乘法器幅度调制电路
乘法器调幅电路一般出现的问题及解决方法
![乘法器调幅电路一般出现的问题及解决方法](https://img.taocdn.com/s3/m/c7fbc25791c69ec3d5bbfd0a79563c1ec5dad7c9.png)
乘法器调幅电路一般出现的问题及解决方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!乘法器调幅电路一般出现的问题及解决方法在乘法器调幅电路中,常常会遇到一些问题影响其性能表现。
实验4 集成乘法器幅度调制电路
![实验4 集成乘法器幅度调制电路](https://img.taocdn.com/s3/m/e2c289d05022aaea998f0f7b.png)
实验4 集成乘法器幅度调制电路—、实验准备1.做本实验时应具备的知识点:●幅度调制●用模拟乘法器实现幅度调制●MC1496四象限模拟相乘器2.做本实验时所用到的仪器:●集成乘法器幅度调制电路模块●高频信号源●双踪示波器●万用表二、实验目的1.通过实验了解振幅调制的工作原理。
2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。
3.掌握用示波器测量调幅系数的方法。
三、实验内容1.模拟相乘调幅器的输入失调电压调节。
2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。
3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。
4.用示波器观察调制信号为方波、三角波的调幅波。
四、基本原理所谓调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。
目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。
1.MC1496简介MC1496是一种四象限模拟相乘器,其内部电路以及用作振幅调制器时的外部连接如图8-1所示。
由图可见,电路中采用了以反极性方式连接的两组差分对(T 1~T 4),且这两组差分对的恒流源管(T 5、T 6)又组成了一个差分对,因而亦称为双差分对模拟相乘器。
其典型用法是:⑻、⑽脚间接一路输入(称为上输入v 1),⑴、⑷脚间接另一路输入(称为下输入v 2),⑹、⑿脚分别经由集电极电阻R c 接到正电源+12V 上,并从⑹、⑿脚间取输出v o 。
⑵、⑶脚间接负反馈电阻R t 。
⑸脚到地之间接电阻R B ,它决定了恒流源电流I 7、I 8的数值,典型值为6.8k Ω。
⒁脚接负电源-8V 。
⑺、⑼、⑾、⒀脚悬空不用。
由于两路输入v 1、v 2的极性皆可取正或负,因而称之为四象限模拟相乘器。
可以证明:122th 2co t T R v v v R v ⎛⎫=⋅ ⎪⎝⎭,因而,仅当上输入满足v 1≤V T (26mV)时,方有:12co t TR v v v R v =⋅,才是真正的模拟相乘器。
高频电路实验六(幅度调制器)
![高频电路实验六(幅度调制器)](https://img.taocdn.com/s3/m/628d62e1998fcc22bcd10dbf.png)
实验六 低电平幅度调制器一、实验目的1、掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与两输入信号的关系。
2、掌握测量调幅度的方法。
3、通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指示书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验仪器双踪示波器,数字万用表,高频电路实验装置四、实验原理1、用乘法器实现幅度调制的原理幅度调制就是使载波的振幅受调制信号的控制而作周期性的变化,调幅波的频率与载波信号的频率相同,而振幅与调制信号的振幅成线性关系。
幅度调制器分高电平调幅和低电平调幅两种,高电平调幅是在丙类放大器中实现的,低电平调幅一般通过乘法器来实现。
模拟乘法器能够实现两个模拟信号u 1(t )与u 2(t )的乘积运算。
若载频信号、调制信号分别为t U ωcos Cm 和)(t u Ω,则要得到双边带调幅波,需使t U t u ωcos )(Cm 1=,)()(2t u t u Ω=;要得到普通调幅波,需使t U t u ωcos )(Cm 1=,0)()(02>+=ΩU t u t u 。
普通调幅波的调幅度m a 与其最大峰-峰值U o,p-p,max 和最小峰-峰值U o,p-p,min 的关系为o,p-p,max o,p-p,mina o,p-p,max o,p-p,min U U m U U -=+。
2、集成模拟乘法器MC1496简介MC1496是一种典型的集成双差分对模拟乘法器,其内部电路及各引脚功能如图3-1所示。
在2脚与3脚间外接1k Ω电阻,可以增大1脚与4脚间所加信号的动态范围,使V5与V6的集电极电流之差与1脚与4脚间的电压成正比,因此调制信号应加在1脚与4脚之间。
载波信号应加在8脚与10脚之间,用以改变三极管V1~V4集电极电流的分配比例,或使V1~V4工作在开关状态(这时模拟乘法器相当于一个二极管乘法电路)。
实验四乘法器幅度调制电路
![实验四乘法器幅度调制电路](https://img.taocdn.com/s3/m/36846d46a32d7375a5178013.png)
实验四 乘法器幅度调制电路一、实验目的1. 通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。
2. 掌握用集成模拟乘法器MC1496实现AM 和DSB-SC 的方法,并研究调制信号、载波信号与已调波之间的关系。
3. 掌握在示波器上测量与调整调幅波特性的方法。
二、实验使用仪器 1.集成乘法调幅实验板2.高频信号源、100MHz 双踪示波器、低频信号源、万用表. 三、实验基本原理与电路 1.调幅信号的分析(1) 普通调幅波(AM )(表达式、波形、频谱、功率) (a).普通调幅波(AM )的表达式、波形设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为:t U u c cm c ωcos =,普通调幅波(AM )的表达式为AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos (4-1)式中,a m 称为调幅系数或调幅度。
由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波幅度变化越大,a m 应小于或等于1。
如果a m >1,调幅波产生失真,这种情况称为过调幅。
图4-1 调幅波的波形(b ). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得:t U m t U m t U u c cm a c cm a c cm AM )cos(21)cos(21cos Ω-+Ω++=ωωω (4-2) 它由三个高频分量组成。
将这三个频率分量用图画出,便可得到图4-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。
调幅的过程就是在频谱上将低频调制信号搬移到高频载波分量两侧的过程。
在单频调制时,其调幅波的频带宽度为调制信号频谱的两倍,即F B 2=.(c ).普通调幅波(AM )的功率载波分量功率:L cmc R U P 221=R L 为负载电阻值。
实验四 乘法器幅度调制电路
![实验四 乘法器幅度调制电路](https://img.taocdn.com/s3/m/8107f24c69eae009581bec12.png)
实验四 乘法器幅度调制电路一、实验目的1. 通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。
2. 掌握用集成模拟乘法器MC1496实现AM 和DSB-SC 的方法,并研究调制信号、载波信号与已调波之间的关系。
3. 掌握在示波器上测量与调整调幅波特性的方法。
二、实验使用仪器 1.集成乘法调幅实验板2.高频信号源、100MHz 双踪示波器、低频信号源、万用表. 三、实验基本原理与电路 1.调幅信号的分析(1) 普通调幅波(AM )(表达式、波形、频谱、功率) (a).普通调幅波(AM )的表达式、波形设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为:t U u c cm c ωcos =,普通调幅波(AM )的表达式为AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos (4-1)式中,a m 称为调幅系数或调幅度。
由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波幅度变化越大,a m 应小于或等于1。
如果a m >1,调幅波产生失真,这种情况称为过调幅。
未调制状态调制状态图4-1 调幅波的波形(b ). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得:t U m t U m t U u c cm a c cm a c cm AM )cos(21)cos(21cos Ω-+Ω++=ωωω (4-2) 它由三个高频分量组成。
将这三个频率分量用图画出,便可得到图4-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。
调幅的过程就是在频谱上将低频调制信号搬移到高频载波分量两侧的过程。
在单频调制时,其调幅波的频带宽度为调制信号频谱的两倍,即F B 2=.(c ).普通调幅波(AM )的功率载波分量功率:Lcmc R U P 221=R L 为负载电阻值。
幅度调制及解调实验2
![幅度调制及解调实验2](https://img.taocdn.com/s3/m/279a803967ec102de2bd89d6.png)
幅度调制及解调实验一、实验目的1、理解幅度调制与检波的原理;2、掌握用集成乘法器构成调幅与检波电路的方法。
二、实验原理实验电路图如图2-2所示调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。
而检波则是从调幅波中取出低频信号。
振幅调制信号按其不同频谱结构分为普通调幅(AM )信号,抑制载波的双边带调制(DSB )信号,单边带调制(SSB )信号。
此实验主要涉及普通调幅(AM )及检波原理。
三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器 四、实验内容及步骤1、“测控电路二”实验挂箱接入12V ±直流电源;2.调幅波的观察(1)把“U12信号产生单元”电源开关拨到“开”方向,调节此单元的电位器(电位器W1调节信号幅度,电位器W2调节信号频率),使之输出频率为Z 3KH .1、幅值为P P 1V -的正弦波信号,接入“U1调幅单元”的调制波输入端;(2)调节实验屏上的函数信号发生器,使之输出频率为Z 100KH 、幅值为P P 4.0V -的正弦波信号,接入“U1调幅单元”的载波输入端。
0tUs图2-1 普通调幅(AM )波波形 (3)“U1调幅单元”的输出端接入示波器CH1,调节“U1调幅单元”的电位器W ,在示波器上观测到如图2-1所示的普通调幅(AM )波。
3.解调波的观察(1)在保持调幅波的基础上,将“U1调幅单元”的输出端接入“U2解调单元”的调幅波输入端,把输入“U1调幅单元”的载波信号接入“U2解调单元” 载波输入端; (2)“U2解调单元”的输出端接入虚拟示波器的CH2,调节“U2解调单元“的电位器W1,观测到解调信号。
五、实验注意事项1、实验挂箱中的直流电源正负极切忌接反,否则就会烧坏实验箱上的集成芯片。
2、为了得到更好的实验效果,实验时,外加信号的幅度不宜过大,请按照“实验内容及步骤”说明部分做实验。
8101423145612MC1496C20.1u FR5750R6750R71K R81KR251R11KC30.1u FR41KR31K R103.3KR113.3KC50.1u FR96.8KW147K-8V+12V132V VGNDINOUT 79L08-12V8101423145612MC1496C10.1u FC20.1u FR5910R6910R71KR81KC40.1u FR251R11KC30.1u FR41KR31K R103.3KR113.3KC60.01uF R96.8KW147K+12VR1310KC50.01uFR1210KR1451K R16200KR17200KR1551K3261574U?TL081+VCC -VEE0.33uF0.1u F调制信号输入载波输入C?10u F载波输入调幅波输出调幅波输入解调输出图2-2 幅度调制与解调单元六、思考题集成乘法器调幅及解调电路有何特点?试简述它们的工作原理。
乘法器调幅电路
![乘法器调幅电路](https://img.taocdn.com/s3/m/464d8dd7b9f3f90f76c61b4a.png)
*******************实践教学*******************2010年秋季学期高频电子线路课程设计题目:常规调幅电路的设计专业班级:通信工程姓名:学号:指导教师:成绩:摘要随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。
在本次课程设计实验中,通过对高频电子线路的振幅调制与解调,模拟乘法器的学习设计出由双差分对乘法器为主构成的乘法器常规调幅电路,通过对电路的设计,参数的确定,设计出了适合本课题的方案,按照设计的电路图在Multisim10中画出具体的仿真电路图并进行了调试,观察实验结果并与课题要求的性能指标做了对比,最后对实验结果经行了分析总结,本实验采用Multisim10软件,由自己单机安装并仿真关键字:双差分对乘法器调制Multisim10目录第1章乘法器常规调幅设计方案及意义1.1 乘法器常规调幅的设计意义1.2 乘法器常规调幅设计的总体方案1.3 总体设计方案框图及分析第2章乘法器常规调幅电路设计2.1乘法器常规调幅电路设计思路及各部分结构原理2.2 乘法器常规调幅电路参数选择计算2.3 乘法器常规调幅电路设计2.4 设计电路仿真实现2.5设计电路仿真结果分析2.6仿真电路设计失真分析第3章设计总结参考文献第1章乘法器常规调幅设计方案及意义1.1 乘法器常规调幅的设计意义随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。
用集成模拟乘法器可以构成性能优良的调幅和解调电路,,其电路元件参数通常采用器件典型应用参数值。
作调幅时,高频信号加到输入端,低频信号加到Y 输入端;作解调时,同步信号加到X 输入端,已调信号加到Y 输入端。
调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。
集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
幅度调制实验
![幅度调制实验](https://img.taocdn.com/s3/m/e54bddc5b8d528ea81c758f5f61fb7360b4c2b10.png)
实验三幅度调制一、实验目的1、理解用乘法器实现幅度调制的原理。
2、掌握用集成模拟乘法器构成的调幅电路。
3、掌握集成模拟乘法器的使用方法。
二、实验原理1、调幅原理调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。
振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。
把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
2、集成四象限模拟乘法器MC1496简介:MC1496是目前常用的平衡调制/解调器。
它内部电路含有8 个有源晶体管,有两个输入端V X、V Y和一个输出端V O。
一个理想乘法器的输出为V O=KV X V Y,而实际上输出存在着各种误差,其输出的关系为:V O=K(V X +V XOS)(V Y+V YOS)+V ZOX。
为了得到好的精度,必须消除V XOS、V YOS与V ZOX三项失调电压。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
本实验箱在幅度调制,同步检波,混频电路三个基本实验项目中均采用MC1496。
MC1496的管脚功能和内部原理图如图1所示,各引脚功能如下:1)、SIG+ 信号输入正端2)、GADJ 增益调节端3)、GADJ 增益调节端4)、SIG- 信号输入负端5)、BIAS 偏置端6)、OUT+ 正电流输出端7)、NC 空脚8)、CAR+ 载波信号输入正端9)、NC 空脚10)、CAR- 载波信号输入负端11)、NC 空脚12)、OUT- 负电流输出端13)、NC 空脚14)、V- 负电源三、实际电路分析本实验的电路如图2所示,图中U301是幅度调制乘法器,音频信号和载波分别从J301和J302输入到乘法器的两个输入端,K301和K303可分别将两路输入对地短路,以便对乘法器进行输入失调调零。
实验一乘法器调幅实验
![实验一乘法器调幅实验](https://img.taocdn.com/s3/m/877561bdd0f34693daef5ef7ba0d4a7302766ce2.png)
实验一乘法器调幅实验一、实验目的1、掌握AM、DSB和SSB调制的原理与性质;2、掌握模拟乘法器的工作原理及其调整方法;3、了解小信号检波的原理;4、熟悉用二极管实现检波的方法。
二、实验内容1、产生并观察AM、DSB的波形;2、观察AM、DSB、SSB波的频谱;3、观察DSB波和过调幅时的反相现象;4、用二极管小信号检波器对调幅波进行检波。
三、实验仪器1、20MHz模拟示波器2、调试工具四、实验原理模拟乘法器调幅实验原理图如图1所示。
图1 模拟乘法器调幅实验原理图调制信号从TP2输入,载波从TP1输入。
合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压(调节W1),可在TT1处观察普通调幅波(AM)和抑制载波双边带调幅波(DSB)。
FL1为10.7MHz的陶瓷滤波器,它的作用是对TT1处调幅波进行滤波,得到抑制载波单边带调幅波(SSB)。
为兼容检波电路的滤波网络,在进行调制与检波实验时,调制信号的频率选择为1KHz左右,载波信号的频率选择为10.7MHz。
为了便于观察各种调幅波的频谱和DSB波的相位突变现象,调制信号的频率选择为500KHz,载波信号的频率选择为11.2MHz。
模拟乘法器调幅部分所产生的普通调幅波和抑制载波双边带调幅波,是小信号检波的输入信号。
五、实验步骤1、连接实验电路在主板上正确插好幅度调制与解调模块,开关K1、K2、K8、K9、K10、K11向左拨,主板GND接模块GND,主板+12V接模块+12V,主板-12V接模块-12V,检查连线正确无误后,打开实验箱右侧的船形开关,K1、K2向右拨。
若正确连接,则模块上的电源指示灯LED1、LED2亮。
2、产生并观察AM波和DSB波(1)输入调制信号VΩ本步骤的调制信号可由由低频信号源模块提供。
参考低频信号源的使用方法,用低频信号源产生频率为1KHz,峰峰值约700mV的正弦波调制信号VΩ。
连接信号源的Vout与幅度调制与解调模块的TP2。
高频电路-集成乘法器幅度调制电路实验报告
![高频电路-集成乘法器幅度调制电路实验报告](https://img.taocdn.com/s3/m/9189275e6f1aff00bfd51e25.png)
《高频电子电路》课程实验报告
万用表
1.模拟相乘调幅器的输入失调电压调节。
2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。
3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。
4.用示波器观察调制信号为方波、三角波的调幅波。
AM正常波形应为下图所示:求Ma:
通过本次实验,了解了调制信号、载波信号与已调波之间的关系,掌握了在示波器上测量与调整调幅波特性的方法。
若调制信号为单一频率的余弦波:,
载波信号为:
则普通调幅波(AM)的表达式为
式中ma称为调幅系数或调
幅度。
由于调幅系数ma与调制电压的振幅成正比,ma越大,调幅波幅度变化越大。
模拟乘法器调幅实验报告
![模拟乘法器调幅实验报告](https://img.taocdn.com/s3/m/7456ae78590216fc700abb68a98271fe900eaf4b.png)
模拟乘法器调幅实验报告模拟乘法器调幅实验报告引言:调幅(Amplitude Modulation, AM)是一种常用的调制技术,广泛应用于无线通信、广播电视等领域。
在调幅技术中,模拟乘法器是一个关键的组件,它能够实现信号的调幅处理。
本实验旨在通过搭建模拟乘法器电路,深入了解调幅原理,并通过实验验证其效果。
一、实验目的通过搭建模拟乘法器电路,掌握调幅原理,并验证其调幅效果。
二、实验原理调幅是通过将调制信号与载波信号相乘,实现信号的幅度调制。
模拟乘法器是实现这一功能的关键元件。
在本实验中,我们采用二极管作为模拟乘法器的核心元件。
当二极管正向偏置时,其电流与输入电压成正比。
将调制信号与载波信号输入到二极管的正向偏置端,通过电流与电压的乘积,实现信号的幅度调制。
三、实验器材和仪器1. 信号发生器:提供调制信号和载波信号。
2. 二极管:作为模拟乘法器的核心元件。
3. 示波器:用于观察输出信号的波形。
四、实验步骤1. 搭建电路:将信号发生器的调制信号输出与载波信号输出分别连接到二极管的正向偏置端,将二极管的反向端接地。
将二极管的输出端连接到示波器,观察输出信号的波形。
2. 调节信号发生器:分别调节调制信号和载波信号的频率、幅度和相位,观察输出信号的变化。
3. 记录实验数据:记录不同调制信号和载波信号参数下的输出信号波形和幅度。
五、实验结果与分析在实验中,我们通过调节信号发生器的调制信号和载波信号的频率、幅度和相位,观察了输出信号的变化。
实验结果显示,当调制信号的频率与载波信号的频率相等时,输出信号呈现出明显的幅度调制效果。
当调制信号的幅度增大时,输出信号的幅度也相应增大。
当调制信号的相位与载波信号的相位相差90度时,输出信号的幅度最大,表现出最明显的幅度调制效果。
通过实验结果的分析,我们可以得出以下结论:1. 调制信号的频率与载波信号的频率相等时,能够实现明显的幅度调制效果。
2. 调制信号的幅度与输出信号的幅度成正比,调制信号的幅度增大时,输出信号的幅度也相应增大。
实验一 乘法器调幅实验
![实验一 乘法器调幅实验](https://img.taocdn.com/s3/m/6814ae785acfa1c7aa00cc67.png)
实验一乘法器调幅实验一、实验目的1、掌握AM、DSB和SSB调制的原理与性质;2、掌握模拟乘法器的工作原理及其调整方法;3、了解小信号检波的原理;4、熟悉用二极管实现检波的方法。
二、实验内容1、产生并观察AM、DSB的波形;2、观察AM、DSB、SSB波的频谱;3、观察DSB波和过调幅时的反相现象;4、用二极管小信号检波器对调幅波进行检波。
三、实验仪器1、20MHz模拟示波器2、调试工具四、实验原理模拟乘法器调幅实验原理图如图1所示。
图1 模拟乘法器调幅实验原理图调制信号从TP2输入,载波从TP1输入。
合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压(调节W1),可在TT1处观察普通调幅波(AM)和抑制载波双边带调幅波(DSB)。
FL1为10.7MHz的陶瓷滤波器,它的作用是对TT1处调幅波进行滤波,得到抑制载波单边带调幅波(SSB)。
为兼容检波电路的滤波网络,在进行调制与检波实验时,调制信号的频率选择为1KHz左右,载波信号的频率选择为10.7MHz。
为了便于观察各种调幅波的频谱和DSB波的相位突变现象,调制信号的频率选择为500KHz,载波信号的频率选择为11.2MHz。
模拟乘法器调幅部分所产生的普通调幅波和抑制载波双边带调幅波,是小信号检波的输入信号。
五、实验步骤1、连接实验电路在主板上正确插好幅度调制与解调模块,开关K1、K2、K8、K9、K10、K11向左拨,主板GND接模块GND,主板+12V接模块+12V,主板-12V接模块-12V,检查连线正确无误后,打开实验箱右侧的船形开关,K1、K2向右拨。
若正确连接,则模块上的电源指示灯LED1、LED2亮。
2、产生并观察AM波和DSB波(1)输入调制信号VΩ本步骤的调制信号可由由低频信号源模块提供。
参考低频信号源的使用方法,用低频信号源产生频率为1KHz,峰峰值约700mV的正弦波调制信号VΩ。
连接信号源的Vout与幅度调制与解调模块的TP2。
用模拟乘法器构成的调幅电路
![用模拟乘法器构成的调幅电路](https://img.taocdn.com/s3/m/144c9f88960590c69ec37693.png)
用模拟乘法器构成的调幅电路
用模拟乘法器构成的调幅电路
电路的功能
高频的振幅调制可采用改变晶体管集电压对对载波振幅进行调制的方式。
对于调幅来说,由于只对载波振幅进行控制,所以使用可变增益元件。
本电路采用模拟乘法器,用载波信号与调制信号相乘来获得AM调制波。
因为没有使用变压器,所以与载波信号频率无关,可作为通用AM调制电路使用。
电路工作原理
单片IC乘法器ICL8013其输入电压范围为±10V,可作为完全的4象限乘法器。
输出电压EO可建立EO=X.Y/10的关系式。
最初的4象限乘法器是一种用于平衡调制的集成电路。
本电路加了固定置偏,对无调制信号时的载波电平进行了调整,因为输入电压为0~±10V,若进行+5V或-5V的置偏便可使用±5VMAX的调制信号,扩大了动态范围。
载波信号频率最高可达100KHZ左右,Y输入端最大输入电压为20VP-P。
20VP-P的信号和5V相乘,可获得10VP-P的调幅波(EO=20*5/10=10P-P)。
ICL8013的外部调整端子全部接地,这是因为用于AM调制时性能要求不。
3集成乘法器幅度解调电路
![3集成乘法器幅度解调电路](https://img.taocdn.com/s3/m/ca78adbd1a37f111f1855b1c.png)
实验3 集成乘法器幅度解调电路
—、实验准备
1.做本实验时应具备的知识点:
●振幅解调
●模拟乘法器实现同步检波
2.做本实验时所用到的仪器:
●集成乘法器幅度解调电路模块
●集成乘法器幅度调制模块
●高频信号源
●双踪示波器
●万用表
二、实验目的
1.熟悉电子元器件和高频电子线路实验系统;
2.掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB波解调的方法;3.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;
4.理解同步检波器能解调各种AM波以及DSB波的概念。
三、基本原理
振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。
通常,振幅解调的方法有包络检波和同步检波两种,本实验采用同步检波,即集成乘法器幅度解调电路。
四、实验步骤
(一)实验准备
1.选择好需做实验的模块:集成乘法器幅度调制电路、集成乘法器幅度解调电路。
2.接通实验板的电源开关,使相应电源指示灯发光,表示已接通电源即可开始实验。
注意:做本实验时仍需重复调幅实验部分内容,先产生调幅波,再供这里解调之用。
(二)集成电路(乘法器)构成的同步检波
1.AM波的解调
2.DSB波的解调
DSB正弦波的解调波形图
三角波DSB的解调波形图
方波DSB的解调波形图。
实验九 集成乘法器幅度调制电路
![实验九 集成乘法器幅度调制电路](https://img.taocdn.com/s3/m/6df0a52caaea998fcc220e3f.png)
实验九及实验十集成乘法器幅度调制电路与振幅解调一、实验准备1、做本实验时应具备的知识点:幅度调制用模拟乘法器实现幅度调制MC1496四象限模拟相乘器振幅解调二极管包络检波模拟乘法器实现同步检波2、做本实验时所用到的仪器集成乘法器幅度调制电路模块晶体二极管检波器模块高频信号源双踪示波器万用表二、实验目的1.熟悉电子元器件和高频电子线路试验系统;2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号、载波之间的关系;3.掌握在示波器上测量调幅系数的方法;4.通过实验中波形的变换,学会分析实验现象;5.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;6.理解同步检波器能解调各种AM波以及DSB波的概念。
三、实验内容1.模拟相乘调幅器的输入失调电压调节、直流调制特性测量。
2.用示波器观察DSB波形。
3.用示波器观察AM波形。
4.用示波器观察调制信号为方波时的调幅波。
四、实验步骤AM(常规调幅)波形测量1、AM正常波形观察,记录m=0.3时V ab值和AM波形。
Vab=0.123V,b=0.874V,a=0.452V2、不对称调制的AM波形观察3、100%调制观察4、过调制时的AM波形观察5、上输入为大载波时的调幅波观察6、调制信号为三角波时的调幅波观察7、二极管包络检波器检波8、同步检波器检波。
五、实验数据记录调制信号载波输入端测得的调制信号M=0.3时检波后相对输入端测得的调制信号有放大M=100%(即近似DSB)失真同步检波能基本完成解调M>100%能基本完成解调包络检波六、思考问题1.由本实验知:在图10-1中的并联电容10C07对AM波的解调有何影响?由此可以得出什么结论?加大滤波电容,输出减小,并且有失真。
2.由本实验知:在图10-2中的 型低通滤波器对AM波、DSB波的解调有何影响?由此可以得出什么结论?π型低通滤波器在此电路中可以滤除调制信号意外的频率成分,其为同步检波电路中不可缺少的成分。
集成乘法器幅度调制电路
![集成乘法器幅度调制电路](https://img.taocdn.com/s3/m/a1445fc47375a417876f8f59.png)
实验9 集成乘法器幅度调制电路一、实验步骤 1.实验准备⑴ 在实验箱主板上插上集成乘法器幅度调制电路模块。
接通实验箱上电源开关,按下模块上开关8K1,此时电源指标灯点亮。
⑵ 调制信号源:采用低频信号源中的函数发生器,其参数调节如下〔示波器监测〕: •频率范围:1kHz •波形选择:正弦波 •输出峰-峰值:200mV ⑶载波源:采用高频信号源: •工作频率:2MHz 用频率计测量;•输出幅度〔峰-峰值〕:200mV ,用示波器观测。
2.DSB 〔抑制载波双边带调幅〕波形观察在IN1、IN2端已进展输入失调电压调节〔对应于8W 02、8W 01的调节〕的根底上,可进展DSB-SC 测量。
DSB 信号波形观察将高频信号源输出的载波接入IN1,调制信号接入IN2。
示波器CH1接调制信号〔可用带“钩〞的探头接到8TP02上〕,示波器CH2接OUT 端,即8TP03,即可观察到调制信号及其对应的DSB 信号波形。
4.AM 〔常规调幅〕波形测量 ⑴AM 正常波形观察在保持8W 02已进展载波输入端〔IN1〕输入失调电压调节的根底上,改变8W 01,并观察当8P01到8P02两点之间的电压〔设该两点之间的电压为ABV〕从-0.3V 变化到+0.3V 时的AM 波形〔示波器CH1接8TP02, CH2接8TP03〕。
可发现:当 | ABV| 增大时,载波振幅增大,因而调制度m 减小;而当V AB 的极性改变时,AM 波的包络亦会有相应的改变。
当ABV =0时,那么为DSB 波h 。
记录m =0.3时ABV值和AM 波形,最后再返回到ABV= 0.15V 的情形。
m=0.3,时V=0.2V,此时AM波形:AB⑵不对称调制度的AM波形观察在保持8W01已调节到V AB= 0.15V的根底上,观察改变8W02时的AM波形〔示波器CH1接8TP02, CH2接8TP03〕。
可观察到调制度不对称的情形。
最后仍调整到调制度对称的情形。
实验四 乘法器幅度调制电路
![实验四 乘法器幅度调制电路](https://img.taocdn.com/s3/m/e5d199a7284ac850ad024219.png)
实验四 乘法器幅度调制电路一、实验目的1. 通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。
2. 掌握用集成模拟乘法器MC1496实现AM 和DSB-SC 的方法,并研究调制信号、载波信号与已调波之间的关系。
3. 掌握在示波器上测量与调整调幅波特性的方法。
二、实验使用仪器 1.集成乘法调幅实验板2.高频信号源、100MHz 双踪示波器、低频信号源、万用表. 三、实验基本原理与电路 1.调幅信号的分析(1) 普通调幅波(AM )(表达式、波形、频谱、功率) (a).普通调幅波(AM )的表达式、波形设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为:t U u c cm c ωcos =,普通调幅波(AM )的表达式为AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos (4-1)式中,a m 称为调幅系数或调幅度。
由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波幅度变化越大,a m 应小于或等于1。
如果a m >1,调幅波产生失真,这种情况称为过调幅。
未调制状态调制状态图4-1 调幅波的波形(b ). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得:t U m t U m t U u c cm a c cm a c cm AM )cos(21)cos(21cos Ω-+Ω++=ωωω (4-2) 它由三个高频分量组成。
将这三个频率分量用图画出,便可得到图4-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。
调幅的过程就是在频谱上将低频调制信号搬移到高频载波分量两侧的过程。
在单频调制时,其调幅波的频带宽度为调制信号频谱的两倍,即F B 2=.(c ).普通调幅波(AM )的功率载波分量功率:L cmc R U P 221=R L 为负载电阻值。
基于BG314乘法器调幅电路的Multisim仿真
![基于BG314乘法器调幅电路的Multisim仿真](https://img.taocdn.com/s3/m/05fcccc9bb4cf7ec4afed0d8.png)
基于BG314乘法器调幅电路的Multisim仿真基于BG413的调幅电路0 引言在无线通信系统中,为了将信号从发射端传输到接收端,必须进行调制和解调。
振幅调制是调制的一种,其原理框图如下。
它是利用调制信号去控制高频率的载波信号,使载波的振幅随调制信号的变化而变化。
其调制过程是把调制信号的频谱从低频段搬移到载频两侧,即产生了新的频率分量,通常采用具有相乘特性的非线性器件都可以实现调幅。
本文通过Multisim 软件仿真基于模拟乘法器BG314的调幅电路系统。
1 模拟乘法器BG314BG314是在MC1596基础上发展出的MC1595的国内型号。
其原理电路如下图所示:U c’U o经过分析可知,BG314具有如下特点:1.输入电压只包含两个输入电压乘积项,没有多余的成分;2.乘积系数与外接负载电阻R L成正比,与外接反馈电阻R X和R Y成反比,并与恒流源I ox成反比;3.通过平衡差分对的补偿作用,乘积系数与晶体管参数U T无关,不受温度变化的影响;4.输入电压U x和U y既可以是正值,也可以是负值,故称为四象限模拟乘法器。
它的输入U x和U y,输出U o均可达±10V很大的线性动态范围。
2 振幅调制器的仿真测试下图是用BG314乘法器构成的调幅电路的仿真图。
其中IO9端口接入高频载波,IO4接入低频的调制波;图中电位器起着平衡调节的作用,它控制着输出载波分量的泄漏,当电位器R w完全调平衡时,载漏接近为零,可以调成双边带振幅调制电路。
在输入端加20mv/10kHz的调制波和25mV/750kHz的载波,调节滑动变阻器观察输出有什么不同。
当电位器去48%阻值时:图1当电位器去49%阻值时:图2当电位器去51%阻值时:图4由上述图1和图5可知,输出为全载波调幅信号,调幅指数 <1,可看出调幅波幅度的变化量随调制信号波形的变化呈线性变化。
当调整电位器阻值,使输入直流发生变化,如图2和图4所示,可看出调幅波的包络变化与调制信号不再相同,产生了失真,这就是过调制现象,所以要求普通调幅的调幅指数必须不能大于1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高频电子线路》设计报
告
基于MC1596乘法器的调幅电路
制作人:李超08111100
谢攀08111040
汪新皓08111041
乘法器幅度调制电路
一、 设计目的
1.复习和巩固以前所学内容,了解乘法器1596的工作原理。
2.熟练multisium 等仿真软件的使用,提高实际动手能力。
二、 设计原理方案
1. 调幅信号的分析
(1) 普通调幅波(AM )
调制信号为单一频率的余弦波:t U u m Ω=ΩΩcos ,载波信号为t U u c cm c ωcos =,普通调幅波(AM )的表达式为: t t m U t t U u c a cm c AM AM ωωcos )cos 1(cos )(Ω-==
式中,m a 称为调幅系数和调幅度,由于调幅系数m a 与调制电压的振幅成正比,即m U Ω越大,m a 越大,调幅波幅度变化越大,m a 应小于或等于1。
如果m a >1,调幅波产生失真,这种情况称为过调幅。
调幅波波形
(2)普通调幅波的频谱
普通调幅波的表达式展开得:
它由三个高频分量组成。
将这三个高频用图画出,便可得到如下图所
示的频谱图。
在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段早横轴上的位置代表其频率。
普通调幅波的频谱图
调幅的过程就是在频谱上将低频调制信号搬移到高频载波分量两侧的过程。
再单调频调制时,其调幅波的频带宽度为调制信号频谱的两倍,即B=2F 。
(3)普通调幅波的功率 载波分量功率:L
cm c R U P 221= R L 为负载电阻值,上边频分量功率:
c a L cm a L cm a P m R U m R U m P 222214
1811)2(21=== 边频分量功率:c a L cm a L cm a P m R U m R U m P 222224
1811)2(21=== 因此,调幅波在调制信号的一个周期内的平均功率为:
c a c P m P P P P )2
1(221+=++= 可见,边频功率随m a 的增大而增加,当m a =1时,边频功率最大,即c P P 3
2=
这时上、下边功率之和只有载波功率的一半,这也就是说,用这种调制方式,发送端发送的功率被不携带信息的载波占去了很大的比例,显然,功率利用率不高。
但由于这种调制设备简单,特别是解调更简
单,便于接受,所以它某些领域广泛应用。
(4)抑制载波双边带调幅
由于载波不携带信息,因此,为了节省发射功率,可以只发射含有信息的上、下两个边带,而不发射载波,这种调制方式称为抑制载波的双边带调幅,简称双边带调幅,用DSB表示。
可将抑制信号
u和
载波信号
u直接加到乘法器或平衡调幅器电路得到。
双边带调幅信号
c
写成:
A为由调幅电路决定的系数:是双边带高频信号的振幅,它与调制信号成正比。
双边带调幅的调制信号、调幅波形如下图所示。
双边带调幅的调制信号、调幅波DSB/SC-AM频谱图
由以上讨论可以看出DSB/SC-AM调制信号有如下特点:DSB/SC-AM信号的幅值仍随调制信号而变化,但与普通调幅波不同,DSB/SC-AM的包络不再反映调制信号的形状,仍保持调幅波频谱搬移的特征。
在调制信号的正负半周,载波的相位反相,即高频振荡的相位在
瞬间有180o的突变。
)(
u
t
D SB
DSB/SC-AM调制,信号仍集中在载频ωo附近,所占频带为
B DSB=2F MAX
由于DSB/SC-AM调制抑制了载波,输出功率是有用信号,它比普通调幅波功率利用率得到了较大的提高。
但在频带利用率上没有什么改进。
(5)抑制载波单边带调幅
实现抑制载波的单边带调幅的方法很多,其中最简单的方法是在双边带调制后接一个边带滤波器,它可以取出一个边带,抑制另一个边带。
当边带滤波器的通带位于载频以上时,提取上边带,否则提取下边带。
用这种方法实现单边带调幅的数学模型如下图所示:
实现单边带调幅信号的数学模型
通过边带滤波器后,就可得到上边带或下边带即:
从上式看出,SSB信号在传输信号时,不但功率利用率高,而且它所占的频带比AM、DSB减小了一半,即B SSB=F MAX,频带充分利用,因此已成为短波通讯中的一种重要调制方式。
三、真与调试
建立如下图所示的仿真电路图。
其中,A 1为乘法器,v 1(t)为载波信号,v 2(t)为调制信号。
载波信号参数设置为:电压幅值V 2m =1V ,频率f c =20kHZ 。
调制信号参数设置为:电压幅值V 1m =1V ,频率f=1kHZ 。
电压源V cc =2V 。
由图可知,乘法器输出的调幅波为V AM =[V CC +V 1)(t ]V 2)(t =[2+COS
(2)1000202cos()]1000
t t ⨯⨯⨯ππ )1000212cos(5.0)1000192cos(5.0)1000202cos(2t V t t ⨯⨯+⨯⨯+⨯⨯=πππ 由上述表达式计算出调幅度为cc
m V V m ==0.5 调幅波中有三个频率分量:频率为f c =20kHZ 、幅度为2V 的载波分量;频率为f sh =f c +f=21kHZ 、幅度为0.5V 的上边分量;频率为f sl =f c -f=19kHZ 、幅度为0.5V 的下边频分量。
带宽BW=2f=2kHZ 。
运行仿真电路,进行理论验证。
双击示波器观察调幅波波形如下
图所示。
由此还可以测出调幅波的最大值和最小值,计算出调幅度为
5.01
313(min)(max)(min)
(max)=+-=+-=AM AM AM AM V V V V m 改变调制信号的电压,可以观察调幅度M 对波形的影响,当调
幅度1=m 时,出现过调。
利用频谱分析仪可以观察调幅波的频谱分布,如下图所示。
由频谱分析仪面板右下方可以看到,指针当前所处频率为20K HZ ,中心幅度为2V ,20K HZ 载波分量幅值最大,移动指针,可以观察到在21K HZ 和19K HZ 有2个上下边频分量,幅值为0.5V 。
调幅度取0.5时的调幅输出波形
调幅电路输出频谱
由以上分析可知,仿真结果与理论分析完全一致. 根据以上分析可画出电路图,下图所示
调幅电路图。