12个数是:()123654789121110131415,,,,,7、右图中有()几个长方形8、小华和小强的体重是84千克,小华和小玲的体重是80千克,小强和小玲的体重是82千克小华比小玲重()千克.9、如图,在长方形ABCD 中,EFGH 是正方形.如果16AF =厘米,21HC =厘米,那么长方形ABCD 的周长是()厘米.10、从小到大的连续10个自然数,如果最小的数与最大的数之和是99,那么最小的数是().11、有四种不同面值的硬币如下图所示,假若你恰好有着四种硬币各一枚.一共能组成()种不同的钱数.请你用加法算式一个一个的列举出来.12、如下图,李明从A 走到B 再到C 再到D,走了38米.玛丽从B 到C 再到D 再到A,走了31米.这个长方形池ABCD 的周长是()米.第四届小机灵杯邀请赛1、699999+69999+6999+699+69=().2、一列数15791317,,,,,,从第二项起,后项减去它的前一项的差都相等,从左向右数起, 第()个数是197.3、观察下面三角形中的各数的规律,并按照这个规律求m 的值.m =().4、在一条直线上有四个点,,,A B C D ,点B 不在,,A C 之间,点D 是AC 的中点,从B 到D 的距离是20cm ,从B 到C 的距离是12cm ,从A 到B 的距离是多少?5、将一张正方形纸片对折成长方形后,在此长方形纸上画两条直线,然后沿着两条直线各剪一刀,最多能将这张正方形纸分成()块.6、一个长方形的长是40cm ,宽是25cm ,如果将此长方形剪两刀,得到3个或4个长方形,那么被剪两道后得到的那些长方形的周长之和最多是()cm .7、2个男孩和2个女孩参加歌咏比赛,他们一个接一个地唱,假定两女孩不能连着唱,必须隔开,能排成()种不同的顺序.8、假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换()只兔子.9、哥哥给了弟弟84分之后,弟弟反而比哥哥多36分,哥哥原来比弟弟多()分.10、用一只茶杯将水倒入一只空水瓶里,如果2杯水倒入这个水瓶里,这个水瓶的和水的重量是540克,如果5杯水倒入这个水瓶里,这个水瓶的和水的重量是600克,空水瓶的重量是( ). 11、在某一个月中,有三个星期日的日期刚好是偶数号,那么这一个月的8号是星期().12、小平和小丽到新华书店去买书,她们选中了同一本书,可是她们带的钱不够,小平差15元,小丽差2元,只好先合买一本,还多1元.每本书()元.13、一本字典共有199也,在这本字典的页码上,数字1共出现了()次.14、口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出()个球才能保证摸出的球中每种颜色的球都有.15、10名乒乓球运动员分成三队,每队若干个队员进行单打比赛.规定同队的运动员彼此之间不用比赛,不同队的运动员两两比赛一场,那么比赛的总场数最少是( )场,最多是( )场.第五届小机灵杯邀请赛复赛1、199+298+397+496+595+20=().2、9937+4599+83=创( ).3、小明去同学家玩.走进了弄堂,但记不起门牌号码了.怎么办呢?他忽然想起,这个门牌号码挺有意思,曾经研究过一次.它是一个三位数,个位数字比百位数字大4,是位数字比个位也大4.根据这点记忆,你能帮助小明找到同学家吗?如果想到了,就写在下面.门牌号码是().4、企鹅出版社出版了一套《天才智慧》丛书,出版社为这套丛书设计了一个漂亮的书盒,这套丛书连同书盒售价280元,书店允许顾客只买书而不买书盒.如果书价比书盒贵230元,那么书盒价为()元.5、波特有6只狗,如果他每次遛2只狗,那么狗的搭配情况总共有()种.6、请把图中①~⑨号小正方形的标号填入右图中九个小方格 中,使这九块小正方形刚好拼成中间的图形.7、一批图书,本数在50~60之间,平均分给9名同学,结果余下的书和每人分到的书的本数相同,那么这批图书共有多().8、园林工人在一条马路的一边栽树(包括端点),,每2棵树之间的距离是4米,一共栽树86棵,这条马路长()米.9、下图是用17根火柴棒摆成的,图中共有8个正方形.从图中至少拿掉()根火柴棒,才能将这8个正方形全部破坏(构不成正方形),请在图中表示出来.10、图10,线段10,8,3,a cm b cm c cm ===图形的周长是()cm .11、一位妇人,人到中年,很不愿提起自己的年龄,但她又不愿说谎.一天,有人问及她的年龄,她只好实话实说:“我4年后的年龄的6倍减去我3年前的年龄的6倍,就是我现在的年龄.”这位妇人今年( )岁.12、有5个袋子.A袋和B袋的重量之和是120千克,B袋和C袋的重量之和是135千克,C袋和D袋的重量之和是115千克,D袋和E袋重量之和是80千克,A袋、C袋、E袋子的重量之和是160千克.A袋的重量是( )千克,B袋的重量是( )千克,C袋的重量是( )千克,D袋的重量是( )千克,E袋的重量是( )千克.c g h k u,背面分别写着1,2,3,4,5,但是顺序不同.把13、有5张扑克牌,表面分别写着字母,,,,c k u,第二次出现了如下情况这些扑克牌随意散放,第一次出现了如下情况25k c g,那么字母u背面的数字是( ).2414、数一数下面图形共有( )个正方形.15、把27米长的一根绳子分成三段,使后一段比前一段多三米.那么这三段绳子分别长()米,( )米,( )米.第六届小机灵杯邀请赛复赛A 卷1、()()1+4+7+10++4047101337-+++++=.2、左式中,不同的符号表示不同的数字,那么○+△+◇=.3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,4,10,22,46,(),190,4、在图中,从甲点出发沿逆时针方向绕五边形走,到乙点拐第一个弯,拐第101个弯在点.5、一本故事书的页码共用了192个数字,这本书一共有页.6、5位选手进行象棋比赛,每两个人之间都要进行比赛一盘,规定选手胜一盘得2分,平均一盘各得一分,输一盘不得分.已知比赛后,其中4位选手总共得16分,则第5位选手得了分.7、某年的三月份正好有4个星期二和星期五,那么这年的3月1日是星期.8、有十个连续自然数,前五个数的和为60,后五个数的和是?9、有一桶水,一只小鸭可饮用25天,如果和一只小鸡同饮,那么可以饮用20天,如果给一只小鸡饮用,可以饮用天?10、一个正方形队列,如果减少一横行和一竖行,要减少21人,问原正方形队列有人?11、如图所示的病房区共有五间单人病房,住着,,,A B C D 四位病人,根据不同的病情要求让A 与D 交换病房,C 与B 交换病房,每一次交换只能将一位病人搬入另一间无人的病房,那么需要完成交换,至少要为病人搬次家?54321DCB A D走廊走廊12、解放军某部赶往受灾地区志愿抗洪,原计划每辆汽车乘30人,还多3人任意分乘到各辆车上,但是由于有另外的紧急任务调走了一辆车,这时只好改为每辆汽车乘34人,还多5人任意分乘到各辆车上.原来准备辆车,共派出人去抗洪.1、()()6+8+10+12++368101214+34-++++=.2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,3,7,15,31,(),127,4、把1到500号卡片依次发给甲、乙、丙、丁四个小朋友,1234567891011121314151617那么,119号卡片发给5、一本故事书共有185页,那么编这一本书的页码一共要个数字.6、右图共有个长方形.7、某月内有三个星期六是偶数,这个月的18日是星期.8、用3,4,5,6四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的差是?9、市里举行足球比赛,有15个区各派出1个代表队,每个队都要与其他各队比赛一场,这些比赛分别在15个区的区体育场进行,平均每个体育场要举行场比赛?10、用5张长2分米、宽1分米的长方形不干胶,贴在一块长5分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、经纬小学有10名同学参加区数学比赛,平均分为90分,其中2名同学分别获得第一名和第二名,他们的得分都是整数,另外有五个人都得了92分,有3人都得了84分.获得第二名的同学得分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了21次,一共剪成 长方形, 正方形.1、()()7+9+11+13++379111315+35-++++=.2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是.2,3,5,9,17,33,(),129,4、在图中,从A 点出发沿顺时针方向绕五角星走,到B 点拐第一个弯,拐第95个弯在点.5、小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了页. 6、右图共有个长方形.7、希望小学的操场上有150名学生在跳绳和打球.其中女生54名,如果有63名学生在跳绳,有42名男生在打球,那么有名女生在跳绳.8、用2,3,4,5四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的和是?9、有15只甲A 足球队,进行双循环比赛(每两支队赛两场),共要举行场比赛?10、有很多张长2分米、宽1分米的长方形不干胶,和边长为1分米的正方形不干胶,用这些不干胶贴在一块长3分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、继红小学有10名学生参加小机灵杯数学比赛,平均分为90分,平均分和每个同学的得分都是正整数,前9名的分数各不相同,其中一名同学得满分,第十名同学得分的最低分是分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了36次,一共剪成长方形,正方形.第七届小机灵杯邀请赛复赛1、如果*a b a ba b =?-,例如4*3434313=?-=,那么13*8=2、用0~9十个数字填写下面的竖式,已经用了三个数字,剩下的七个数字,每个只能用一次,要使算式成立,减数是3、一个长方形队列,如果增加一横行和一竖行,就要增加13人,这个长方形的队列原来最少有人4、桌上有8张扑克牌,点数分别是2,3,5,6,7,8,9,10.甲、乙、丙三人各取两张牌,两张牌的点数分别是:甲是9,乙是15,丙是17,那么甲取出的两张点数是5、甲校原来比乙校多48人,为了方便就近入学甲校有若干人转入乙校,这是甲校反而比乙校少12人.甲校有人转入乙校6、将1,4,7,10,13,16,19,22,25这9个数分别填入下图中的9个圆圈中,使三条边上的四个数字和都想等,每条边上四个数字的和最大是7、如果三本书的价钱等于四本笔记本的价钱,而买四本书要比三本笔记本多花5角6分,那么买一本书和一本笔记本共需元8、下面两种那个途中,周长较大的是.(在横线上填写表示图名的字母)9、某三位数是7的倍数,且在400到500之间,它的百位数字与个位数字的和是9,那么这个三位数是10、下图中有10个编好号码的房间,你可以从小号码的房间周到相邻的大号码的房间,但是不能从大号码的房间走到小号码的房间,从1号房间走到10号房间共有种不同的走法11、有若干根长度相等的火柴棒,把这些火柴棒摆成如下面的图形,照这样摆下去,到第10行为止,一共用了根火柴棒12、在一块长5米,宽4米的长方形地上铺80块边长为5分米的小正方形地砖,现在把每相邻的两个小正方形的边界用细玻璃条隔开,并在长方形地的边界上用细金属条围上.如果嵌1米长的细玻璃条需3元,围1米长的细金属条需5元,那么共需元(接缝处长度忽略不计)第八届小机灵杯邀请赛复赛1、666666666666666+-锤=( )2、如果10987654320-+⨯÷+-+-⨯=,那么□=( ).3、观察表中各数的排列规律,A是( ).4、一个正方形,如果边长增加5厘米,这个正方形的周长增加( )厘米.5、两个正整数的和是18,其中一个数是另一个数的5倍.这两个数分别是( )和( ).6、如图,网格中的小正方形的面积都是1平方厘米,那么,阴影部分的面积是( )平方厘米.7、从1-10这10个正整数中,每次取出两个不同的数,使它们的和是4的倍数.共有( )种不同的取法.8、3只橘子的价格与4只苹果和1只梨的价格相同,4只梨的价格与6只橘子的价格相同.( )只苹果的价格与1只梨的价格相同.9、在6和26之间插入三个数,使它们每相邻的两个数的差相等,这些数的和是( ).10、64位同学都面向主席台,排成8行8列的方阵.小胖在方阵中,它的正左方有3位同学,正前方有2位同学.若整个方阵的同学向右转,则小胖的正左方有( )位同学,正前方有( )位同学.11、一个三位数除以37,商和余数相同,这个数最小是( ).12、在方框中添加适当的运算符号(不能添加括号),使算式成立.17□3□4□9□7□6□4=2013、用数字1,2,3,4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数多( ).14、学生问数学老师的年龄.老师说:“由三个相同数字组成的三位数除以这三个数字的和,所得的结果就是我的年龄”,老师的年龄是( )岁.15、在图中的每个方格中各放1枚围棋(黑子或白子),有( )种放法.16、1881515188151518……共210个数字,其中1有( )个,8有( )个,5有( )个;这些数字的和是( ).17、王强、李刚是哥哥,小丽、小红是妹妹,四人的年龄和为90,哥哥都比妹妹大4岁,小红比王强小5岁.小红( )岁.18、给定三种重量的砝码5g,13g,19g,(每种砝码的数量足够的多),将它们组合凑成100g,(每种砝码至少用一个)有( )中不同的方法.19、有两个正整数,把这两个正整数相乘,再加上这两个正整数的和,结果正好等于34,这两个正整数中较大的数是( ).20、写出所有数字的和为13,积为24,这样的四位数的偶数是( ).第九届小机灵杯邀请赛复赛下面每题6分1、计算2102092082072062052047654321+-+-+-++-+-+-+=.2、如右图所示,从上往下,每个方框中的数都等于它下方两个方框中所填的数的和.最上层方框中两个数的和是.3、如右图所示,,,,,,,,,,a b c d e f g h i j 表示10个各不相同的数.表中的数为所在行与列对应字母的差,例如“6b h -=”.图中“九宫格”中就个数的和是.4、小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一般,他俩今年的年龄总和是岁.5、如下图所示,从A 点走到B 点,沿线段走最短路线,共有种不同的走法.6、五位打工者一天的辛苦劳动后共获得330元工资.由于工种不同,获得最高工资者比其他四位分别多的12,14,21和28元,获得最低工资者的工资是元.7、右边图形的周长是厘米.8、在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是 .AB下面每题9分9、下边的乘法算式中,只知道一个数字“8”.请补全.那么这个算式的最小值是.⨯810、在1,2,3,4,5,6六个数中,选三个数,使它们的和能被3整除.那么,不同的选法共有种.11、有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60快.那么,这四袋糖的块数总和至少有块.12、3根火柴可以摆成一个小三角形.用很多根火柴摆成了如右图那样的一个大三角形.如果大三角形外沿的每条边都增加10根火柴,那么摆成这样形状的大三角形共需要根火柴.下面每题12分13、一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题目的数量等于小胖和小亚答对题数量的总和,小丁丁大队了17道题,这次测验共有道题.+++=,小于2000的四位数中,数字和等于26的四位数共有14、1997的数字和是199726个.15、小刚在一个长方形中任取三条边相加,所得的和是78厘米,小亚在同一个长方形中任取三条边相加,所得的和是66厘米.这个长方形的周长是厘米.第十一届“小机灵杯”数学竞赛初赛试卷(三年级组)时间:60分钟总分:120分第一项:每题8分1.已知1+2+3+….+49+50=1275,那么1+2+3+….+49+50+49+48+….+3+2+1=_______。
面积问题2015
1、下图中,在角MON的两边上分别有A、C、E及B、D、F六个点,并且∆OAB、∆ABC、∆BCD、CDE、∆DEF的面积都等于1,则∆DCF的面积等于(清华附中入学试题)2、下图中,四边形ABCD的面积是3平方厘米,将BA、CB、DC、AD分别延长一倍到E,F,G,H,联结E,F,G,H,求四边形EFGH的面积(2011世奥赛全国总决赛五年级复赛)3、下图中,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?(2012第十一届小机灵杯五年级初赛)4、下图中,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分面积是166平方厘米,则三角形ADG的面积是______平方厘米。
(2006第四届希望杯五年级复赛)5、下图中,CD=5,DE=7,EF=15,FG=6,线段AB将图形分成两部分,左边部分面积是38,右边部分面积是65,则三角形ADG的面积是(北京4中入学试题)6、下图中,直角三角形ABC两直角边的长为3、4,M为斜边中点,以两直角边向外作两个正方形。
那么三角形MEF的面积是________(2012走美杯五年级)7、下图中,在三角形ABC中,延长AB至D,使BD=AB,延长BC至E,使BC=2CE,F是AC的中点,若三角形ABC的面积是2,则三角形DEF的面积是多少?8、下图中,等腰梯形ABCD由三个面积都是36平方厘米的等边三角形组成,E是BC边上的中点,图中阴影部分的面积是平方厘米。
(第十届世奥赛五年级全国决赛)9、如图,已知四边形ABCD中,E、F分别是AD、BC的中点,连接AF、DF、BE、CE,∆AFD的面积为2,∆BCE的面积为5,则四边形ABCD的面积是多少?(第八届世奥赛五年级全国总决赛复赛)10、如图,在一个梯形内有两个面积分别为10和12的三角形,已知梯形上底是下底的2,求图中3阴影部分的面积。
2013第11届小机灵杯三年级决赛解析
第十一届“小机灵杯”小学生数学竞赛(决赛)试题(三年级)第一项:每题 4分1、马小虎在做一道减法题时,把被减数个位上的 3错写成 5,十位上的 6错写成了 0.把减数百位上的 7写成 2.这样所得的差是 1994.那么正确的差应该是________【分析】数字问题。
被减数个位的 3写成 5,那么被减数增大 2,差增大 2,所以应该减去;被减数十位的 6写成 0,那么被减数减小 60,差减小 60,所以应该加上;减数百位的 7写成 2,那么减数减小 500,差增大 500,所以应该减去;所以,正确的差应该是1994-500+60-2=1552。
2、下图是某年5月份的日历表,用一个能框住四个数的2?的方框,框住四个数(不算汉字)的不同方法共有________种。
【分析】找规律。
我们发现:方框左上角的数可以为:1,2,3;5~10;12~17;19~23共 20个。
3、买 2支钢笔和 3支圆珠笔共花 49元,用同样这笔钱,可以买同样的钢笔 3支和圆珠笔 1支,那么 1支钢笔的价格是()元。
【分析】等量代换。
由题意得:2钢笔+3圆珠笔=49元(1);3钢笔+1圆珠笔=49元(2);所以,9钢笔+3圆珠笔=147元(3);(3)-(1)得 7钢笔=98元,所以,1钢笔=14元,1圆珠笔=7元。
4、桌面上 6枚硬币,向上的一面都是“数字,另一面都是“国徽”,如果每次翻转 5枚硬币,至少翻转()次可使向上的一面都是“国徽”。
【分析】奇偶性。
经过尝试之后,至少要翻六次。
5、将1,2,3,4,5,6,7,8,9这九个数字田入下列算式中的O中,使算式成立。
O +O =O譕=OO=OO鱋【分析】巧填算符。
5+7=3?=12=96?.第二项:每题 8分6、某年的三月份正好有 4个星期三和 4个星期六,那么这年 3月 1日是星期()。
【分析】周期问题。
3月有 31天,即四周多 3天。
又因为恰好有 4个周三和 4个周六,所以,周三到周六都是恰好有 4天;所以有 5天的为周日、周一、周二,所以 3月 1日是周日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一届小机灵杯五年级决赛试题
2、商场元旦促销,将彩色电视机降价20%出售,那么元旦促销活动过后商场要涨价 %
才能恢复到原价。
[答案]25
[解答]假设电视机原价为a ,降价后的售价为
()120%0.8a a -=。
假设要涨价%x 才能恢复到
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
3、已知13411a b -=,那么()20132065b a --=______。
[答案]2068
[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯
-=⨯=,所以
()()20132065201365202068b a a b --=+-=
4、在一次象棋比赛中,每两个选手恰好比赛一局,赢者每局得2分,输者每局得0分,平局则两个选手各得1分。
今有4名计分者统计了这次比赛中全部的得分总数,由于有的计分者粗心,其数据各不相同,分别为1979、1980、1984、1985。
经核实,其中有1人统计无误。
这次比赛共有________名选手参加。
[答案
]45
[解答]容易知道不管比赛是输赢的情况,还是平局的情况,一局两个人的分数总和总是为2分。
所以最后总比分应该是一个偶数。
从四个答案中,明显1984或者1980可能是总分数。
也就是说比赛的总场次为19842992÷
=场或者19802990÷=场。
设比赛一共有n 名选手参加,每
A
B C 2
9
7
+
[答案]60
()1001029710010992973A B C C B A C A C A +++=++⇒-=⇒-=。
所以满足条件的
()
,A C 可能是()()()()()()1,4,2,5,3,6,4,7,5,8,6,9。
由于本题对B 没有要求(B 可以取
6、如图所示,P 为平行四边形ABDC 外一点。
已知PCD ∆的面积等于5平方厘米,PAB ∆的面积等于11平方厘米。
则平行四边形ABCD 的面积是
[答案]12
于AB CD =,所以
而平行四边形ABDC 的面积为ABDC S AB EF =⋅,所以()212ABDC
PAB PCD S S S ∆∆=-=
7、等差数列1219,,
,a a a 共有19项。
已知171418120a a a a +++=,那么
3
19a += [答案]570
[解答]设等差数列的公差为d ,则7114118161317a a d a a d a a d
=+⎧⎪
=+⎨⎪=+⎩,所以
17141811436120930a a a a a d a d +++=+=⇒+=。
而
()()
()
()3
191111218a a a d a d a d +=++++++
8
、一个容器内已经住满了水,现有大中小三个铅球,第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,沉入大球。
已知第一次溢出的水是第二次的3倍,第三次溢出的水是第一次的3倍,求三个球的体积比为 [答案]3:4:13
[解答]设小球的体积为x ,中球的体积为y ,大球的体积为z 。
(1) 由于第一次把小球沉入水中,所以第一次溢出的水的体积为x
(2) 由于第二次把小球取出,把中球沉入水中,所以第二次溢出的水的体积为y x -
(3) 由于第三次取出中球,沉入大球,所以第三次溢出的水的体积为
z y -
根据已知条件,9、一个长方形,是由5行3列的小正方形组成的,小正方形的边长为1cm ,这个长方形里有24个顶点,选择其中3个顶点,用一线段围成一个面积为2.5平方厘米的三角形。
这样子的三角形,长方形里一共有 个 [答案]124
[解答]李老师的解答
两个方程了:
11、由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有 块 [答案]64
[解答]设长方体的长、宽、高分别为,,l m n (不妨设l
m n ≥≥)
,容易知道只有一面染色的小正方体只有每个面上可能有一些。
要使得其最多,那么2n =(否则内部有太多的小正方体都是所有面没有染色的)。
由于12060lmn lm =⇒=。
此时一面染色的小正方体的个数为
()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。
要使得()2644l m ⨯-+最大,那么就是要使l m +最小。
考虑到60lm =,容易知道当10,6
l m ==时,l m +最小。
所以只有一面染色的小正方体最多有()264410664⨯-⨯+=
12、一个正整数数列,第一项是8,第二项是1,从第三项起每一项等于它前面两项之和,请问该数列第2013项被105除,余数是 [答案]16
[解答]由于105357=⨯⨯,所以先计算分别除以3,5,7的余数。
(1) 除以3的余数:2,1,0,1,1,2,0,2,2,1,0,1,
一个周期
,由于20138251+5=⨯,所以其余数为
1
(2) 除以5的余数:3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,
一个周期
,由于
201320100+13=⨯,所以其余数为1
(3) 除以7的余数:1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,
一个周期
,由于
201316125+13=⨯,所以其余数为2
综上所述,这个数除以3余1;除以5余1;除以7余2;容易知道这样的数最小为16,所以最
后的余数为16
[答案]81 [解答]
由于12345679A B ⨯⨯最大为9912345679999999999⨯⨯=(一个九位数),不妨设)
()(45678989
a -(如果不理解这步,可以用123456789000000000123456789-来体会一下)
所以最后数字和为9981⨯=
14、一个31位的整数,如果把这个整数的每个相邻的两个数码组成的整数作为两位数来考虑的话,任何一个这样的两位数都可以被17或23整除。
另外,这个31位的整数的数码中只有一个7。
则这个31位数的所有的数码之和为 [答案]151
[解答]首先我们证明这个7肯定是最后一位。
如果不是最后一位,那么后面肯定还有一位,不妨
17,517,8517,68517,468517,3468517,23468517,923468517,6923468517,
46923468517,346923468517,
一个周期
由此我们知道31位数,除去后面4位,剩下有27位。
由于27552=⨯+,所以最后所有的和为()851792346546151++++++++⨯++=
15、直角梯形ABCD ,上底长1,下底长7,连接AB 边上的E 点和DC 边上的F 点,形成与AD 和BC 平行的线段EF 把直角梯形面积一分为二,则线段EF 的长度为 [答案]5
[解答]由相似模型我们知道,2
149
GAD GBC S AD GAD GBC S BC ∆
∆⎛⎫
∆∆⇒== ⎪
⎝⎭∽。
设4948GAD GBC ABCD S k S k S k ∆∆=⇒=⇒=。
由于EF 把直角梯形面积一分为二,所以
2
15525GAD GEF S AD GAD GEF EF AD EF S ∆∆⎛⎫
∆∆⇒==⇒== ⎪
⎝⎭
∽。