原子结构模型

合集下载

2.3 原子结构的模型

2.3 原子结构的模型

阴阳离子共同 构成物质
阴、阳离子
所带电 性情况
不显电性
不显电性
显电性

分子可以破裂成原子,原子重新组合成分子,原子

得失电子形成离子
在原子得失电子形成离子的过程中,质子数、 中子数、核电荷数和核外电子数中哪些发生了 改变?哪些没有?
质子数、中子数、 核电荷数没有发生 改变,核外电子数 发生了改变。
修正和完善了汤姆生的原子模型
玻尔的分层理论
电子只能在特定的轨道上运动
丹麦科学家玻尔
完善了卢瑟福的原子模型
道尔顿 实心球模型
汤姆生 枣糕或西瓜模型
卢瑟福 核式结构模型
玻尔 分层模型
从原子模型的建立过程看,一个模型 的建立需要经历怎样的过程?
建立模型需要不断地完善和修正,才能 使它更加接近事物的本质。 (说明:现在原子模型还在不断修正, 比玻尔的模型又有了很大的改进。)
下图中代表离子的是( D )
(说明:圆圈内数字代表质子数,“+”表 示原子核所带的电荷,黑点代表核外电子)
(1)A原子核中有_8__个质子, _8__个中子。 (2)B原子核中有 _8__个质子,__9_个中子。 (3)C原子核中有_8__个质子,_1__0_个中子。
具有相同核电荷数(即质子数)的一类原子总称为元素
20
核外电子数 1 2 6 7 8 13 16
17
读表:从下表中你能获得哪些规律?
针对原子 ✓ 质子数 = 核电荷数 = 核外电子数
✓ 质子数与中子数没有必然的联系
✓ 有的原子没有中子(如氢原子)
为什么说原子的质量集中在原子核上? 为什么原子呈电中性?
质子 带正电 1.6726×10-27kg

第3节 原子结构的模型

第3节  原子结构的模型

第3节原子结构的模型要点详解知识点1 原子结构模型的建立1.汤姆生的模型(又叫西瓜模型)1897年,英国科学家汤姆生发现了电子(电子带负电),而原子是呈电中性的,即原子内还有带正电的物质。

因此,他提出:原子是一个球体,正电荷均匀分布在整个球体内,电子像面包里的葡萄干那样镶嵌在其中。

有人形象地把该模型称为“枣糕模型”或“西瓜模型”。

2.卢瑟福的模型(又叫行星模型)1911年,英国科学家卢瑟福用带正电的α粒子轰击金属箔,实验发现多数α粒子穿过金属箔后仍保持原来的运动方向,但有α粒子发生了较大角度的偏转,甚至有极个别的α粒子被(如图所示)。

在分析实验结果的基础上,卢瑟福提出了原子的核式结构模型(即行星模型):在原子的中心有一个很小的,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核运动,就像行星绕太阳运动那样。

3.玻尔的分层模型1913年,丹麦科学家玻尔改进了卢瑟福的原子核式结构模型,认为电子只能在原子内的一些特定的稳定轨道上运动(如图所示)。

4.原子的构成原子核相对于原子来说,体积很小,但质量却很大,它几乎集中了原子的全部质量。

由于原子核和核外电子所带电量相等,电性相反,所以整个原子不显电性。

例1 (绍兴中考)人类对原子结构的认识,经历了汤姆生、卢瑟福和玻尔等提出的模型的过程。

(1)卢瑟福核式结构模型是利用α粒子轰击金箔实验的基础上提出的。

下列能正确反映他的实验结果的示意图是(选填序号)。

(2)从原子结构模型建立的过程中,我们发现(选填序号)。

A.科学模型的建立是一个不断完善、不断修正的过程B.模型在科学研究中起着很重要的作用C.玻尔的原子模型建立,使人们对原子结构的认识达到了完美的境界D.人类借助模型的建立,对原子的认识逐渐接近本质知识点2 揭开原子核的秘密1.原子核的构成(1)原子核是由更小的两种粒子——和中子构成的。

(2)一个质子带一个单位的正电荷,中子,一个电子带一个单位的负电荷。

原子结构的模型(PPT课件(初中科学)26张)

原子结构的模型(PPT课件(初中科学)26张)

金金属箔
[1]大多数粒子不改变本来的运动方向,原因是:
原子内有较大的间隙。

[2]有小部分改变本来的运动路径,原因是: α粒子受到了同种电荷互相排挤作用而改变了运动方向。。
[3]极少数被弹射了回来,原因是: α粒子撞击到了带正电荷、质量大、体积很小的核。 。
自从卢瑟福用α粒子轰击了金属箔后,使人 们对原子内部的结构有了更深入的了解,从而对 原子内部结构的认识更接近了它的本质。
2.汤姆生的原子结构模型
汤姆生模型 (西瓜模型)
探究:卢瑟福的α粒子散射实验
1911年,英国科学家卢瑟福 用带正电的α粒子轰击金属箔, α粒子源 实验发现多数α粒子穿过金属箔 后仍保持本来的运动方向,但有 少量的α粒子产生了较大的偏转。
金金属箔
探究:卢瑟福的α粒子散射实验
1911年,英国科学家卢瑟福 用带正电的α粒子轰击金属箔, α粒子源 实验发现多数α粒子穿过金属箔 后仍保持本来的运动方向,但有 少量的α粒子产生了较大的偏转。 问题思考:
在化学变化中可分的微粒是( B ) A.原子 B.分子 C.电子 D.原子核
6.下列叙述正确的是……………( B ) A.原子核都是由质子和中子构成的 B.原子和分子都是构成物质的一种粒子,它 们都是在不停地运动的 C.原子既可以构成分子,也可以构成物质 D.物质在产生物理变化时,分子产生了变化, 在产生化学变化时,原子产生了变化
原 子
原子核 (+)
质子:一个质子带一个单位的正电荷 中子: 中子不带电
电子: 一个电子带一个单位的负电荷
( —)
原子核所带的电荷数简称为核电荷数。
说一说:以氧原子为例解说原子的结构
电子:8个,带8个单位负电荷

原子结构的模型课件

原子结构的模型课件
氦原子中原子核有 2个质子(带正电) 2个中子(不带电) 核外电子(带负电)2个。
原子结构的模型
9.1176×10-31千克 1.6726×10-27千克
1.6748×10-27千克
原子结构的模型
思考:
在一个原子中哪些项目的数目总是相等的?
原子种类 氢原子 氦原子 碳原子 氮原子 铝原子 硫原子 氯原子 铁原子
核电荷数 1 2 6 7 13 16 17 26
质子数 1 2 6 7 13 16 17 26
中子数 0 2 8 7 14 17 20 30
核电荷数 = 质子数 = 核外电子数
原子结构的模型
核外电子数 1 2 6 7 13 16 17 26
结论:
• 1.原子中的质子数与核外电子数相等。 • 2.中子并不是所有的原子中都有。 • 3.在原子中,质子数与中子数并不都相等。 • 4.原子的种类不同,质子数一定不同。
结论和依据
(1)与原子相比,原子核很小,原子核带正电。依
据是上述实验现象 (2)(3) 和 同种电荷相互 的
原理。
排斥
(2)与原子核相比,核外空间很大,电子在核外绕 核运动。依据是实验现象 (1) 。
原子结构的模型
查找相关资料,了解氦原子的结构,如原 子核和核外电子数相等,并尝试建立一个 氦原子结构的模型。(用图表示)?
A. 汤姆生 B. 卢瑟福 C. 道尔顿 D. 玻尔
原子结构的模型
1、氯化钠的生成
1、取一瓶氯气,观察它的颜色

黄绿色 。

2、用镊子在放有煤油的试剂瓶
中夹取一块钠,用刀切割成
一小块,观察颜色、状态。 质软、银白色光泽金属固体。
原子结构的模型

第3节 原子结构的模型

第3节 原子结构的模型

第3节原子结构的模型一、原子模型的建立1.道尔顿:1803年,英国科学家道尔顿认为原子是一个坚硬的实心小球。

2.汤姆生模型:1897年,英国科学家汤姆生提出原子是一个球体,正电荷均匀分布在整个球体内,电子像面包里的葡萄干那样镶嵌其中。

3.核式模型:1911年,英国科学家卢瑟福提出原子的中心有一个很小的原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核运动,就像行星绕太阳运动一样。

4.分层模型:1913年,丹麦科学家玻尔认为电子只能在原子内的一些特定的稳定轨道上运动,即电子在原子核外空间的一定轨道上分层绕核做高速的圆周运动。

5.电子云模型:20 世纪20年代以来,科学家又建立了原子结构的电子云模型,即电子绕核高速运动时电子在核周围有的区域出现的次数多,有的区域出现的次数少,就像“云雾”一样笼罩在核的周围,形成一个带负电荷的云团,在一个确定的时刻不能精确地测定电子的确切位置。

巩固基础1、卢瑟福在α散射实验中(α粒子带正电荷),断定原子中的绝大部分空间是空的,他的依据是( )A、α粒子受到金原子的作用,改变了原来的运动方向B、α粒子受到金原子内的电子吸引,改变了原来的运动方向C、α粒子中的绝大多数通过金箔并按原来的方向运动D、α粒子会激发盒原子释放出原子内的电子2、汤姆生最早发现了原子中存在一种带负电荷的粒子,证明了原子是可以再分的。

汤姆生发现的这一粒子是( )A原子核B.质子C.电子D中子3、20世纪初,科学家先后提出了如图①、②、③所示的三种原子模型,依照提出时问的先后顺序正确的排列是( )A①②③ B. ③②①C.②③①D. ①③②4、为了探索原子内部的构造,科学家们进行了无数次实验。

他们使用原子模型来表示原子并用实验来校正模型。

其中提出“分层模型”的科学家是( )A汤姆生 B.卢瑟福C.波尔D道尔顿二、原子核内的秘密(质子、中子、电子)1.原子的结构(1)基本构成:原子是由一个居于中心的带正电荷的原子核和带负电荷的核外电子构成的。

原子结构的模型PPT课件(初中科学)

原子结构的模型PPT课件(初中科学)

的物质。
实验现象:燃烧后瓶内出现了白烟,冷却后变成了白色
固体——食盐。
带电的原子——离子
金属钠在氯气中燃烧时,钠原子失去一个电子形成 带正电荷的钠离子(阳离子),氯原子得到电子形成带 负电荷的氯离子(阴离子)。带有相反电荷的钠离子和 氯离子之间相互吸引,构成中性的氯化钠。
带电的原子或原子团叫做离子 带正电的离子叫做阳离子 带负电的离子叫做阴离子
掀开原子核的秘密
质子、中子和电子
电子是带负电的,我们常常把一个电子所带 的电荷量大小叫做一个单位的电荷。
根据科学家的测定:中子是不带电的;一个 质子带一个单位正电荷(与一个电子所带的电 荷等量异号)。
如氧原子核内有 8 个质子,则氧原子核带 8 个单位的正电荷(即 +8 )。
科学上把原子核所带的电荷数称为核电荷数 。如氧原子的核电荷数为 8 。
掀开原子核的秘密
碳原子的结构
碳原子有 6 个核外电子,它的原子核含有 6 个质子和 6 个中子。
掀开原子核的秘密
氧原子的结构
氧原子有 8 个核外电子,它的原子核含有 8 个质子和 8 个中子。
掀开原子核的秘密
铁原子的结构
铁原子有 26 个核外电子,它的原子核含有26 个质子和 30 个中子。
分析下表:在一个原子中哪些项目的数目总是 相等的?
同种元素的不同种原子,它们的质子数、 电子数相同,但中子数不同。
原子的孪生兄弟——同位素
我们把原子中核内质子数相同、中子数 不相同的同类原子统称为同位素原子。
8个质子 8个中子
A
8个质子 9个中子
B
8个质子 10个中 子
C
上面三种氧原子都属于氧元素的同位素原子
原子的孪生兄弟——同位素

原子的核式结构模型

原子的核式结构模型
薛定谔方程
描述微观粒子运动的基本方程, 用于求解原子中电子的波函数和
能量。
原子轨道
由量子力学计算得出的电子在原子 中的概率分布区域,决定了元素的 化学性质。
自旋和磁矩
电子自旋和轨道运动产生的磁矩是 原子磁性的来源。
多电子原子中电子排布规律研究进展
泡利原理
确定每个电子状态的独特性,保证电子排布的稳 定性。
原子中心有一个带正电的原子核,电子绕核旋转。该模型预测了α粒子散射实 验的结果,即大多数α粒子穿过原子时不受影响,少数α粒子受到大角度偏转, 极少数α粒子被反弹回来。
实验结果与预测一致
α粒子散射实验结果与卢瑟福的核式结构模型预测相符,从而验证了该模型的正 确性。同时,其他相关实验结果也支持了核式结构模型的理论预测。
局限性
玻尔理论虽然成功地解释了氢原子光谱和类氢离子光谱,但对于复杂原子(多电 子原子)的光谱现象却无法解释。此外,玻尔理论也无法解释原子的化学性质和 化学键的形成。
03
原子核式结构模型具体内容
原子核组成与性质
原子核位于原子的中心,由质子和中 子组成。
原子核的半径约为原子半径的万分之 一,但质量却占原子总质量的99.9% 以上。
04
电子云密度越大,表明 电子在该区域出现的概 率越高。
能量层级
原子中的电子按照能量高低分 布在不同的能级上,每个能级 对应一定的电子云形状和取向

当电子从一个能级跃迁到另一 个能级时,会吸收或释放能量 ,表现为光的吸收或发射。
电子跃迁遵循一定的选择定则 ,如偶极跃迁选择定则、自旋
原子核的发现
卢瑟福根据α粒子散射实验现象提出了原子核式结构模型。在 原子的中心有一个很小的核,叫原子核,原子的全部正电荷 和几乎全部质量都集中在原子核里,带负电的电子在核外空 间里绕着核旋转。

原子结构的三种模型

原子结构的三种模型

原子结构的三种模型1.经典物理学模型经典物理学模型是早期科学家在研究原子结构时提出的一种模型。

根据经典物理学的原子理论,原子由带正电的核和围绕核旋转的带负电的电子组成。

该模型假设电子在轨道上的运动类似于行星绕着太阳公转一样,称为行星模型或Rutherford模型。

根据这个模型,原子中所有的质量都集中在核中,电子则围绕核中心运动。

该模型的优点是简单易懂,便于理解。

然而,该模型忽略了量子效应,无法解释一系列观测现象,例如光谱线的分裂和原子的稳定性。

2.量子力学模型量子力学模型是根据现代物理学理论提出的。

根据量子力学的原子理论,原子中的电子并不是沿着确定的轨道运动,而是处于一种模糊的状态,称为电子云。

电子云描述了电子在空间中的可能位置。

该模型认为,电子的位置和能量是通过数学形式的波函数来描述的,波函数的平方可以解释电子在特定位置的可能性。

量子力学模型的优点是能够很好地解释许多实验现象,例如光谱线的分裂和原子的稳定性。

然而,该模型的数学描述较为复杂,涉及到概率等概念,不太容易直观理解。

3.核物理学模型核物理学模型是对原子核的结构和性质进行研究的模型。

该模型认为原子核由质子和中子组成。

质子带正电,中子不带电。

质子和中子被称为核子。

质子和中子的总数被称为质子数,不同元素的原子核具有不同的质子数。

核物理学模型的重要发现之一是核力,核力使得质子和中子在原子核中相互吸引和结合。

该模型也解释了放射性衰变和核反应等现象。

核物理学模型的优点是能够很好地解释原子核的稳定性和不稳定性,并提供了对核反应的理论基础。

然而,该模型仍然需要量子力学的支持,因为质子和中子也是由夸克组成的微观粒子,其性质和相互作用需要量子力学的描述。

综上所述,原子结构的三种模型分别是经典物理学模型、量子力学模型和核物理学模型。

这些模型在不同的历史时期提供了对原子结构的不同理解,丰富了我们对原子世界的认识。

第三节_原子结构模型

第三节_原子结构模型

①元素只表示物质的宏观组成
②目前已发现的元素有一百余种
③地壳中含量占前四位的元素:
氧48.46%,硅26.30%,铝7.73%,铁4.75%
2014-4-14
元素
定 义 区
具有相同核电荷数(即质子 数)的同一类原子的总称 1.元素只讲种类,不讲个数 和大小 2.元素是宏观观念 3.元素只能组成物质 4.化学变化中,元素的种类 和质量保持不变
氧元素的三种原子的原子
核的差异:
8个质子 8个中子
8个质子 9个中子
8个质子 10个中子
2.同位素——原子的“孪生兄弟”
原子中核内质子数相同,
中子数不相同的同类原子 统称为同位素原子。
练习
三氧化二铝和四氧化三铁中各含 什么元素?其中相同的元素是 什么? 答案:三氧化二铝中含铝元和氧 元素,四氧化三铁中含铁元素 和氧元素。相同的是氧元素。
讨论:
金刚石和石墨的性质有
什么不同?这与物质结 构有什么关系?
结构 性质
总结:
1、钠与氯气反应的现象、 表达式。 2、理解离子、阴离子、 阳离子的概念。 3、构成物质的微粒。
+12
2 8 2
2014-4-14
原子的最外层 电子数一般多于或等于4,在化学反 应中易得到电子
3、非金属元素
O
+8 2 6
Cl
+17
2 8 7
2014-4-14
例题
下列叙述正确的是( B 气体元素氖的原子 (B)氯原子得到一个电子,就变成了和氩原子 ) (A)钠原子失去一个电子,就变成稀有
电子层结构相似的阴离子
化合物在一定条件下可分 解为两种或更多种物质 1.氧化物:由氧元素与另一 种元素组成的化合物,如 水、二氧化碳 2.酸、碱、盐

原子结构模型PPT课件

原子结构模型PPT课件
鳄鱼——卢瑟福的科学精神。 对真理孜孜不倦的追求,勇往直前、势不回头。
原子内大部分是空的
-
+
1909年,粒子散射 1 / 8000被反射,大部分透过
It was quite the most incredible event that ever happened to me in my life. It was almost as incredible as if you fired a 15inch shell at a piece of tissue paper and it came back and hit you.
塌缩到原子核上。
• 由于无法解释原子的稳定性,行星模型并没有 受到大家的广泛关注。
• 通过波尔的工作,核式结构才最终为大家接受。
原子核的发现,开始了人类对原子核研究的历史; 继电子之后,对万物结构的探索迈出了新的一步。
关于中子的研究
• 1920年以前,人们认为原子由质子与电子构成; • 同位素的发现,意味着原子核内不止有质子。卢瑟
福推测存在和质子差不多、但不带电的物质。 • 1930年,波特等人用粒子轰击铍,发现一种穿透力
很强的中性射线; • I.居里等人则发现这种射线可以从石蜡中打出质子。 • 查德威克认为这就是中子!
原子的大小和重量
原子的直径10-10m。
把1000万个碳原子一个接一个 排成行,其长度只有 1 厘米。 50万个原子只能排满头发丝的 距离。
全世界50亿人一起来数一滴水 中包含原子的数目,假定每人 数一个原子的时间一秒钟,50 亿人一起数完一滴水中全部原 子所需的时间为30000年。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits

原子结构的三种模型

原子结构的三种模型

原子结构的三种模型
原子结构是一个涉及微观粒子的领域,从科学家们成功地揭示了原子的存在以来,原子的结构理论便成为物理、化学、材料科学等领域中非常重要的一项研究课题。

在历史上,曾经有过几种关于原子结构的模型,而本文将简要介绍其中最著名的三种模型。

1. 汤姆逊模型:
汤姆逊模型是在1897年被英国科学家汤姆逊提出,它提出了原子具有一个球形的正电荷基质和散布在其周围的负电子。

这个模型也称为“葡萄干蛋糕模型”,因为他将原子想象成一个带正电载体的葡萄干,并散布着小的带负电的球形电子。

2. 卢瑟福模型:
1911年,卢瑟福提出了一个不同于汤姆逊模型的原子结构模型。

在这个模型里,原子由一个带有正电荷量的核心和围绕着核心运转的负电子组成。

卢瑟福的实验表明,带正电的粒子(即核心)主要集中在原子的中心处,而电子则在核外运行。

他的模型被称为“太阳系模型”,因为原子的结构被比喻成了太阳和围绕它旋转的行星。

3. 波尔模型:
在卢瑟福模型之后,丹麦物理学家尼尔斯·玻尔提出了他的原子结构模型,即“波尔模型”。

在这个模型中,玻尔认为电子运行在确定的轨道上,而轨道周围则是带有正电荷的核心。

波尔模型解释了为
什么原子只会发出特定的能量光子(即光谱线),电子的能量水平是量子化的,即只有在某些固定的能级上才可以停留,而其他能量状态是不允许的。

综上所述,汤姆逊模型、卢瑟福模型和波尔模型在原子结构的研究领域中都占据了重要的地位,它们各自提出了原子的不同结构和性质,并对后来的原子研究奠定了基础。

原子结构的模型

原子结构的模型

原子是一个平均分布着正电荷的粒子,其中镶嵌 着许多电子,中和了正电荷,从而形成了中性原子。
分析下表:在一个原子中哪些数目总是相
中子数
核外电数
氢原子
1
1
0
1
氦原子
2
2
2
2
碳原子
6
6
8
6
氮原子
7
7
7
7
铝原子
13
13
14
13
硫原子
16
16
17
16
氯原子
17
17
20
17
阴离子:带负电的原子
构成物质微粒共有分子、原子、离子。
e
Na
Cl
7 8 2 +17
Na+
8 8 2 +17
Cl-
Na+ Cl-
原 子 结 构
了解原子的构 成、原子结构模型 及其在历史上的发 展过程,体验建立 模型的思想
原子结构的模型
1.道尔顿原子模型(1803年) 实心球模型
2.汤姆生原子模型(1904年) 3.卢瑟福原子模型(1911年)
西瓜模型 行星绕太阳模型
4.玻尔原子模型(1913年)
分层模型
5.电子云模型(1927年—1935年) 电子云模型
原子是组成物质的基本的粒子,它们是坚实的、不可 再分的实心球。
氢原子的三种同位素原子



电子 质子
中子
常见元素的同位素及其符号和用途
元素
同位素(符号)
用途
氢(H)
H、D、T
D、T制造氢弹的原料, D2O可作核反应堆中的 中子减速剂
碳(C) 氧(O) 铀(U)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)能量分布
不同轨道上运动的电子具有不同的能量,而且 能量是量子化的,即“一份一份”的,不能任意连 续变 化而只能取某些不连续的值
基态 :原子能量最低的定态。 激发态 :能量高于基精态品课的件 状态。
3)电子跃迁
电子从一个轨道跃迁到另一轨道时,就要 吸收或放出能量,两个定态的能量差为E。如 能量以光辐射的形式表现出来,就形成了光谱。
精品课件
精品课件
绚丽壮观的焰火增加了节日欢乐的气氛, 都市夜空色彩夺目的美景会给你留下不可磨 灭的记忆。你是否想过,这给你带来惊异和 欢乐的美景是如何产生的?是什么产生了这 不同颜色的光?
这一节内容的学习,将会帮助我们揭 开其中的秘密。
精品课件
一、原子结构理论发展史:
精品课件
一、人类认识原子的历史
E = E2- E1= h (=c/)
精品课件
为什么氢光谱是线状光谱?
n=4 n=3 n=2 n=1
吸收能量 释放能量
精品课件
氢原子从一个电子 层跃迁到另一个电 子层时,吸收或释 放一定的能量,就 会吸收或释放一定
波长的光, 所以得到线状光谱
回过头来看玻尔的理论
玻尔原子结构模型 (1)行星模型 点拨:这里的“轨道”实际上就是我们现在所说的电子层。 (2)定态假设 点拨:玻尔原子结构理论认为:同一电子层上的电子能量完全相同。 (3)量子化条件 点拨:量子化条件的内涵是 各电子层能量差的不连续性。 (4)跃迁规则 ▲原子光谱产生的原因:电子由激发态跃迁到基态会释放出能量,
1913 1926
核外电子的运动状态是怎样的? 科学家通过研究光谱现象,进一步研究核 外电子的运动状态。 通过实验表明氢原子光谱是线状光谱 玻尔利用核外电子分层排布的原子结构模 型成功的解释了这一实验事实。
精品课件
了解几个概念
1)运动轨迹
原子中的电子在具有确定半径的圆周轨道 (orbit)上绕核运动时,并不吸收能量,也不辐射 能量,电子处于定态。
核外电子的 运动特征:
速度极快、永不停止 质量小,运动空间极小 无固定运动轨迹
这说明核外电子的运动不能用经典的运动学和力学 来描述(不能同时准确地测定它的位置和速度), 科学家采用统计的方法来描述电子在原子核外某一 区域出现机会的多少。
精品课件
氢原子的电子云
➢小黑点的疏密表示电子在核外空间单 位体积内出现的概率的大小。

出“核式”原子结构
模型
精品课件
精品课件
卢瑟福的原子结构理论遇到的问题
根据已经知道的电磁运动的规律,电子在运 动的时候会放出电磁波(能量)。因此,绕着原子核 旋转的电子,因为能量逐渐减小,应当沿着一条螺旋 形的轨道转动,离中心的原子核越来越近,最后碰在 原子核上。这样一来,原子就被破坏了。
实际上,原子很稳定,有一定大小,并没有发生 这种电子同原子核碰撞的情况。这又怎样解释呢?
精品课件
2. 能级
量子力学研究表明,处于同一电子层 的原子核外电子,所具有的能量也可能不相同, 电子云的形状可能不完全相同,因此,对同一 个电子层,还可分为若干个能级。
n=1时,有1个s能级 n=2时,有1个s能级和1个p能级 n=3时,有1个s能级、1个p能级和1个d能级 n=4时,有1个s能级、1个p能级、1个d能级和1个 f能级
这种能量以光的形式释放出来,所以就产生光谱。 ▲氢原子光谱是线状光谱的原因:氢原子上的电子由n=2的激发态
跃迁到n=1的基态,与从n=3的激发态跃迁到n=2的激发态,释放 出的能量不同,因此产生光的波长不同。
精品课件
一、氢原子光谱和玻尔的原子结构模型
1、玻尔原子结构模型要点:
(1)电子在具有确定半径圆周轨道上绕原 子核运动,并且不辐射能量;
精品课件
人类认识原子的历史
波 尔 原 子 模 型
1913年,玻尔建立了核外电子分层排布 的原子结构模型
精品课件
德谟克利特:朴素原子观 道尔顿:原子学说
1803
汤姆生:“葡萄干布丁” 模型 1903
卢瑟福: 原子结构的核式模型 1911
玻尔:核外电子分层排布的原 子结构模型
现代量子力学模型
精品课件
精品课件
电子云:
用单位体积内小点的疏密程度来描述核 外电子在原子核外单位体积空间出现的概率的大 小所得的图形叫做电子云。(一般用小黑点表示)
电子云中的小黑点意义:
每个小黑点并不表示原子核外的一个 电子,而是表示电子在此空间出现的机会 (或概率)。
电子云密度大的区域说明电子出现的 机会多,而电子云密度小的区域说明电子出 现的机会少。
精品课件
问题:
不同元素的原子所含有的电子数是不同的, 在多电子的原子中,各个电子在原子核外 的运动状态是否相同呢?各个电子具有的 能量是否一样呢?
精品课件
1.电子层:按电子能量的高低及离核远近划分
电子层: K L M N O P Q 离核远近:近 远 1能量2高低3:低 4 5 6 7 K高 L M N O P Q
道 尔 顿 原 子 模 型 19世纪初,英国科学家的实心球体。
精品课件
人类认识原子的历史
1903年,汤姆逊发现电子,并提出原 子结构的“葡萄干布丁”模型,开始 涉及原子内部的结构
精品课件
人类认识原子的历史





1911年,卢瑟福根据

α粒子散射实验,提

精品课件
P能级的原子轨道
z
z
z
y
y
y
x
x
x
P的原子轨道是哑铃(或纺锤)
每形个P能级有_____3__个轨道,它们互相垂直,
分别以___P__x、___P_y__、___P_z___为符号 这三个轨道的能量相等。 P原子轨道的平均半径也随能层序数增大而__增__大_
(2)在不同轨道上运动的电子具有不同的 能量,能量是量子化的。
(3)电子发生跃迁时,才会不连续的辐射 或吸收能量
贡献?
精品课件
二、原子核外电子的运动特征
运动物体 汽车 炮弹 人造卫星 宇宙飞船 电子
速率(Km/S) 0.03 2
7.8
11 2200
乒乓球直径 410-2 m
核外电子运动空间范围 n10-10 m
精品课件
3. 原子轨道
原子中的单个电子的空间运动状态用 原子轨道表示。
轨道的类型不同,轨道的形状也不同 用s、p、d、f分别表示不同形状的轨道 形状相同的原子轨道在原子核外空间还有不 同的伸展方向
精品课件
S能级的原子轨道图
所有的S能级原子轨道都是 球
形的,
电子层序数越大原子轨道的半径越大
S能级只有 1 轨道
相关文档
最新文档