3线性方程组解法课件-(精选、)

合集下载

线性方程组解PPT课件

线性方程组解PPT课件

VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词

线性代数课件3 3

线性代数课件3 3

? ? ???
?
?5?
? ?
?
1 ??
方程组可简化为 AX = b .
x1
? ? ?
3 1
? ? ?
?
x2
? ? ?
4? ? 1 ??
?
x3
? ? ?
?1?
2
? ?
?
?5?
? ?
?
1??
二、线性方程组的解的判定
设有 n 个未知数 m 个方程的线性方程组
m、n 不一 定相等!
? a11 x1 ? a12 x2 ?
前 r列
后 n - r列
第一步:往证 R(A) < R(A, b) ? 无解.
若 R(A) < R(A, b) ,即 R(A, b) = R(A)+1,则 dr+1 = 1 . 于是 第 r +1 行对应矛盾方程 0 = 1,故原线性方程组无解.
?1 0
? ?
0
1
?
B
?
? ? ? ?
0 0
0 0
?0 0
?? ?
a21 x1 ?
a22 x2
?
?
??am1 x1 ? am2 x2 ?
? a1n xn ? b1 , ? a2n xn ? b2 ,
? amn xn ? bm .
定义:线性方程组如果有解,就称它是相容的;如果无解, 就称它是不相容的.
问题1:方程组是否有解? 问题2:若方程组有解,则解是否唯一? 问题3:若方程组有解且不唯一,则如何掌握解的全体?
前前nr 列
后 n - r列
第二步:往证 R(A) = R(A, b) = n ? 唯一解. 若 R(A) = R(A, b) = n, 则 dr+1 = 0 且 r = n,从而 bij 都不出现. 故原线性方程组有唯一解.

解线性方程组的解法_图文

解线性方程组的解法_图文
第三章
线性方程组是线性代数中最重要最基本的内容之 一,是解决很多实际问题的的有力工具,在科学技术 和经济管理的许多领域(如物理、化学、网络理论、 最优化方法和投入产出模型等)中都有广泛应用. 第一章介绍的克莱姆法则只适用于求解方程个数 与未知量个数相同,且系数行列式非零的线性方程组. 本章研究一般线性方程组,主要讨论线性方程组解的 判定、解法及解的结构等问题,还要讨论与此密切相 关的向量线性相关性等. 其主要知识结构如下:
为方程组(3.1)的增广矩阵(augmented matrix). 因为 一个线性方程组由它的系数和常数项完全确定,所以 线性方程组与它的增广矩阵是一一对应的. 如果 x1 c1 , x2 c2 ,, xn cn 可以使(3.1)中的每个等式都 T x ( c , c , , c ) 成立,则称 为线性方程组(3.1)的一个 1 2 n 解(solution). 线性方程组(3.1)的解的全体称为它的解
集(solution set). 若两个线性方程组的解集相等,则称 它们同解(same solution). 若线性方程组(3.1)的解存 在,则称它有解或相容的. 否则称它无解或矛盾的. 解 线性方程组实际上先要判断它是否有解,在有解时求 出它的全部解.
例1 解线性方程组
2 x1 x2 3 x3 1 2 x3 6 2 x1 4 x 2 x 5 x 4 2 3 1
( 2 ) (1)
x2 x3
1 6
显然原方程组与最后的方程组(叫阶梯形方程组) 同解,所以原方程组有唯一解 x1 9, x2 1, x3 6
由此不难发现,在求解线性方程组的过程中,可 以对方程组反复施行以下三种变换: 1. 交换两个方程的位置; 2. 用一个非零数乘某个方程的两边; 3. 把一个方程的倍数加到另一个方程上. 称它们为线性方程组的初等变换. 显然:线性方程组的初等变换不改变线性方程组 的同解性. 在例1的求解过程中,我们只对方程组的系数和 常数项进行了运算,对线性方程组施行一次初等变 换,就相当于对它的增广矩阵施行一次相应的初等行 变换,用方程组的初等变换化简线性方程组就相当于 用矩阵的初等行变换化简它的增广矩阵. 下面我们将 例1的求解过程写成矩阵形式:

数值分析讲义——线性方程组的解法

数值分析讲义——线性方程组的解法

数值分析讲义第三章线性方程组的解法§3.0 引言§3.1 雅可比(Jacobi)迭代法§3.2 高斯-塞德尔(Gauss-Seidel)迭代法§3.3 超松驰迭代法§3.7 三角分解法§3.4 迭代法的收敛性§3.8 追赶法§3.5 高斯消去法§3.9 其它应用§3.6 高斯主元素消去法§3.10 误差分析§3 作业讲评3 §3.11 总结§3.0 引言重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题.分类:线性方程组的解法可分为直接法和迭代法两种方法.(a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高.(b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.§3.1 雅可比Jacobi 迭代法 (AX =b )1基本思想:与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2问题:(a) 如何建立迭代格式?(b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析:考虑解方程组⎪⎩⎪⎨⎧=+--=-+-=--2.453.82102.7210321321321x x x x x x x x x (1)其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式:⎪⎩⎪⎨⎧++=++=++=84.02.01.083.02.01.072.02.01.0213312321x x x x x x x x x (2) 据此建立迭代公式:⎪⎩⎪⎨⎧++=++=++=+++84.02.01.083.02.01.072.02.01.0)(2)(1)1(3)(3)(1)1(23)(2)1(1k k k k k k kk k x x x x x x x x x (3) 取迭代初值0)0(3)0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp迭代次数 x1 x2 x30 0 0 01 0.72 0.83 0.842 0.971 1.07 1.153 1.057 1.1571 1.24824 1.08535 1.18534 1.282825 1.095098 1.195099 1.2941386 1.098338 1.198337 1.2980397 1.099442 1.199442 1.2993358 1.099811 1.199811 1.2997779 1.099936 1.199936 1.29992410 1.099979 1.199979 1.29997511 1.099993 1.199993 1.29999112 1.099998 1.199998 1.29999713 1.099999 1.199999 1.29999914 1.1 1.2 1.315 1.1 1.2 1.34Jocobi迭代公式:设方程组AX=b, 通过分离变量的过程建立Jocobi迭代公式,即),,2,1()(1),,2,1(0,11n i x a b a x n i a b x a n ij j j ij i iii ii ni i j ij =∑-==≠∑=≠== 由此我们可以得到Jacobi 迭代公式:),,2,1()(11)1(n i x a b a xn ij j k i ij i iik i=∑-=≠=+[Jacobi 迭代公式的算法] 1: 初始化. n , (a ij ), (b j ), (x 1) , M . 2: 执行k =1直到M 为止. ① 执行i =1直到n 为止.ii nij j j ij i i a x a b u /)(1∑-←≠= ;② 执行i =1直到n 为止.i i u x ← ;③输出k , (x i ).另外,我们也可以建立Jacobi 迭代公式的矩阵形式. 设方程组AX =b ,其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T将系数阵A 分解为: A =U +D +L ,U 为上三角矩阵,D 为对角矩阵,L 为下三角矩阵.于是AX =b 可改写为 (U +D +L )X =b⇔ X =D -1b -D -1(U +L )X由此可得矩阵形式的Jocobi 迭代公式: X k +1=BX (k )+f □§3.2 高斯-塞德尔Gauss-Seidel 迭代法注意到利用Jocobi 迭代公式计算)1(+k ix 时,已经计算好)(1)(2)(1,,,k i k k x x x - 的值,而Jocobi 迭代公式并不利用这些最新的近似值计算,仍用)(1)(2)(1,,,k i k k x x x - .这启发我们可以对其加以改进,即在每个分量的计算中尽量利用最新的迭代值,得到),,2,1()(1111)1()1(n i x a x a b a xn i j k jij i j k j ij i iik i=∑-∑-=+=-=++上式称为Gauss-Seidel 迭代法. 其矩阵形式是X =-(D +L )-1UX +(D +L )-1b , X k +1=BX (k )+f .迭代次数 x1 x2 x3 0 0 0 0 1 0.72 0.902 1.1644 2 1.04308 1.167188 1.282054 3 1.09313 1.195724 1.2977714 1.099126 1.199467 1.2997195 1.09989 1.199933 1.2999656 1.099986 1.199992 1.2999967 1.099998 1.199999 1.2999998 1.1 1.2 1.3§3.3 超松驰迭代法SOR 方法1基本思想:逐次超松弛迭代法(Successive Over Relaxation Method,简写为SOR)可以看作带参数ω的高斯-塞德尔迭代法,是G-S 方法的一种修正或加速.是求解大型稀疏矩阵方程组的有效方法之一. 2 SOR 算法的构造:设方程组AX =b , 其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T . 假设已算出x (k ),),,2,1()(1111)1()1(n i x a x a b a xn i j k j ij i j k j ij i iik i=∑-∑-=+=-=++ (1)相当于用高斯-塞德尔方法计算一个分量的公式. 若对某个参数ω,作)1(+k ix与)(k i x 加权的平均,即)()1()()1()()1()(1k i k ik i k ik ik ix xx xxx-+=+-=+++ωωω (2)其中,ω称为松弛因子.用(1)式代入(2)式,就得到解方程组AX =b 的逐次超松弛迭代公式:⎪⎩⎪⎨⎧=∑-∑-=∆∆+==-=++),,2,1()()(11)1()()1(n i x a x a b a x x x x n ij k j ij i j k j ij i iii i k i k i ω (3) 显然,当取ω=1时,式(3)就是高斯-塞德尔迭代公式. 3 例题分析:利用SOR 方法解方程组⎪⎩⎪⎨⎧=+---=-+-=--3322242024321321321x x x x x x x x x (1) 其准确解为X *={1, 1, 2}. 建立与式(1)相等价的形式:⎪⎪⎩⎪⎪⎨⎧++=-+=+=132315.05.05.025.05.021*******x x x x x x x x x (2) 据此建立迭代公式:⎪⎪⎩⎪⎪⎨⎧++=-+=+=+++132315.05.05.025.05.0)(2)(1)1(3)(3)(1)1(23)(2)1(1k k k k k k kk k x x x x x x x x x (3)利用SOR 算法,取迭代初值1)0(3)0(2)0(1===x x x ,ω=1.5,迭代结果如下表.逐次超松弛迭代法次数 x1 x2 x3 1 0.625000 0.062500 1.750000 2 0.390625 0.882813 1.468750 3 1.017578 0.516602 1.8085944 0.556885 0.880981 1.7104495 1.023712 0.743423 1.8681036 0.746250 0.908419 1.8387377 0.997715 0.860264 1.9138948 0.864050 0.936742 1.9086059 0.986259 0.922225 1.94552310 0.928110 0.958649 1.94749311 0.985242 0.955944 1.96619812 0.961661 0.973818 1.96952113 0.988103 0.974699 1.97928914 0.979206 0.983746 1.98217215 0.991521 0.985318 1.98741616 0.988509 0.990038 1.98951317 0.994341 0.991414 1.99239718 0.993538 0.993946 1.99380619 0.996367 0.994950 1.99542420 0.996313 0.996342 1.99633121 0.997724 0.997018 1.99725422 0.997871 0.997798 1.99782223 0.998596 0.998234 1.998355GS迭代法须迭代85次得到准确值X*={1, 1, 2};而SOR方法只须55次即得准确值.由此可见,适当地选择松弛因子ω,SOR法具有明显的加速收敛效果. □§3.4 迭代法的收敛性1. 向量和矩阵范数 (a) 向量范数R n 空间的向量范数 || · || ,对任意n R y x ∈,, 满足下列条件:00||||;0||||)1(=⇔=≥x x x (正定性)||||||||||)2(x x⋅=αα (齐次性)||||||||||||)3(y x y x+≤+ (三角不等式)常见的向量范数有: (1) 列范数:(2) 谱范数:(欧几里德范数或向量的长度,模)(3) 行范数:(4) p 范数:上述范数的几何意义是:∞||||x =max(|x 2-x 1|,|y 2-y 1|) ; 1||||x =|x 2-x 1|+|y 2-y 1| ;2122122)()(||||y y x x x -+-=.向量序列}{)(k x依坐标收敛于向量x * 的充要条件是向量序列}{)(k x 依范数收敛于向量x *,即0||||lim *)(=-∞→x x k k .(b) 矩阵范数n m R ⨯空间的向量范数 || ·|| ,对任意 n m R B A ⨯∈,, 满足下列条件:|||||||| || AB || (4)||||||||||||)3(||||||||||)2(00||||;0||||)1(B A B A B A A A A A A ≤+≤+⋅==⇔=≥αα常见的矩阵范数有:∑==∞≤≤nj ij a A ni 1||max ||||1 (行和范数)∑==≤≤ni ij a A nj 11||max ||||1 (列和范数))(||||max 2A A A T λ= (谱范数)若A 对称,则有)()(2max max A A A T λλ=.矩阵A 的谱半径记为)(||||2A A ρ=,ρ(A ) =||max1i ni λ≤≤,其中λi 为A 的特征根。

计算方法第三章线性方程组的直接解法

计算方法第三章线性方程组的直接解法

5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22

3.3 线性方程组的消元解法

3.3 线性方程组的消元解法

x1 -2x2+4x3 = 3
2xx22++52xx33
= =
3 8
于是得到
x3=2, x2 =3-2x3 =-1, x1=3+2x2-4x3=-7。
方程组的解为
x1=x2=-
7 1。
x3= 2
—r3-—2r2
x1
-2x2+4x3 x2+2x3
= =
3 3,
x3 = 2 最新课件
6
首页
上页
返回
下页
结束
1 5 -1 -1 -1
解: (A b)=
1 1
6 -2 -3 -3 3133
11377
10499
0 0
1 -1 -2 -2 0000

00000
R (A )=R (A ,b)=2 4 , 故方程组有无穷多解.
方程组的一般解为
x1 = 9 - 4x3 x2 =- 2 + x3
- 9x4 + 2x4
(x3, x4任意)
则方程组的通解为:
x1=- 9 - 4c1 - 9c2
x2=- 2 + c1 + 2c2
x3 =
c1 c1
x4 =
c2
(c1,c2 R)
首页
上页
最新课件
返回
下页
结束
12

例3.解线性方程组
x1 + x2 + 2x3 + 3x4 = 1 x2 + x3 - 4x4 = 1 。
x1 + 2x2 + 3x3 - x4 = 4 2x1 + 2x2 - x3 - x4 =- 6

线性代数教学课件3

线性代数教学课件3

阶梯形线性方程组(B)与原线性方程组(A)同解.
在线性方程组(B)中, 将第三式的x3= -2代入第二个 方程,得x2= 2; 再将x2= 2, x3= -2代入第一个方程,得x1= 1.
所以原方程组的解为: x1=1, x2=2, x3= -2.

由阶梯形方程组逐次求得各未知量的过程,称为回代
过程, 线性方程组的这种解法称为高斯消元法.
a1r a1r 1 a2r a2r 1
a1n d1 a2n d2
于是结得论同:解2方. d程r+组1=0: , 则x1 同aˆ1,解r 1x方r 1 程组有aˆ1n x解n , dˆ1
A 00
arr arr 1
arn dr
从x2 而aˆ2原r 1x方r 1程组Aaˆ2Xn x=n b dˆ2
00
00
x1
1
x2
2
x3
2

100 1 010 2 001 2
13
机动 目录 上页 下页 返回 结束
例2. 解线性方程组
x1 3x2 x3 2x4 x5 4 3x1 x2 2x3 5x4 4x5 1 2x1 4x2 x3 3x4 5x5 5 5x1 5x2 3x3 8x4 9x5 6
解: 对方程组的增广矩阵作行初等变换, 化成阶梯形 矩阵, 再化成行最简阶梯形矩阵.
为求解线性方程组(1), 必须解决以下一些问题:
(i) 线性方程组(1)是否有解? (ii) 如果线性方程组(1)有解, 那么它有多少个解? (iii) 当线性方程组有解(1)时, 如何求出它的全部解?
4
机动 目录 上页 下页 返回 结束
定义 m个方程、 n个未知量 的线性方程组
a11x1 a12 x2 a1n xn b1

MATLAB计算方法3解线性方程组计算解法名师公开课获奖课件百校联赛一等奖课件

MATLAB计算方法3解线性方程组计算解法名师公开课获奖课件百校联赛一等奖课件

li1 ai1
u11
(i 2,3,, n)
k 1
ukj akj lkmumj akj
m 1
(
j
k,
k
1,,
n)
lik
aik
k 1
limumk
m 1
(i
k
1,,
n)
ukk aik
(k 2,3,, n)
例3.1
2 1 2 6 2 1 2 6
4 5 4 18 2 3 0 6
a11 a12 a1n l11
a21
a22
a2n
l21
l22
l11 l21 l n1
l22
l
n2
an1
an2
ann
l n1
l n2
l
nn
l
nn
其中aij a ji
由矩阵乘法
(1)
1)
l2 11
a11
l11
a11
(取正)
2) L第1行 LT第j列 (j 2,,n)
…….
(k)
1求u的第k行:用L的第k行 u的第j列
(j k,k 1,,n)
(lk1 , lk 2 ,, lkk,0,0) (u1 j , u2 j ,, u jj,0,0)' akj
k 1
k 1
lkmumj 1 ukj akj ukj akj lkmumj
m 1
m 1
2 求L的第k列:用L的第i行 u的第k列
利用Gauss消元法得到同解旳三角方程为
1 c1
y1
2 c2
y2
n1
ቤተ መጻሕፍቲ ባይዱ
cn1

第三章 线性方程组解法

第三章 线性方程组解法
可以看出,在计算第i个xik+1分量时,前 面i-1个分量x1k+1, x2k+1… xi-1k+1已经从上式 中计算出来了,于是很自然会想到如果 把它们代入用来计算xik+1可能会改进迭代, 于是就得到Ga大u家s好s-Seidel迭代格式: 35
§3.3 高斯-塞德尔迭代
x ik 1a 1 ii(b iij 1 1a ijxk j 1j n i 1a ijxk j),i 1 ,2 ...,n
大家好
21
§3.1 问题的提出
由原方程
8x1 x2 4 x1 10 x2
2x3 12 x3 21
3x1 2x2 5x3 16
构造
xx12((kk11))
2.5x2(k) 0.25x3(k) 1.5x1(k) 2.5x3(k)
5.25 8.0
(2) (3)
x3(k1) 4x1(k) 0.5x2(k) 6.0
§3.1 问题的提出
是方程组的精确解,用有限次运算得不到精 确解。迭代法是牛顿最先提出来的,1940年 经司威尔提出的松弛法也是一种迭代法,共 轭梯度法则是另一种迭代法,是弗莱彻等人 于20世纪60年代提出来的。
大家好
16
§3.1 问题的提出
例3.1
5x 2y 8 3x 20 y 26
5) 给出估计误差和迭代停止判据。
大家好
25
§3.1 问题的提出
❖ 定义:在n维空间中给定一个向量序
列 x k ,xk (x1 k,x2 k,...xn k)T ,如果对每一个分

x
k i
,当
k
时都有极限xi,

lim
k
xik

计算机方法线性方程组的解法

计算机方法线性方程组的解法
其准确解为X*={1.1, 1.2, 1.3}。
高斯-塞德尔迭代格式
k k x1k 1 0.1x 2 0.2 x 3 0.72 k 1 k 1 k x 0 . 1 x 0 . 2 x 0.83 2 1 3 k 1 k 1 k 1 x 0 . 2 x 0 . 2 x 0.84 1 2 3
重要性:解线性代数方程组的有效方法在计算数学和
科学计算中具有特殊的地位和作用。如弹性力学、电
路分析、热传导和振动、以及社会科学及定量分析商 业经济中的各种问题。 求解线性方程组 Ax b 的求解方法,其中
A R nn
, x, b R n 。
* x* ( x1* , x2 , * T , xn )
… … …

( k 1 ) ( k 1 ) ( k 1 ) ( k 1 ) ( k 1 ) xn 1 ( a n1 x1 an 2 x2 an 3 x3 a nn 1 x n 1 bn ) a nn
写成矩阵形式: x( k 1) D1 ( Lx( k 1) Ux( k ) ) D1b
其准确解为X*={1.1, 1.2, 1.3}。
x1 0.1 x2 0.2 x3 0.72 x2 0.1 x1 0.2 x3 0.83 x 0.2 x 0.2 x 0.84 1 2 3
据此建立迭代公式:
(k ) (k ) x1(k +1) =0.1x2 +0.2x3 +0.72 (k +1) (k ) (k ) x2 =0.1x1 +0.2x3 +0.83 (k +1) (k ) (k ) x =0.2 x +0.2 x 1 2 +0.84 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章线性方程组的解法本章探讨大型线性方程组计算机求解的常用数值方法的构造和原理,主要介绍在计算机上有效快速地求解线性方程组的有关知识和方法。

重点论述Jacobi迭代法、Seidel迭代法、Guass消元法及LU分解法的原理、构造、收敛性等内容。

3.1 实际案例3.2问题的描述与基本概念解线性方程组问题在线性代数中已有很优美的行列式解法,但对大型的线性方程组(阶数n>40)的求解问题使用价值并不大,因为其计算量太大。

实际问题中经常遇到自变量个数n都很大的线性方程组求解问题,这些线性方程组要借助计算机的帮助才能求出解。

n 个变元12,,,n x x x ⋯的线性方程组的一般形式为11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (3.3)式中,a ij 称为系数,b i 称为右端项,它们都是已知的常数。

如果有***1122,,,n n x x x x x x ===使方程组(3.3)成立,则称值***12,,,n x x x为线性方程组的(3.3)的一组解。

本章在不作特别说明的情况下,主要讨论m=n 的线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的求解问题,且假设它有唯一解。

线性方程组的矩阵表示Ax b =式中A 称为系数矩阵,b 称为右端项。

数值分析中,线性方程组的数值解法主要分为直接法和迭代法两大类。

直接法是用有限次计算就能求出线性方程组“准确解”的方法(不考虑舍入误差);迭代法是由线性方程组构造出迭代计算公式,然后以一个猜测的向量作为迭代计算的初始向量逐步迭代计算,来获得满足精度要求的近似解。

迭代法是一种逐次逼近的方法。

3.3线性方程组的迭代解法线性方程组迭代解法有Jocobi 迭代法、Seidel 迭代法及Sor 法等基本思想(与简单迭代法类比) 将线性方程组Ax b =等价变形为x Bx g =+以构造向量迭代格式()()1k k xBxg +=+用算出的向量迭代序列()()12,,x x 去逼近解。

1. 构造原理1)Jacobi 迭代法(1)将线性方程组(3.4)的第i 个变元i x 用其他n-1个变元表出,可得121))n n n n nn n a x a x a x ------- (3.5)称(3.5)为不动点方程组。

(2)将(3.5)式写成迭代格式(Jacobi 迭代格式):(3.6) (3)取定初始向量()()()()()000012,,,Tnxx x x =,代入,可逐次算出向量序列()()()12,,,k x x x ,这里()()()()()12,,,Tk k k k nxx x x =。

2)Seidel迭代法Seidel迭代格式:3)Sor 法用Seidel 迭代算出的()1k x+与()k x 相减得到差向量()()1k k x xx +∆=-采用加速技术做下一步迭代:()()()()()111k kkk x x x x x ωωω++=+∆=-+得Sor 法的迭代格式1,2,,n式中参数ω称为松弛因子,可以任意选取,当ω =1时,Sor 法就是Seidel 迭代法。

例如对线性方程组⎪⎩⎪⎨⎧=+--=-+-=--2453821027210321321321.x x x .x x x .x x x先将其写成不动点方程组1232133121(7.22)101(8.3)101(4.2)5x x x x x x x x x ⎧=++⎪⎪⎪=++⎨⎪⎪=++⎪⎩Jacobi迭代Seidel迭代由()()()() 111k k kx x xωω++=-+得Sor迭代2.迭代分析及向量收敛1) 三种迭代法的向量迭格式对 Ax=b ,将系数矩阵A 作如下分解A D L U =--112212121212,00000000,0000nn n n n n a a D a a a a a L U a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦则Ax=b 可以写成()D L U x b --=假设1D -存在,得Ax=b 的等价方程组()11x D L U x D b --=++由此可得到Jacobi 迭代的向量迭代格式()()()111k k xDL U xD b +--=++引入符号()1JB D L U -=+,1J g D b -=,则有 ● Jacobi 迭代的向量迭代格式()()1k kJ J x B x g +=+J B 称为Jacobi 迭代矩阵。

类似的,有● Seidel 向量迭代格式()()1k k S S xB xg +=+()1S B D L U -=-,()1S g D L b -=-。

s B 称为Seidel 迭代矩阵。

Sor 法的向量迭代格式()()1k k xB xg ωω+=+()()11B D L D U ωωωω-=--+⎡⎤⎣⎦,()1g D L b ωωω-=-。

B ω称为超松弛迭代矩阵。

三种迭代格式可用一个迭代格式()()1k k x B x g +=+2)向量收敛定义定义 3.1 设向量序列()()()()()12,,,Tk k k k nx x x x =及向量()****12,,,T nx x x x=都是nR 中的向量,如果有()*lim ,1,2,,k i i k x x i n →∞==成立,则称()k x 收敛于*x 。

简记为()*lim k k x x →∞=。

3)范数定义与科学计算中的常用范数定义3.2 设L 是数域K 上的一个线性空间,如果定义在L 上的实值函数()P x 满足 1) x L ∀∈,有()0P x ≥, 且()00P x x =⇔=; 2) ,x L K λ∀∈∈,有()()P x P x λλ=; 3) ,x y L ∀∈,有()()()P x y P x P y +≤+, 则称()P ⋅是L 上的一个范数,称()P x 为x 的一个范数。

范数的定义很象绝对值函数,故常用P⋅或⋅表示范数,而范数()P x 常记为P x 或x 。

这样,上面范数定义中的3个条件常写为1)x L ∀∈,有0x ≥, 且00x x =⇔=; 2),x L K λ∀∈∈,有x x λλ=⋅; 3),x y L ∀∈,有x y x y +≤+将其与绝对值比较,是否很象?实际上,很多有关绝对值的运算和结论可以平行引进到有关范数的运算和证明问题中。

数值分析中常用的线性空间有 ● n 维向量空间(){}12|,,,,n n k R a a a a a a R ==∈ ● 矩阵空间(){}|,m n m n m n ij ij m nR A A a a R⨯⨯⨯⨯==∈连续函数空[]()(){},|[,]C a b f x f x a b =在上连续函数空间[],C a b 是由闭区间[],a b 上所有连续函数组成的集合,其线性运算定义为 加法()()()():f g f g x f x g x ++=+ 数乘 ()()():f f x f x λλλ=⋅,λ为数在这些空间上,数值分析中常用的范数有(1)nR 的向量范数1)2)3) 式中向量()12,,,Tn x x x x =。

(2) n nR⨯的矩阵范数矩阵范数要满足如下四条1)n nA R ⨯∀∈,有0A ≥,且00A A =⇔=;2),n nA R K λ⨯∀∈∈,有A A λλ=⋅; 3),n nA B R ⨯∀∈,有A B A B +≤+4),n nA B R ⨯∀∈相容性)与向量范数做对比由于线性方程组求解问题中,系数矩阵总是与向量联系在一起的,为描述这种联系,引入如下的算子范数概念。

定义3.3 设矩阵n nA R⨯∈为矩阵A的算子范数。

容易证明,矩阵A的算子范数也是矩阵范数,且满足不等式关系例:设⋅为矩阵的算子范数,证明若1B<,则I B +为非奇异矩阵,且()111I B B-+≤-证:用反证法。

若I B +为奇异矩阵,则其对应的方程组()0I B x +=有非零解x ,即有0x ≠,使()0I B x +=,得出Bx x =-两边取范数并作范数运算B x Bx x x ⋅≥=-=01x B >⇒≥,矛盾,得I B +非奇异。

()()()()()()()1111111I B I B II B I B I B I B I B I B B I B ------++=⇒+=-++≤++≤++()111I B B -∴+≤-常用的矩阵范数有如下4种 123)F4)2max λ是T A A 最大特征值。

以上4个矩阵范数中,12,,A A A∞是算子范数,F A 不是算子范数。

3)范数等价与向量极限定义3.4 设,⋅⋅是线性空间L上的p q两个范数,若存在正常数m和M,成立则称范数,⋅⋅是等价范数。

p q定理3.1 n R上的所有范数都是等价的。

定理3.2式中⋅是n R上任何一种范数。

4)谱半径及其与范数的关系定义3.5 设n nA R ⨯∈,,1,2,,k k n λ=是A的n 个特征值,则称实数为矩阵A 的谱半径。

注意k λ如果是复数,。

定理3.3 设A 为任意算子范数,则有证明 设k λ是A 的任意一个特征值,()k x 为对应的特征向量,则有()()k k k Ax x λ=取范数,得()()()()k k k k k k A x Ax x x λλ≥==因为()0k x≠,上式同除()k x ,得k A λ≤由k 的任意性可得()A A ρ≤。

3. 迭代法的收敛条件与误差估计1)收敛条件定理:线性迭代格式()()1k kx B x g+=+对任意初始向量()0x 都收敛的充要条件是迭代矩阵谱半径()1B ρ<。

引理3.4 设n nA R ⨯∈,则()lim 01k k A A ρ→∞=⇔<证明 必要性设()*lim k k x x →∞=,在()()1k k x B x g +=+中令k →∞,得**x B x g =+,两式相减并把k+1记为k ,得()()()()()()()12**2*0*k k k k x x B x x B x x B x x ---=-=-==-由()*lim k k x x →∞=及()0*,x x 的任意性,有lim 0k k B →∞=。

再由引理,可得()1B ρ<。

充分性因为()1B ρ<,则有I-B 非奇异(这里I 为单位矩阵),从而线性方程组()I B x g -=有唯一解*x ,即有()*I B x g -=展开有**x B x g =+。

相关文档
最新文档