第六章一阶电路分析

合集下载

电路讲义第六章_new

电路讲义第六章_new

f (t ) f (0 ) e

t

2)一阶电路的零输入响应和初始值成正比,称为零输入线性。 3) 零输入响应的衰减快慢取决于时间常数τ,其中RC 电路τ=RC , RL 电 路τ=L/R ,R 为与动态元件相连的一端口电路的等效电阻。 4) 同一电路中所有响应具有相同的时间常数。
【例6-5】 电路中开关SW闭合已久, t=0时SW断开,试求电流 iL(t),t0。
diL (t ) d u L (t ) L dt dt
C R ) (1) i 的大小取决于 u 的变化率, 与 u 的大
1 1 t uc (t ) ic d uc (t 0 ) ic d C C t0
1 t 1 t iL (t ) u L d iL (t 0 ) u L d L L t0
§6-1 动态电路的方程及其初始条件

跳变(跃变):
换路定则:
当 i C 和 u L 为有限值时,状态变量电容电压 u C 和电感电流 i L 无跳变, 即有 u C ( 0 )

u C ( 0 ) ; i L (0 ) i L (0 ) ;
过渡过程:动态电路的特点是,当电路状态发生改变后(换 路后)需要经历一个变化过程才能达到新的稳定状态,这个 变化过程称为电路的过渡过程。
§6-1 动态电路的方程及其初始条件
基本概念:

动态电路:含有动态元件电容和电感的电路称动态电路。 一阶电路:用一阶微分方程描述的电路(或只含一个独立 的动态元件的电路)



换路:电路结构、状态发生变化,即支路接入或断开或电 路参数变化; 若换路在t=0时刻进行,则换路前的最终时刻记为t=0- ;换 路后最初时刻记为t=0+ ;换路经历的时间为0-~0+ ;

第六章 一阶电路

第六章   一阶电路

20 - 3 + t=0 2 3v -
+
uR2
C 0.1F
0.5i1 1F
i1
uc -
§6-3完全响应
N uc(0)=U0 N0 Uc(0)=U0 N Uc(0)=0
初始状态和输入共同作用下的响应称为完全响应. 初始状态和输入共同作用下的响应称为完全响应. 一,完全响应 du + R0 c uc(t) + Us - - uc (t ) = (U 0 uc(0)=U0 τ=R0C
§6-1零输入响应
初始值的计算: 时的值称初始值. 4,初始值的计算:t=0+时的值称初始值. u(0+),i(0 (0+)和 如:u(0+),i( +), uc(0+), iL(0+).而uc(0+)和 又可称为初始状态. iL(0+)又可称为初始状态. 计算的理论依据:电容电压,电感电流不跃变, 计算的理论依据:电容电压,电感电流不跃变, + + _ 即
t
i +
+ R C-
uc
τ
) = uc (∞)(1 e τ ) t ≥ 0
t
称为电容电压的稳态值. 称为电容电压的稳态值.
uc(t)
u c( ∞) 0 4τ τ t
Us/R 0
i(t)
4τ 稳态 过程
暂态 过程
稳态 过程
暂态 过程
t
t
t
Us e 后再求i(t): 求出uc(t)后再求 : i ( t ) = 后再求 R 的讨论: 二,对uc(t)的讨论: 的讨论
得:l (t ) = il (0 )e i
+

天津理工电路习题及答案-第六章--一阶电路..

天津理工电路习题及答案-第六章--一阶电路..

第六章一阶电路——经典分析法(微分方程描述)——运算分析法(代数方程描述)见第十三章一、重点和难点1. 动态电路方程的建立和动态电路初始值的确定;2. 一阶电路时间常数、零输入响应、零状态响应、冲激响应、强制分量、自由分量、稳态分量和暂态分量的概念及求解;3. 求解一阶电路的三要素方法;电路初始条件的概念和确定方法;1.换路定理(换路规则)仅对动态元件(又称储能元件)的部分参数有效。

①电容元件:u C(0-) = u C(0+);(即:q C(0-) = q C(0+));i C(0-) ≠i C(0+)。

②电感元件:i L(0-) = i L(0+);(即:ΨL(0-) = ΨL(0+));u C(0-) ≠u C(0+)。

③电阻元件:u R(0-) ≠u R(0+);i R(0-) ≠i R(0+)。

因此,又称电容的电压、电感的电流为状态变量。

电容的电流、电感的电压、电阻的电压和电流为非状态变量。

如非状态变量的数值变化前后出现相等的情况则视为一种巧合,并非是一种规则。

2.画t=0+时刻的等效电路画t=0+时刻等效电路的规则:①对电容元件,如u C(0-) = 0,则把电容元件短路;如u C(0-) ≠ 0,则用理想电压源(其数值为u C(0-))替代电容元件。

②对电感元件,如i L(0-) = 0,则把电感元件开路;如i L(0-) ≠ 0,则用理想电流源(其数值为i L(0-))替代电感元件。

画t=0+时刻等效电路的应用:一般情况下,求解电路换路后非状态变量的初始值,然后利用三要素法求解非状态变量的过渡过程。

3. 时间常数τ①物理意义:衡量过渡过程快慢的技术指标(即等于一阶微分方程的特征方程的特征根)。

仅取决于电路的结构和元件的参数。

②几何意义:状态变量变化曲线中时间坐标轴上任意一点次切距的长度(即曲线上任意一点,如果以该点的斜率为固定变化率衰减,则经过τ时间后为零值)。

③单位:m(秒)、ms(毫秒)。

第6章 一阶电路

第6章 一阶电路
iL(0)= 0
C + U0– L L L
L L
+ uL–
iL(0)=I0
+ uL–
I0
第6章 一阶电路
6- 3
例:求电路初始值 iL(0+),uL(0+)。
t=0
R3
R3
IS 5A
R1 20
K b 30 iL + uL L R2 – 15
a
IS 5A
R1 20
30
iL(0-)
+
uL(0-)

t RC
代入初始条件 uC(0) = U0, uC (0) K e 最终得
K U0
uC ( t ) U 0 e

t RC
t≥0
uC(t) 的零输入响应为一随时间衰减的指数函数。
第6章 一阶电路
6- 4
1. 响应的形式
t≥0 由电容VCR、KVL可得响应
R
i(t)
+ u1(t) – + uC(0) –
第6章 一阶电路
6-1
§6-1 分解方法在动态电路分析中的应用
利用戴维南定理或诺顿定理,可将单口含源电阻 网络 N 化简为戴维南等效电路或诺顿等效电路。
i(t) i(t) + uOC(t) – C i(t) iSC(t) + uC(t) – R0 + uC(t) – C
N
+ uC(t) –
G0
C
第6章 一阶电路
6-1
利用戴维南定理或诺顿定理,可将单口含源电阻 网络 N 化简为戴维南等效电路或诺顿等效电路。
i(t) + uR0(t)– i(t) + uC(t) – C

邱关源《电路》第六章一阶电路1

邱关源《电路》第六章一阶电路1

1、若电容电流保持为有限值,
则换路前后瞬间电容电压不突变:uC (0+) = uC (0-)
2、若电感电压保持为有限值,
则换路前后瞬间电感电流不突变:iL(0+)= iL(0-) uC (0+) 、iL(0+) 称为独立的初始条件,
电路中其余的为非独立初始条件
uR(0+) 、iR(0+) 、 uL(0+) 、iC(0+)等
i
+
取关联参考方向
du iC
dt
+
u
C
微分形式


电容有隔直通交的作用
du/dt =0 i=0 电容在直流电路中相当于开路。
7
二.什么是动态电路
BUCT
8
t=0
i
U S uc
US
+
Us
S

R+
uC

R?
i
C
初始状态 0
t1 新稳态
过渡状态
BUCT
t
动态电路:含有动态元件(L、C)的电路。
当电路状态发生改变时需要经历一个变化过程才能达到新的稳态。
第六章 一阶电路
BUCT
(First-Order Circuits )
6. 1 动态电路概述及初始值的确定 6. 2 一阶电路三要素法 6. 3 一阶电路的阶跃及冲激响应
1
第六章
BUCT
一阶电路 (First-Order Circuits )
重点: 理解并牢记换路定则;
深刻理解初始值、稳态值及时间常数 的含义并熟练掌握其求法;
BUCT
1. i + uc- C

第六章一阶电路

第六章一阶电路

R t L R t L
di u L L RI0e dt
L 与RC电路类似,令 R 称为RL电路的时间常数。
右图所示曲线为i、 uL和uR随时间变 化的曲线。
从以上求得的RC和RL电路零输入响应进一步 分析可知,对于任意时间常数为非零有限值的一 阶电路,不仅电容电压、电感电流,而且所有电 压、电流的零输入响应,都是从它的初始值按指 数规律衰减到零的。且同一电路中,所有的电压、 电流的时间常数相同。若用f (t)表示零输入响应, 用f (0+)表示其初始值,则零输入响应可用以下通 式表示为
6 iL A 3 A 2 L 2s Req
由三要素法可得:
iL [3 (2 3)e (3 0.5e
根据KCL可求得:
0.5t
1t 2
]A
)A
i I S iL (5 5e
例6-1
下图所示电路中直流电压源的电压为Uo。当电路中的 电压和电流恒定不变时,打开开关S。试求uC(0+)、iL(0+)、 ic(0+)、 uL(0+)、uR2(0+)。
解 根据t=0-时刻的电路状 态计算u (0-)和i (0-)
c
L
U 0 R2 u c (0 ) R1 R2 U0 iL (0 ) R1 R2
已知历次绕组的电阻R=0.189,电感L=0.398H, 直流电压U=35V。电压表的量程为50V,内阻 RV=5k。开关未短=断开时,电路中电流已经 恒定不变。在t=0时,断开开关。 求:(1)电阻、电 感回路的时间常数; (2)电流i的初始值 和断开开关后电流i的 最终值;(3)电流i 和电压表处电压uV; (4) 开 关 刚 断 开 时 ,电压表处电压。

一阶电路

一阶电路

d
由KVL,得
i1(t) 4 uab (t) i2 (t) 3 0
uab (t)
25 24
t
e 12
t0
2020年4月19日星期信日息学院
24
结束结束
第6章 一阶电路
电路分析基础
6-2 零状态响应 定义:电路的初始状态为零,仅由t≥0时的外加激励 所产生的响应。
一、一阶RC电路的零状态响应 t<0时,电路处于稳定状态,t=0 时,开关闭合,求t≥0时电容两端 的电压。
2020年4月19日星期信日息学院
6
结束结束
第6章 一阶电路
三、过渡过程的定性分析
电路分析基础
电阻电路
+ i R1
us
-
R2
(t = 0) i
i U S / R2
i U S ( R1 R2 )
t 0
2020年4月19日星期信日息学院
过渡期为零
7
结束结束
第6章 一阶电路
电容电路
(t = 0) R i
2)做出t=0+时的初始值等效电路。 在t=0+瞬间,电容元件可用电压等于uC(0+)的电压源代替; 电感元件可用电流等于iL(0+) 的电流源代替。画出t=0+的初 始值等效电路如图所示。
2020年4月19日星期信日息学院
12
结束结束
第6章 一阶电路
3)由0+等效电路可求得 uL (0 ) Us uC (0 ) 10 10 0
t
uc (0)e
其中uc(0)为电容电压的初始值,τ=RC
一阶电感电路的零输入响应
1t
iL (t) I0e

第 六 章 一 阶 电 路

第 六 章 一 阶 电 路

t0
uV (0+)= - 10000V
造成
V 损坏。
小结:
1. 一阶电路的零输入响应是由储能元件的初值引起的响 应 , 都是由初始值衰减为零的指数衰减函数。
y(t ) y(0 )e

t

2. 衰减快慢取决于时间常数 RC电路 = RC , RL电路
= L/R
3. 同一电路中所有响应具有相同的时间常数。

1 uC (0 ) uC (0 ) C
结论
1 0 ( )d uC (0 ) C
0
uC (0 )
换路瞬间,若电容电流保持为有限值, 则电容电压(电荷)换路前后保持不变。
iL
+
u
L
-
1 t i L u( )d L 1 0 1 t i L u( )d u( ))d L L 0
§6-3 电路的初始条件
一. 关于 t = 0+与t = 0-
换路在 t=0时刻进行
00+ t = 0 的前一瞬间 t = 0 的后一瞬间
二. 换路定律
i
+ uc -
C
1 t uC ( t ) i ( )d C 1 0 1 t i ( )d i ( )d C C 0 1 t uC (0 ) i ( )d C 0
3
U0 e -3
5
U0 e -5 0.007 U0
uc U 0 e

U0 U0 e -1 U0 0.368 U0
0.135 U0 0.05 U0
工程上认为 , 经过 3 - 5 , 过渡过程结束。
:电容电压衰减到原来电压36.8%所需的时间。

数字电路第6章(1时序逻辑电路分析方法)

数字电路第6章(1时序逻辑电路分析方法)

数字电路第6章(1时序逻辑电路分析方法)1、第六章时序规律电路本章主要内容6.1概述6.2时序规律电路的分析方法6.3若干常用的时序规律电路6.4时序规律电路的设计方法6.5时序规律电路中的竞争-冒险现象1.时序规律电路的特点2.时序规律电路的分类3.时序规律电路的功能描述方法§6.1概述一、时序规律电路的特点1、功能:任一时刻的输出不仅取决于该时刻的输入;还与电路原来的状态有关。

例:串行加法器:两个多位数从低位到高位逐位相加一、时序规律电路的特点2.电路结构①包含存储电路和组合电路,且存储电路必不行少;②存储电路的输出状态必需反馈到组合电路输入端,与输入变量共同确定组合规律的输出。

yi:输出信号xi:输2、入信号qi:存储电路的状态zi:存储电路的输入可以用三个方程组来描述:Z=G(X,Q)二、时序电路的分类1.依据存储电路中触发器的动作特点不同时序电路存储电路里全部触发器有一个统一的时钟源;触发器状态改变与时钟脉冲同步.同步:异步:没有统一的时钟脉冲,电路中要更新状态的触发器的翻转有先有后,是异步进行的。

二、时序电路的分类2.依据输出信号的特点不同时序电路输出信号不仅取决于存储电路的状态,而且还取决于输入变量。

Y=F(X,Q)米利(Mealy)型:穆尔(Moore)型:输出状态仅取决于存储电路的状态。

犹如步计数器Y=F(Q)三、时序规律电路的功能描述方法描述方法3、规律方程式状态转换表状态转换图时序图三、时序规律电路的功能描述方法(1)规律方程式:写出时序电路的输出方程、驱动方程和状态方程。

输出方程反映电路输出Y与输入X和状态Q之间关系表达式;驱动方程反映存储电路的输入Z与电路输入X和状态Q之间的关系状态方程反映时序电路次态Qn+1与驱动函数Z和现态Qn之间的关系三、时序规律电路的功能描述方法(2)状态〔转换〕表:反映输出Z、次态Qn+1和输入X、现态Qn间对应取值关系的表格。

(3)状态〔转换〕图:(4)时序图:反映时序规律电路状态转换规律及相应输入、输出取值关系的有向图形。

第六章 一阶电路

第六章 一阶电路
(1)电感的储能只与当时的电流值有关,电感 )电感的储能只与当时的电流值有关, 表 明 电流不能跃变,反映了储能不能跃变; 电流不能跃变,反映了储能不能跃变; (2)电感储存的能量一定大于或等于零。 )电感储存的能量一定大于或等于零。
电感的串联
Leq = L1 + L2 + L3 + ... + LN
电感元件VCR的积分关系: 的积分关系: 电感元件 的积分关系 1 0 1 t i (t ) = ∫ u (ξ ) dξ + ∫ u (ξ ) d ξ L −∞ L 0
1 t = i(0) + ∫ u(ξ )dξ L 0
式中,i(0) 称为初始电流; 称为初始电流; 式中, 后一项是在t=0以后电感上形成的电流, 后一项是在 以后电感上形成的电流,它体 以后电感上形成的电流 现了在0-t 的时间内电压对电流的贡献。 现了在 的时间内电压对电流的贡献。 上式说明:任一时刻的电感电流, 上式说明:任一时刻的电感电流,不仅取决于 该时刻的电压值,还取决于-∞~t 所有时间的电压 该时刻的电压值,还取决于 即与电压过去的全部历史有关。 值,即与电压过去的全部历史有关。可见电感有 记忆”电压的作用,它也是一种记忆元件 记忆元件。 “记忆”电压的作用,它也是一种记忆元件。
1 t u(t ) = u(0) + ∫ i(ξ )dξ C 0
有限时, 当i有限时,电容电压不能突变, 有限时 电容电压不能突变,
注意
而是连续变化的。 而是连续变化的。
duc (t ) 能突变, ∵ 若uc(t)能突变,则 ic (t ) = c 能突变 dt
这与“ 为有限值” 这与“ ic(t)为有限值”的前提相矛盾。 为有限值 的前提相矛盾。 ∞,

第六章一阶电路暂态分析

第六章一阶电路暂态分析

第六章一阶电路暂态分析一、教学基本要求1、掌握动态电路的特点、电路初始值的求法、零输入响应、零状态响应、全响应、阶跃响应、冲激响应的概念和物理意义。

2、会计算和分析一阶动态电路,包括三种方法:⑴全响应=零状态响应+零输入响应;⑵全响应=暂态响应+稳态响应;⑶“三要素”法。

二、教学重点与难点1. 教学重点:(1). 动态电路方程的建立和动态电路初始值的确定;(2). 一阶电路时间常数的概念;(3). 一阶电路的零输入响应和零状态响应;(4). 求解一阶电路的三要素方法;(5). 自由分量和强制分量、暂态分量和稳态分量的概念;2.教学难点: (1). 应用基尔霍夫定律和电感、电容的元件特性建立动态电路方程。

(2).电路初始条件的概念和确定方法。

三、本章与其它章节的联系:本章讨论的仍是线性电路,因此前面讨论的线性电路的分析方法和定理全部可以用于本章的分析中。

第9章讨论的线性电路的正弦稳态响应就是动态电路在正弦激励下的稳态分量的求解。

四、学时安排总学时:6五、教学内容§6.1 动态电路的方程及其初始条件1.动态电路含有动态元件电容和电感的电路称动态电路。

由于动态元件是储能元件,其VCR 是对时间变量t 的微分和积分关系,因此动态电路的特点是:当电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。

这个变化过程称为电路的过渡过程。

下面看一下电阻电路、电容电路和电感电路在换路时的表现。

1)电阻电路图6.1 (a)(b)图6.1(a)所示的电阻电路在t =0 时合上开关,电路中的参数发生了变化。

电流i 随时间的变化情况如图6.1(b)所示,显然电流从t<0时的稳定状态直接进入t>0 后的稳定状态。

说明纯电阻电路在换路时没有过渡期。

2)电容电路图6.2 (a)(b)图6.2 (c)图6.2(a)所示的电容和电阻组成的电路在开关未动作前,电路处于稳定状态,电流i 和电容电压满足:i=0,u C=0。

电路分析基础第六章(李瀚荪)

电路分析基础第六章(李瀚荪)
t
t
t0
t U S uC 1 解二: iC [U S U S (1 e )] R R t US e , t0 R
二、RL电路的零状态响应 t=0
iR
R IS
iL
L
+ uL _
已知:iL(0_ ) = 0,求 iL(t) , uL(t) , t 0 解:1. 定性分析
1. 定性分析
① t< 0 —充电 ② t = 0 —换路
③ t≥0 —放电
2. 定量分析
建立图(b)电路的一阶微分方程
u R uC 0
齐次方程通解: 根据初始条件 其解为:
duC RC uC 0 dt
uC (t ) Ke
uC (0 ) Ke
t RC
st
1 S=- RC
= 18e- 2500tV 18e- 2500t 6 ? 4 9
(t ? 0) 3e- 2500t A(t > 0)
uC (t ) 6 i1 (t ) = ? R 3+ 6
例3: 已知i (0 +) = 2A 求:i(t) , u(t) , t ≥ 0 3
i
0.5u
1
4H
+ u
_
u 3i (0.5u i) 1

t

6e 20 t V
( t 0)
duC U 0 t 6 20 t iC ( t ) C e e dt R 10 103 0.6e 20 t m A ( t 0)
电阻中的电流iR(t)可以用与iC(t)同样数值的电
流源代替电容,用电阻并联的分流公式求得 iR(t)
引例:求图示电路的一阶微分方程。

《电路分析基础》第六章一阶电路

《电路分析基础》第六章一阶电路

《电路分析基础》第六章一阶电路一阶电路是电路分析中最简单的一种电路,由一个电感或一个电容和一个电压源或电流源组成。

一阶电路是电子工程中非常常见的一种电路,它的特点是响应时间快,稳定性好。

一阶电路主要包括RC电路和RL电路两种类型。

RC电路由一个电阻和一个电容组成,RL电路由一个电阻和一个电感组成。

在分析一阶电路之前,我们首先要了解一些电路的基本概念。

电阻是电路中最基本的元件,用来限制电流的大小。

电容是储存电荷的元件,可以在电路中积累能量,并且具有储能的功能。

电感是储存磁场能量的元件,类似于电容,但储存的是磁场能量。

在一阶电路中,电阻、电容和电感之间存在着不同的关系。

在RC电路中,电压和电流之间的关系是指数关系,电压的变化速度随着时间的增加而减小。

而在RL电路中,电压和电流之间的关系是线性关系,电压的变化速度与时间无关。

一阶电路的分析主要通过微分方程的方法进行。

对于RC电路,我们可以通过二阶微分方程来描述电压和电流的关系,即I(t) = C*dV(t)/dt + V(t)/R。

对于RL电路,我们可以通过一阶微分方程来描述电压和电流的关系,即V(t) = L* dI(t)/dt + I(t)*R。

在分析一阶电路时,我们经常需要查看电路的响应时间和稳定性。

响应时间是指电路在接受输入信号后所需要的时间来达到稳定状态。

稳定性是指当电路处于稳态时,对输入信号的响应是否保持稳定。

对于RC电路和RL电路,我们可以通过解微分方程得到它们的解析解。

对于RC电路,我们可以得到V(t)=V0*(1-e^(-t/RC))的解析解,其中V0是初始电压,R是电阻,C是电容。

对于RL电路,我们可以得到I(t)=I0*(1-e^(-t/RL))的解析解,其中I0是初始电流,R是电阻,L是电感。

通过分析一阶电路的响应时间和稳定性,我们可以更好地理解电路的工作原理,并且可以根据需求来设计出合理的电路。

一阶电路是电子工程中非常重要的一部分,它是电路分析的基础,也是电子产品设计的基础。

第六章 一阶电路

第六章 一阶电路

第六章 一阶电路§6-1 动态电路的方程及其初始条件§6-2一阶电路的零输入响应(一)教学目标1. 了解产生过渡过程的电路及原因,2. 掌握“稳态”与“暂态”的概念与分析方法的区别, 3. 掌握换路定理,应用于一阶电路初始值的计算;4. 掌握一阶电路的概念,零输入响应的概念以及求解方法。

(二)教学难点1. 本课程以往的内容全部是稳态电路的分析,本章首先要使学生建立电路中存在“过渡过程(暂态)”的思想及掌握其产生原因(包括外部原因与内部原因)。

2. 一阶电路初始值计算的分析核心为换路定理,学生必须掌握这一分析思路。

3. 一阶电路零输入响应的物理实质为储能元件的放电过程,其响应曲线为按指数衰减的形式。

4. 时间常数反映了电路零输入响应的衰减快慢,它与电路的元件组成有关。

(三)教学思路1. 首先,以自然界中火车的启停需要过渡时间段加减速作类比,强化学生关于特定电路在状态发生改变时同样存在“过渡过程”概念的理解,并引出电路过渡过程的研究变量。

2. 通过对换路和换路定理概念及物理意义的解释,明确电路过渡过程初始值的计算依据。

3. 零输入响应的分析先从定性角度让学生明白其物理实质,然后借助数学方法推导出其数学表达式。

课程内容中物理意义的分析比起定量分析更加重要。

(四)教学内容和要点一、“稳态”与 “暂态”的概念: 产生过渡过程的电路及原因?无过渡过程 I 电阻电路I电阻是耗能元件,其上电流随电压比例变化,不存在过渡过程。

过渡过程产生的原因1. 内因:电路内部含有储能元件L 、M 、C2. 外因:电路结构发生变化稳态暂态换路发生很长时间换路刚发生i L 、u C 随时间变化代数方程组描述电路微分方程组描述电路I L 、U C 不变)(LC I U 、稳态分析和暂态分析的区别tCu 电容为储能元件,它储存的能量为电场能量 ,其大小为:2021cu idt u W tC ==⎰因为能量的存储和释放需要一个过程,所以有电容的电路存在过渡过程。

第6章 一阶电路

第6章 一阶电路

Ke −5τ
变化规律的核心部分
变化规律的核心部分 ② 是指数函数
f ( t ) = Ke
− t RC
此处K 此处K=Us。其中RC乘积的量纲为时间, 其中RC乘积的量纲为时间 乘积的量纲为时间, 令 τ = RC ,称为时间常数。 τ决定uc变化的快 称为时间常数。 慢。 f(t)
K
f (t ) = Ke
R +

(t) c δ
-
u(t)
s(t) = (1A)R(1− e τ )ε(t)
ds (t ) h (t ) = dt t − d τ = R ε (t ) − e ε (t ) dt t t − 1 −τ τ = R δ (t ) − δ (t ) e + e ε (t ) τ 1 −τ τ = R e ε (t ) = e ε (t ) τ C 1
§2-2 零输入响应
(2)如何获悉uc(0)或iL(0)? 如何获悉u (0)或 (a)根据t≤0时的电路计算; 根据t≤0时的电路计算 时的电路计算; (b)作为已知条件给出,不必追究其来源。 作为已知条件给出,不必追究其来源。
(3)
例题 4Ω
求iL(t) 、uL(t)及i(t),t≥0? t≥0?
例如 t ≥ 0时,,(t) = 5V uS 可记为 此时无需再标示t 此时无需再标示t≥0 。
uS (t) = 5ε (t) ,
延时(delayed)单位阶跃函数 延时(delayed)单位阶跃函数
ε (t)
1
0 ε(t − t0 ) = 1
t < t0 t > t0
0
t0
t
ε(t-t0) 连同ε(t) ,可以用数学形式表明分段常量 ε(t

电路邱关源电子教案第六章

电路邱关源电子教案第六章

第六章 一阶电路第一节 动态电路的方程及其初始条件一、动态电路:含有动态元件电容和电感的电路。

1、特点:当动态电路状态发生改变时(换路),需要经历一个变化过程才能达到新的稳定状态,这个变化过程称为电路的过渡过程。

换路:由开关动作引起电路结构或参数的改变。

电容电路:CutS 闭合前,电路处于稳定状态,0C u=S 闭合后很长时间,电容充电完毕,电路达到新的稳定状态,C S u U = 电感电路:tLiS 闭合前,电路处于稳定状态,0L i =S 闭合后很长时间,电路达到新的稳定状态,SL U i R= 2、动态电路的方程CuLi一阶RC 电路(含有电阻和一个电容)一阶电路一阶RL 电路(含有电阻和一个电感) c S Ri u U += c du i Cdt = L L S Ri u U += L L diu L dt= c c S du RCu U dt +=—一阶线性微分方程 L L S diRi L U dt+=二、电路的初始条件及换路定则1、电路的初始条件(初始值):变量(电压或电流)及其(1)n -阶导数在0t +=时的值。

0t -=换路前一瞬间 认为换路在 t =0时刻进行0t +=换路后一瞬间(0)f +)-2、换路定则当电容电流和电感电压为有限值时,则有:(1)(0)(0)C C u u +-=,(0)(0)C C q q +-=;换路前后瞬间电容电压(电荷)保持不变。

(2)(0)(0)L L i i +-=,(0)(0)L L +-ψ=ψ;换路前后瞬间电感电流(磁链)保持不变。

证明:0001111()()d ()d ()d (0)()d t t t C C u t i i i u i C C C C ξξξξξξξξ-----∞-∞==+=+⎰⎰⎰⎰0t +=时刻 001(0)(0)()d C C u u i C ξξ+-+-=+⎰(0)(0)C C u u +-=得证0001111()()d ()d ())d (0)()t t t L L i t u u u i u d L L L L ξξξξξξξξ-----∞-∞==+=+⎰⎰⎰⎰0t +=时刻 001(0)(0)()L L i i u d L ξξ+-+-=+⎰(0)(0)L L i i +-=得证三、初始值的确定(求(0)f +)求初始值的步骤:1由换路前电路求(0)C u -和(0)L i -(换路前电路一般为稳定状态,则C 为开路,L 为短路); 2由换路定则得(0)C u + 和(0)L i +。

一阶电路分析

一阶电路分析

电流源替代;
uC(0-)=0
iL(0-)=0
注:换路前无储能, C----短路; L----开路;
3.在t=0+时的置换电路上运用电阻电路分析方法计
算其它所求响应的初始值。
三、三要素法
t=0
uC(0)=U0
t=0
iL(0)=I0
1t
uC (t) (U0 RI S ) e τ RI S
初始值
,iR
uC R
{ uc(0)=0
C duC dt
uC R
IS ,
t 0
uc
uch
ucp
1
Ke RC
t
uch
1
Ke RC
t

RI S ,
uC (0) 0
uC (0) Ke0 RI S 0 , K RI S
uC
(t)
RI S (1
1t

),
t
0, τ
RC
ucp Q RI S
电 路 的 零 状 态 响 应
RCUCmωsin(ωt ψu ) UCmcos(ωt ψu ) U Smcos(ωt ψ)
(RUCmωC )2
U
2 Cm
cos(ωt
ψu
tg1ωCR)
U Sm cos(ωt
ψ)
UCm
R2ω2C
2
1
U

Sm
ψu tg1ωCR ψ
{UCm
U Sm 1 R2ω2C 2
素 3.正弦量的相位差
二、正弦激励的瞬态和稳态
ψ π
u(t) Umcosωt
0
u(t) Umcos(ωt ψ) u(t) Umcos(ωt ψ)

一阶电路的详细分析

一阶电路的详细分析

1. RC电路的零状态响应
K(t=0)
i
+
+
uR R +
US –

u+C C
US –

1、电路特征 (换路后)
i
2、建立方程
+
(换路后)
uR

R 3、微分方程的解
u+C C

uC (0-)=0
换路后的电路
t
t
uc U S U S e U S (1 e ) (t 0)
从上式可以得出:
U0 uC
连续 函数
i I0
跃变
0
t
0
t
(2)响应衰减快慢与有关;
=RC ,称为一阶电路的时间常数



RC


欧法


库 伏


安秒 伏



(3)时间常数 的大小反映了电路过渡过程时间的长短
大 → 过渡过程时间长
uC U0
小 → 过渡过程时间短
3、微分方程的解
1t
i(t) I0e t 0
uL (t)
L diL dt
t
RI 0e
从以上式子可以得出:
(1)电压、电流是随时间按同一指数规律衰减的函数;
I0 iL
连续 函数
0
t
uL
t
-RI0
跃变
(2)其衰减快慢与 =L/R有关;
大 → 过渡过程时间长 小 → 过渡过程时间短
= L/R , 称为一阶RL电路时间常数
[
]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档