速度关联类问题求解速度的合成与分解

合集下载

速度的合成与分解(刘贵华)整理

速度的合成与分解(刘贵华)整理

精心整理速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1234、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,(1(2将合速度分解成一.而寻找这种关系则是考生普遍感觉的难点行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。

合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动速度投影定理:不可伸长的杆或绳,若各点速度不同,各点速度沿绳方向的投影相同。

这类问题也叫做:斜拉船的问题——有转动分速度的问题【例题1】如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。

【例题2】如图所示,在高为H 的光滑平台上有一物体.用绳子跨过定滑轮C ,由地面上的人以均匀的速度v 0向右拉动,不计人的高度,若人从地面上平台的边缘A 处向右行走距离s 到达B 处,这时物体速度多大?物体水平移动了多少距离?【例题3】如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少?【例题4】一根绕过定滑轮的长绳吊起一重物B B A v v ,,则()A 、B A v v =B 、B A v v >C 、B A v v <D 、重物B 的速度逐渐增大【例题5V A ,求此时B 1.并分别置于光滑水平面上,若A 面的夹角分别为α和β时,2.物体置于光滑的平台上,轮.由地面上的人上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?3.(★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-3所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).图5-3图5-1图4.(★★★)如图5-4所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .5.(★★★★★)如图5-5所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-56.(★★★★)的光滑斜面上的物体m 1连接,3m.物体m 2由静止从AB 连线为水平位置开始下滑1m(1)m 2在下滑过程中的最大速度. (2)m 2沿竖直杆能够向下滑动的最大距离. 图5—6图5-4。

速度的合成与分解公式

速度的合成与分解公式

速度的合成与分解公式在我们的物理世界中,速度这个概念就像是一个调皮的小精灵,总是变来变去,让人捉摸不透。

而速度的合成与分解公式,就是我们抓住这个小精灵的神奇工具。

记得有一次,我在公园里散步,看到一个小男孩在玩遥控小汽车。

他操控着小汽车一会儿向前,一会儿又向左拐。

这时候,我就在想,这小汽车的实际速度到底是怎么变化的呢?其实啊,这就涉及到速度的合成与分解。

咱们先来说说速度的合成。

想象一下,你坐在一艘船上,船本身在以一定的速度向前行驶,而你又在船上朝着某个方向走。

那么从岸上的人看来,你的速度就是船的速度和你自己走的速度的合成。

比如说,船的速度是 5 米每秒,朝着正前方,而你在船上以 2 米每秒的速度朝着右前方走,与船头方向夹角是 30 度。

这时候,岸上的人看到你的速度就不是简单的 5 米每秒加上 2 米每秒,而是要通过公式来计算。

速度的合成公式是:V 合= √(Vx² + Vy²) ,其中 Vx 和 Vy 分别是速度在 x 轴和 y 轴上的分量。

就拿刚才船上的例子来说,我们先把你的速度分解到船头方向(也就是x 轴)和垂直船头方向(也就是y 轴)。

沿着船头方向,你的速度分量就是2×cos30° = √3 米每秒,垂直船头方向的速度分量就是 2×sin30° = 1 米每秒。

而船本身在 x 轴上的速度是 5米每秒,y 轴上速度是 0 米每秒。

所以合成后的速度在 x 轴上就是 5 +√3 米每秒,y 轴上是 1 米每秒。

最后合成的总速度就是√[(5 + √3)² + 1²] 米每秒。

再说说速度的分解。

还是那个小男孩的遥控小汽车,假如我们知道小汽车实际的速度和行驶方向,要弄清楚它在水平和竖直方向上的速度分量,这就得用到速度的分解了。

比如说小汽车以 10 米每秒的速度斜着跑,与水平方向夹角是 60 度,那么水平方向的速度分量就是10×cos60° = 5 米每秒,竖直方向的速度分量就是10×sin60° = 5√3 米每秒。

如何解答速度关联类问题

如何解答速度关联类问题
B . 人拉 绳 行 走 的速 度 为 —
c o s O
_
,  ̄
/ 2 g h ( P - h 2 ) v

c . 船的 加速度 ̄ c o s O - J

T r
图5
三、 接触 物体 间 的关 联
D . 船 的 加 速 度 为 二 l 『 _

解析 : 船 的实际运动为水平 向左 , 它产生 了两个 效果 : 一是使滑轮与船问的绳缩短 , 二是使绳绕滑轮 顺时针转动 ,因此将船 的速 度按如 图2 所示 进行分
思路方法

何解答速 联类问题
图4
在学习运动的合成和分解时 ,经 常会遇到涉及 相互关联物体的速度的求解 。相互关联 的物体通过 轻绳 、 细杆或直 接接触 、 相互挤压等发 生相互作用 , 在运动过程中通常具有 不同的速度 ,但它们 的速度 是相互关联的。 正确建立连接体 间的速度关联关系 , 是求解连接体有关 速度 问题 的切入点 ,也是求解有 关连接体综合问题 的关键 。
放球C , 求C 下落 时球 c 的速度 。 。
—S O’


CO
s i n — O’ 义 又根据 恨 借 机械 L 1 龇日 能守恒 匕、 ]【 旦疋 定律 1 手1 得 哥 = a’ =—
: ,



2 1
一 脚
2 1


C。
对于绳或杆连接的两个 物体 ,由于轻绳都是不 可伸长的 , 杆都是不可伸长和压缩的 , 即绳或杆 的长 度不会改变 , 所 以沿 绳 或 杆 方 向上 的 速 度 分 量 相 等 。 解题的原则是 :把 物体 的实 际速度分解为垂直于绳 ( 或杆 ) 和沿着绳( 或杆 ) 的两 个 分 量 。 例1 如 图1 所示 , 人 在 岸上拉船 , 已知船 的质量 为 m ,水 的阻 力恒 为厂 , 当轻绳 与水 平面 的夹角 为0 时, 船 的速度为 ,人 的拉力大小 图 1 为F , 则此时( ) A . 人 拉 绳 行 走 的 速 度 为Y C O S O

曲线运动之速度合成和分解

曲线运动之速度合成和分解

关联速度问题解析:本类题的关键,是找到物体的实际速度,然后,将物体的速度按实际作用效果加以分解。

比如下面的两个实例:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.再如:下图中A点的实际速度是绕转轴做圆周运动的。

它的运动可以分解为水平向右和竖直向下的两种运动。

1.如图所示,AB杆水平固定,另一细杆可绕固定轴O转动,O轴在AB杆上方h高处,两杆均被套在光滑圆环P上,当细杆绕O轴以角速度ω顺时针方向转至与竖直方向30°时,环的运动速度为___.2.如图所示,AB绕杆A点以一定的角速度ω由竖直位置开始顺时针匀速旋转,并带动套在水平杆上的光滑小环运动.则小环在水平杆上运动时速度大小的变化情况是( )A.保持不变B.一直增大C.一直减小D.先增大后减小3.如图,正方形滑块高H,它以恒定速度v0匀速向右运动,长为L的轻杆一端固定在地面上且可以自由转动,另一端连接小球搭在正方体上,当杆转动到与水平地面夹角为θ时,那么小球的速度为______4.距离河岸500m 处有一艘静止的船,船上的探照灯以1min r 的转速水平转动.若河岸看成直线,当光束与岸边成60°角时,光束沿岸边移动的速率为( )A. 52.3m sB. 69.8m sC. 666.7m sD.180m s5.如图所示,长为L 的直杆一端可绕固定轴O 无摩擦转动,另一端靠在以水平速度ν匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A 的线速度为A.sin vθB. sin v θC. cos v θD. cos v θ6如图所示,长为L 的直棒一端可绕固定轴o 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )。

7.如图所示,有两条位于同一竖直平面内的水平轨道,相距为h.轨道上有两个物体A 和B,它们通过一根绕过定滑轮O 的不可伸长的轻绳相连接.物体A 在下面的轨道上以匀速率v 运动.在轨道间的绳子与轨道成30°角的瞬间,绳子BO 段的中点处有一与绳相对静止的小水滴P 与绳子分离,设绳长BO 远大于滑轮直径,求:(1)小水滴P 脱离绳子时速度的大小和方向; (2)小水滴P 离开绳子落到下面轨道所需要的时间.8.如图所示,长为L 的轻杆的下端用铰链固接在水平地面上,上端固定一个质量为m 的小球,轻杆处于竖直位置,同时与一个质量为M 的长方体刚好接触。

速度的合成与分解

速度的合成与分解

速度的合成与分解速度的合成与分解是运动学中一个重要的概念,指的是将一个物体的速度分解成多个分量,或者将多个分量合成为一个物体的速度。

这个概念在物理学、工程学以及其他领域中都有广泛的应用和实际意义。

1. 合成速度合成速度是指将两个或多个速度矢量相加,得到一个新的合成速度矢量的过程。

合成速度可以用三角形法则或平行四边形法则来计算。

三角形法则是指将速度矢量按照相对位置相连,形成一个闭合的三角形,然后从起点到终点的直线就是合成速度的矢量。

平行四边形法则是指将速度矢量按照相对位置相连,形成一个平行四边形,然后从起点到终点的对角线就是合成速度的矢量。

2. 分解速度分解速度是指将一个速度矢量分解为两个或多个互相垂直的分量的过程。

常见的分解方式有水平分解和竖直分解。

水平分解是指将速度矢量分解为水平方向上的分量和竖直方向上的分量。

竖直分解是指将速度矢量分解为竖直方向上的分量和水平方向上的分量。

分解速度可以帮助我们更好地理解和描述物体在空间中的运动轨迹和速度变化。

3. 应用案例速度的合成与分解在实际应用中有着广泛的运用。

比如,飞机的空速和地速就是通过速度的合成和分解得到的。

飞行器在空中的速度是由飞行器的空速和风速合成得到的,而地速则是通过合成速度与风向的夹角和风速得到的。

另外,在动力学中,速度的合成和分解也经常用于解决复杂的问题,如斜面上物体的运动和投射物的运动等。

4. 总结速度的合成与分解是物理学中的一个基本概念,它能够帮助我们更好地理解和描述物体的运动特性。

合成速度是将多个速度矢量相加得到一个新的速度矢量,而分解速度则是将一个速度矢量分解为多个互相垂直的分量。

速度的合成与分解在实际应用中有着广泛的应用,如飞机的速度计算和动力学问题的求解等。

掌握速度的合成与分解的方法和技巧对于理解物体的运动轨迹和速度变化具有重要的意义。

运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题●问题概述:绳、杆等有长度的物体,在运动过程中,其两端点的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。

关联速度的关系——沿杆(或绳)方向的速度分量大小相等。

●关键点:1.绳子末端运动速度的分解,应按运动的实际效果进行。

2.速度投影定理:不可伸长的杆(或绳),尽管各点速度不同,但各点速度沿绳方向的投影相同。

●例题:如图所示,人用绳子通过定滑轮拉物体A,当人以速度v0匀速前进时,物体A将做( )A.匀速运动B.加速运动B.C.匀加速运动 D.减速运动解题探究:①物体A的运动有两个运动效果,分别是什么?②将该物体的速度沿哪两个方向分解?●规律总结求解绳(杆)拉物体运动的合成与分解问题的思路和方法:①先明确合运动的方向:物体的实际运动方向②然后弄清运动的实际效果:沿绳或者杆的伸缩效果;使绳子或者杆转动的效果。

③再确定两个分运动的方向:沿着绳子(杆)、垂直于绳子(杆)●常见的模型●巩固练习1、如图所示,人以水平速度v跨过定滑轮匀速拉动绳子,当拉小车的绳子与水平地面的夹角为β时,小车沿水平地面运动的速度为( )A.V B.vcosβC.vsinβD.v cosβ2、如图所示,纤绳以恒定速率v1沿水平方向通过定滑轮牵引小船靠向岸边,设小船速度为v2,则小船靠岸过程的运动情况是( )A.加速靠岸,v2>v1 B.加速靠岸,v2<v1C.减速靠岸,v2>v1 D.匀速靠岸,v2<v13、两根光滑的杆互相垂直地固定在一起,上面分别穿有一个小球,小球a、b间用一细直棒相连,如图所示。

当细直棒与竖直杆夹角为θ时,两小球实际速度大小之比为( )A.sinθB.cosθC.tanθD.cotθ4、如图所示,物体A以速度v沿杆匀速下滑,A用细绳通过定滑轮拉物体B,当绳与水平夹角为θ时,B的速度为()A.v cosθ B.v sinθC.v/cosθ D.v/sinθ5、(不定项)如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为1v 和2v ,绳子对物体的拉力为T ,物体所受重力为G ,则下面说法正确的是( )A .物体做匀速运动,且v 1=v 2B .B .物体做加速运动,且v 1>v 2C .物体做加速运动,且T>GD .物体做匀速运动,且T =G6、如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连。

高中物理速度的合成与分解讲析

高中物理速度的合成与分解讲析

高中物理速度的合成与分解讲析运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点 ●难点磁场1.如图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =tBDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系 绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v图4-1 图4-2 图4-3 图4-4图4-5图4-6图4-7[例2]一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.如图4-8所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v.2.如图4-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到图4-8如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑 1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

速度关联类问题求解速度的合成与分解

速度关联类问题求解速度的合成与分解

精心整理速度关联类问题求解·速度的合成与分解 编辑杨国兴运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点1.为α和β2.●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解: 设经长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =cos BD图图图图①由速度的定义:物体移动的速度为v物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =tBDt s ∆=∆∆2 ③由①②③解之:v 物=θcos v系v ⊥=点转动人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).B B A .因为1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ. 令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .图●锦囊妙计一、分运动与合运动的关系 1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.1.2.终不变3.4.度关系●歼灭难点训练 一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.. S 为平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动图图图的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在AC.设A 速度为绳Q 6.劈B (1(2与地面作用中机械能的损失忽略不计)参考答案: [难点] 1.v B =0cos cos v βα2.略 [歼灭难点训练] 1.v =αcos 10+v2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即22B °应有: ∠m 2速度E 减′m 2下滑平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°.选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度图5′—图沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图5′—1可得: v 1=v sin60°,v 2=v cos60° 又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω. 则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL . 5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点v Q E k2=21拉力T h =W G 即W T =416.当A 和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2①由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。

速度关联类问题求解

速度关联类问题求解

速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.如图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =①由速度的定义:物体移动的速度为v 物=②人拉绳子的速度v =③由①②③解之:v 物=解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.θcos BDtBCt s ∆=∆∆1t BDt s ∆=∆∆2θcos v 图4-1图4-2图4-3图4-4图4-5图4-6所以v 物=解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=图4-7[例2]一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练θcos v θcos v一、选择题1.如图4-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A v .沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度2.如图4-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

高中物理关联速度的合成与分解教学内容

高中物理关联速度的合成与分解教学内容

速度关联类问题求解·速度的合成与分解●难点1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD①由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动. 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-1图5-2图5-3图5-4图5-5图5-6图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h . 故A 的线速度v A =ωL =vL sin 2θ/h . ●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性. 二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系. ●歼灭难点训练 一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另图5-8一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度. (2)m 2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

速度的合成与分解(冼)

速度的合成与分解(冼)

速度的合成与分解—速度关联问题(牵连体的速度合成与分解)
【例1】 二直杆交角为θ,交点为A ,若两䩞各以垂直于自身的速度V 1、V 2沿纸面平动,则交点A 的运动速度的大小是多少?(图一)(本题为第二届全国中学生力学竞赛试题)
分析与解 解法一:
经过单位时间后,1l 的位移大小为
V 1,2l 的位移大小为V 2,如图2所示。

2
cos V A C θ
'=
1cot BC V θ=

2
V AA '=====
解法二:将1l 的移动速度向着1l 和2l (又称2l 的切向)方向分解,其中分速度21l t V 以叫做速度V 1在2l 方向(又叫做在另一条直线的切线方
向的分速度)。

再将2l 的移动速
度V 2向着1l 和2l 的方向分解,其中V 2在1l 方向的分速度12l t V 叫做V 2在1l 切向方向的分速度。

再将11l t V 和21l t V 合成起来,则它们的合速度就是A 点移动的速度。

(如图4) 由图3得:
21
1cos l t V V θ= 122cos l t
V V θ
= 由图4,根据余弦定理:
结论:线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和. 方法三:令杆1l 不动,杆2l 以速度V 2垂直杆2l 运动,交点在杆1l 上滑行的速度:
22sin A
v
v θ
=; 令杆2l 不动,杆1
l 以速度V 1垂直杆1l 运动,交点在杆2l 上滑行滑行的速度:1
1sin A v v θ
=
V ===
A 点对纸面的速度V 1A 与V 2A 的合速度,根据图5,其大小为:
2A v ==。

速度的合成与分解问题分析

速度的合成与分解问题分析

速度的合成与分解问题分析ʏ何 为速度的合成与分解是高中物理的一个重要知识点,既可以单独考查对运动关系的理解,也可以和能量与动量综合在一起进行考查,在这两类问题中速度关系通常都会作为一个易错点出现,导致很多考生出错㊂如果学生能够将速度合成与分解的典型模型弄清楚,那么在遇到与速度关联的问题时,就能够触类旁通,举一反三,顺利求解㊂一㊁典型模型图1如图1所示,人在岸边通过绳子跨过定滑轮牵引湖中的小船,若人以速度v 向左匀速运动,当绳子与水面呈θ角时,船靠岸的速度为多大?(设绳子一直是拉紧的)常见错误分析:很多学生会由于受到书本上飞机起飞模型的误导,而认为这两个模型是一样的,直接将绳子连接船的速度分解 图2到水平和竖直方向上,如图2所示㊂如图2所示的分解方式错误的原因在于分速度v y 的出现与实际严重不符㊂这样的分解方式意味着船将会慢慢地飞到空中,成为 飞船 ,这与实际观察到的船一直在水面上运动且逐渐靠近河岸相矛盾㊂出现这种错误的根源在于没有分清楚哪个是合运动,哪个是分运动㊂合运动:物体相对于选定的参考系真实运动的速度㊂分运动:物体同时参与的几个相互独立的运动㊂显然,依据合运动的定义可知,我们直接看到的运动应该是合运动,即船靠岸的速度u 是合速度,因此我们应该分解船的速度,而不是绳子的速度㊂正确分析:根据合运动的定义找出合运动后,再找出两个分运动的方向,这样对合速度的分解就可以唯一地确定了㊂要找到两个分运动的方向,我们要从合运动的效果上来确定㊂因为船靠岸,导致拉船的绳子缩短,所以一定有一个沿绳方向的分速度来缩短绳子;同时因为随着船的靠岸,绳子与水面间的夹角θ会逐渐变大,相当于绳子在绕定滑轮转动,所以船一定还有一个垂直于绳子的转动线速度㊂正确的分 图3解如图3所示㊂因为船沿绳子方向的分速度等于人拉动绳子的速度v (绳子不可伸长),所以船前进的速度u =vc o s θ㊂二㊁补充解法解法一:微元法㊂考虑在一极短时间t 内,将绳的运动和船的运动在图4甲中标出来,O A 是绳子的初始位置,O B 是绳子的末位置,小船从A 点运动到B 点,在O A 上取一点C 满足O B =O C ,并连接B C ㊂显然A B 是船在时间t 内的位移,A C 是绳子在时间t 内缩短的长度㊂因为时间极短,等腰三角形O B C 的顶角øO ң0,所以底角øO C B ң90ʎ,即øA C B 趋于直角三角形㊂将此图放大为图4乙,则可以得出s 1=s 2c o s θ㊂因为时间极短,绳子的运动和船的运动都可以认为是匀速运动,所以有s 1=vΔt ,s 2=u Δt ,解得u =vc o s θ㊂图476基础物理 障碍分析 自主招生 2020年7 8月解法二:能量分析法㊂ 图5如图5所示,假设在岸上用力F 牵引小船,绳子拉船的力也等于F ,定滑轮并不消耗能量,只起能量传递的作用,因此绳子两端应具有相同的功率,即P 入=P 出,由P 入=F v 得绳子另一端的功率P 出=F u c o s θ,解得u =vc o s θ㊂解法三:导数求解法㊂ 图6如图6所示,假设河岸高h ,任意时刻船到河岸的水平距离为x ,绳长为l ,三者一定满足h 2+x 2=l 2㊂在方程两边同时对时间求导,可得2hd h d t +2x d xd t=2l d t d l ㊂因为河岸高度固定,是常量,所以有d h d t =0㊂又有d xd t =u为船靠岸的速度,d ld t=v 代表绳子收缩的速度,因此有2x u =2l v ,即u =l v x =vc o s θ㊂评析:绳拉船模型的解法有很多种,思想各异㊂能量分析法在学生学习了功率之后作为补充练习,既让学生巩固了功率的基础知识,又拓展了学生对合成与分解的视野㊂导数分析法在学生学习了导数之后作为补充拓展,既让学生熟悉了导数的应用,又可以让学生感受到物理和数学的紧密联系㊂三㊁拓展应用图7例1 如图7所示,一长度为L 的轻杆一端固定小球A ,另一端通过转轴固定在O 点,一高为h 的木块B 夹在水平面和细杆之间,当细杆与水平面成θ角时,木块向右的速度为v B ,小球A 此时的速度v A 为多大分析:小球A 只能绕O 点做圆周运动,小球A 的速度为线速度,因此只要找到细杆转动的角速度即可㊂细杆与木块的联系是接触点C ,C 点的速度与木块的速度相等㊂木块B 的右移带来的效果是接触点C 沿细杆外移,有沿杆方向的分速度,同时木块B 的右移有让细杆绕O 点转动的效果㊂解:将木块B 的速度v B 分解到沿杆方向的v 1和垂直于杆方向的v 2,如图8所示,图8则v 2=v B s i n θ=r O C ω,r O C =hs i n θ㊂小球A 的线速度v A =L ω=L v B s i n 2θh㊂ 图9例2 如图9所示,两根轻绳跨过定滑轮与物块A 相连,两根轻绳另一端分别连接两个物块B ㊁C ㊂当两轻绳间的夹角为2θ时,物块B ㊁C 以速度v 下降,求物块A 上升的速度v A㊂图10错误分析:如图10所示,直接按照速度的合成得到物块A 的速度㊂错误的原因是这个解法认为物块A 分别有沿两绳方向的分速度,这样的话物块A 最终将会分裂成两份,这显然是不符合实际的㊂出现这种错误的根源在于没有按照合运动和分运动的关系来分析问题,而是想当然地和之前所学的力的合成与分解相类比导致出错㊂正确分析:我们实际看到的是物块A 竖直上升,带来的效果是绳子缩短和角度θ的变大,因此应该将物块A 的速度分解到沿绳 图11和垂直与绳子的方向,如图11所示,则v 1=v A c o s θ=v ,解得v A =vc o s θ㊂小结:速度的合成与分解问题在很多地方必须按照运动的实际效果来处理,因此抓住合运动和分运动的特点是解决这一问题的突破口,正确的理解模型是解决深层次问题的关键㊂作者单位:湖北省十堰市东风高级中学86 基础物理 障碍分析 自主招生 2020年7 8月。

速度的合成与分解例题

速度的合成与分解例题

速度的合成与分解例题速度的合成与分解是物理学中的一个重要概念,它涉及到多个方向上的速度矢量的运算。

让我们从合成速度和分解速度的概念开始,然后举例说明。

合成速度是指当一个物体同时沿着两个或多个方向移动时,它的总速度是所有分速度的矢量和。

假设一个物体在水平方向上以5 m/s的速度向右移动,在垂直方向上以3 m/s的速度向上移动,那么它的合成速度可以通过矢量相加得到。

根据勾股定理,合成速度的大小可以通过勾股定理求得,即5^2 + 3^2 = 25 + 9 = 34,所以合成速度的大小为√34 m/s。

合成速度的方向可以通过正切函数求得,即θ = arctan(3/5) ≈ 30.96°。

因此,物体的合成速度约为√34 m/s,方向为30.96°向上与右方向的夹角。

分解速度则是相反的过程,即将一个速度矢量分解为两个或多个分速度的过程。

假设一个物体的速度矢量为6 m/s,与水平方向夹角为60°,我们可以使用三角函数将这个速度分解为水平方向和垂直方向上的分速度。

水平方向上的分速度为6 m/s cos(60°) = 3 m/s,垂直方向上的分速度为6 m/s sin(60°) = 3√3 m/s。

这些概念可以通过实际例题更好地理解。

例如,一个船在静水中以10 km/h的速度向东航行,如果河流以8 km/h的速度向北流动,求船相对岸的速度和方向。

这个问题可以通过速度的合成来解决,首先将船的速度向东和河流的速度向北看做两个矢量,然后将它们进行矢量相加得到合成速度。

合成速度的大小可以通过勾股定理得到,即10^2 + 8^2 = 100 + 64 = 164,所以合成速度的大小为√164 km/h。

合成速度的方向可以通过正切函数求得,即θ = arctan(8/10) ≈ 36.87°。

因此,船相对岸的速度约为√164 km/h,方向为36.87°向北与东方向的夹角。

连接体运动的速度分解总结

连接体运动的速度分解总结

连接体运动的速度分解总结集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)课题:速度关联类问题求解·速度的合成与分解典型例题问题点知识点:关联体1、关联体和关联体运动的感念:关联体一般是由两个(或两个以上)的物体由轻绳或者轻杆联系在一起,或直接挤压在一起,它们的运动简称关联运动。

2、关联速度分解的步骤:○1确定合运动的方向:物体运动的实际方向就是合运动的方向即合速度的方向。

○2确定合运动的效果:一是沿牵引力方向的平动效果,改变速度的大小,而是垂直牵引力方向的转动效果,改变速度的方向。

○3将合运动按转动,平动的分解,确定合速度与分速度的大小关系。

3、绳连接的物体的速度的关联问题分解时,首先要确定分解那个物体的速度(分解○不○沿○绳子运动的那个物体的速度)然后找准这个物体的合运动(实际运动)的方向。

最后按照产生的两个实际效果的方向(沿绳子方向和垂直绳子方向)分解。

4、等量关系的建立:(1)根据沿绳(或者杆)方向的分速度的大小相等建立等量关系(2)相互接触挤压物体的速度关联问题时,根据两物体沿弹力方向的速度相等(接触点处的相对速度为零所以速度相等)建立等量关系。

典例(1)只需分解一个物体的速度的绳的关联[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?(2)需要分解连个物体的绳的关联[例2](★★★)如图5-1所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?(3)杆的关联问题[例3 ](★★★★★)如图5-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小(4)相互接触挤压物体的关联问题[例4 ](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)完成时间完成质量家长确认抽查反馈图图。

微专题17 关联体速度的合成与分解

微专题17  关联体速度的合成与分解

微专题17 关联体速度的合成与分解【核心要点提示】(1)如果物体是通过杆或者绳子关联,由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题的原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.(2)若两物体是通过接触面接触的,则将物体的实际速度沿平行与垂直接触面方向进行分解,在垂直接触面方向上速度相等。

【微专题训练】如图所示,长为L的直杆一端可绕固定轴O无摩擦转动,另一端靠在以水平速度v匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A的线速度为()A.vsin θB.v sin θ C.vcos θD.v cos θ【解析】将直杆端点A的线速度进行分解,如图所示,由图中的几何关系可得:v0=vcos θ,选项C正确,选项A、B、D错误.【答案】C自行车转弯时,可近似看成自行车绕某个定点O(图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A、B相距L,虚线表示两轮转弯的轨迹,OB距离为3L,前轮所在平面与车身夹角θ=30°,此时轮轴B的速度大小v2=3 m/s.则轮轴A的速度v1大小为()A.332m/s B .2 3 m/s C. 3 m/s D .3 3 m/s【解析】绳(或杆)端速度的分解法此时轮轴A 的速度产生两个效果,一是与轮轴B 同向运动,二是以B 为圆心向右转,分解如图(a)所示,因此v 1cos θ=v 2,θ=30°,解得v 1=2 3 m/s ,B 项正确.【答案】B一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B.hωcos θ C.hωcos 2θD .hωtan θ 【解析】当光束转到与竖直方向夹角为θ时,云层底面上光点转动的线速度为hωcos θ.设云层底面上光点的移动速度为v ,则有v cos θ=hωcos θ,解得云层底面上光点的移动速度v =hωcos 2θ,选项C 正确.【答案】C(多选)如图所示,A 、B 两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连,现在将A 球以速度v 向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,下列说法正确的是( )A .此时B 球的速度为cos αcos βv B .此时B 球的速度为sin αsin βv C .在β增大到90°的过程中,B 球做匀速运动D .在β增大到90°的过程中,B 球做加速运动【解析】由于绳连接体沿绳方向的速度大小一定,因此v cos α=v B cos β,解得v B =cos αcos βv ,A 项正确,B 项错误;在β增大到90°的过程中,α在减小,因此B 球的速度在增大,B 球在做加速运动,C 项错误,D 项正确.【答案】AD(多选)如图所示,有一个沿水平方向做匀速直线运动的半径为R 的半圆柱体,半圆柱面上搁着一个只能沿竖直方向运动的竖直杆,在竖直杆未达到半圆柱体的最高点之前( )A .半圆柱体向右匀速运动时,竖直杆向上做匀减速直线运动B .半圆柱体向右匀速运动时,竖直杆向上做减速直线运动C .半圆柱体以速度v 向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为θ时,竖直杆向上的运动速度为v tan θD .半圆柱体以速度v 向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为θ时,竖直杆向上的运动速度为v sin θ【解析】O 点向右运动,O 点的运动使杆OA 绕A 点(定点)逆时针转动的同时,沿杆OA 方向向上推动A 点;竖直杆的实际速度(A 点的速度)方向竖直向上,使A 点绕O 点(重新定义定点)逆时针转动的同时,沿OA 方向(弹力方向)与OA 具有相同速度.速度分解如图乙所示,对于O 点,v 1=v sin θ,对于A 点,v A =v 1cos θ,解得v A =v tan θ.O 点(半圆柱体)向右匀速运动时,杆向上运动,θ角减小,tan θ减小,v A 减小,但杆不做匀减速直线运动,A 错误,B 正确;由v A =v tan θ可知C 正确,D 错误.【答案】BC(2016·河南郑州高三月考) (多选)如图9所示,人在岸上拉船,已知船的质量为m ,水的阻力恒为F f ,当轻绳与水平面的夹角为θ时,船的速度为v ,此时人的拉力大小为F ,则此时( )A .人拉绳行走的速度为v cos θB .人拉绳行走的速度为v cos θC .船的加速度为F cos θ-F f mD .船的加速度为F -F f m【解析】船的速度产生了两个效果:一是滑轮与船间的绳缩短,二是绳绕滑轮顺时针转动,因此将船的速度进行分解如图所示,人拉绳行走的速度v 人=v cos θ,A 对,B 错;绳对船的拉力等于人拉绳的力,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,得a =F cos θ-F f m,C 对,D 错.【答案】AC如图所示,顶角θ=60°、光滑V 字形轨道AOB 固定在竖直平面内,且AO 竖直.一水平杆与轨道交于M 、N 两点,已知杆自由下落且始终保持水平,经时间t 速度由6 m/s 增大到14 m/s(杆未触地),则在0.5t 时,触点N 沿倾斜轨道运动的速度大小为(g 取10 m/s 2)( )A .10 m/sB .17 m/sC .20 m/sD .28 m/s【解析】杆自由下落,由运动学公式,v =v 0+gt ,则t =v -v 0g =14-610s =0.8 s ;则在0.5t时,杆的下落速度为v ′=v 0+g ·t 2=(6+10×0.4) m/s =10 m/s ;根据运动的分解,杆下落的速度可分解成如图所示的两分运动:则有:触点N 沿倾斜轨道运动的速度大小v ″=v ′cos 60°=1012m/s =20 m/s ,故C 正确,A 、B 、D 错误.【答案】C(多选)如图4所示,不可伸缩、质量不计的细线跨过同一高度处的两个光滑定滑轮连接着质量相同的物体A 和B ,A 套在固定的光滑水平杆上,物体、细线、滑轮和杆都在同一竖直平面内,水平细线与杆的距离h =0.2 m .当倾斜细线与杆的夹角α=53°时,同时无初速度释放A 、B .关于此后的运动过程,下列判断正确的是(cos 53°=0.6,sin 53°=0.8,重力加速度g 取10 m/s 2)( )A .当53°<α<90°时,A 、B 的速率之比v A ∶v B =1∶cos αB .当53°<α<90°时,A 、B 的速率之比v A ∶v B =cos α∶1C .A 能获得的最大速度为1 m/sD .A 能获得的最大速度为22m/s 【解析】将A 的速度沿细线方向和垂直于细线方向分解,沿细线方向上的分速度大小等于B 的速度大小,有v A cos α=v B ,则v A ∶v B =1∶cos α,A 正确,B 错误;A 、B 组成的系统机械能守恒,有mv 2A 2+mv 2B 2=mg (h sin 53°-h sin α),得v 2A =5-4sin α2-sin 2 αm 2/s 2,sin α最大时,v A 最大,当α=90°时,A 的速率最大,此时B 的速率为零,解得v A m =1 m/s ,故C 正确,D 错误. 【答案】AC。

连接体运动的速度分解总结

连接体运动的速度分解总结

精心整理课题:速度关联类问题求解·速度的合成与分解典型例题问题点知识点:关联体1、关联体和关联体运动的感念:关联体一般是由两个(或两个以上)的物体由轻绳或者轻杆联系在一起,或直接挤压在一起,它们的运动简称关联运动。

2、关联速度分解的步骤:确定合运动的方向:物体运动的实际方向就是合运动的方向即合速度的方向。

确定合运动的效果:一是沿牵引力方向的平动效果,改变速度的大小,而是垂直牵引力方向的转动效果,改变速度的方向。

将合运动按转动,平动的分解,确定合速度与分速度的大小关系。

3、绳连接的物体的速度的关联问题分解时,首先要确定分解那个物体的速度(分解子运动的那个物体的速度)然后找准这个物体的合运动(实际运动)的方向。

最后按照产生的两个实际效果的方向(沿绳子方向和垂直绳子方向)分解。

4、等量关系的建立:(1)根据沿绳(或者杆)方向的分速度的大小相等建立等量关系(2)相互接触挤压物体的速度关联问题时,根据两物体沿弹力方向的速度相等(接触点处的相对速度为零所以速度相等)建立等量关系。

典例(1)只需分解一个物体的速度的绳的关联[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?(2)需要分解连个物体的绳的关联[例2](★★★)如图5-1所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?(3)杆的关联问题[例3](★★★★★)如图5-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小(4)相互接触挤压物体的关联问题[例4](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)完成时间完成质量家长确认抽查反馈图图精心整理。

速度的合成与分解问题的探讨

速度的合成与分解问题的探讨

速度的合成与分解问题的探讨摘要研究复杂的运动常常用到速度的合成与分解。

物体的速度的合成与分解,跟物体所受力的合成与分解是不同的两回事。

解决物体的速度的合成与分解问题,关键在于弄清分速度与合速度。

关键词分速度合速度合成分解研究物体的运动常常用到速度的合成与分解,尤其是较为复杂的运动。

解决速度的合成与分解问题,关键在于辨清分速度与合速度。

有些问题分速度与合速度容易辨清,有些问题,分速度与速度不容易辨清,须在深入细致分析后才能确定分速度和合速度。

例如图1所示为自动切割玻璃装置的示意图,让长玻璃板材在水平面上沿x轴以速度v1匀速运动,玻璃刀相对于玻璃垂直侧边切割,对玻璃的相对速度为v2,方向沿y轴向。

这样切割下来的玻璃成矩形。

那么玻璃刀对水平面的运动方向跟y轴夹角多大?容易判断一个分速度是刀对玻璃的相对速度v刀对玻=v2;另一个分速度是玻璃对水平面的速度v玻对面=v1,它们的合速度即刀对水平面的运动速度v刀对面=v,如图1所示。

由此即可确定玻璃刀对水平面的运动方向与y轴夹角α为α=arctan这个例子中两个分运动都是匀速直线运动,两个分速度大小、方向都不变,合速度的大小、方向也一定,合运动也是匀速运动,问题较简单。

如果分运动至少有一个是变速运动,问题就较为复杂,如平抛运动就是最为典型的例子。

物体沿水平方向抛出,水平方向的分运动是匀速直线运动;竖直方向物体受重力作用,竖直方向分运动是自由落体运动。

由于竖直分速度随时间不断增大,两个分速度的合速度在不断增大并改变着方向,合运动就是速度大小和方向都变化的抛物线运动。

上述两例的速度的合成与分解问题,我们容易确定分速度和合速度,问题都较为简单。

但有些问题,分速度与速度就不容易辨清。

例如图2所示,细绳系着小船绕过高处的定滑轮以速度v1牵引,小船沿水面运动的速度v与绳子牵引速度v1的定量关系。

不少学生会根据绳子对小船的牵引拉力是使小船克服阻力改变运动来考虑问题。

在求解小船运动的加速度时,常将绳子对小船的拉力F分解成水平分力Fx和竖直分力Fy,如图3所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

速度关联类问题求解·速度的合成与分解编辑 杨国兴运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD①由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动. 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v图5-1图5-2 图5-3 图5-4图5-5图5-6的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v.2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图5-10所示.试求:(1)m2在下滑过程中的最大速度.(2)m2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图5-12所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r的球A放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

(球与地面作用中机械能的损失忽略不计)参考答案:[难点]图5-8图5-11图5-12图5-131.v B =0cos cos v βα2.略 [歼灭难点训练] 1.v =αcos 10+v2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m4.由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°, OS ′=L /cos60°.选取光点S ′为连结点,因为光点 S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线 OS ′的两个方向分解,由速度矢量分解图5′—1可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω. 则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL .5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图5′-2,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)HW G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H6.(1)A 加速下落,B 加速后退,当A 落地时,B 速度最大,整大过程中,斜面与球之间弹力对球和斜面做功代数和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2①由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。

图5′—3由于两物体在垂直斜面方向不发生相对运动,所以v A 2=v B 2 即v A cos30°=v B sin30° ③ 解得v A =2)13(gr-v B =2)13(3gr-(2)A 球落地后反弹速度vA ′=v A 做竖直上抛运动的最大高度:H m =4)13(22rg v A -=' 图5′—1 图5′—2卫星运行特点分析及应用编辑 杨国兴卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,也是考生备考应试的难点.●难点1.(★★★★)用m 表示地球通讯卫星(同步卫星)的质量,h 表示它离地面的高度,R 0表示地球的半径,g 0表示地球表面处的重力加速度,ω0表示地球自转的角速度,则通讯卫星所受地球对它的万有引力的大小A.等于0B.等于m 220020)(h R g R +C.等于m 2300204ωg RD.以上结果都不对2.(★★★★★)俄罗斯“和平号”空间站在人类航天史上写下了辉煌的篇章,因不能保障其继续运行,3月23日坠入太平洋.设空间站的总质量为m ,在离地面高度为h 的轨道上绕地球做匀速圆周运动.坠落时地面指挥系统使空间站在极短时间内向前喷出部分高速气体,使其速度瞬间变小,在万有引力作用下下坠.设喷出气体的质量为1001m ,喷出速度为空间站原来速度的37倍,下坠过程中外力对空间站做功为W .求:(1)空间站做圆周运动时的线速度.(2)空间站落到太平洋表面时的速度.(设地球表面的重力加速度为g ,地球半径为R )3.(★★★★★)已知物体从地球上的逃逸速度(第二宇宙速度)v 2=RGm2,其中G 、m 、R 分别是引力常量、地球的质量和半径.已知G =6.67×10-11N ·m 2/kg 2,c =2.9979×108 m/s.求下列问题:(1)逃逸速度大于真空中光速的天体叫作黑洞,设某黑洞的质量等于太阳的质量m =1.98×1030 kg ,求它的可能最大半径;(2)在目前天文观测范围内,物质的平均密度为10-27 kg/m 3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?●案例探究 [例1](★★★★)用m 表示地球同步通信卫星的质量、h 表示卫星离地面的高度、M 表示地球的质量、R 0表示地球的半径、g 0表示地球表面处的重力加速度、T 0表示地球自转的周期、ω0表示地球自转的角速度,则:(1)地球同步通信卫星的环绕速度v 为A.ω0(R 0+h )B.hR GM+0 C.30ωGM D.32T GMπ (2)地球同步通信卫星所受的地球对它的万有引力F 的大小为A.m 20020)(h R g R + B.m ω20(R 0+h ) C.m 300204ωg R D.m 34416T GM π(3)地球同步通信卫星离地面的高度h 为A.因地球同步通信卫星和地球自转同步,则卫星离地面的高度就被确定B.3220ωg R -R 0C.2204πGMT -R 0 D.地球同步通信卫星的角速度虽已确定,但卫星离地面的高度可以选择.高度增加,环绕速度增大,高度降低,环绕速度减小,仍能同步命题意图:考查推导能力及综合分析能力.B 级要求. 错解分析:(1)把握不住解题的基本依据:地球对其表面物体的万有引力约等于物体所受重力,卫星圆周运动的向心力由万有引力提供,使问题难以切入.(2)思维缺乏开放性造成漏解.(3)推理缺乏严密性导致错解.解题方法与技巧:(1)设地球同步卫星离地心的高度为r , 则r =R 0+h 则环绕速度v =ω0r =ω0(R 0+h ). 同步卫星圆周运动由万有引力提供向心力:即G r v m r Mm 22=得v =hR GMrGM +=又有G2r Mm =m ω02,所以r =320ωGM 则v =ω0r =ω0320ωGM=320ωGM =322T GMπ故选项A 、B 、C 、D 均正确. (2)地球同步卫星的重力加速度为g ′=(hR R +00)2·g 0,地球对它的万有引力大小可认为等于同步卫星的重力mg 02020)(h R R +来提供向心力:即mg 0202)(h R R +=m ω02(R 0+h ) 所以h =320020ωg R -R 0F 向=m ω02(R 0+h )=m 344020216)(4T GMm h R T ππ=+故选项A 、B 、C 、D 均正确. (3)因为h =3220ωg R -R 0,式中R 0、g 0、ω0都是确定的,故h 被确定.但ω0=02T π,所以h =2200204πT g R -R 0故选项A ,B ,C 正确. [例2](★★★★★)1986年2月20日发射升空的“和平号”空间站,在服役15年后于2001年3月23日坠落在南太平洋.“和平号”风风雨雨15年铸就了辉煌业绩,已成为航天史上的永恒篇章.“和平号”空间站总质量137 t ,工作容积超过400 m 3,是迄今为止人类探索太空规模最大的航天器,有“人造天宫”之称.在太空运行的这一“庞然大物”按照地面指令准确坠落在预定海域,这在人类历史上还是第一次.“和平号”空间站正常运行时,距离地面的平均高度大约为350 km.为保证空间站最终安全坠毁,俄罗斯航天局地面控制中心对空间站的运行做了精心安排和控制.在坠毁前空间站已经顺利进入指定的低空轨道,此时“和平号”距离地面的高度大约为240 km.设“和平号”沿指定的低空轨道运行时,其轨道高度平均每昼夜降低2.7 km.设“和平号”空间站正常运转时沿高度为350 km 圆形轨道运行,在坠落前沿高度为240km 的指定圆形低空轨道运行,而且沿指定的低空轨道运行时,每运行一周空间站高度变化很小,因此计算时对空间站的每一周的运动都可以作为匀速圆周运动处理.(1)简要说明,为什么空间站在沿圆轨道正常运行过程中,其运动速率是不变的.(2)空间站沿正常轨道运行时的加速度与沿指定的低空轨道运行时加速度大小的比值多大?计算结果保留2位有效数字.(3)空间站沿指定的低空轨道运行时,每运行一周过程中空间站高度平均变化多大?计算中取地球半径R =6.4×103 km ,计算结果保留1位有效数字.命题意图:考查阅读摄取信息并结合原有知识解决新情景问题的创新能力,B 级要求. 解题方法与技巧:(1)空间站沿圆轨道运行过程中,仅受万有引力作用,所受到的万有引力与空间站运行方向垂直,引力对空间站不做功,因此空间站沿圆轨道运行过程中,其运动速率是不变的.(2)不论空间站沿正常轨道运行,还是沿指定的低空轨道运行时,都是万有引力恰好提供空间站运行时所需要的向心力,根据万有引力定律和牛顿第二定律有G2r Mm=ma 空间站运行时向心加速度是a =G2rM 空间站沿正常轨道运行时的加速度与在沿指定的低空轨道运动时加速度大小的比值是2212221)75.664.6(==r r a a =0.9842=0.97(3)万有引力提供空间站运行时的向心力,有G 2r Mm =mr 224Tπ不计地球自转的影响,根据G 2RMm=mg ,有G M =R 2g 则指定的低空轨道空间站运行的周期为T =2πr =GM r =2πr gR r 2=g r R r π2=s 104.66104.61064.614.32466⨯⨯⨯⨯⨯≈5.3×103s 设一昼夜的时间t ,则每昼夜空间站在指定的低空轨道绕地球运行圈数为n =Tt空间站沿指定的低空轨道运行时,每运行一周过程中空间站高度平均减小 Δh =2.7 km/n =2.7 km/17=0.2 km ●锦囊妙计卫星问题贴近科技前沿,且蕴含丰富的中学物理知识,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,亦是考生备考应试的难点.考生应试失误的原因主要表现在:(1)对卫星运行的过程及遵循的规律认识不清,理解不透,难以建立清晰的物理情景.(2)对卫星运行中力与运动量间,能量转化间的关系难以明晰,对诸多公式含义模糊不清.一、卫星的运行及规律一般情况下运行的卫星,其所受万有引力不刚好提供向心力,此时,卫星的运行速率及轨道半径就要发生变化,万有引力做功,我们将其称为不稳定运行即变轨运动;而当它所受万有引力刚好提供向心力时,它的运行速率就不再发生变化,轨道半径确定不变从而做匀速圆周运动,我们称为稳定运行.对于稳定运行状态的卫星,①运行速率不变;②轨道半径不变;③万有引力提供向心力,即GMm /r 2=mv 2/r 成立.其运行速度与其运行轨道处于一一对应关系,即每一轨道都有一确定速度相对应.而不稳定运行的卫星则不具备上述关系,其运行速率和轨道半径都在发生着变化.二、同步卫星的四定地球同步卫星是相对地球表面静止的稳定运行卫星.1.地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上.2.地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同.3.地球同步卫星的轨道半径:据牛顿第二定律有GMm /r 2=m ω02r ,得r =320/ωGM ,ω0与地球自转角速度相同,所以地球同步卫星的轨道半径为r =4.24×104 km.其离地面高度也是一定的.4.地球同步卫星的线速度:地球同步卫星的线速度大小为v =ω0r =3.08×103 m/s ,为定值,绕行方向与地球自转方向相同.●歼灭难点训练1.(★★★)设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比A.地球与月球间的万有引力将变大B.地球与月球间的万有引力将变小C.月球绕地球运动的周期将变长D.月球绕地球运动的周期将变短2.(★★★★)地球同步卫星到地心的距离r 可由r 3=22224πc b a 求出.已知式中a 的单位是m,b 的单位是s,c 的单位是m/s 2,则A.a 是地球半径,b 是地球自转的周期,c 是地球表面处的重力加速度B.a 是地球半径,b 是同步卫星绕地心运动的周期,c 是同步卫星的加速度C.a 是赤道周长,b 是地球自转的周期,c 是同步卫星的加速度D.a 是地球半径,b 是同步卫星绕地心运动的周期,c 是地球表面处的重力加速度 3.(★★★★★)(2000年全国,3)某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变.每次测量中卫星的运动可近似看作圆周运动.某次测量卫星的轨道半径为r 1,后来变为r 2,r 2<r 1.以E k1、E k2表示卫星在这两个轨道上的动能,T 1、T 2表示卫星在这两个轨道上绕地球运动的周期,则A.E k2<E k1,T 2<T 1B.E k2<E k1,T 2>T 1C.E k2>E k1,T 2<T 1D.E k2>E k1,T 2>T 1 4.(★★★★)中子星是由密集的中子组成的星体,具有极大的密度.通过观察已知某中子星的自转速度ω=60πrad/s ,该中子星并没有因为自转而解体,根据这些事实人们可以推知中子星的密度.试写出中子星的密度最小值的表达式为ρ=________,计算出该中子星的密度至少为_______kg/m 3.(假设中子通过万有引力结合成球状星体,保留2位有效数字)5.(★★★★★)假设站在赤道某地的人,恰能在日落后4小时的时候,观察到一颗自己头顶上空被阳光照亮的人造地球卫星,若该卫星是在赤道所在平面内做匀速圆周运动,又已知地球的同步卫星绕地球运行的轨道半径约为地球半径的6.6倍,试估算此人造地球卫星绕地球运行的周期为________s.6.(★★★★★)(2000年全国,20)2000年1月26日我国发射了一颗同步卫星,其定点位置与东经98°的经线在同一平面内.若把甘肃省嘉峪关处的经度和纬度近似取为东经98°和北纬α=40°,已知地球半径R 、地球自转周期T 、地球表面重力加速度g (视为常量)和光速c .试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).7.(★★★★)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离.一般双星系统距离其他星体很远,可以当作孤立系统来处理.现根据对某一双星系统的光度学测量确定:该双星系统中每个星体的质量都是m ,两者相距L ,它们正围绕两者连线的中点做圆周运动.(1)试计算该双星系统的运动周期T 计算; (2)若实验上观测到的运动周期为T 观测,且T 观测:T 计算=1:N (N >1).为了解释 T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布着这种暗物质.若不考虑其他暗物质的影响,请根据这一模型和上述观测结果确定该星系间这种暗物质的密度.参考答案: [难点] 1.BC2.(1)Rh gR +2(2)喷出气体后,空间站的速度变为v 2,由动量守恒定律得一方程,设空间站落到太平洋表面时速度为v 3,由动能定理建立另一方程,解得v 3=mWh R gR 99200)(121492++3.(1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度v 2=RGm2,其中m 、R 为天体的质量和半径.对于黑洞模型来说,其逃逸速度大于真空中的光速 ,即 v 2>c ,所以R <22c Gm =283011)109979.2(1098.1107.62⨯⨯⨯⨯⨯-m=2.94×103 m 即质量为1.98×1030 kg 的黑洞的最大半径为2.94×103 m. (2)把宇宙视为普通天体,则其质量m =ρ·V =ρ·34πR 3 ①其中R 为宇宙的半径,ρ为宇宙的密度,则宇宙的逃逸速度为v 2=RGm2 ②由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c③则由以上三式可得R >Gcπρ832=4.01×1026 m,合4.24×1010光年.即宇宙的半径至少为4.24×1010光年.[歼灭难点训练]1.BD2.AD3.C4.3ω2/4πG ;1.3×10145.1.4×1046.解析:设m 为卫星质量,M 为地球质量,r 为卫星到地球中心的距离,ω为卫星绕地心转动的角速度,由万有引力定律和牛顿定律有,G2rmM=mr ω2 式中G 为万有引力恒量,因同步卫星绕地心转动的角速度ω与地球自转的角速度相等,有ω=T π2因G 2R Mm =mg 得G M =gR 2,r =(2224πgT R )31设嘉峪关到同步卫星的距离为L ,如图7′-1所示,由余弦定理得,L =αcos 222rR R r -+所示时间为,t =cL(式中c 为光速) 由以上各式得t =cgT R R R gT R αππcos )4(2)4(31222232222-+7.解析:首先应明确此双星系统的结构模型,如图7′—2所示。

相关文档
最新文档