2020-2021学年上学期高一期中数学试题及答案
山东省菏泽市2020-2021学年高一上学期期中考试数学试题期中答案
高一数学试题(B )参考答案一、选择题1—5 BCADC6—8 DBA 二、多项选择题9.BC10.AC 11.ABD 12.BD 三、填空题13.(,3)−∞−14.[1,2)(2,)+∞∪ 15.1± 16.9(,4−∞ 四、解答题17.解:(1)由(1)f x +=得()f x =,……………………………2分(1)1f ===,得1a =;……………………………4分所以()f x =;……………………………5分(2)该函数的定义域为[0,)+∞,……………………………6分 令12x x <,所以210x x −>,所以21()()f x f x −===,……………………………8分 因为210x x −>0+>,所以21()()0f x f x −>,……………………………9分所以()f x 在其定义域为单调增函数. ……………………………10分 18.解:(1)2a =−,所以[3,1]A =−−,……………………………1分[3,2]A B =−−∩,……………………………2分(,1][5,)A B =−∞−+∞∪∪;……………………………4分(2)若A ∩B =A ,得A B ⊆;……………………………5分当A =Ø时,2135a a +>+,得4a <−;……………………7分当A ≠ Ø时,2135,352,a a a +≤+ +≤− 或2135,215,a a a +≤+ +≥……………………10分 得743a −≤≤或2a ≥,.……………………………11分 综上所述,73a ≤或2a ≥,…………12分 19.解:(1)由题意知,生产x 件产品的仓储费用为88x +x =288x x +,………………2分 所以28800(0)8x x y x +=+>;………………………………………5分 (2)由题意知,平均费用为288008y x x x x x+=+,……………6分 因为0x >,28800800188x x x x x x ++=++121≥+=,……………10分 当且仅当8008x x=,即80x =时取得;………………………………………11分 所以当每批生产80件时,平均费用最小为21元. …………………12分20.解:(1)因为()0f x ≥,即关于x 的不等式2(1)10x m x m −+++≥恒成立,所以2(1)4(1)0m m ∆=+−+≤;………………2分 解得13m −≤≤;………………4分 (2)原不等式转化为()10f x −<, 即2(1)x m x m −++()(1)0x m x =−−<,………………6分 当1m >时,1x m <<;………………8分当1m <时,1m x <<;………………10分公众号:潍坊高中数学当1m =时,不等式无解;………………11分综上可得,当1m >时,不等式解集为{1}x x m <<;当1m <时,不等式解集为{1}x m x <<;当1m =时,不等式无解. ………………12分21.解:(1)由f (x )=x ,得x ax +b =x ,即ax 2+(b -1)x =0. ……………………………1分因为方程f (x )=x 有唯一解,所以∆=(b -1)2=0,即b =1,…………………………3分因为f (2)=1,所以22a +b =1,……………………………4分所以a =12,…………………………5分 所以f (x )=112xx +=2x x +2;……………………………6分 (2)因为2x <−,所以()y xf x =2222122x x x x==++,……………………7分 而22121112()48x x x +=+−,……………………………9分 当114x =−,即4x =−时, 21112()48x +−取得最小值18−,……………………………11分 此时()()g x xf x =取得最大值16−.……………………………12分22.解:(1)令0x y ==,得(00)(0)(0)f f f +=+,得(0)0f =,……………………………………1分 令1,1x y =−=,得(0)(1)(1)f f f =−+,得(1)2f −=−;………………………………………2分令y x =−,得(0)()()f f x f x =+−,即()()f x f x =−−,所以()f x 为奇函数;………………………………………4分(2)令12x x <,所以210x x −>,所以212111()()()()f x f x f x x x f x −=−+−2111()()()f x x f x f x =−+−21()f x x =−,………………………………………4分因为210x x −>,所以21()0f x x −>,所以21()0f x x −>,……………………………………5分即()f x 在R 上为增函数;……………………………………7分(3)因为2(3)()2f ax x f x −+<−,即2(2)2f ax x −<−,又(1)2f −=−,所以2(2)(1)f ax x f −<−,……………………………………8分 又因为()f x 在R 上为增函数,所以221ax x −<−在[1,2]x ∈上恒成立;得2210ax x −+<在[1,2]x ∈上恒成立, 即221a x x <−在[1,2]x ∈上恒成立,………………………………………9分 因为22211(1)1x x x−=−−+, 当2x =时,221x x −取最小值34, 所以34a <;………………………………………11分 即34a <时满足题意. ………………………………………12分 公众号:潍坊高中数学。
湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案
华中师大一附中2020~2021学年度上学期期中检测高一年级数学试题试卷总分150分 考试时间120分钟一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.已知A ={3-,0,1 },B ={4-,3-,1},则A ∪B 的真子集的个数为( )A .3B .7C .15D .312.钱大姐常说“便宜没好货”,她这句话中,“不便宜”是“好货”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为 ( )A .(1,1)-B .(0, 1)C .(3,1)-D .((3),(1))f f - 4.若正实数a ,b 满足1a b +=,则12a b+的最小值为( )A.B .6C .D .3+5.函数(f x( )A .(,2]-∞B .[2,)+∞C .[0,2]D .[2,4]6.若关于x 的不等式2|1||2|1()x x a a a -+-≤++∈R 的解集为空集,则实数a 的取值范围是( ) A .10a -<<B .01a <<C .12a <<D .1a <-7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递减,(2)0f -=,则不等式()0xf x > 的解集为( )A .(,2)(0,2)-∞-B .(,2)(2,)-∞-+∞C .(2,0)(0,2)-D .(2,0)(2,)-+∞8.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-+∞二、多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.已知a ,b ,c 为互不相等的正数,且222a c bc +=,则下列关系中可能成立的是 ( )A .a b c >>B .c b a >>C .b a c >>D .a c b >> 10.下列各结论中正确的是( ) A .“0ab >”是“0ab>”的充要条件. B.函数y =2.C .命题“1x ∀>,20x x ->”的否定是“01x ∃≤,200x x -≤” . D .若函数21y x ax =-+有负值,则实数a 的取值范围是2a >或2a <-.11.定义域为R 的函数()f x 满足()()()f x y f x f y +=+,且当0x >时,()0f x >.以下结论正确的是( )A .()f x 为奇函数B .()f x 为偶函数C .()f x 为增函数D .()f x 为减函数12.设定义域为R 的函数1, 1|1|()1, 1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解x 1,x 2,x 3,且x 1 < x 2 < x 3.下列说法正确的是 ( )A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-三、填空题(本大题共4小题,每小题5分,共20分) 13.已知集合{2,1}A =-,{|2}B x ax ==,若AB B =,则实数a 的取值集合为____________.14.关于x 的一元二次方程2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,则实数k 的取值范围是___________.15.两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.则第______种购物方式比较经济.16.已知函数2()=x ax a f x x++在(]0,1上单调递减,则实数a 的取值范围为____________.四、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知集合26{||1|2}{|1}4x A x x B x x -=-≤=<-,,定义{|}A B x x A x B -=∈∉且. (1)求A B -;(2)求B A -.18.(本题满分12分)已知非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<.命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.19.(本题满分12分)已知函数2()1mx nf x x +=+是定义在[1,1]-上的奇函数,且(1)1f = (1)求m ,n 的值;判断函数()f x 的单调性并用定义加以证明; (2)求使2(1)(1)0f a f a -+-<成立的实数a 的取值范围.20.(本题满分12分)已知函数2()(1)()f x x a x a =-++∈R .(1)若对于任意[1,2]x ∈,恒有2()2f x x ≥成立,求实数a 的取值范围; (2)若2a ≥,求函数()f x 在区间[0, 2]上的最大值()g a .21.(本题满分12分)华师一附中为了迎接建校70周年校庆,决定在学校艺术中心利用一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的荣誉室.由于荣誉室的后背靠墙,无需建造费用,甲工程队给出的报价为:荣誉室前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设荣誉室的左右两面墙的长度均为x 米(36)x ≤≤.(1)当左右两面墙的长度为多少时,甲工程队的整体报价最低?并求最低报价; (2)现有乙工程队也要参与此荣誉室的建造竞标,其给出的整体报价为1800(1)a x x+元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功(乙工程队的整体报价比甲工程队的整体报价更低),试求实数a 的取值范围.22.(本题满分12分)若函数()y f x =自变量的取值区间为[a , b ]时,函数值的取值区间恰为22[,]b a,就称区间[a , b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合2{(,)|()}{(,)|}x y y h x x y y x m ==+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.高一年级数学试题参考答案一、单选题1.C 2.B 3.B 4.D 5.D 6.A 7.A 8.C 二、多选题9.BC 10.AD 11. AC 12.ABD 三、填空题13.{-1,0,2} 14.3,04⎛⎤- ⎥⎝⎦15.二 16.12a ≤-或1a ≥四、解答题17.解:{||1|2}{|13}A x x x x =-≤=-≤≤, (2)分26{|1}{|24}4x B x x x x -=<=<<- (4)分(1){|12}A B x x -=-≤≤ (7)分(2){|34}B A x x -=<< (10)分18.解:()(){}|2310A x x x a =---<⎡⎤⎣⎦,()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦.∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+. (2)分∵p 是q 的充分条件,∴A B ⊆. (3)分① 当1a =时,312a -=,A =∅,不符合题意; (5)分② 当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,则212312a a a a ⎧>⎪≤⎨⎪-≤+⎩ ∴12a <≤. (8)分③ 当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,则213122a a a a ⎧<⎪≤-⎨⎪≤+⎩ ∴112a ≤<. (11)分综上所述,实数a 的取值范围是1[,1)(1,2]2. (12)分19.(1)解法一:因为函数()f x 是定义在[-1,1]上的奇函数,则()()0011f f ⎧=⎪⎨=⎪⎩,得012n m n =⎧⎪⎨+=⎪⎩,解得20m n =⎧⎨=⎩, (2)分经检验2m =,0n =时,()221xf x x =+是定义在[1,1]-上的奇函数. (3)分法二:()f x 是定义在[1,1]-上的奇函数,则()()f x f x -=-,即2211mx n mx nx x -+--=++,则0n =,所以()21mxf x x =+,又因为()11f =,得2m =,所以2m =,0n =. ………………3分设12,[1,1]x x ∀∈-且12x x <,则()()22121221211212222222121212222(1)2(1)2()(1)11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++1211x x -≤<≤ 222112120,10,(1)(1)0x x x x x x ∴->-<++>()()120f x f x ∴-< ()()12f x f x ∴< ()f x ∴在[1,1]-上是增函数 (6)分(2)由(1)知()221xf x x =+,()f x 在[1,1]-上是增函数, 又因为()f x 是定义在[]1,1-上的奇函数,由()()2110f a f a -+-<,得()()211f a f a -<-, (7)分2211111111a a a a -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, (10)分即2020221a a a ≤≤⎧⎪≤≤⎨⎪-<<⎩,解得01a ≤<. 故实数a 的取值范围是[0,1). (12)分20.(1)解法一:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分构造函数()23(1)g x x a x =-+,其中[]1,2x ∈,则()max0g x ≤,即()()1020g g ⎧≤⎪⎨≤⎪⎩,…… 4分 即3(1)0122(1)0a a -+≤⎧⎨-+≤⎩,解得5a ≥,因此,实数a 的取值范围是[)5,+∞.………………6分解法二:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分max 1(3)6a x ∴+≥= (5)分因此,实数a 的取值范围是[)5,+∞. (6)分(2)()()22211(1)24a a f x x a x x ++⎛⎫=-++=--+⎪⎝⎭. 2a ≥ 102a +∴> (7)分①当122a +<,即23a ≤<时,函数()y f x =在10,2a +⎡⎤⎢⎥⎣⎦上单调递增, 在1,22a +⎡⎤⎢⎥⎣⎦上单调递减,此时()()21124a a g a f ++⎛⎫== ⎪⎝⎭; (9)分②当122a +≥,即3a ≥时,()y f x =在[0, 2]上单调递增,此时()()222g a f a ==-.………………11分 综上所述,2(1),23()422,3a a g a a a ⎧+≤<⎪=⎨⎪-≥⎩. (12)分21.(1)设甲工程队的总造价为y 元, 则72163006400144001800()14400(36)y x x x x x =⨯+⨯+=++≤≤, ………………2分161800()14400180021440028800x x ++≥⨯=, ………………4分 当且仅当16x x =,即x = 4时等号成立. ………………5分故当左右两侧墙的长度为4米时,甲工程队的报价最低,最低报价为28800元. ……6分(2)由题意可得161800(1)1800()14400a x x x x+++>对任意的[3,6]x ∈恒成立. 故2(4)(1)x a x x x ++>,从而2(4)1x a x +>+恒成立, ………………8分令1x t +=,22(4)(3)961x t t x t t++==+++,[4,7]t ∈. 又96y t t =++在[4,7]t ∈为增函数,故min 494y =. ………………11分所以a 的取值范围为49(0,)4. (12)分22.(1)因为()g x 为R 上的奇函数,∴(0)0g =又当(0,)x ∈+∞时,()3g x x =-+所以,当(,0)x ∈-∞时,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩ (3)分 (2)设0a b <<,∵()g x 在(0,)+∞上递单调递减,2()32()3g b b b g a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根. ∵0a b << ∴12a b =⎧⎨=⎩ ∴()g x 在(0,)+∞内的“和谐区间”为[1,2]. ………………6分 (3)设[a , b ]为()g x 的一个“和谐区间”,则22a b b a <⎧⎪⎨<⎪⎩,∴a ,b 同号. 当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.[1,2]3,()[2,1]3,h x x x x x -+∈⎧⎨----∈∴=⎩ (8)分依题意,抛物线2y x m =+与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,m 应当使方程23x m x +=-+在[1,2]内恰有一个实数根,并且使方程23x m x +=--,在[2,1]--内恰有一个实数.由方程23x m x +=-+,即230x x m ++-=在[1,2]内恰有一根,令2()3F x x x m =++-,则(1)10(2)30F m F m =-≤⎧⎨=+≥⎩,解得31m -≤≤;由方程23x m x +=--,即230x x m +++=在[2,1]--内恰有一根,令2()3G x x x m =+++,则(1)30(2)50G m G m -=+≤⎧⎨-=+≥⎩,解得53m -≤≤-. 综上可知,实数m 的取值集合为{3}-. ………………12分(用图象法解答也相应给分)。
潍坊市2020-2021学年高一上学期期中数学试题(解析版)
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;
2020-2021学年重庆市高一上学期期中数学试题(解析版)
2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。
2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案
2020-2021学年江苏省徐州一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)已知幂函数f(x)=x a的图象过点(3,27),则f(2)=()A.4B.8C.9D.163.(5分)函数y=的定义域为()A.[﹣1,0)B.(0,+∞)C.[﹣1,0)∪(0,+∞)D.(﹣∞,0)∪(0,+∞)4.(5分)己知函数f(x)=,则f(f(4))的值为()A.﹣B.0C.1D.45.(5分)某中学高一年级的学生积极参加体育锻炼,其中有1056名学生喜欢足球或游泳,660名学生喜欢足球,902名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数是()A.682B.616C.506D.4626.(5分)函数y=的值域是()A.(﹣∞,+∞)B.(﹣∞,)∪(﹣,+∞)C.(﹣∞,)∪(﹣,+∞)D.(﹣∞,﹣)∪(﹣,+∞)7.(5分)若关于x的不等式x2﹣2x+c2<0的解集为(a,b),则+的最小值为()A.9B.﹣9C.D.﹣8.(5分)已知f(x)是定义在R上的奇函数,对任意两个正数x1,x2,都有<0,且f(2)=0,则满足(x﹣1)f(x)>0的x的取值范围是()A.(﹣∞,﹣2)∪(0,1)∪(2,+∞)B.(﹣2,0)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,2)二.选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得了分。
9.(5分)若a<b<0,则()A.|a|>|b|B.a2>b2C.<D.>10.(5分)下列函数与y=x2﹣2x+3的值域相间的是()A.y=4x(x≥)B.y=+2C.y=D.y=2x﹣11.(5分)已知2a=3.b=log32,则()A.a+b>2B.ab=1C.3b+3﹣b=D.=log91212.(5分)某学习小组在研究函数f(x)=的性质时,得出了如下的结论,其中正确的是()A.函数f(x)的图象关于y轴对称B.函数f(x)的图象关于点(2,0)中心对称C.函数f(x)在(﹣2,0)上是增函数D.函数f(x)在[0,2)上有最大值﹣三、填空题:本题共4小题,每小题5分,共20分。
江苏省扬州中学2020-2021学年高一上学期期中考试数学试题(PDF版含答案)
二、多选题(本大题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符 合题目要求,全部选对得 5 分,有选错的得 0 分,部分选对得 3 分.)
BD AD CD BCD
三、填空题(本大题共 4 小题,每小题 5 分,多空题,第一空 2 分,第二空 3 分,共 20 分.)
13、 x R,3x2 2x 1 0
(2)函数 f x =0 在0, 2上有解,即方程 x a x 2b 在0, 2上有解;
设
h
x
{
x
2
x
ax 2 ax
x
(x
a
a)
,
当a
0 时,则 h x
x2
ax,
x
0,
2
,且
h
x
在
0,
2
上单调增,∴
h
x
min
h0
0,
h
x
max
h2
4 2a ,则当 0
2b
4
2a
时,原方程有解,则
a
A.
x
1
y
1 4
B.
1 x
1 y
1
C. xy 2
D.
1 xy
1
7.已知函数
f
(x)
x2 ax 5,(x1)
a x
,( x
1)
是
R
上的增函数,则 a
的取值范围是(
)
A. 3a 0
B. 3a 2
C. a 2
D. a 0
8.设平行于 x 轴的直线 l 分别与函数 y 2x 和 y 2x1 的图象相交于点 A,B,若在函数
2
由(1)知集合 A
2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷 及答案解析
2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷一、选择题(本大题共9小题,共45.0分)1. 已知集合A ={x|x 2−3x <0},B ={x|y =√1−x},则A ∩B =( )A. [0,3)B. (1,3)C. (0,1]D. (0,1)2. 下列函数中在定义域上既是奇函数又是增函数的为( )A. y =x +1B. y =−x 2C. y =−1xD. y =x 33. 已知函数f(x)={log 2x,x >03x ,x ≤0,则f(f(14))的值是( ) A. −19 B. −9 C. 19 D. 94. 命题“∀x ∈[1,2],2x 2−a ≥0”为真命题的一个充分不必要条件是( )A. a ≤1B. a ≤2C. a ≤3D. a ≤45. 设a =0.991.01,b =1.010.99,c =log 1.010.99,则( )A. c <b <aB. c <a <bC. a <b <cD. a <c <b6. 若函数y =f(x)和y =g(x)的图象如图1、图2所示,则不等式f(x)g(x)≥0的解集是( )A. (−1,1]∪(2,3]B. (−1,1)∪(2,3)C. (2,3]∪(4,+∞)D. (−1,1]∪(2,3]∪(4,+∞) 7. 已知函数f(x)=ln 1+x 1−x +x ,且f(a)+f(a +1)>0,则a 的取值范围为( )A. (−1,−12)B. (−12,0)C. (−12,1)D. (−12,+∞) 8. 已知函数f(x)={x e x +1(x ≥0)x 2+2x +1(x <0),若函数y =f(f(x)−a)−1有三个零点,则实数a 的取值范围是( )A. (1,1+1e )∪(2,3]B. (1,1+1e )∪(2,3]∪{3+1e }C. (1,1+1e )∪[2,3)∪{3+1e }D. (1,1+2e )∪(2,3] 9. 已知函数f(x)=a x−1+1(a >0,a ≠1)的图象恒过点A ,下列函数图象不经过点A( )A. y =√1−x +2B. y =|x −2|+1C. y =x −13+1D. y =2x−1二、不定项选择题(本大题共3小题,共15.0分)10. 已知函数f(1−x)的定义域为(0,1),则( ) A. 函数f(x)的定义域为(0,1)B. 函数f(x)的定义域为(−1,0)C. 函数f(1−x 2)的定义域为(−1,0)∪(0,1)D. 函数f(1−x 2)的定义域为(0,1)11. 若a ,b ,c 为实数,下列说法正确的是( )A. 若a >b ,则ac 2>bc 2B. 若a <b <0,则a 2>ab >b 2C. “关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件是“a >0,b 2−4ac ≤0”D. “a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件12. 已知函数f(x)={2−x −1(x ≤0)x 2(x >0).若函数y =f(x)−x −a 恰有两个零点,则实数a 的取值范围为( )A. (−∞,−14)B. (−∞,−14]C. (−14,+∞)D. [−14,+∞)E.三、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)=x 2+(m +2)x +3是偶函数,则m = ______ .14. 函数f(x)=ln x+1x−1的值域为______15. 已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是______.16. 若log a 23<1则实数a 的取值范围是________.四、解答题(本大题共6小题,共72.0分)17. (1)求值:2lg5+23lg8+lg5⋅lg20+lg 22;(2)已知x+x−1=4,求x32+x−32.18.已知全集U=R,集合A={x|x<1},B={x|a≤x≤a+3}.(1)若a=−1,求A∩B,A∪B;(2)若B⊆∁U A,求实数a的取值范围.−ax2,其中a∈R.19.已知函数f(x)=xx+2(1)若a=1时,求函数f(x)的零点;(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点.20.为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(单位:万元)与处理量x(单位:t)之间的函数关系可近似表示为y=x2−40x+1600,x∈[30,50].已知每处理1t的二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利.如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.已知函数f(x)=x−3x+2(1)求f(2)的值;(2)求函数f(x)的定义域和值域.22.设函数f(x)=x−1,x∈R且x≠−1,就m的取值情况,讨论关于x的方程f(x)−x=m在[0,1]上x+1的解的个数.-------- 答案与解析 --------1.答案:C解析:可求出集合A ,B ,然后进行交集的运算即可.考查描述法、区间的定义,一元二次不等式的解法,以及交集的运算.解:A ={x|0<x <3},B ={x|x ≤1};∴A ∩B =(0,1].故选:C .2.答案:D解析:本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性. 根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.解:A.y =x +1的图象不关于原点对称,不是奇函数,∴该选项错误;B .y =−x 2是偶函数;∴该选项错误;C .y =−1x为反比例函数,在其定义域上为奇函数,但不是增函数,不符合题意; D .y =x 3为幂函数,在其定义域上为奇函数,且是增函数,符合题意;故选D . 3.答案:C解析:解:∵函数f(x)={log 2x,x >03x ,x ≤0, ∴f(14)=log 214=−2,f(f(14))=f(−2)=3−2=19.故选:C .由已知得f(14)=log 214=−2,从而f(f(14))=f(−2),由此能求出结果.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.答案:A解析:解:由2x2−a≥0,得a≤2x2,函数y=2x2在[1,2]上的最小值为2.若对∀x∈[1,2],2x2−a≥0成立,则a≤2.∴由a≤1,得a≤2成立,反之不成立,则a≤1是“∀x∈[1,2],2x2−a≥0”为真命题的一个充分不必要条件;a≤2是“∀x∈[1,2],2x2−a≥0”为真命题的一个充分必要条件;a≤3与a≤4是“∀x∈[1,2],2x2−a≥0”为真命题的不充分条件.故选:A.求出对∀x∈[1,2],2x2−a≥0恒成立的a的取值范围,然后结合充分必要条件的判定逐一分析四个选项得答案.本题考查充分必要条件的判定方法,考查恒成立问题的求解方法,是基础题.5.答案:B解析:本题考查了指数函数与对数函数的单调性,考查比较大小,考查了推理能力与计算能力,属于基础题.利用指数函数与对数函数的单调性即可得出.解:∵a=0.991.01∈(0,1),b=1.010.99>1,c=log1.010.99<0,则c<a<b,故选:B.6.答案:D解析:本题主要考查函数图象和不等式的解集的问题,已知函数的图象及单调性为平台,考查了其他不等式的解法,是一道综合题.先根据函数的图象,观察可得f(x),g(x)与0的关系,再根据不等式的解集需要满足f(x)g(x)≥0,且g(x)≠0,得到答案.解:由y=f(x)图象知x∈(−∞,1)∪(3,+∞)时f(x)>0,x∈(1,3)时f(x)<0;由y =g(x)图象知x ∈(−∞,−1)∪(2,4)时,g(x)<0,x ∈(−1,2)∪(4,+∞)时,g(x)>0. 故x ∈(−1,1]时f(x)≥0,且g(x)>0,x ∈(4,+∞)时f(x)>0,g(x)>0,x ∈(2,3]时f(x)≤0且g(x)<0,因此不等式f(x)g(x)≥0的解集为(−1,1]∪(2,3]∪(4,+∞).故选:D . 7.答案:B解析:解:根据题意,函数f(x)=ln 1+x 1−x +x ,有1+x 1−x >0,解可得−1<x <1,即函数f(x)的定义域为(−1,1),有f(−x)=ln 1−x 1+x +(−x)=−(1+x 1−x +x)=−f(x),则函数f(x)为奇函数,分析易得,f(x)=ln 1+x 1−x +x 在(−1,1)上为增函数,f(a)+f(a +1)>0⇒f(a)>−f(a +1)⇒f(a)>f(−a −1),则有{a >−a −1−1<a <1−1<a +1<1,解可得−12<a <0,即a 的取值范围为(−12,0);故选:B .根据题意,求出函数的定义域,进而分析可得f(x)为奇函数且在(−1,1)上为增函数,据此可得原不等式等价于{a >−a −1−1<a <1−1<a +1<1,解可得a 的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,关键是得到关于a 的不等式,属于基础题. 8.答案:B解析:解:当x <0时,由f(x)−1=0得x 2+2x +1=1,得x =−2或x =0(舍);当x ≥0时,由f(x)−1=0得x e x +1=1,得x =0,当x ≥0时,f(x)=x e x +1,f′(x )=1−xe x ,当x >1时,f′(x )<0,f(x)单调递减;当0≤x <1时,f′(x )>0,f(x)单调递增;此时f(x)最大值为f(1)=1e +1,由y =f(f(x)−a)−1=0得f(x)−a =0或f(x)−a =−2,即f(x)=a ,f(x)=a −2,作出函数f(x)的图象如图:当1<a −2<1+1e 时,即a ∈(3,3+1e )时,y =f(f(x)−a)−1有4个零点,当a −2=1+1e 时,即a =3+1e 时,y =f(f(x)−a)−1有三个零点,当a −2>1+1e 时,即a >3+1e 时,y =f(f(x)−a)−1有2个零点当a =1+1e 时,则y =f(f(x)−a)−1有2个零点,当0<a −2≤1时,即2<a ≤3时,y =f(f(x)−a)−1有三个零点,当1<a <1+1e 时,则y =f(f(x)−a)−1有3个零点,其余情况显然不符合题意,综上a 的取值范围是:(1,1+1e )∪(2,3]∪{3+1e }.故选:B .先求出f(x)的零点,作出函数f(x)的图象,利用数形结合进行求解即可.本题主要考查函数与方程的应用,求出函数的零点,利用数形结合以及分类讨论是解决本题的关键.属于难题. 9.答案:D解析:本题考查了指数函数的性质,恒过定点的求法,属于基础题.根据指数函数的性质求出A的坐标,将A的坐标带入考查各选项即可.解:函数f(x)=a x−1+1(a>0,a≠1)的图象恒过点A,即x−1=0,可得x=1,那么f(1)=2,∴函数f(x)恒过点A(1,2),把x=1,y=2带入各选项,经考查各选项,只有D没有经过A点.故选D.10.答案:AC解析:解析:由函数f(1−x)的定义域为(0,1),即0<x<1,得到0<1−x<1,则函数f(x)的定义域为(0,1),由0<1−x2<1,解得−1<x<0或0<x<1,函数f(1−x2)的定义域为(−1,0)∪(0,1).故选A、C.11.答案:BD解析:【试题解析】本题考查了命题真假的判断问题,也考查了简易逻辑推理的应用问题,是基础题.根据不等式的基本性质,可以判断选项A、B是否正确;通过举反例可以判断选项C错误;求出命题成立的充要条件,判断选项D正确.解:对于A:若a>b,则ac2>bc2,在c=0时不成立,所以A错误;对于B:根据不等式的性质,若a<b<0,则−a>−b>0,所以−a2<−ab,−ab<−b2,所以a2>ab,ab>b2,即a2>ab>b2,选项B正确;对于C:a=b=0,c=0时,不等式ax2+bx+c≥0也恒成立,所以选项C错误;对于D:方程x2+x+a=0有两个异号的实根的充要条件是a<0,所以a<1是“关于x的方程x2+x+a=0有两个异号的实根”的必要不充分条件,D正确.故选:BD.12.答案:E解析:解:作出函数f(x)={2−x −1(x ≤0)x 2(x >0)的图象, 函数y =f(x)−x −a 恰有两个零点即为y =f(x)的图象和直线y =x +a 有两个交点,当直线y =x +a 与y =x 2(x >0)相切,可得x 2−x −a =0有两个相等实根,可得△=1+4a =0,即a =−14,由图象可得当a >−14时,y =f(x)的图象和直线y =x +a 有两个交点,故选:C .由题意,函数g(x)=f(x)−x −a 恰有两个零点可化为函数f(x)与函数y =x +a 有两个不同的交点,从而作图求解.本题考查了函数的图象的应用及数形结合的思想应用,以及直线和曲线相切的条件,属于中档题. 13.答案:−2解析:解:由于函数f(x)=x 2+(m +2)x +3是偶函数,则f(−x)=f(x),即(−x)2+(m +2)(−x)+3=x 2+(m +2)x +3,则有2(m +2)x =0,则有m =−2.故答案为:−2.由于函数f(x)=x 2+(m +2)x +3是偶函数,则f(−x)=f(x),即(−x)2+(m +2)(−x)+3=x 2+(m +2)x +3,化简即可得到m .本题考查函数的奇偶性及运用,考查定义法解题,属于基础题.14.答案:(−∞,0)∪(0,+∞)解析:解:由x+1x−1>0,解得x <−1或x >1,令t =x+1x−1=1+2x−1,则0<t <1或t >1. 故函数y =lnt 的值域为(−∞,0)∪(0,+∞),故答案为(−∞,0)∪(0,+∞).先求出函数的定义域,然后确定出t =x+1x−1的值域,最后借助对数函数的单调性求该函数的值域. 本题考查复合型函数的值域求法,属于中档题目. 15.答案:(−4,2)解析:本题考查不等式恒成立以及利用基本不等式求最值,属于基础题.利用基本不等式得到x +2y ⩾8,若x +2y >m 2+2m 恒成立,则8>m 2+2m ,即可求出答案. 解:x >0,y >0,且2x +1y =1,则x +2y =(x +2y )(2x +1y )=4+4y x +x y ⩾4+2√4y x ·x y =8, 当且仅当4y x =x y ,即x =4,y =2时,等号成立,若x +2y >m 2+2m 恒成立,则8>m 2+2m ,解得−4<m <2.故答案为(−4,2) .16.答案:(0,23)∪(1,+∞)解析:本题主要考查对数函数图像与性质的应用,属于中档题.解:由题意得,∴log a 23<log a a ,log a 23<1则实数a 的取值范围是(0,23)∪(1,+∞), 故答案为(0,23)∪(1,+∞). 17.答案:解:(1)2lg5+23lg8+lg5lg20+lg 22=lg25+lg823+(lg10−lg2)(lg10+lg2)+lg 22=lg25+lg4+1−lg 22+lg 22=lg100+1=2+1=3;(2)由已知(x12+x−12)2=x+2+x−1=6,又x12+x−12>0,所以x12+x−12=√6,所以x32+x−32=(x12+x−12)(x−1+x−1)=3√6.解析:本题考查指数和对数运算.属于基础题.(1)利用对数运算法则求解即可,注意lg2+lg5=1的使用;(2)由已知求出x12+x−12,然后利用立方和公式求解即可.18.答案:解:(1)若a=−1,B=[−1,2],A∩B=[−1,1),A∪B=(−∞,2];(2)∁U A={x|x≥1},∵a<a+3,∴B≠⌀∵B⊆∁U A,∴a≥1.∴实数a的取值范围为[1,+∞).解析:(1)由a=−1,得B=[−1,2],从而A∩B=[−1,1),A∪B=(−∞,2];(2)先求∁U A={x|x≥1},再由B⊆∁U A,借助数轴可得结果.本题考查了集合间的基本运算及集合的包含关系应用,集合关系中的参数问题,属基础题.−x2,19.答案:解:(1)当a=1时,函数f(x)=xx+2−x2=0,可得可得x=0,或x2+2x−1=0,令xx+2解得x=0,或x=−1−√2,或x=−1+√2.综上可得,当a=1时,函数f(x)的零点为x=0,或x=−1−√2,或x=−1+√2(2)证明:∵当a>0时,x>0,由函数f(x)=0得:ax2+2ax−1=0,记g(x)=ax2+2ax−1,则g(x)的图象是开口朝上的抛物线,由g(0)=−1<0得:函数g(x)在(0,+∞)内有且仅有一个零点.∴函数f(x)在(0,+∞)上有唯一零点解析:(1)当a=1时,函数f(x)=xx+2−x2,令xx+2−x2=0,可得函数f(x)的零点.(2)当a>0时,若x>0,由函数f(x)=0得:ax2+2ax−1=0,进而可证得f(x)在(0,+∞)上有唯一零点.本题主要考查函数的零点与方程的根的关系,转化思想,二次函数的图象和性质,属于中档题.20.答案:解:(1)当x∈[30,50]时,设该工厂获利S万元,则S=20x−(x2−40x+1600)=−(x−30)2−700,所以当x∈[30,50]时,S max=−700<0,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题易知,二氧化碳的平均处理成本P(x)=yx =x+1600x−40,x∈[30,50],当x∈[30,50]时,P(x)=x+1600x −40≥2√x⋅1600x−40=40,当且仅当x=1600x,即x=40时等号成立,故P(x)的最小值为P(40)=40,所以当处理量为40t时,每吨的平均处理成本最少.解析:本题考查函数模型问题,属于中档题列出函数表达式,求最值21.答案:解:(1)f(2)=2−32+2=−14;(2)要使f(x)有意义,则x≠−2,∴f(x)的定义域为{x|x≠−2};f(x)=x−3x+2=1−5x+2,5x+2≠0,∴f(x)≠1,∴f(x)的值域为{f(x)|f(x)≠1}.解析:本题考查已知函数求值的方法,函数定义域、值域的概念及求法,分离常数法的运用,属于一般题.(1)直接代入即可求得f(2);(2)容易看出f(x)需满足x≠−2,这样便可得出f(x)的定义域;分离常数得到f(x)=1−5x+2,显然得出f(x)≠1,即得出f(x)的值域.22.答案:解:由题意,知m=f(x)−x=x−1x+1−x=1−2x+1−x=2−2x+1−(x+1),设t=x+1,x∈[0,1],所以m=2−2t−t,t∈[1,2].设ℎ(t)=−(2t+t),因为ℎ(t)在[1,√2)上单调递增,在(√2,2]上单调递减,所以函数y=f(x)−x在[0,√2−1)上单调递增,在(√2−1,1]上单调递减.f(0)−0=−1,f(√2−1)−(√2−1)=2−2√2,f(1)−1=−1. ①当m<−1或m>2−2√2时,关于x的方程f(x)−x=m在[0,1]上无解; ②当m=2−2√2时,关于x的方程f(x)−x=m在[0,1]上有一个解; ③当−1≤m<2−2√2时,关于x的方程f(x)−x=m在[0,1]上有两个解.解析:本题考查了函数与方程以及函数的单调性,是难题.由题意,知m=f(x)−x=x−1x+1−x=1−2x+1−x=2−2x+1−(x+1),设t=x+1,x∈[0,1],所以m=2−2t −t,t∈[1,2].设ℎ(t)=−(2t+t),根据ℎ(t)的单调性和m的取值范围确定方程f(x)−x=m在[0,1]上的解的个数.。
2020-2021学年安徽省合肥市一六八中学高一上学期期中考试数学试题Word版含解析
2020-2021学年安徽省合肥市一六八中学上学期期中考试高一数学试题一、单选题1.已知集合{|0}M x x =,{}|,xN y y e x R ==∈,那么正确的一项是( )A NB .0N ∈C .M ND .N M ⊆【答案】D【解析】先求值域得集合N ,再根据元素与集合关系判断A,B ,根据集合与集合关系判断C,D. 【详解】{}|,(0,)x N y y e x R ==∈=+∞N N N∉,0,M ,故选:D 【点睛】本题考查函数值域、元素与集合关系以及集合与集合关系,考查基本分析判断能力,属基础题. 2.下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .ln ||y x = B .212y x =-C .||4x y -=D .x xy e e -=-【答案】A【解析】直接根据函数解析式分别判断奇偶性与单调性. 【详解】ln ||y x =是偶函数,且在(0,)+∞上单调递增;212y x =-是偶函数,且在(0,)+∞上单调递减; ||4x y -=是偶函数,且在(0,)+∞上单调递减; x x y e e -=-是奇函数,且在(0,)+∞上单调递增;故选:A 【点睛】本题考查基本奇偶性与单调性的分析判断能力,属基础题.3.函数2()46f x x x =--的定义域为[0,]m ,值域为[10,6]--,则m 的取值范围是A .[0,4]B .[4,6]C .[2,6]D .[2,4]【答案】D【解析】因为函数()246f x x x =--的图象开口朝上,由 ()()()046,210f f f ==-=-,结合二次函数的图象和性质可得m 的取值范围. 【详解】函数()246f x x x =--的图象是开口朝上,且以直线2x =为对称轴的抛物线, 故()()()046,210f f f ==-=-,函数()246f x x x =--的定义域为[]0,m ,值域为[]10,6--,所以24m ≤≤,即m 的取值范围是[]2,4,故选D. 【点睛】本题主要考查二次函数的图象和性质,以及函数的定义域与值域,意在考查灵活应用所学知识解答问题的能力.4.已知函数234,0()2,01,0x x f x x x x ⎧->⎪=+=⎨⎪-<⎩,则((1))=f f ( )A .1B .2C .1-D .3【答案】C【解析】根据自变量范围代入对应解析式计算得结果. 【详解】((1))(34)(1)1f f f f =-=-=-故选:C 【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.5.一元二次方程24260x mx m -++=有两个不等的非正根,则实数m 的范围为( ) A .30m -<<B .31m -<-C .31m -≤<-D .312m -≤【答案】C【解析】根据实根分布列不等式组,解得结果. 【详解】因为一元二次方程24260x mx m -++=有两个不等的非正根,所以231164(26)022********m m m m m m m m m ⎧><-⎪⎧∆=-+>⎪⎪<∴<∴-≤<-⎨⎨⎪⎪+≥≥-⎩⎪⎩或 故选:C 【点睛】本题考查实根分布,考查数形结合思想方法以及求解能力,属中档题. 6.已知5log 26a =,b =0.90.6c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】根据指数函数、幂函数和对数函数的单调性,结合临界值1和2可确定,,a b c 的大致范围,从而得到结果. 【详解】10.95550.60.61992log 25log 26<==<=<==<,即a b c >>本题正确选项:A 【点睛】本题考查根据指数函数、幂函数和对数函数单调性比较大小的问题,解决此类题的常用方法是利用临界值来确定所比较数字的大致范围. 7.函数()21ln f x x x=-+的图像大致为( )A .B .C .D .【答案】B 【解析】取特值1e判断正负,即可得出答案。
2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)
上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.3.已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.4.函数132xy x-=+的图象中心是______.5.函数y =的定义域是______.6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.7.已知6x <,求2446x x x ++-的最大值______.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.11.已知函数)()lg f x ax =的定义域为R ,则实数a 的取值范围是____________.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.【答案】{}1【解析】【分析】通过全集,计算出{}0,1,4B =,根据交集的定义即可.【详解】因为{}0,1,2,3,4U =,{}2,3B =,所以{}0,1,4B =所以{}1A B ⋂=.故答案为:{}1.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.【答案】()2020,2023-【解析】【分析】根据01(0,1)a a a =>≠,结合条件,即可求得答案.【详解】 01(0,1)a a a =>≠,令20200x +=,得2020x =-,020222023y a =+=,∴函数20202022(0,1)x y a a a +=+>≠的图象恒过定点()2020,2023-,故答案为:()2020,2023-.3.已知幂函数()()22322n n f x n n x -=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.【答案】1【解析】【分析】根据函数是幂函数得2221+-=n n ,求得3n =-或1,再检验是否符合题意即可.【详解】因为()()22322n n f x n n x -=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=.故答案为:1.4.函数132xy x-=+的图象中心是______.【答案】()2,3--【解析】【分析】将函数化成ky b x a=++,根据的对称中心为(,)a b -,即可得出答案.【详解】1373(2)73222x x y x x x --+===-+++,因为函数72y x =+的图象的对称中心是()2,0-,所以函数732y x =-+的图象的对称中心是()2,3--.故答案为:()2,3--.【点睛】对称性的3个常用结论:(1)若函数()y f x a =+是偶函数,即()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称;(2)若对于R 上的任意x 都有(2)()f a x f x -=或(2)()f a x f x +=-,则()y f x =的图象关于直线x a =对称;(3)若函数()y f x b =+是奇函数,即((0))f x b f x b +++-=,则函数()y f x =关于点(,0)b 中心对称.5.函数y =的定义域是______.【答案】(7,)+∞【解析】【分析】根据被开方数非负且分母不为零可得132log 05x ⎛⎫>⎪-⎝⎭,解对数不等式即可求得定义域.【详解】1322log 00155x x ⎛⎫>⇒<<⎪--⎝⎭,()()271075055x x x x x -<⇒>⇒-->--且5x ≠,解得5x <或7x >,2055x x <⇒>-,∴函数y =(7,)+∞.故答案为:(7,)+∞6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】【分析】根据幂函数的定义域和单调性得到关于a 的不等式,解之可得实数a 的取值范围.【详解】由题意知,3322(21)(1)a a --->+,>由于幂函数32y x =的定义域为[0,)+∞,且在[0,)+∞上单调递增,则2101121110a a a a ->⎧⎪⎪>⎨-+⎪+>⎪⎩,即:()()12202111a a a a a ⎧>⎪⎪-⎪>⎨-+⎪⎪>-⎪⎩,所以1221a a a ⎧>⎪⎪<⎨⎪>-⎪⎩,所以实数a 的取值范围是:122a <<.故填:1,22⎛⎫ ⎪⎝⎭.【点睛】本题主要考查幂函数的定义域和单调性,属于基础题.7.已知6x <,求2446x x x ++-的最大值______.【答案】0【解析】【分析】原式化为64(6)166x x -++-,结合基本不等式即可求解最大值.【详解】6x < ,所以60x ->,2244(6)16(6)6464(6)16666x x x x x x x x ++-+-+==-++---因为64(6)6x x -+-64[(6)]166x x =--+-=--,当且仅当2x =-时,取等号;∴2244(6)16(6)6464(6)160666x x x x x x x x ++-+-+==-++---.即2446x x x ++-的最大值为0.故答案为:0.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.【答案】3737±【解析】【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得137log 37log b acc b a==±【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根,所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以1137log log log 37log b c c acc b b a a===±-.故答案为:3737±【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.【答案】存在一个大于2的偶数不可以表示为两个素数的和.【解析】【分析】从命题的否定入手可解.【详解】反证法先否定命题,故答案为存在一个大于2的偶数不可以表示为两个素数的和.【点睛】本题主要考查反证法的步骤,利用反证法证明命题时,先是否定命题,结合已知条件及定理得出矛盾,从而肯定命题.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.【答案】(,4-∞-【解析】【分析】利用换元法,设20x t t =>,,转化为方程2210t at a +++=,有正根,分离参数,求最值.【详解】设20x t t =>,,转化为方程2210t at a +++=,有正根,即221(2)4(2)55[(2)]4222t t t a t t t t ++-++=-=-=-++++++,022t t >∴+> ,,则5[(2)4442t t -+++≤-+=-+当且仅当5(2)2t t +=+,即2t =时取等,(,4a ∴∈-∞-故答案为:(,4-∞-11.已知函数)()lgf x ax =的定义域为R ,则实数a 的取值范围是____________.【答案】[1,1]-【解析】【分析】根据对数函数的真数大于0,得出+ax >0恒成立,利用构造函数法结合图象求出不等式恒成立时a 的取值范围.【详解】解:函数f (x )=lg (+ax )的定义域为R ,+ax >0恒成立,-ax 恒成立,设y =,x ∈R ,y 2﹣x 2=1,y ≥1;它表示焦点在y 轴上的双曲线的一支,且渐近线方程为y =±x ;令y =﹣ax ,x ∈R ;它表示过原点的直线;由题意知,直线y =﹣ax 的图象应在y =的下方,画出图形如图所示;∴0≤﹣a ≤1或﹣1≤﹣a <0,解得﹣1≤a ≤1;∴实数a 的取值范围是[﹣1,1].故答案为[﹣1,1].【点睛】本题考查了不等式恒成立问题,考查数形结合思想与转化思想,是中档题.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.【答案】24S <≤【解析】【详解】1122224+4=2+2(2)(2)2(22)(22)2222(22)x y x y x x y x y x y x y ++⇒+=+⇒+-⋅⋅=+22222xyS S -=⋅⋅,又22(22)022222x y xyS +<⋅⋅≤=.22022S S S <-≤,解得24S <≤二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】C 【解析】【分析】根据充分、必要条件定义判定即可.【详解】解:当33a b >时,根据指数函数3x y =是定义域内的增函数可得a b >,因为幂函数3y x =是定义域内的增函数,所以33a b >,所以充分性成立,当33a b >时,因为幂函数3y x =是定义域内的增函数,所以a b >,又指数函数3x y =是定义域内的增函数,所以33a b >,所以必要性成立,综上:“33a b >”是“33a b >”的充要条件.故选:C.【点睛】充分条件、必要条件的三种判定方法:(1)定义法:根据,p q q p ⇒⇒进行判断,适用于定义、定理判断性问题;(2)集合法:根据,p q 对应的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题;(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.【答案】B 【解析】【分析】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,且01b <<,可得函数()x g x a b =+的图象递减,且1(0)2g <<,从而可得结果.【详解】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,再由图象的平移知,()log ()a f x x b =+的图象由()log a f x x =向左平移可知01b <<,故函数()x g x a b =+的图象递减,且1(0)2g <<,故选B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素 D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】由题意依次举出具体的集合,M N ,从而得到,,A B D 均可成立.【详解】对A ,若{|0}M x Q x =∈<,{|0}N x Q x =∈;则M 没有最大元素,N 有一个最小元素0,故A 正确;对B ,若{|M x Q x =∈<,{|N x Q x =∈;则M 没有最大元素,N 也没有最小元素,故B 正确;对C ,M 有一个最大元素,N 有一个最小元素不可能,故C 错误;对D ,若{|0}M x Q x =∈,{|0}N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;故选:C .【点睛】本题考查对集合新定义的理解,考查创新能力和创新应用意识,对推理能力的要求较高.16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个 B.1个C.2个D.3个【答案】C 【解析】【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断.【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =,故③正确;故选:C.【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【解析】【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?【答案】(1)466;(2)3倍.【解析】【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg 502100x-=,即()3log 2lg 521lg 2 1.40100x==-=,所以1.403 4.66100x==,所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减可得:13211log 22x x =,所以132log 1x x =,即123x x =,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据任意正实数a ,b ,x ,y ,由柯西不等式得222()(()a b x y a b x y +++,从而证明222()a b a b x yx y+++成立;(2)由121n x x x ++=…+,得121(1)(1)(1)n n x x x +=++++⋯++,然后利用柯西不等式,即可证明12212211111x x xx x x n++⋯⋯+++++成立.【详解】(1)对任意正实数a ,b ,x ,y ,由柯西不等式得()()()()222222222a b a b x y a b x y ⎡⎤⎛⎫⎡⎤⎢⎥++=++⎪⎢⎥⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当x y a b=时取等号,∴222()a b a b x y x y+++.(2)121n x x x ++⋯+= ,121(1)(1)(1)n n x x x ∴+=++++⋯++,2221212()(1)111n nx x x n x x x ++⋯+++++222121212()[(1)(1)(1)]111n n nx x x x x x x x x =++⋯+++++⋯+++++212()1n x x x ++⋯+=,当且仅当121n x x x n==⋯==时取等号,∴222121211111n nx x x x x x n ++⋯+++++.【点睛】方法点睛:利用柯西不等式求最值或证明不等式时,关键是对原目标代数式进行配凑,以保证出现常数结果.同时,要注意等号成立的条件,配凑过程采取如下方法:一是考虑题设条件;二是对原目标代数式进行配凑后利用柯西不等式解答.20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.【答案】(1)()2x f x =;(2)[]3,1-;(3)2log 3-.【解析】【分析】(1)由2211(2)4f aa --===可得答案.(2)由条件可得()2()4()1m f x f x -+=在区间[]0,2上有解,设2x t =,由[]0,2x ∈,则14t ≤≤,即()24123t t t m -+==--在区间[]1,4t ∈上有解,可得答案.(3)由条件121x k =-,221x k =+,即12121x x k k --=+,以及431221xk k +=+或3+1221x k k =+,所以341312x x k k -+=+,从而可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++,求出最大值可得答案.【详解】(1)由2211(2)4f a a --===,所以2a =所以()2xf x =(2)()()22log ()4()0m f x f x -+=在区间[]0,2上有解即()2()4()1m f x f x -+=在区间[]0,2上有解即()22421x x m -+⨯=在区间[]0,2上有解即设2x t =,由[]0,2x ∈,则14t ≤≤所以()24123t t t m -+==--在区间[]1,4t ∈上有解当[]1,4t ∈时,[]2134,1t t ∈--+所以31m -≤≤(3)由()10f x k --=,即21x k =+或21x k=-由方程()10f x k --=的解分别为1x 、()212x x x <,则121x k =-,221x k=+所以12121x x k k--=+由()1021k f x k --=+,即31212121x k k k k +=+=++或+1212121xk k k k =-=++方程()1021k f x k --=+的解分别为3x 、()434x x x <,则431221x k k +=+或3+1221xk k =+所以341312x xk k -+=+所以()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++函数431133y k =++-在113k ⎡⎫∈⎪⎢⎣⎭,上单调递减,当13k =时,431133y k =++-有最大值13.所以()()1234123x x x x -+-≤,则1322421log log 33x x x x -=-+≤-所以1234x x x x -+-的最大值为2log 3-【点睛】关键点睛:本题考查指数的运算和方程有解求参数,方程根的关系,解答本题的关键是由题意可得()22421x x m -+⨯=在区间[]0,2上有解,设2x t =,分类参数即()24123t t t m -+==--在区间[]1,4t ∈上有解,以及根据方程的根的情况可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅===-++++,属于中档题.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.【答案】(1)集合{}1,2,3,4不是,集合{}1,3,5,7,9,11,13是;(2)证明见解析;(3)①证明见解析;②7.【解析】【分析】(1)根据“可分集合”定义直接判断即可得到结论;(2)不妨设123450a a a a a <<<<<,分去掉的元素是1a 时得5234a a a a =++①,或2534a a a a +=+②,去掉的元素是2a 得5134a a a a =++③,或1534a a a a +=+④,进而求解得矛盾,从而证明结论.(3)①设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,进而分类讨论M 为奇数和M 为偶数两类情况,分析可得集合A 中的元素个数为奇数;②结合(1)(2)问依次验证3,5,7n n n ===时集合A 是否为“可分集合”从而证明.【详解】解:(1)对于集合{}1,2,3,4,去掉元素1,剩余的元素组成的集合为{}12,3,4A =,显然不能分为两个集合B 和C ,满足B C =∅ ,1B C A ⋃=,其中B 和C 的所有元素之和相等,故{}1,2,3,4不是“可分集合”对于集合{}1,3,5,7,9,11,13,去掉元素1,{}13,5,7,9,11,13A =,显然可以分为{}{}11,13,3,5,7,9B C ==,满足题意;去掉元素3,{}21,5,7,9,11,13A =,显然可以分为{}{}1,9,13,5,7,11B C ==,满足题意;去掉元素5,{}31,3,7,9,11,13A =,显然可以分为{}{}1,3,7,11,9,13B C ==,满足题意;去掉元素7,{}41,3,5,9,11,13A =,显然可以分为{}{}1,9,11,3,5,13B C ==,满足题意;去掉元素9,{}51,3,5,7,11,13A =,显然可以分为{}{}7,13,1,3,5,11B C ==,满足题意;去掉元素11,{}61,3,5,7,9,13A =,显然可以分为{}{}3,7,9,1,5,13B C ==,满足题意;去掉元素13,{}71,3,5,7,9,11A =,显然可以分为{}{}1,3,5,9,7,11B C ==,满足题意;故{}1,3,5,7,9,11,13是可分集合.(2)不妨设123450a a a a a <<<<<,若去掉的是1a ,则集合{}12345,,,A a a a a =可以分成{}{}5234,,,B a C a a a ==或{}{}2534,,,B a a C a a ==,即:5234a a a a =++①或2534a a a a +=+②若去掉的是2a ,则集合{}21345,,,A a a a a =可以分成{}{}5134,,,B a C a a a ==或{}{}1534,,,B a a C a a ==,即:5134a a a a =++③或1534a a a a +=+④,由①③得21a a =,矛盾;由①④21a a =-,矛盾;由②③得21a a =-,矛盾;由②④21a a =,矛盾;所以五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)①证明:设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,若M 为奇数,则()1,2,3,,i a i n = 也均为奇数,由于12n M a a a =+++ ,所以n 为奇数;若M 为偶数,则()1,2,3,,i a i n = 也均为偶数,此时设()21,2,3,,i i a b i n == ,则{}12,,,n b b b 也是“可分集合”,重复上述操作有限次,便可得各项均为奇数的“可分集合”,此时各项之和也为奇数,集合A 中的元素个数为奇数.综上所述,集合A 中的元素个数为奇数.②当3n =时,显然任意集合{}123,,A a a a =不是“可分集合”;当5n =时,第二问已经证明集合{}12345,,,,A a a a a a =不是“可分集合”;当7n =时,第一问已验证集合{}1,3,5,7,9,11,13A =是“可分集合”.所以集合A 中元素个数的最小值为7.【点睛】本题考查集合新定义的问题,对此类题型首先要多读几遍题,将新定义理解清楚,然后根据定义依次验证,证明即可.注意对问题思考的全面性,考查学生的思维迁移能力,分析能力.本题第二问解题的关键在于假设123450a a a a a <<<<<,以去掉元素1a 和2a 两种情况下的可分集合推出矛盾,进而证明,是难题.。
2020-2021学年上海市奉贤区高一(上)期中数学试卷及答案
2020-2021学年上海市奉贤区高一(上)期中数学试卷一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分)1.(4分)集合{1,2}的真子集的个数为.2.(4分)若幂函数y=x a的图象经过点(3,),则a=.3.(4分)已知方程x2+x﹣4=0的两个根为x1,x2,则(2)=.4.(4分)已知“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则实数a的取值范围是.5.(4分)设a>0,a≠1,若log a4=2,则=.6.(4分)设集合A={x|x=2a,a>0},B={x|x2﹣2x+3>0},则A∩B=.7.(5分)若lg2=a,lg3=b,则log916=.(用a,b的代数式表示)8.(5分)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品件.9.(5分)设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底),则x2、y2的算术平均值的最小值是.10.(5分)已知集合A={(x,y)|kx+y=k+1},B={(x,y)|x+ky=2k},其中k为实数,当A∩B≠∅时,则k满足的条件是.11.(5分)已知关于x的不等式组的解集为[b,a],则实数a 的值为.12.(5分)已知实数x、y、z满足x>y>z,且x+y+z=1,x2+y2+z2=1,则x+y的取值范围为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.13.(5分)若a>0,a≠1,M>0,N>0,下列运算正确的是()A.log a=log a MB.(log a M)N=N log a MC.(log a M)÷(log a N)=log a(M﹣N)D.log a M+log a N=log a(M+N)14.(5分)若非空集合M、N满足M⊆N,则下列集合中表示空集的是()A.M∩B.∩N C.∪D.M∩N15.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.109316.(5分)对于区间(1,10000)内的任意两个正整数m、n,定义某种运算“※”如下:当m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,则在此定义下,集合M={(a,b)|a※b=4}中的元素个数是()A.3个B.4个C.5个D.6个三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.(14分)已知关于x的不等式≥0的解集为P,不等式(x﹣1)2<1的解集为Q.(1)若a=3,求集合P;(2)求集合P,并求当P∪Q=P时a的取值范围.18.(14分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y【单位:dB(分贝)】定义为y=10lg,其中,I 为声场中某点的声强度,其单位为W/m2(瓦/平方米),I0=10﹣12W/m2为基准值.(1)如果一辆小轿车内的声音是50dB,求相应的声强度;(2)如果飞机起飞时的声音是120dB,两人正常交谈的声音是60dB,那么前者的声强度是后者的声强度的多少倍?19.(14分)设x≥0,A=,B=.(1)求证:A<,并指出等号成立的条件;(2)比较A与B的大小关系,并说明理由.20.(16分)我们知道当a>0时,a m+n=a m•a n对一切m、n∈R恒成立,学生小贤在进一步研究指数幂的性质时,发现有这么一个等式21+1=21+21,带着好奇,他进一步对2m+n=2m+2n进行深入研究.(1)当m=2时,求n的值;(2)当m≤0时,求证:n是不存在的;(3)求证:只有一对正整数对(m,n)使得等式成立.21.(18分)已知代数式|x+2|和|ax﹣b|.(1)若a=0,b=,求不等式|x+2|<|ax﹣b|的解集(用区间表示);(2)若a=1,b=1,用反证法证明:|x+2|、|ax﹣b|中至少有一个数不小于;(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,试确定实数a、b满足的条件.2020-2021学年上海市奉贤区高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分)1.(4分)集合{1,2}的真子集的个数为3.【分析】若集合A中有n个元素,则集合A有2n﹣1个真子集.【解答】解:集合{1,2}的真子集一共有:22﹣1=3个.故答案为:3.【点评】本题考查集合的真子集个数的求法,是基础题,解题时要认真审题,注意真子集定义的合理运用.2.(4分)若幂函数y=x a的图象经过点(3,),则a=.【分析】设出函数的解析式,根据幂函数y=f(x)的图象过点(3,),构造方程求出指数的值,即可得到函数的解析式.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(3,),∴=3a,解得a=,故答案为:.【点评】本题考查的知识点是函数解析式的求法,属基础题.3.(4分)已知方程x2+x﹣4=0的两个根为x1,x2,则(2)=.【分析】利用根与系数的关系得到x1x2=﹣4,再对所求式子化简代入即可求出结果.【解答】解:∵方程x2+x﹣4=0的两个根为x1,x2,∴由根与系数的关系得:x1x2=﹣4,∴(2)==2﹣4=,故答案为:.【点评】本题主要考查了根与系数的关系,考查了指数幂的运算,是基础题.4.(4分)已知“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则实数a的取值范围是(﹣∞,﹣5]∪[5,+∞).【分析】根据“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,得到不等式组,解出即可.【解答】解:若“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则由“a≤x≤a+4”⇒“x<﹣1或x>5”,∴a≥5或a+4≤﹣1,解得:a≤﹣5或a≥5,故答案为:(﹣∞,﹣5]∪[5,+∞).【点评】本题考查了充分必要条件,考查不等式问题,属于基础题.5.(4分)设a>0,a≠1,若log a4=2,则=.【分析】先把对数式化为指数式,求出a的值,再利用指数幂的运算性质化简所求式子,代入a的值即可求出结果.【解答】解:∵log a4=2,∴a2=4,又∵a>0,a≠1,∴a=2,∴====.故答案为:.【点评】本题考查了对数式与指数式的互化,考查了指数幂的运算性质,属于基础题.6.(4分)设集合A={x|x=2a,a>0},B={x|x2﹣2x+3>0},则A∩B={x|x>1}.【分析】可求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|x>1},B=R,∴A∩B={x|x>1}.故答案为:{x|x>1}.【点评】本题考查了描述法的定义,指数函数的单调性,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.7.(5分)若lg2=a,lg3=b,则log916=.(用a,b的代数式表示)【分析】利用对数的换底公式、运算法则直接求解.【解答】解:∵lg2=a,lg3=b,∴log916===.故答案为:.【点评】本题考查对数式化简求值,对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.8.(5分)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品80件.【分析】确定生产x件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值.【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是800+x•=800+x2这样平均每件的生产准备费用与仓储费用之和为f(x)==(x为正整数)由基本不等式,得f(x)≥2=20当且仅当,即x=80时,f(x)取得最小值、∴x=80时,每件产品的生产准备费用与仓储费用之和最小故答案为80【点评】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.9.(5分)设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底),则x2、y2的算术平均值的最小值是1.【分析】由题意可得e x e y=e2,即x+y=2,x>0,y>0,然后结合即可求解.【解答】解:由题意可得e x e y=e2,∴x+y=2,x>0,y>0,∴=1,当且仅当x=y=1时取等号,故答案为:1.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础试题.10.(5分)已知集合A={(x,y)|kx+y=k+1},B={(x,y)|x+ky=2k},其中k为实数,当A∩B≠∅时,则k满足的条件是k≠±1.【分析】根据题意可得出:方程组有解,然后可得出方程(1﹣k2)x=k﹣k2有解,从而可得出k需满足的条件.【解答】解:∵A∩B≠∅,∴方程组有解,消y得(1﹣k2)x=k﹣k2,∴1﹣k2≠0,即k≠±1.故答案为:k≠±1.【点评】本题考查了描述法的定义,交集的定义及运算,空集的定义,考查了计算能力,属于基础题.11.(5分)已知关于x的不等式组的解集为[b,a],则实数a 的值为.【分析】结合解集区间为闭区间可知x=b,x=a是方程x2+2ax+b+1=4a2﹣3a3的解,且b<a,然后结合方程的根与系数关系可求.【解答】解:因为关于x的不等式组的解集为[b,a],结合解集区间为闭区间可知x=b,x=a是方程x2+2ax+b+1=4a2﹣3a3的解,且b<a,所以,解可得,或或(舍),当a=1,b=﹣3时,不等式组为,解得﹣3≤x≤1且x≠﹣1不合题意;当a=,b=﹣1时,不等式组,解得﹣1,此时符合题意.故a=,故答案为:.【点评】本题主要考查了二次不等式的求解,体现了方程与二次不等相互转化关系的应用.12.(5分)已知实数x、y、z满足x>y>z,且x+y+z=1,x2+y2+z2=1,则x+y的取值范围为(,).【分析】利用基本不等式和题设求得结果即可.【解答】解:令x+y=t,则z=1﹣t,∵x>y>z,且x+y+z=1,∴z=1﹣t<⇒t>,t2=(x+y)2<2(x2+y2),即x2+y2>,∵x2+y2+z2=1,∴1>+z2=+(1﹣t)2,即3t2﹣4t<0,解得:0<t<,综上,<t<,即x+y∈(,),故答案为:(,).【点评】本题主要考查基本不等式的应用及解不等式,属于中档题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.13.(5分)若a>0,a≠1,M>0,N>0,下列运算正确的是()A.log a=log a MB.(log a M)N=N log a MC.(log a M)÷(log a N)=log a(M﹣N)D.log a M+log a N=log a(M+N)【分析】利用对数的性质、运算法则直接求解.【解答】解:由a>0,a≠1,M>0,N>0,知:对于A,log a==log a M,故A正确;对于B,(log a M)N≠N log a M=,故B错误;对于C,(log a M)÷(log a N)≠log a(M﹣N),故C错误;对于D,log a M+log a N=log a MN≠log a(M+N),故D错误.故选:A.【点评】本题考查对数式化简求值、对数运算法则,考查运算求解能力,考查数学运算核心素养.14.(5分)若非空集合M、N满足M⊆N,则下列集合中表示空集的是()A.M∩B.∩N C.∪D.M∩N【分析】可以用Venn图来表示集合M,N,U,结合图形即可找出表示空集的选项.【解答】解:可用Venn图表示集合M,N,U如下:∴M∩(∁U N)=∅,即M∩=∅,故选:A.【点评】本题主要考查Venn图表示集合的方法,以及集合的补集和交集运算.15.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093【分析】根据对数的性质得:3=10lg3≈100.48,将M化为以10为底的指数形式,计算即可.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093.故选:D.【点评】本题考查了指数形式与对数形式的互化问题,是基础题.16.(5分)对于区间(1,10000)内的任意两个正整数m、n,定义某种运算“※”如下:当m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,则在此定义下,集合M={(a,b)|a※b=4}中的元素个数是()A.3个B.4个C.5个D.6个【分析】当a,b都为正偶数时,a※b=a b=4,a当a,b都为正奇数时,a※b=log a b=4,a4=b,再由a,b∈(1,10000),能求出集合M中元素的个数.【解答】解:∵m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,集合M={(a,b)|a※b=4},∴a,b都为正偶数时,a※b=a b=4,a=2,b=2,当a,b都为正奇数时,a※b=log a b=4,a4=b,∵a,b∈(1,10000),∴a=3,b=81,或a=5,b=625,或a=7,b=2401,或a=9,b=6561,∴M={(2,2),(3,81),(5,625),(7,2401),(9,6561)}.∴集合M中有5个元素.故选:C.【点评】本题考查集合中元素个数的求法,考查集合定义等基础知识,考查运算求解能力,是基础题.三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.(14分)已知关于x的不等式≥0的解集为P,不等式(x﹣1)2<1的解集为Q.(1)若a=3,求集合P;(2)求集合P,并求当P∪Q=P时a的取值范围.【分析】(1)a=3时,P={x|≥0},由此能求出集合P.(2)P={x|≥0}={x|≤0},根据a>﹣1,a=﹣1,a<﹣1分类讨论,由此能求出集合P,求出Q={x|(x﹣1)2<1}={x|0<x<2},由P∪Q=P,得Q⊆P,由此能求出a的取值范围.【解答】解:(1)a=3时,P={x|≥0}={x|≤0}={x|﹣1<x≤3},(2)P={x|≥0}={x|≤0},当a>﹣1时,P={x|﹣1<x≤a},当a=﹣1时,P=∅,当a<﹣1时,P={x|a≤x<﹣1}.∵Q={x|(x﹣1)2<1}={x|x2﹣2x<0}={x|0<x<2},P∪Q=P,∴Q⊆P,∴当a>﹣1时,a>2,当a≤﹣1时,无解,综上,当P∪Q=P时a的取值范围是(2,+∞).【点评】本题考查集合、实数的取值范围的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.18.(14分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y【单位:dB(分贝)】定义为y=10lg,其中,I 为声场中某点的声强度,其单位为W/m2(瓦/平方米),I0=10﹣12W/m2为基准值.(1)如果一辆小轿车内的声音是50dB,求相应的声强度;(2)如果飞机起飞时的声音是120dB,两人正常交谈的声音是60dB,那么前者的声强度是后者的声强度的多少倍?【分析】(1)直接把y=50代入y=10lg,求得I得结论;(2)分别求出声音是120dB和60dB的声强度,作比得结论.【解答】解:(1)由50=10lg,得,即I=W/m2.故声音是50dB,相应的声强度是10﹣7W/m2;(2)设声音是120dB的声强度为I1,则120=10lg,即,设声音是60dB的声强度为I2,则60=10lg,即,∴.∴前者的声强度是后者的声强度的106倍.【点评】本题考查函数模型的选择及应用,考查对数方程的求法,是基础的计算题.19.(14分)设x≥0,A=,B=.(1)求证:A<,并指出等号成立的条件;(2)比较A与B的大小关系,并说明理由.【分析】(1)把A进行分离常数,再由x的范围求得A的值域,则结论得证,并指出等号成立的条件;(2)利用基本不等式求出B的范围,结合(1)中求得的A的范围,即可比较A与B的大小关系.【解答】证明:(1)A==,∵x≥0,∴x+,8(x+)≥4,,可得<,即A<,当且仅当x=0时等号成立;解:(2)B<A,证明如下:由(1)知,A<,B=,当x=0时,B=0,当x>0时,x2+1≥2x>0,∴,当且仅当x=1时取等号,∴0,而A与B中的等号不同时成立,∴B<A.【点评】本题考查利用分离常数法与基本不等式求函数的值域,考查运算求解能力,是中档题.20.(16分)我们知道当a>0时,a m+n=a m•a n对一切m、n∈R恒成立,学生小贤在进一步研究指数幂的性质时,发现有这么一个等式21+1=21+21,带着好奇,他进一步对2m+n=2m+2n进行深入研究.(1)当m=2时,求n的值;(2)当m≤0时,求证:n是不存在的;(3)求证:只有一对正整数对(m,n)使得等式成立.【分析】(1)由题意求解关于n的方程即可确定实数n的值;(2)由题意求得2n的表达式,然后分类讨论即可证得题中的结论;(3)将m,n分离到等式的两侧,然后讨论左右两侧的值即可证得题中的结论.【解答】(1)解:当m=2时,22+n=22+2n,即3⋅2n=4,∴;(2)证明:设t=2m,由于m≤0,故t∈(0,1],由题意可得:t⋅2n=t+2n,当m=0,t=1时,上述等式明显不成立,当m≠0,t<1时,,由于2n>0,t>0,t﹣1<0,故上述等式不成立,综上可得,实数n不存在.(3)证明:由2m+n=2m+2n可得:,当m,n均为正整数时,等式左侧为2的指数幂,故右侧也是2的指数幂,很明显只有2m﹣1=1,m=1 时满足题意,此时n=1,即只有一对正整数对(1,1)使得等式成立.【点评】本题主要考查指数方程的解法,分类讨论的数学思想,方程思想的应用等知识,意在考查学生的转化能力和计算求解能力.21.(18分)已知代数式|x+2|和|ax﹣b|.(1)若a=0,b=,求不等式|x+2|<|ax﹣b|的解集(用区间表示);(2)若a=1,b=1,用反证法证明:|x+2|、|ax﹣b|中至少有一个数不小于;(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,试确定实数a、b满足的条件.【分析】(1)将a=0,b=代入|x+2|<|ax﹣b|中,然后去绝对值解不等式即可;(2)当a=1,b=1时,|ax﹣b|=|x﹣1|,然后假设|x+2|,|x﹣1|均小于,得到,推出矛盾结论,从而证明原命题成立;(3)根据a>0时,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,对|x+2|+|ax﹣b|去绝对值,然后分别得到满足条件实数a、b即可.【解答】解:(1)当a=0,b=时,由|x+2|<|ax﹣b|,得|x+2|,∴,∴,∴不等式的解集为{x|}.(2)当a=1,b=1时,|ax﹣b|=|x﹣1|.假设|x+2|,|x﹣1|均小于,则,∴,∴x∈∅,与假设矛盾,故|x+2|,|x﹣1|中至少有一个数不小于.(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,则①当x≥﹣2,ax﹣b≥0时,,∴,要使不等式在R上恒成立,则,∴.②当x⩾﹣2,ax﹣b≤0时,,∴,要使不等式在R上恒成立,则与a>0矛盾.③当x≤﹣2,ax﹣b≥0时,,∴,要使不等式在R上恒成立,则,∴,将代入中,得,要使与x≤﹣2有交集,则,∴与b≤﹣3矛盾.④当x≤﹣2,ax﹣b≤0时,,∴,要使不等式在R上恒成立,则与a>0矛盾.综上,要使不等式在R上恒成立,实数a、b满足的条件为.【点评】本题考查了绝对值不等式的解法,利用反证法证明不等式和不等式恒成立问题,考查了转化思想和分类讨论思想,属中档题.。
云南省昆明市第一中学2020-2021学年高一上学期期中考试数学试题 Word版含答案
昆一中2020—2021学年度上学期期中考试高一数学一、选择题:(在每小题给出的四个选项中,选出符合题目要求的一项.) 1.已知A ={-1,0,1},B ={x|x 2<1},则A∩B 等于( ) A .{-1,0,1} B .∅ C .{0} D .{0,1} 2.不等式x 2-3x +2≤0的解集是( )A .{x|x >2或<1}B .{x|x≥2或x≤1}C .{x|1≤x≤2}D .D .{x|1<x <2} 3.下列各组集合中,满足E =F 的是( )A .E =,F ={1.414}B .E ={(2,1)},F ={(1,2)}C .E ={x|y =x 2},F ={y|y =x 2}D .E ={2,1},F ={1,2} 4.设x ∈R ,则“x≤2”是“|x -1|≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞) B .(-∞,0]∪(1,+∞) C .(1,2] D .[2,+∞) 6.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如图示,那么水瓶的形状可以是下图中的( )A .B .C .D .7.已知A ={x|x =2k +1,k ∈Z },{|}2xB x =∈Z ,C =Z ,下列关系判断正确的是( )A .C =A ∪B B .C =A∩B C .A =C ∪BD .A =C∩B8.已知一元二次不等式ax 2+bx +c≤0的解集为[1,2],则cx 2+bx +a≤0的解集为( )A .1[,1]2B .[1,2]C .[-2,-1]D .1[1,]2--9.已知集合A ={x|a≤x <3),B =[1,+∞),若A 是B 的子集,则实数a 取值范围为( ) A .[0,3) B .[1,3) C .[0,+∞) D .[1,+∞)10.已知集合A ={x|x≥0},集合B ={x|x >1},则以下真命题的个数是( )①0x ∃∈A ,0x ∉B ;②0x ∃∈B ,0x ∉A ;③x ∀∈A ,x ∈B ;④x ∀∈B ,x ∈A . A .4 B .3 C .2 D .111.已知集合A ={1,a ,b},B ={a 2,a ,ab},若A =B ,则a 2021+b 2020=( ) A .-1 B .0 C .1 D .2 12.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( )A .0B .12C .1D .2 二、填空题:13.设命题p :1x ∀≥,x 2-4x +3≥0,则命题p 的否定形式为:________. 14.若集合A ={0,1,2},则集合A 的真子集个数为________.15.已知m ∈R ,x 1,x 2是方程x 2-2mx +m =0的两个不等实根,则12121x x x x ++的最小值为________.16.若集合A 具有以下两条性质,则称集合A 为一个“好集合”.(1)0∈A 且1∈A ; (2)若x ,y ∈A ,则x -y ∈A ;且当x≠0时,有1A x∈.给出以下命题:①集合P ={-2,-1,0,1,2}是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x ,y ∈A ,则x +y ∈A ; 其中真命题的序号是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.设集合A ={x|x 2+2x -3<0},集合B ={x||x +a|<1}. (1)若a =3,求A ∪B ;(2)设命题p :x ∈A ,命题q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.已知正数a ,b 满足a +3b =4.(1)求ab 的最大值,且写出取得最大值时a ,b 的值;(2)求13a b+的最小值,且写出取得最小值时a ,b 的值. 19.关于x 的不等式ax 2-(a +2)x +2<0. (1)当a =-1时,求不等式的解集; (2)当a >0时,求不等式的解集.20.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,025,,100,2530,.t t t p t t t +<<∈⎧=⎨-+≤≤∈⎩N N该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天. 21.已知二次函数f (x )=ax 2+bx +2a -1的对称轴为x =-1.(1)设x 1,x 2为方程f (x )=0的两个实数根,且1232x x =,求f (x )的表达式; (2)若f (x )≥0对任意,x ∈[-3,0]恒成立,求实数a 的取值范围. 22.设函数()f x =,b >0的定义域为A ,值域为B . (1)若a =-1,b =2,c =8,求A 和B ;(2)若A =B ,求满足条件的实数a 构成的集合.昆明第一中学2020-2021学年度上学期期中考试高一数学参考答案13.01x ∃≥,20430x x -+< 14.7 15. 16.③④⑤ 17.解:(1)解不等式x 2+2x -3<0,得-3<x <1,即A =(-3,1).当a =3时,由|x +3|<1,解得-4<x <-2,即集合 B =(-4,-2),所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1), 所以13,11a a --≥-⎧⎨-+<⎩或13,1 1.a a -->-⎧⎨-+≤⎩解得0≤a≤2,即实数a 的取值范围是0≤a≤2.18.解:(1)由基本不等式可知:43a a =+≥,43ab ≤, 当且仅当a =3b ,即a =2,23b =时,ab 的取得最大值43.(2)13(3)131535()(1033)()444242a b b a b a a b a b a b a b ++=+=++=++≥+= 当且仅当b a a b =,即a =b =1时,13a b+的取得最小值4. 19.解(1)当a =-1时,此不等式为-x 2-x +2<0,可化为x 2+x -2>0, 化简得(x +2)(x -1)>0,解得即{x|x <-2或x >1} (2)不等式ax 2-(a +2)x +2<0,化为(ax -2)(x -1)<0,当a >0时,不等式化为2()(1)0x x a --<,若21a<,即a >2,解不等式得21x a <<;若21a =,即a =2,解不等式得x ∈∅;若21a>,即0<a <2,解不等式得21x a <<;综上所述:当0<a <2时,不等式的解集为2{|1}x x a <<;当a =2时,不等式的解集为∅当a >2时,不等式的解集为2{|1}x x a<<. 20.解:设日销售金额为y (元),则y =p·Q .∴2220800,025,,1404000,2530,.t t t t y t t t t ⎧-++<<∈⎪=⎨-+≤≤∈⎪⎩N N22(10)900,025,,(70)900,2530,.t t t t t t ⎧--+<<∈⎪=⎨--≤≤∈⎪⎩N N 当0<t <25,t ∈N ,t =10时,y max =900(元); 当25≤t≤30,t ∈N ,t =25时,y max =1125(元). 由1125>900,知y max =1125(元),且第25天,日销售额最大.21.解:(1)因为12b x a =-=-,所以b =2a ,由根与系数的关系可得122132a x x a -==, 解得:a =2,则b =4,则f (x )=2x 2+4x +3;(2)因为f (x )=ax 2+2ax +2a -1的对称轴为x =-1,若a >0,y =f (x )开口向上,则f (x )在[-3,0]的最小值在x =-1处取得, 则f (-1)=a -1≥0,解得a≥1;若a <0,y =f (x )开口向下,又因为|-3-(-1)|>|0-(-1)|, 则f (x )在[-3,0]的最小值在x =-3处取得,则f (-3)=5a -1≥0,解得15a ≥(舍);综上所述,a ∈[1,+∞).22.解:(1)()f x 因为(x +2)(4-x )≥0,所以A =[-2,4],因为()f x 又0≤9-(x -1)2≤9,所以B =[0,3];(2)当a =0时,()f x =[,)cA b-=+∞,B =[0,+∞),又A =B ,故c =0满足题意;当a≠0时,设二次函数g (x )=ax 2+bx +c 的判别式为Δ, 当Δ≥0时,设方程g (x )=0的两实数根为x 1,x 2(x 1≤x 2) 假设a >0,当Δ≥0时,则A ={x|x≤x 1或x≥x 2},B =[0,+∞),则A≠B ,矛盾;当Δ<0时,则A =R ,)B =∞,则A≠B ,矛盾; 当a <0时,假设Δ<0,则A =∅,B =∅,虽有A =B ,但不符合函数的定义,舍去;当Δ≥0,则A ={x|x 1≤x≤x 2},B =,要使A =B ,则x 1=0,且2x =即c =0,又g (x 2)=0得2b x a -==2224b b a a-=,解得a =-4; 综上,满足条件的实数a 构成的集合为{-4,0}.。
山东省邹城市2020_2021学年高一数学上学期期中质量检测试题
山东省邹城市2020-2021学年高一数学上学期期中质量检测试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共4页;满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在指定位置处。
2.第I卷的答案须用2B铅笔填涂,如需改动,用橡皮擦干净后,再改涂其它答案标号。
3.答第II卷(非选择题)考生须用0.5mm的黑色签字笔(中性笔)作答,答案必须写在答题卡的各题目指定的区域内相应位置,如需改动,须先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
否则,该答题无效。
4.书写力求字体工整、笔迹清楚。
第I卷(选择题60分)一、单项选择题(本题共8个小题,每小题5分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合A={x|x(x-1)>2},集合B={x|x>1},则A∩B=A.{x|<x<2}B.{x|x<-1或x>1}C.{x|x>2}D.{x|x>1}2.下列函数是幂函数且在(0,+∞)是减函数的是A.y=x2B.y=13x C.y=x+x-1 D.y=23x-3.已知a>0,b>0,且满足a+2b=1,则31a b +有A.最大值为5+B.最小值为5+C.最大值为D.最小值为4.命题“0≤a<4”是命题“函数yR”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知a,b,c,d均为实数,则下列命题错误..的是A.若ac2>bc2,则a>bB.若a>b,c>d,则a-d>b-cC.若a>b,c>d>0,则a bd c> D.若ab>0,bc-ad>0,则0c da b->6.已知函数f(x)=()() 2a1x a x1ax(x1)-+<⎧⎪⎨-≥⎪⎩,,是定义在(0,+∞)的减函数,则实数a 的取值 范围是 A.[18,13) B.(0,12) C.(14,12) D.[14,12) 7.二次函数f(x)=ax 2+a 是区间[-a ,a 2]上的偶函数,若函数g(x)=f(x -2),则g(0),g(32),g(3)的大小关系为A.g(32)<g(0)<g(3) B.g(0)<g(32)<g(3) C.g(32)<g(3)<g(0) D.g(3)<g(32)<g(0)8.定义在实数R 上的偶函数f(x)在区间(-∞,0]上单调递减,且f(-2)=0,则不等式(x -1)f(x)<0的解集为A.(-∞,-2)∪(1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)∪(2,+∞)D.(-2,1)∪(1,2)二、多项选择题(本题共4个小题,每小题5分,共20分;在每小题给出的四个选项中,有多项符合题目要求。
2020-2021学年江苏省盐城市高一上期中数学试卷及答案解析
【解答】解:∵a⊗b ∴函数 y=2x+1⊗2﹣x
, <
, ,<
的图象如下图所示:
由图可得:函数 y=2x+1⊗2﹣x 的减区间为(﹣∞, ],最小值为 ,
故选:B.
8.(5 分)若 loga3=m,loga5=n,则 a2m+n 的值是( )
A.15
B.75
C.45
【解答】解:loga3=m,loga5=n, 所以 am=3,an=5, 所以 a2m+n=a2man=9×5=45.
故选:C.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)下列各式中,是函数的有( )
A.y=1
B.y=x2
C.y=1﹣x
D.225 D.y
【解答】解:根据题意,依次分析选项, 对于 A,y=1,是常数函数,是函数, 对于 B,y=x2,是二次函数,是函数, 对于 C,y=1﹣x,是一次函数,是函数,
D.(2,3)
【解答】解:因为集合 A={y|y ,0≤x≤4}={y|0≤y≤2};
故(∁RA={y|y>2 或 y<0},
∵B={x|0<x<3},
∴(∁RA)∩B=(2,3)
故选:D.
2.(5 分)命题 p:∃x0∈R,x02﹣x0+2≤0,则¬p 为( )
A.∃x0∈R,
>
B.∀x∈R,x2﹣x+2≤0
(1)若 a=2,求 M∩(∁RN); (2)若 M∪N=M,求实数 a 的取值范围.
18.(12 分)计算:
(1)0.064
( )0+16 ⺁ 0.25 ;
(2)log3
lg25+2lg2﹣7 뗘 log42.
山东省济南市第一中学2020_2021学年高一数学上学期期中试题含解析
山东省济南市第一中学2020-2021学年高一数学上学期期中试题(含解析)本试卷共4页,满分150分.考试用时120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3M =-,{}|13N x x =-≤<,则M N =( )A. {0,1,2}B. {1,0,1}-C. MD.{1,0,1,2}-【答案】D 【解析】 【分析】根据交集的定义写出M N ⋂即可.【详解】集合{}1,0,1,2,3M =-,{}|13N x x =-≤<, 则{}1,0,1,2M N ⋂=-. 故选:D .2. 已知R a ∈,则“1a >”是“11a<”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】 【分析】“a>1”⇒“11a <”,“11a<”⇒“a>1或a <0”,由此能求出结果. 【详解】a∈R ,则“a>1”⇒“11a<”,“11a<”⇒“a>1或a <0”, ∴“a>1”是“11a<”的充分非必要条件.故选A .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.3. 下列各组函数中,表示同一函数的是( ) A. ()1f x =,0()g x x = B. ()1f x x ,21()1x g x x -=+C. ()f x x =,()g x =D. ()||f x x =,2()g x =【答案】C 【解析】 【分析】根据对应关系和定义域均相同则是同一函数,对选项逐一判断即可.【详解】选项A 中,0()1()g x x f x ===,但()g x 的定义域是{}0x x ≠,()f x 定义域是R ,不是同一函数;选项B 中,21()()11x g x x x f x -=+=-=,但()g x 的定义域是{}1x x ≠-,()f x 定义域是R ,对应关系相同,定义域不同,不是同一函数;选项C 中,()f x x =,定义域R ,()g x x ==,定义域为R ,对应关系相同,定义域相同,是同一函数;选项D 中,()||f x x =,定义域R ,与2()g x =,定义域[0,)+∞,对应关系不相同,定义域不相同,不是同一函数. 故选:C.4. 设053a =.,30.5b =,3log 0.5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b a c >>C. c b a >>D.a cb >>【解析】 【分析】利用对数函数和指数函数的性质求解.【详解】解:∵00.51333<<,∴0.5131<<,即13a <<, ∵3000.80.8<<,∴300.81<<,即01b <<, ∵3log y x =在(0,)+∞上为增函数,且0.51<, ∴33log 0.5log 10<=,即0c < ∴a b c >>, 故选:A .【点睛】此题考查对数式、指数式比较大小,属于基础题 5. 已知函数 ()()2231m m f x m m x+-=-- 是幂函数,且 ()0x ∈+∞,时,()f x 单调递减,则 m 的值为( ) A. 1 B. -1 C. 2或-1 D. 2【答案】B 【解析】 分析】由题意可得211m m --=,且230m m +-<,解出即可. 【详解】解:∵()()2231m m f x m m x+-=-- 是幂函数,∴211m m --=,即()()210m m -+=, ∴2m =,或1m =-,又当()0x ∈+∞,时,()f x 单调递减, ∴230m m +-<,当2m =时,2330m m +-=>,不合题意,舍去; 当1m =-,2330m m +-=-<,符合题意, ∴1m =-,6. 已知1a >,函数1x y a -=与log ()a y x =-的图象可能是( )A B. C. D.【答案】B 【解析】 【分析】根据函数的定义域,1a >判断两个函数的单调性,即可求解. 【详解】1a >,函数1x y a -=在R 上是增函数, 而函数log ()a y x =-定义域为(,0)-∞, 且在定义域内是减函数,选项B 正确》 故选:B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题.7. 已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a的取值范围是( ) A. 1,12⎛⎤ ⎥⎝⎦B. 1,2⎛⎫+∞ ⎪⎝⎭C. [1,)+∞D. []1,2【答案】D 【解析】 【分析】根据分段函数()f x 在(),-∞+∞上是增函数,则由每一段都是增函数且1x =左侧函数值不大于右侧的函数值求解.【详解】因为函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,在(),-∞+∞上是增函数,所以1210122136a a a a a ≥⎧⎪->⎨⎪-+≤--+⎩,解得12a ≤≤, 故选:D【点睛】本题主要考查分段函数的单调性,属于基础题.8. 定义在R 上的偶函数()f x 满足:对任意的()1212,[0,),x x x x ∈+∞≠,有()()21210f x f x x x -<-,且(2)0f =,则不等式 ()0x f x <的解集是( )A. (2,2)-B. (2,0)(2,)-+∞ C. (,2)(0,2)-∞-⋃D.(,2)(2,)-∞-+∞【答案】B 【解析】 【分析】由题意可知()f x 在[0,)+∞上是减函数,再根据对称性和(2)0f =得出()f x 在各个区间的函数值的符号,从而可得出答案.【详解】解:∵()()21210f x f x x x -<-对任意的()1212,[0,),x x x x ∈+∞≠恒成立, ∴()f x 在[0,)+∞上是减函数, 又(2)0f =,∴当2x >时,()0f x <,当02x ≤<时,()0f x >, 又()f x 是偶函数,∴当2x <-时,()0f x <,当20x -<<时,()0f x >, ∴()0xf x <的解为(2,0)(2,)-+∞.故选B .【点睛】本题考查了函数的单调性与奇偶性,考查了学生分析问题、解决问题的能力,属于中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 下列不等式成立的是( ) A. 若a <b <0,则a 2>b 2B. 若ab =4,则a +b ≥4C. 若a >b ,则ac 2>bc 2D. 若a >b >0,m >0,则b b m a a m+<+ 【答案】AD 【解析】 【分析】由不等式的性质对各个选项进行推理、验证可得正确答案.【详解】解:对于A ,若0a b <<,根据不等式的性质则22a b >,故A 正确; 对于B ,当2a =-,2b =-时,44a b +=-<,显然B 错误; 对于C ,当0c时,22ac bc =,故C 错误;对于D ,()()()()()b a m a b m b a m b b m a a m a a m a a m +-+-+-==+++, 因为0a b >>,0m >,所以0b a -<,0a m +>,所以()()-<+b a m a a m所以0+-<+b b ma a m ,即b b m a a m+<+成立,故D 正确. 故选AD .【点睛】本题主要考查不等式的性质及应用,考查学生的推理论证能力,属于基础题. 10. 下列叙述正确的是( )A. 已知函数22,[4,0]()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,则f (6)=8 B. 命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤” C. 已知正实数a ,b 满足4a b +=,则1113a b +++的最小值为12D. 已知250x ax b -+>的解集为{}|41x x x ><或,则a+b=5【答案】ACD 【解析】 【分析】直接由分段函数表达式代入求解即可判断A ,由全称命题的否定为特称命题可判断B ,由基本不等式结合138a b +++=,巧用“1”即可求最值,根据一元二次不等式解与系数的关系可判断C. 【详解】对于A,22,[4,0]()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,所以(6)2(2)4(2)4(20)8f f f ==-=-=,正确;对于B ,命题“对任意的1x >,有21x >”为全称命题,否定为特称命题,即“存在1x >,有21x ≤”,不正确;对于C ,由4a b +=,可得138a b +++=, 所以11111()(13)13813a b a b a b +=++++++++13111(11)(281382b a a b ++=+++≥+=++, 当且仅当3113b a a b ++=++,即3,1a b ==时,1113a b +++取得最小值12,正确.对于D ,250x ax b -+>的解集为{}|41x x x ><或,所以250x ax b -+=的两个根式1和4,所以1451144a ab b +==⎧⎧⇒⎨⎨⨯==⎩⎩,所以5a b +=,正确.故选:ACD. 11. 关于函数()1x f x x,下列结论正确的是( )A. ()f x 的图象过原点B. ()f x 是奇函数C. ()f x 在区间(1,+∞)上单调递增D. ()f x 是定义域上的增函数【答案】AC 【解析】 【分析】根据函数奇偶性定义、单调性定义以及计算函数值进行判断选择.【详解】()(0)01x f x f x,所以A 正确,101x x ,因此()1x f x x不是奇函数,B 错误,1()111xf x xx ()f x 在区间(1,+∞)和(,1)-∞上单调递增,所以C 正确,D 错误, 故选:AC【点睛】本题考查函数奇偶性与单调性,考查基本分析判断能力,属基础题.12. 德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为1,()0,x D x x ⎧=⎨⎩是有理数是无理数,关于函数D()x 有以下四个命题,其中真命题是( )A. ,D(D())1x R x ∀∈=B. ,,D()D()D()x y R x y x y ∃∈+=+C. 函数D()x 是偶函数D. 函数D()x 是奇函数【答案】ABC 【解析】【分析】根据自变量x 是有理数和无理数进行讨论,可判定A 、C 、D ,举特例根据x =和x =判断B 即可得到答案.【详解】对于A 中,若自变量x 是有理数,则[]()(1)1D D x D ==, 若自变量x 是无理数,则[]()(0)1D D x D ==,所以A 是真命题;当x=y =x y +=则D()0,D()D()000x y x y +=+=+=,满足D()D()D()x y x y +=+,所以B 正确; 对于C ,当x 为有理数时,则x -为有理数, 则()()1D x D x -==. 当x无理数时,则x -为无理数,则()()0D x D x -==.故当x ∈R 时,()()D x D x -=,∴函数为偶函数,所以C 是真命题;对于D 中,若自变量x 是有理数,则x -也是有理数,可得()()112D x D x +-=+=,所以D()x 不是奇函数,D 不正确. 所以D 是假命题; 故选:ABC.三、填空题:本题共4小题,每小题5分,共20分. 13. 若)12fx x x =-()f x 的解析式为________.【答案】()()2431f x x x x =-+≥ 【解析】 【分析】 换元法令1t x =即可求出函数解析式;或者配凑法求解析式.【详解】解:(换元法)令1t x =,则1t ≥,1x t =-,()21x t =-, ∵)12fx x x =-∴()()()2212143f t t t t t =---=-+,(配凑法)∵)12fx x x =-)2141x x =-))21413x x =-+,11x ≥,∴()()2431f x x x x =-+≥,故答案为:()()2431f x x x x =-+≥.【点睛】方法点睛:本题主要考查函数解析式的求法,常用方法有:(1)换元法或配凑法:已知()()f g x 求()f x ,一般采用换元法或配凑法,令()t x g =,代入求出()f t ,或者将()()f g x 中配凑成关于()g x 的式子,由此可求得()f x ; (2)待定系数法:已知函数类型常用待定系数法; (3)方程组法:已知()f x 、1f x ⎛⎫⎪⎝⎭满足的关系式或()f x 、()f x -满足的关系式常用方程组法,将条件中的x -或1x替换成x 得另一方程,再解方程组即可求得答案. 14. 已知函数22x y a -=+(0a >且1a ≠)恒过定点(),m n ,则m n +=________________. 【答案】5 【解析】 【分析】当20x -=时,函数值域与a 没有关系,由此求得恒过的定点(),m n ,并求得表达式的值. 【详解】当20x -=,即2x =时,函数值域与a 没有关系,此时3y =,故函数过定点()2,3,即2m =,3n =,所以235m n +=+=.【点睛】本小题主要考查指数函数横过定点的问题,当指数函数底数为0的时候,01a =,由此求得恒过的定点,属于基础题.15. 若不等式2(2)2(2)40a x a x -+--<对一切x ∈R 成立,则a 的取值范围是 _ _ . 【答案】(]2,2- 【解析】【详解】当20a -=,2a =时不等式即为40-< ,对一切x ∈R 恒成立 ①当2a ≠时,则须()()220{421620a a a -<-+-<= ,∴22a -<<② 由①②得实数a 的取值范围是(]2,2-, 故答案为(]2,2-.16. 定义区间[1x ,2x ]的长度为2x -1x ,若函数y =|log 2x |的定义域为[a ,b ],值域为[0,3]到,则区间[a ,b ]的长度最大值为______ 【答案】638【解析】 【分析】先由函数值域求出函数定义域的取值范围,然后求出区间[a ,]b 的长度的最大值. 【详解】因为函数2|log |y x =的定义域为[a ,]b ,值域为[0,3],23log 3x ∴-, 解得188x ,故函数的定义域为1[8,8], 此时,函数的定义域的区间长度为163888-=, 故答案为638. 【点睛】本题主要考查新定义的理解及应用,考查对数函数的图象和性质,考查绝对值不等式的解法,意在考查学生对这些知识的理解掌握水平.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 计算:(110421()0.25(22-+⨯;(2)7log 2334log lg25lg47log 8log +-+⋅【答案】(1)7-;(2)2.【解析】【分析】(1)利用分数指数幂运算及根式求解即可(2)利用对数运算求解【详解】(1)原式4181(72=--+⨯=-; (2)原式32332131log 3lg1002(3log 2)(log 3)222622=+-+⋅=+-+=. 【点睛】本题考查指数幂及对数运算,是基础题 18. 已知集合{}{}22|560|60A x x x B x x ax =-+==++=,. 若B A ⊆,求实数a 的取值范围.【答案】{|5a a =-或a -<<.【解析】【分析】由题意,求得{}23A =,,再根据B A ⊆,结合韦达定理分B ≠∅和B =∅两种情况讨论即可求出答案.【详解】解:∵{}2|560A x x x =-+=, ∴{}23A =,, ∵{}2|60B x x ax =++=,B 为方程260x ax ++=的解集, ①若B ≠∅,由B A ⊆ ,∴{}2B =,或{}3B =,或{}23B =,, 当{}2B =时,方程260x ax ++=有两个相等实根,即122x x ==,1246x x =≠,∴ 不合题意,同理{}3B ≠,同理当{}23B =,时, 5a =-,符合题意; ②若B =∅,则2460a ∆=-⨯<,∴a -<<综上所述,实数a 的取值范围为{|5a a =-或a -<.【点睛】易错点睛:本题主要考查根据集合间的包含关系求参数的取值范围,解题时容易忽略子集可能为空集的情况,属于基础题.19. 已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,(1)求()f x 的解析式;(2)求不等式()f x x >的解集.【答案】(1)224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)(5,0)(5,)-⋃+∞.【解析】【分析】(1)根据奇函数的性质进行求解即可;(2)根据函数的解析式分类讨论进行求解即可.【详解】(1)∵()f x 是定义在R 上的奇函数,∴(0)0f =.又当0x <时,0x ->,∴22()(4)4()f x x x x x ---=+-=.又()f x 为奇函数,∴()()f x f x -=-,∴2()4(0)f x x x x =--<,∴224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)当0x >时,由()f x x >得24x x x ->,解得5x >;当0x =时,()f x x >无解;当0x <时,由()f x x >得24x x x -->,解得5x 0-<<.综上,不等式()f x x >的解集用区间表示为(5,0)(5,)-⋃+∞.【点睛】本题考查了奇函数的性质,考查了分类讨论思想,考查了数学运算能力.20. 已知lg(3x)+lgy =lg(x +y +1).(1)求xy 的最小值;(2)求x +y 的最小值.【答案】(1)1 (2)2【解析】解:由lg(3x)+lgy =lg(x +y +1)得0{031x y xy x y >>=++(1)∵x>0,y>0,∴3xy=x +y1,∴3xy-即2-当且仅当x =y =1时,等号成立.∴xy 的最小值为1.(2)∵x>0,y>0,∴x+y +1=3xy≤3·(2x y +)2, ∴3(x+y)2-4(x +y)-4≥0,∴[3(x+y)+2][(x +y)-2]≥0,∴x+y≥2,当且仅当x =y =1时取等号,∴x+y 的最小值为2.21. 已知二次函数()225f x x ax =-+,其中1a >. (Ⅰ)若函数()f x 的定义域和值域均为[]1,a ,求实数a 的值;(Ⅱ)若函数()f x 在区间(],2-∞上单调递减,且对任意的1x ,[]21,1x a ∈+,总有()()123f x f x -≤成立,求实数a 的取值范围.【答案】(Ⅰ)2;(Ⅱ)2,1a ⎡∈⎣.【解析】【分析】(Ⅰ)求出()f x 的单调性,求出函数的最值,得到关于a 的方程,解出即可;(Ⅱ)根据()f x 在区间(],2-∞上是减函数,得出a 的一个取值范围;再对任意的1x ,[]21,1x a ∈+,()()()()12max 13f x f x f a f -=-≤,又可求出a 的一个取值范围;最后两者取交集,则问题解决.【详解】(Ⅰ)()225f x x ax =-+,开口向上,对称轴是1x a => ∴()f x []1,a 递减,则()1f a =,即22251a a -+=,故2a =;(Ⅱ)因为()f x 在区间(],2-∞上是减函数,所以2a ≥.因此任意的1x ,[]21,1x a ∈+,总有()()123f x f x -≤,只需()()13f a f -≤即可解得:11a ≤,又2a ≥因此2,1a ⎡∈+⎣.【点睛】本题主要考查了已知二次函数单调区间求参数的范围以及根据二次函数的值域求参数的值,属于中档题.22. 已知()f x 是定义在区间[1,1]-上的奇函数,且(1)1f =,若,[1,1]a b ∈-,0a b +≠时,有()()0f a f b a b+>+. (1)判断函数()f x 在[1,1]-上是增函数,还是减函数,并证明你的结论;(2)若2()55f x m mt ≤--对所有[1,1]x ∈-,[1,1]t ∈-恒成立,求实数m 的取值范围.【答案】(1)是增函数,证明见解析;(2)(,6][6,)-∞-+∞.【解析】【分析】(1)根据函数单调性的定义即可证明f (x )在[﹣1,1]上是的增函数;(2)利用函数奇偶性和单调性之间的关系将不等式max ()f x ≤m 2﹣5mt -5进行转化,结合二次函数性质即可求实数m 的取值范围.【详解】(1)函数()f x 在[-1,1]上是增函数.设1211x x∵()f x 是定义在[-1,1]上的奇函数,∴2121()()()()f x f x f x f x -=+-.又1211x x ,∴21()0x x +->, 由题设2121()()0()f x f x x x +->+-有21()()0f x f x +->,即12()()f x f x <, 所以函数()f x 在[-1,1]上是增函数.(2)由(1)知max ()(1)1f x f ==,∴2()55f x m mt ≤--对任意[1,1]x ∈-恒成立,只需2155m mt ≤--对[1,1]t ∈-]恒成立,即2560m mt --≥对[1,1]t ∈-恒成立,设2()56g t m mt =--,则(1)0(1)0g g -≥⎧⎨≥⎩22560560m m m m ⎧+-≥⇔⎨--≥⎩6,11,6m m m m ≤-≥⎧⇔⎨≤-≥⎩, 解得6m ≤-或6m ≥,-∞-+∞.∴m的取值范围是(,6][6,)【点睛】本题主要考查函数奇偶性和单调性的应用,将不等式转化为函数问题是解决本题的关键.综合性较强,运算量较大.。
2020-2021学年新疆石河子一中高一上学期期中数学试卷(含解析)
2020-2021学年新疆石河子一中高一上学期期中数学试卷一、单选题(本大题共12小题,共60.0分)1.函数y=log31+x的图象()1−xA. 关于原点对称B. 关于直线y=−x对称C. 关于y轴对称D. 关于直线y=x对称2.已知集合A={−1,2},B={x|ax=6},若B⊆A,则由实数a的所有可能的取值组成的集合为().A. {0,3}B. {−6,3}C. {6,0,−3}D. {−6,0,3}3.指数函数y=a的图像经过点(2,16)则a的值是A. B. C. 2 D. 44.下列表示①{0}=⌀;②⌀∈{0};③⌀⊊{0};④0∈⌀中,正确的个数为()A. 1B. 2C. 3D. 45.函数y=x−1在区间[3,+∞)上是减函数,则a的取值范围是()x−aA. [1,3)B. (1,3)C. (1,3]D. [1,3]6.若函数f(x)=a|x+b|(a>0且a≠1,b∈R)是偶函数,则下面的结论正确的是()A. f(b−3)<f(a+2)B. f(b−3)>f(a+2)C. f(b−3)=f(a+2)D. f(b−3)与f(a+2)的大小无法确定7.设,则的大小顺序正确的是()A. B. C. D.8.函数f(x)=|log2(x+1)|的图象大致是().A. AB. BC. CD. D 9. 已知f(x)={2x −1,x <12f(x −1)+1,x ≥12,则f(14)+f(76)=( ) A. −16 B. 16C. 56D. −56 10. 幂函数f(x)=f(x)的图象过点(2,√22),则f(x)为( )A. y =x 12B. y =1x 2C. y =x −12D. y =√2x −1 11. 下列函数中,与函数相同的是( ) A. B. C. D.12. 函数f(x)=3x 2+e x −2(x <0)与g(x)=3x 2+ln(x +t)图象上存在关于y 轴对称的点,则t的取值范围是( )A. (−∞,1e )B. (−∞,e)C. (−e,1e )D. (−1e ,e) 二、单空题(本大题共5小题,共25.0分)13. 某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为______ 小时.14. 函数y =(12)x ,(x ≥0)的值域为______. 15. 已知幂函数的图象过点(2,√2),则幂函数的解析式f(x)= ______ .16. 已知f(sinx)=−2x +1,x ∈[−π2,π2],那么f(cos10)= ______ .17. 关于函数f(x)=4x +√x −2有如下四个命题:①f(x)的定义域为[0,+∞);②f(x)的最小值为−1;③f(x)存在单调递减区间;④∃α∈(0,+∞),f(sinα)=0.其中所有真命题的序号是______ .三、多空题(本大题共1小题,共5.0分)18. 0.064− 13−(−78)0+160.75+|−0.01|√0.25= ;lg 52+2lg2−(12)−1= 四、解答题(本大题共6小题,共60.0分)19. (Ⅰ)计算:(a 23⋅b −1)−12⋅a −12⋅b 13√a⋅b 56; (Ⅱ)计算:(0.027)−13−(−17)−2+(279)12−3×(√2−1)0+[(−2)2]12.20. 求下列不等式的解集.(1)2xx+1<1(2)x 2+(2−a)x −2a ≥0.21. 已知集合A ={x|1<x <6},B ={x|2<x <10},C ={x|x <a}.(1)求(∁R A)∩B ;(2)若A ⊆C ,求a 的取值范围.22. 求函数y =√x −2+1x−3+lg(5−x)的定义域.23. 如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),.道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大⋅并求出其最大面积.24. 定义函数g(x)={1,x ≥0−1,x <0,f(x)=x 2−2x(x −a)⋅g(x −a). (1)若f(2)=0,求实数a 的值;(2)解关于实数a 的不等式f(1)≤f(0);(3)函数f(x)在区间[1,2]上单调递增,求实数a 的取值范围.【答案与解析】1.答案:A解析:解:由1+x1−x>0得−1<x<1,则f(−x)+f(x)=log31+x1−x +log31−x1+x=log3(1+x1−x⋅1−x1+x)=log31=0,即f(−x)=−f(x),则函数f(x)是奇函数,故图象关于原点对称,故选:A根据条件判断函数的奇偶性即可.本题主要考查函数图象的对称性,利用函数奇偶性的性质是解决本题的关键.2.答案:D解析:解:∵B⊆A,A={−1,2}的子集有⌀,{−1},{2},{−1,2},当B=⌀时,显然有a=0;当B={−1}时,−a=6⇒a=−6;当B={2}时,2a=6⇒a=3;当B={−1,2},不存在a,符合题意,∴实数a值集合为{−6,0,3},故选:D.由B⊆A,求出集合A的子集,这样就可以求出实数a值集合.本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论,属基础题.3.答案:D解析:试题分析:因为指数函数y=a的图像经过点(2,16),所以16=a2,又因为a>0且a1,所以a=4.考点:本题考查指数函数的的定义。
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3} 2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<03.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.15.(5分)函数y=的图象大致为()A.B.C.D.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<0【分析】根据特称命题的否定形式进行判断【解答】解:命题“∃x0∈R,x02﹣1≥0”的否定是∀x∈R,x2﹣1<0,故选:D.【点评】本题考查了命题的否定,属于基础题.3.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]【分析】可看出,要使得原函数有意义,需满足,然后解出x的范围即可.【解答】解:要使原函数有意义,则,解得且x≠﹣1,∴原函数的定义域为:.故选:D.【点评】本题考查了函数定义域的定义及求法,区间的定义,考查了计算能力,属于基础题.4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.1【分析】先研究函数在每一段的单调性,分别求出它们的最值,然后求解函数的最值,就是大中取大,小中取小.【解答】解:对于函数函数f(x)=,当x≤1时,f(x)=x2﹣2x+3.在(﹣∞,1]上递减;所以此时y min=f(1)=2,当x>1时,f(x)=x+≥2=2,当且仅当x=,取等号,综上可知原函数的最小值为:2.故选:C.【点评】本题考查分段函数的性质,一般来讲分段函数的处理原则:分段函数,分段处理.如本题求最值,应先在每一段上求它们的最大(小)值,最后大中取大.小中取小.5.(5分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除A,C,当x>0时,y=f(x)>0,故排除D,故选:B.【点评】本题考查了函数图象的识别,属于基础题.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]【分析】根据分段函数的单调性的判断方法建立不等式组,即可求解.【解答】解:要满足已知题意,只需,解得,故选:B.【点评】本题考查了分段函数的单调性,考查了学生解不等式的能力,属于基础题.7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)【分析】讨论a=0、a<0和a>0时,求出不等式有解时a的取值范围.【解答】解:a=0时,不等式为2x+1<0,有实数解,满足题意;a<0时,一元二次不等式为ax2+2x+1<0,不等式对应的二次函数开口向下,所以有实数解;a>0时,一元二次不等式为ax2+2x+1<0,应满足△=4﹣4a>0,解得a<1;综上知,a的取值范围是(﹣∞,1).故选:D.【点评】本题考查了不等式有解的应用问题,也考查了分类讨论思想,是基础题.8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4【分析】利用已知条件中理想数集的定义判断命题的真假,题目中给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【解答】解:对于①,设a=b∈G,显然有a﹣a∈G,即0∈G,故0是任何“理想数集”的元素,故①正确;对于②:当a=b时,显然有,则1+1,2+1,…,N+1∈M,所以N*∈M,故②正确;对于③:易知2∈P,而,故③错误;对于④:a,b∈Z,故1+2∈T,而,故④错误.故选:B.【点评】本题考查学生对于新定义题型的理解和把握能力,理解“理想数集”的定义是解决该题的关键,题目着重考察学生的构造性思维,属于难题.二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件【分析】根据偶函数的定义即可判断A;由增函数的定义即可判断B;由子集的定义即可判断C;由充分必要条件的定义即可判断D.【解答】解:对于A,“f(x)是定义在R上的偶函数”的含义是“对任意的x∈R,都有f(﹣x)=f(x)”,故A错误;对于B,“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f(x2)”,故B正确;对于C,由子集的定义可知C正确;对于D,若f(x)是定义在R上的奇函数,则f(0)=0,若f(x)是定义在R上的函数,且f(0)=0,不能得出f(x)为奇函数,例如f(x)=x2,故“f(0)=0”是“f(x)是奇函数”的必要条件,故D正确.故选:BCD.【点评】本题主要考查函数奇偶性单调性的定义,考查子集的定义,充要条件的定义,属于中档题.10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b【分析】由不等式的基本性质逐一判断即可.【解答】解:对于A,若ac2>bc2,则a>b,故A正确;对于B,若<0<,则a<0<b,故B错误;对于C,取a=9,b=1,c=2,d=3,满足a>b>0,ac>bd>0,但c<d,故C错误;对于D,若,则﹣=>0,则b>a,故D正确.故选:AD.【点评】本题主要考查不等式的基本性质,属于基础题.11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数【分析】由集合的基本运算即可判断A;判断定义域与解析式是否相同即可判断B;利用换元及对勾函数的性质即可判断选项C;由函数的奇偶性的定义即可判断D.【解答】解:对于A,设A,B是两个集合,若A∪B=A∩B,则A=B,故A正确;对于B,函数y==|x|,函数y==x,两函数定义域相同,解析式不同,故不是同一函数,故B错误;对于C,令t=≥,则y=+t在[,+∞)上单调递增,所以当t=时,取得最小值为,所以函数y=+的最小值为,故C错误;对于D,函数y=g(x)=xf(|x|),g(﹣x)=﹣xf(|﹣x|)=﹣xf(|x|)=﹣g(x),所以函数y=xf(|x|)是奇函数,故D正确.故选:BC.【点评】本题主要考查即可得基本运算,同一函数的判断,函数最值的求法,以及函数奇偶性的判断,属于中档题.12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x【分析】先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的减函数,由此判断各选项是否同时具备两个性质即可.【解答】解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f (x)为定义域上的减函数,对于A,f(x)=为定义域上的奇函数,但不是定义域上的减函数,其单调区间为(﹣∞,0),(0,+∞),故A不是“颜值函数”;对于B,f(x)=x2为定义域上的偶函数,故B不是“颜值函数”;对于C,函数f(x)=的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,故C是“颜值函数”.对于D,f(x)=﹣2x为定义域上的奇函数,且是定义域上的减函数,故D是“颜值函数”.故选:CD.【点评】本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的必要且不充分条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要且不充分条件,即0<x<5是|x﹣1|<1的必要且不充分条件故答案为:必要且不充分.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=2.【分析】根据题意,由函数的解析式可得f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,结合函数的奇偶性可得f(﹣1)﹣g(﹣1)=f(1)+g(1),即可得答案.【解答】解:根据题意,f(x)﹣g(x)=x2+x+2,则f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,又由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,则f(﹣1)﹣g(﹣1)=f(1)+g(1)=2.故答案为:2.【点评】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为1.【分析】由已知可转化为函数y=2a﹣2与函数y=|x﹣a|的图象只有一个交点,利用函数的图象性质即可求解.【解答】解:由已知可令a=|x﹣a|+2﹣a,可得:2a﹣2=|x﹣a|,可看成函数y=2a﹣2与函数y=|x﹣a|图象只有一个公共点,而函数y=|x﹣a|是以x=a为对称轴,最小值为0的函数,所以要满足题意只需令2a﹣2=0,即a=1,故答案为:1【点评】本题考查了函数的零点与方程根的关系,属于基础题.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为16.【分析】由=+++=++(+)(x+2y),利用基本不等式即可求得最小值.【解答】解:∵x>0,y>0,x+2y=2,∴=+++=++(+)(x+2y)=++4≥4+2=16,当且仅当=时,取得最小值16.故答案为:16.【点评】本题考查了利用基本不等式性质求最值问题,属于基础题.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.【分析】(1)利用对数的运算性质求解.(2)利用有理数指数幂的运算性质求解.【解答】解:(1)原式=2lg5+2lg2+lg5•lg20+(lg2)2=2+lg5•(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg5•lg2+(lg2)2=2+(lg5+lg2)2=2+1=3.(2)原式=1﹣+×=1﹣16+2=﹣13.【点评】本题主要考查了对数的运算性质和有理数指数幂的运算性质,是基础题.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.【分析】(1)可以求出集合A={x|x≤﹣2或x≥3},B={x|1<x<5},然后进行交集、并集和补集的运算即可;(2)根据B∩C=C可得出C⊆B,然后讨论C是否为空集:C=∅时,m﹣1>2m;C≠∅时,,然后解出m的范围即可.【解答】解:(1)A={x|x≤﹣2或x≥3},B={x|1<x<5},U=R,∴A∩B={x|3≤x<5},∁U A={x|﹣2<x<3},(∁U A)∪B={x|﹣2<x<5};(2)∵B∩C=C,∴C⊆B,①C=∅时,m﹣1>2m,解得m<﹣1;②C≠∅时,,解得;综上得实数m的取值范围为.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,子集的定义,考查了计算能力,属于基础题.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.【分析】(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c=0的解,然后结合方程的根与系数关系可求;(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,然后结合对称轴与已知区间的位置关系进行分类讨论可求.【解答】解:(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c =0的解,故,解得,b=﹣2,c=﹣3,(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,(i)即a≥2时,函数g(x)在[0,2]上单调递减,g(x)min=g(2)=﹣2a ﹣3=﹣4,解得,a=(舍),(ii)即a≤﹣2时,函数g(x)在[0,2]上单调递增,g(x)min=g(0)=﹣3≠﹣4,(舍),(iii)当0即﹣2<a<2时,函数g(x)在[0,2]上先减后增,g(x)min=g ()=﹣3﹣=﹣4,解得,a=4(舍)或a=0,综上,a=0.【点评】本题主要考查了二次函数与二次不等式的相互转化关系的应用及二次函数闭区间上最值的求解,体现了转化思想及分类讨论思想的应用.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?【分析】设车速为xkm/h,用x表示出油耗和行车时间,得出总费用关于x的函数,根据基本不等式求出费用最小值.【解答】解:设车速为xkm/h,耗油率m(x)=kx2,则由题意可得m(100)=10000k =,∴k==.∴从A地到B地消耗汽油的价钱为,司机的工资为=,故从A地到B地的总费用f(x)=≥2=300元.当且仅当,即x=80∈[60,120]时取等号.∴从A地到B地的车速是80km/h时,转运一次的总费用最低为300元.【点评】本题考查函数模型的选择及应用,考查函数解析式求解,函数最值的计算,属于中档题.21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.【分析】(1)由f(x)为奇函数,结合奇函数的定义代入可求;(2)结合单调性定义,设2≤x1<x2,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)中单调性即可求解函数最值.【解答】解:(1)因为f(x)=为奇函数,x≠0,所以f(﹣x)=﹣f(x),所以,整理可得,ax=0,所以a=0,(2)证明:由(1)可得f(x)==x+,设2≤x1<x2,则f(x1)﹣f(x2)=x1﹣x2+,=x1﹣x2+=(x1﹣x2)(1﹣)<0,所以f(x1)<f(x2),所以f(x)在区间[2,+∞)上是增函数;(3)由(2)可得f(x)=x在[2,4]上单调递增,故f(x)max=f(4)=5,f(x)min=f(2)=4,若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,所以1≤m2﹣2m﹣2,解得m≥3或m≤﹣1.【点评】本题主要考查了函数奇偶性及单调性的应用及判断,还考查了函数单调性在求解最值中的应用.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.【分析】(1)令x=y=0,可得f(0),再令y=﹣x,结合奇偶性的定义,即可得到结论;(2)分别选①②,将原不等式转化为﹣m>t2+2t+4对t∈[﹣3,2]成立或恒成立,结合参数分离和二次函数的最值求法,可得所求范围;(3)考虑g(x)=0与g(g(x))=3的解集相等,求得b=3,再由g(x)≤0的解集,结合判别式的符号和因式分解,可得所求范围.【解答】解:(1)令x=y=0,则f(0)=f(0)+f(0),即f(0)=0,再令y=﹣x,则f(0)=f(x)+f(﹣x),即f(﹣x)=﹣f(x),所以f(x)为R上的奇函数;(2)①存在t∈[﹣3,2].f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4对t∈[﹣3,2]成立,y=t2+2t+4=(t+1)2+3在t=﹣1时取得最小值4,则﹣m>3,即m<﹣3;选②任意t∈[﹣3,2],f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4在任意t∈[﹣3,2]恒成立,y=t2+2t+4=(t+1)2+3在t=2时取得最大值12,则﹣m>12,即m<﹣12;(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,可得g(x)=0与g(g(x))=3的解集相等,可得g(0)=3,即b=3,g(x)=x2+ax+3≤0,可得△=a2﹣12≥0,即a≥2(a≤﹣2舍去),又g(g(x)﹣3=(x2+ax+3)2+a(x2+ax+3)+3﹣3=(x2+ax+3)(x2+ax+3+a),由题意可得x2+ax+3+a≥0恒成立,可得△=a2﹣4(a+3)≤0,解得﹣2≤a≤6,又a>0,可得0<a≤6,综上可得2≤a≤6.【点评】本题考查抽象函数的奇偶性和单调性的判断和运用,以及不等式恒成立和成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年上学期高一期中数学试题及答案2020-2021学年上学期高一期中数学试题及答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集为R,集合A={x|<x<2},B={x|x≥1},则A∩B的值为()A。
{x|<x≤1}B。
{x|<x<1}C。
{x|1≤x<2}D。
{x|<x<2}答案】B解析】由题意可得R∩B={x|x<1},结合交集的定义可得A∩B={0<x<1},故本题选择B选项。
2.已知幂函数f(x)过点(2,1/4),则f(x)在其定义域内()A。
为偶函数B。
为奇函数C。
有最大值D。
有最小值答案】A解析】设幂函数为f(x)=xa,代入点(2,1/4),即2a=1/4,∴a=-2,f(x)=x-2,定义域为(-∞,0)(0,+∞),为偶函数且f(x)=x-2∈(0,+∞),故选A。
3.幂函数f(x)=(m2-2m+1)x2m-1在(0,+∞)上为增函数,则实数m的值为()A。
B。
C。
1或2D。
2答案】D解析】因为函数f(x)是幂函数,所以m2-2m+1=1,解得m=1或m=2,因为函数f(x)在(0,+∞)上为增函数,所以2m-1>0,即m>1/2,m=2,故选D。
4.函数的定义域为()A。
B。
(-2,1)C。
D。
(1,2)答案】D解析】因为x2-1>0,所以x+2>x2-1+2>1,即x+2>1,x>1-2=-1,所以x2-x+2>0,即x2>x-2x,所以x>-x2+2x=2-x(x-2),所以函数的定义域为(1,2)。
5.若函数f(x)=(a-1)x-2a(x<2),loga x(x≥2)在R上单调递减,则实数a的取值范围是()A。
(0,1)B。
(0,2]C。
[2/3,1)D。
(1,+∞)答案】C解析】若函数f(x)=a-1)x-2a(x<2)loga x(x≥2)在R上单调递减,则a-1<0a-1/xlna<0x≥2时,1/xlna<0所以a0,所以0<a<1,即选C。
6.下面各组函数中是同一函数的是()A。
y=-2x3与y=-x-2xB。
y=x2与y=|x|C。
f(x)=x与g(x)=x2/xD。
f(x)=2x2-1与g(x)=x+1×x-1答案】A23D.2答案】B解析】若a1,则f(a)不存在;若1a0,则f(a)2a3,若0a,则f(a)1log2a。
___(a)4,∴2a34或1log2a4。
解得a1或a18___18故选B.2时,y取到任意小于等于2的值,所以f(x)的值域为(,2].14.已知函数f(x)log12x1)log1x1),则f(10)等于_______.答案】log121)解析】将f(x)展开,得到f(x)log12x23x1),所以f(10)log121).15.已知函数f(x)x33x23x1,则f(x1)的最高次项系数为_______.答案】1解析】将x1代入f(x)中,得到f(x1)(x1)33(x1)23(x1)1。
展开后得到f(x1)x33x2x2,所以f(x1)的最高次项系数为1.16.已知函数f(x)x sinx,则f(x)在[0,]上的最小值为_______.答案】1解析】因为1sinx1,所以x sinx x1,所以f(x)的最小值为f()1.三、解答题:共2小题,共计30分.17.(15分)已知函数f(x)x3ax2bx c,满足f(1)f(0)f(1)0,且在区间[1,1]内的最大值为2,最小值为 2.1)求实数a,b,c的值;2)求函数f(x)在区间[2,2]上的最大值和最小值.解析】1)因为f(1)f(0)f(1)0,所以f(x)有三个零点,设它们为x1,x2,x3,则f(x)(x x1)(x x2)(x x3)。
所以f(x)的最大值为f(0)x1x2x3,最小值为f(1)x1x2(x1x2).又因为在区间[1,1]内的最大值为2,最小值为2,所以x1,x2,x3的取值范围为[1,0]和[0,1]。
所以x1x2x3a,x1x2x1x3x2x3b,x1x2x3c,解得a0,b2,c0.2)因为f(x)x32x,所以f(x)在[2,2]上的最大值为f(2)6,最小值为f(2)10.18.(15分)已知函数f(x)x2ax b,且f(1)1,f(0)1,f(1) 3.1)求实数a,b的值;2)若函数g(x)f(x)2x3,则g(x)在[1,1]上的最大值为5,求函数g(x)的解析式.解析】1)因为f(1)1,f(0)1,f(1)3,所以a1,b1.2)因为g(x)f(x)2x3,所以g(1)f(1)1,g(0)f(0)3,g(1)f(1)5。
所以g(1)2,g(0)2,g(1)8,又因为g(x)在[1,1]上的最大值为5,所以g(x)的最大值出现在x0处。
所以g(x)x2ax b2x3,代入a1,b1,得到g(x)x2x6.2) 求f(x)的单调增区间;3) 若存在x0使得f(x0)=0,求x0的值。
答案】(1)$g(x)=2^{\frac{x-3}{2}}$,$f(x)=\frac{n-2\cdot 2^{\frac{x-3}{2}}}{m}$;2)$(-\infty,3)$;3)$x_0=3+\log_2\frac{m}{n}$。
解析】1) 由已知得$g(3)=8$,设$g(x)=2^k$,则$2^k=8$,解得$k=3$,所以$g(x)=2^{\frac{x-3}{2}}$。
又因为$f(x)$是奇函数,所以$f(x)=-f(-x)$,即$n-2\cdot 2^{\frac{x-3}{2}}=2\cdot2^{\frac{3-x}{2}}-m-2\cdot 2^{-\frac{x-3}{2}}$,整理得$f(x)=\frac{n-2\cdot 2^{\frac{x-3}{2}}}{m+2\cdot 2^{\frac{x-3}{2}}}$。
2) $f'(x)=\frac{-2\cdot 2^{\frac{x-3}{2}}\cdot(m+2\cdot2^{\frac{x-3}{2}})-(-2\cdot 2^{\frac{x-3}{2}})\cdot(n-2\cdot2^{\frac{x-3}{2}})}{(m+2\cdot 2^{\frac{x-3}{2}})^2}$,化简得$f'(x)=\frac{4\cdot 2^{\frac{x-3}{2}}(2\cdot 2^{\frac{x-3}{2}}-n)}{(m+2\cdot 2^{\frac{x-3}{2}})^2}$。
因为$g(x)$是指数函数,所以$g(x)$在定义域内单调增,所以$2^{\frac{x-3}{2}}$在$(-\infty,3)$单调增。
当$2\cdot 2^{\frac{x-3}{2}}-n>0$时,$f'(x)>0$,即$f(x)$在$(-\infty,3)$单调增;当$2\cdot2^{\frac{x-3}{2}}-n0$时,即$x>3+\log_2\frac{4}{3}$,$f(x)$单调增。
综上可知,$f(x)$在$(-\infty,3)$单调增。
3) 由$f(x)$的解析式得$f(x)=\frac{n-2\cdot 2^{\frac{x-3}{2}}}{m+2\cdot 2^{\frac{x-3}{2}}}=0$,整理得$2^{\frac{x-3}{2}}=\frac{n}{2}$,代入$g(x)$的解析式中得$2^k=\frac{n}{2}$,解得$k=1$,所以$g(x)=2^{\frac{x-3}{2}}=\sqrt{2n}$。
代入$f(x)$的解析式中得$f(x)=\frac{n-2\sqrt{2n}}{m+2\sqrt{2n}}=0$,整理得$m=4n$。
代入$g(x)$的解析式中得$2^k=\sqrt{2n}$,解得$k=\frac{1}{2}\log_2 2n$,所以$g(3+\log_2\frac{m}{n})=2^{\frac{1}{2}\log_22n+\log_2\frac{m}{n}}=\sqrt{2n}\cdot\frac{m}{n}=\sqrt{8n}=2^ {\frac{5}{2}}$。
因为$f(x)$在$(-\infty,3)$单调增,所以当$f(x_0)=0$时,$x_0=3+\log_2\frac{m}{n}$。
代入得$x_0=3+\log_2\frac{4n}{n}=3+\log_2 4=5$。
1)设$g(x)=a^x$($a>0$且$a\neq1$),由$g(3)=8$得$a^3=8$,解得$a=2$,所以$g(x)=2^x$,$f(x)=\frac{n-2x}{x+1+m}$。
由$f(x)$是定义在$\mathbb{R}$上的奇函数,得$f(0)=0$,即$\frac{n}{m+2}=0$,解得$n=0$。
所以$f(x)=\frac{-2x}{x+1+m}$。
又因为$f(x)+f(-x)=0$,所以$f(x)$是在$\mathbb{R}$上递减的奇函数,即$f(x)y$。
2)由$f(x)$是递减的奇函数,得$f(2t-3)>f(k-t)$,即$\frac{-4t+6}{t-k+3}>\frac{-2k+2t}{t-k+3}$,化简得$2t-30$成立,所以$f(2t-3)>-f(t-k)$,即$\frac{-4t+6}{t-k+3}>-\frac{n-2t}{t-k+3}$,化简得$2t-33t-3$。
综上所述,$k>3t-3$。
因为$t\in[1,4]$,所以$k>9$。