培优十——速度关联类问题求解

合集下载

专题+关联速度的问题

专题+关联速度的问题
让当事人逃离现场的救援方案:用一根不变形的轻杆MN支撑在楼面平台AB上,
N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(

A.v0
B.2v0
C.


D



1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2

A.
B.



C.



D.

绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短

绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(

即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入

如何解答速度关联类问题

如何解答速度关联类问题
B . 人拉 绳 行 走 的速 度 为 —
c o s O
_
,  ̄
/ 2 g h ( P - h 2 ) v

c . 船的 加速度 ̄ c o s O - J

T r
图5
三、 接触 物体 间 的关 联
D . 船 的 加 速 度 为 二 l 『 _

解析 : 船 的实际运动为水平 向左 , 它产生 了两个 效果 : 一是使滑轮与船问的绳缩短 , 二是使绳绕滑轮 顺时针转动 ,因此将船 的速 度按如 图2 所示 进行分
思路方法

何解答速 联类问题
图4
在学习运动的合成和分解时 ,经 常会遇到涉及 相互关联物体的速度的求解 。相互关联 的物体通过 轻绳 、 细杆或直 接接触 、 相互挤压等发 生相互作用 , 在运动过程中通常具有 不同的速度 ,但它们 的速度 是相互关联的。 正确建立连接体 间的速度关联关系 , 是求解连接体有关 速度 问题 的切入点 ,也是求解有 关连接体综合问题 的关键 。
放球C , 求C 下落 时球 c 的速度 。 。
—S O’


CO
s i n — O’ 义 又根据 恨 借 机械 L 1 龇日 能守恒 匕、 ]【 旦疋 定律 1 手1 得 哥 = a’ =—
: ,



2 1
一 脚
2 1


C。
对于绳或杆连接的两个 物体 ,由于轻绳都是不 可伸长的 , 杆都是不可伸长和压缩的 , 即绳或杆 的长 度不会改变 , 所 以沿 绳 或 杆 方 向上 的 速 度 分 量 相 等 。 解题的原则是 :把 物体 的实 际速度分解为垂直于绳 ( 或杆 ) 和沿着绳( 或杆 ) 的两 个 分 量 。 例1 如 图1 所示 , 人 在 岸上拉船 , 已知船 的质量 为 m ,水 的阻 力恒 为厂 , 当轻绳 与水 平面 的夹角 为0 时, 船 的速度为 ,人 的拉力大小 图 1 为F , 则此时( ) A . 人 拉 绳 行 走 的 速 度 为Y C O S O

高考物理计算题复习《关联速度问题》(解析版)

高考物理计算题复习《关联速度问题》(解析版)

《关联速度》一、计算题1.如图所示,竖直平面内放一直角杆,杆的各部分均光滑,水平部分套有质量为m A=3kg的小球A,竖直部分套有质量为m B=2kg的小球B,A、B之间用不可伸长的轻绳相连。

在水平外力F的作用下,系统处于静止状态,且OA=3m,OB=4m,重力加速度g=10m/s2.(1)求水平拉力F的大小和水平杆对小球A弹力F N的大小;(2)若改变水平力F大小,使小球A由静止开始,向右做加速度大小为4.5m/s2的匀拉力F所做的功。

加速直线运动,求经过23s2.如图所示,某人用绳通过定滑轮拉小船,绳某时刻与水平方向夹角为α.求:(1)若人匀速拉绳的速度为v o,则此时刻小船的水平速度v x为多少?(2)若使小船匀速靠岸,则通过运算分析拉绳的速度变化情况?3.如图,足够长光滑斜面的倾角为θ=30°,竖直的光滑细杆到定滑轮的距离为a=3m,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,已知M=5.5kg,m=3.6kg,g=10m/s2.(1)求m下降b=4m时两物体的速度大小各是多大?(2)若m下降b=4m时恰绳子断了,从此时算起M最多还可以上升的高度是多大?4.如图所示,水平光滑长杆上套有一个质量为m A的小物块A,细线跨过O点的轻小光滑定滑轮一端连接小物块A,另一端悬挂质量为m B的小物块B,C为O点正下方杆上一点,滑轮到杆的距离OC=ℎ.开始时小物块A受到水平向左的拉力静止于P 点,PO与水平方向的夹角为30°.(1)求小物块A受到的水平拉力大小;(2)撤去水平拉力,求:①当PO与水平方向的夹角为45°时,物块A的速率是物块B的速率的几倍?②物块A在运动过程中的最大速度.5.如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑。

速度关联问题的处理方法

速度关联问题的处理方法

速度关联问题的处理方法
阜宁县第一高级中学 陈晓军 224400
求相互接触的物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力方向和垂直于弹力方向进行分解.令两物体沿弹力方向的速度相等即可求出。

例1 一个半径为R 的半圆柱体沿水平方向向右以速度V0
匀速运动,在半圆柱体上搁置一根竖直杆.此杆与半圆柱体的
接触点P 与柱心的连线与竖直方向的夹角为 时.求竖直杆的
速度大小.
解析:设竖直杆的速度大小为,方向竖直向上,由于弹力
方向沿OP 方向,所以01sin cos v v θθ=,解得:10tan v v θ=
例2一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个高为h 的物块上,如图2所示.若物块与地面间的摩擦力不计,
当物块以速度v 向右运动时,求小球A 的线速度(此时杆与
水平方向的夹角为θ)。

解析:选取物块与棒的接触点B 为连接点.因为B 点
在物块上,该点的运动方向不变且与物块的运动方向一
致.故B 点的合速度(实际速度)也就是物块的速度v ;B 又
在棒上,参与沿棒向A 点滑动的速度1v ,和绕O 点转动的
线速度2v 因此,将v 沿棒及垂直于棒的两个方向进行分解.由速度矢量分解图(如图3所示)得:2sin v v θ=
设此时OB 的长度为a ,则:sin h a θ
= 令棒绕O 点转动的角速度为ω,则:222sin v v a h
θω== 故小球A 的线速度2sin A vl v l h
θω==。

关联速度的问题

关联速度的问题

关联速度的问题【专题概述】1、什么就是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。

2、解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。

解题的原则:速度的合成遵循平行四边形定则3、解题方法:把物体的实际速度分解为垂直于绳(杆)与平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示【典例精讲】1、绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时( )A.小车运动的速度为v0B.小车运动的速度为2v0C.小车在水平面上做加速运动D.小车在水平面上做减速运动2、杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向与大小分别为( )A. 水平向左,大小为vB. 竖直向上,大小为vtanθC. 沿A杆向上,大小为v/cosθD. 沿A杆向上,大小为vcosθ3、关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为 的光滑斜面上,绳的另一端与套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为F T,在此后的运动过程中,下列说法正确的就是( )A. 物体A做加速运动B. 物体A做匀速运动C. F T可能小于mgsinθD. F T一定大于mgsinθ【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个就是合速度,那个就是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向与垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来瞧:A的运动就是沿绳子方向的,所以不需要分解A的速度,但就是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。

2024年苏科版八年级上册物理培优作业十一 速度的综合计算

2024年苏科版八年级上册物理培优作业十一 速度的综合计算
12345
(1)在看手机时间内,电动车行驶的路程。 解:骑电动车的速度v=18 km/h=5 m/s,在看手机时间 内,电动车行驶的路程s=vt=5 m/s×2 s=10 m。
(2)该电动车骑行人的反应时间。 该电动车骑行人的反应时间 t′=s′v =54mm/s=0.8 s。
12345
(3)电动车从发现情况到紧急停车全程的平均速度为2.5 m/s, 则电动车的制动时间是多少。 解:紧急停车全程的路程 s 总=9.5 m,全程的总时间 t 总 =vs′总 =29.5.5mm/s=3.8 s,制动时间 t″=t 总-t′=3.8 s- 0.8 s=3 s。
12345
5. 如图甲所示,小车A和小车B在马路上相向而行,小车A 向右运动,小车B向左运动。如图乙所示的是小车A和小 车B的路程随着时间变化的坐标图,从开始计时到第16 s 两车正好相遇。
(1)小车A的速度是多少米每秒?
解:小车 A 的速度 vA=stAA=6100ms =6 m/s。
12345
苏科 八年级上册
培优作业十一 速度的综合计算
1. [2024昆山模拟]一列长为360 m的火车匀速穿过一条长为 1 800 m的隧道,测得火车完全通过隧道需要108s。求:
(1)火车的运行速度。
解:火车完全通过隧道时行驶的路程 s1=L 隧道+L 车=
1 800 m+360 m=2 160 m,
火车的运行速度
12345
(3)若该列车全长为315 m,则列车全部在大桥上运行的时间 为多少秒? 解:列车全部在大桥上运行的距离 s′=L-L 车=7 000 m -315 m=6 685 m,则列车全部在大桥上运行的时间 t′′ =vs′′=67608m5 /ms =95.5 s。

速度关联问题常见模型与解题方法

速度关联问题常见模型与解题方法

速度关联问题常见模型与解题方法1. 速度与时间的关系1.1 速度、时间与距离的基本关系速度问题就像是生活中的“速食餐”,简单快捷但又能让你饱腹。

要搞懂速度问题,我们得知道几个基本概念:速度、时间和距离。

速度就像你开车的速度,时间是你开车的时长,距离则是你走过的路。

公式是这样的:距离等于速度乘以时间。

简单吧?比如说,你开车的速度是60公里每小时,开了2小时,那你就跑了120公里。

这个公式很基础,却是解题的“必杀技”。

1.2 常见的速度问题类型有时候,速度问题就像是刮风的日子,复杂又不确定。

比如说,两个小伙伴一起跑步,一个跑得快,一个跑得慢,他们要怎么才能赶到同一个地点?这时候,你得用到“相对速度”了。

相对速度就是两者之间的速度差。

比如说,甲和乙一前一后跑,甲的速度是5米每秒,乙的速度是3米每秒,那他们之间的相对速度就是2米每秒。

这种问题看似简单,但解决起来却需要耐心和细心。

2. 速度与其他因素的关系2.1 速度与加速度的关系说到加速度,这就像是在开车的时候突然踩油门,车子一下子就飞了起来。

加速度就是速度变化的快慢,越大表示速度变得越快。

公式是这样的:加速度等于速度变化量除以时间。

如果你车子的速度从0到60公里每小时用了5秒,那加速度就是12公里每小时每秒。

这种计算常见于物理题目里,不过有时候它就像是恶作剧一样,搞得你一头雾水。

2.2 速度与阻力的关系我们生活中常常会碰到阻力,比如走在风中感觉特别累,或者水里的游泳感觉有些费劲。

阻力就是影响速度的那个“无形敌人”。

在物理问题中,阻力会影响物体的速度,导致物体的运动变得缓慢。

阻力的计算有点儿复杂,通常需要考虑很多因素,比如物体的形状、表面光滑程度等。

不过,掌握了这些,你就能在遇到实际问题时得心应手。

3. 解题方法与技巧3.1 基本公式的应用速度问题最基础的解题方法就是用公式。

公式就像是你的“万用工具”,简单易懂却功能强大。

只要你把公式运用熟练了,各种速度问题就像是手到擒来的小猫咪。

速度关联类问题求解速度的合成与分解

速度关联类问题求解速度的合成与分解

精心整理速度关联类问题求解·速度的合成与分解 编辑杨国兴运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点1.为α和β2.●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解: 设经长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =cos BD图图图图①由速度的定义:物体移动的速度为v物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =tBDt s ∆=∆∆2 ③由①②③解之:v 物=θcos v系v ⊥=点转动人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).B B A .因为1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ. 令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .图●锦囊妙计一、分运动与合运动的关系 1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.1.2.终不变3.4.度关系●歼灭难点训练 一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.. S 为平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动图图图的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在AC.设A 速度为绳Q 6.劈B (1(2与地面作用中机械能的损失忽略不计)参考答案: [难点] 1.v B =0cos cos v βα2.略 [歼灭难点训练] 1.v =αcos 10+v2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即22B °应有: ∠m 2速度E 减′m 2下滑平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°.选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度图5′—图沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图5′—1可得: v 1=v sin60°,v 2=v cos60° 又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω. 则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL . 5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点v Q E k2=21拉力T h =W G 即W T =416.当A 和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2①由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。

速度关联类问题求解

速度关联类问题求解

速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.如图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =①由速度的定义:物体移动的速度为v 物=②人拉绳子的速度v =③由①②③解之:v 物=解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.θcos BDtBCt s ∆=∆∆1t BDt s ∆=∆∆2θcos v 图4-1图4-2图4-3图4-4图4-5图4-6所以v 物=解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=图4-7[例2]一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练θcos v θcos v一、选择题1.如图4-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A v .沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度2.如图4-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

「高中生物理培优难点突破」专题14曲线运动关联速度问题

「高中生物理培优难点突破」专题14曲线运动关联速度问题

「高中生物理培优难点突破」专题14曲线运动关联速度问题
【专题概述】
1. 什么是关联速度:
用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。

2. 解此类题的思路:
思路(1)明确合运动即物体的实际运动速度
(2)明确分运动:一般情况下,分运动表现在:
①沿绳方向的伸长或收缩运动;
②垂直于绳方向的旋转运动。

解题的原则:速度的合成遵循平行四边形定则
3. 解题方法:
把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示
【典例精讲】
1. 绳关联物体速度的分解
2. 杆关联物体的速度的分解
3. 关联物体的动力学问题
【总结提升】
有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:
从运动情况来看:A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。

情况二:
从运动上来看,A和B的运动方向都不沿绳,所以在处理速度的时候需要把A和B的速度都分解了,然后根据两者沿杆方向上的速度相等来找两者之间的关系。

培优十——速度关联类问题求解重点讲义资料

培优十——速度关联类问题求解重点讲义资料

培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是().A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算.其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt,物体前进的位移Δs1=BC,如图所示.过C点作CD⊥AB,当Δt→0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v2.(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs1=BB’,如图所示. 过B’点作B’E ⊥BD .当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=t BB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos由于定滑轮上绳子的速度都是相同的,得到AB v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v2020241=21•21=21==mv v m mv E W k ∆6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin 联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 则:v 2=2ωL /cos60° vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为 h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零.将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2)∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B=2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v(5)θθθ2B cos 1cos 2cos +=gR v(6)。

培优十—速度关联类问题求解

培优十—速度关联类问题求解

培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是().A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算.其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v2.(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运动的合成可知,橡皮的速度大小为3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB’,如图所示. 过B’点作B’E ⊥BD .当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=t BB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos 由于定滑轮上绳子的速度都是相同的,得到A B v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k ∆ 6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度. v =v A cos对B 球进行速度分解,得到v =v B sin联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 则:v 2=2ωL /cos60° vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为 h =2H-H=(2-1)HW G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零.将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2) ∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v (5)θθθ2B cos 1cos 2cos +=gR v(6)OA精品文档.。

关联速度问题

关联速度问题

关联速度问题关联速度分解问题指物体拉绳(杆)或绳(杆)拉物体的问题:(1)物体的实际速度一定是合速度.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量大小相等. (3)常见的速度分解模型 情景图示(注:A 沿斜面下滑) 分解图示定量结论 v B =v A cos θ v A cos θ=v 0 v A cos α=v B cos β v B sin α=v A cos α 基本思路 确定合速度(物体实际运动)→分析运动规律→确定分速度方向→平行四边形定则求解阻力恒为F f ,当轻绳与水面的夹角为θ时,船的速度为v ,人的拉力大小为F ,则此时( )A.人拉绳行走的速度大小为v cos θB.人拉绳行走的速度大小为v cos θC.船的加速度大小为F cos θ-F f mD.船的加速度大小为F -F f m【题型2】如图所示, 一根长直轻杆AB 在墙角沿竖直墙和水平地面滑动.当AB 杆和墙的夹角为θ时,杆的A 端沿墙下滑的速度大小为v 1,B 端沿地面滑动的速度大小为v 2,则v 1、v 2的关系是( )A.v 1=v 2B.v 1=v 2cos θC.v 1=v 2tan θD.v 1=v 2sin θ【题型3】人用绳子通过光滑轻质定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速度大小是( )A.v 0sin θB.v 0 sin θC.v 0cos θD.v 0 cos θ【题型4】如图所示,一根长为L 的轻杆OA ,O 端用铰链固定,轻杆靠在一个高为h 的物块上,某时杆与水平方向的夹角为θ,物块向右运动的速度为v ,则此时A 点速度为( )A.Lv sin θhB.Lv cos θhC.Lv sin 2θhD.Lv cos 2θh【题型5】如图所示,长为L 的直棒一端可绕固定轴O 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )A.v sin αLB.v L sin αC.v cos αLD.v L cos α针对训练1.如图所示,有人在河面上方20 m 的岸上用跨过定滑轮的长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v =3 m/s 拉绳,使小船靠岸,那么( )A.5 s 时绳与水面的夹角为60°B.5 s 时小船前进了15 mC.5 s 时小船的速率为5 m/sD.5 s 时小船到岸边距离为10 m2.一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点),将其放在一个光滑球形容器中从位置1开始下滑,如图所示,当轻杆到达位置2时,球A 与球形容器球心等高,其速度大小为v 1,已知此时轻杆与水平方向成θ=30°角,球B 的速度大小为v 2,则( )A .v 2=12v 1 B .v 2=2v 1 C .v 2=v 1 D .v 2=3v 13.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为θ,与水平面的夹角为α,此时物块A 的速度v 1为( )A.v 1=v 0sin αcos θB.v 1=v 0sin αsin θC.v 1=v 0cos αcos θD.v 1=v 0cos αcos θ4.一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B.θωcos h C. θω2cos h D .Hωtan θ5.如图所示,水平面上固定一个与水平面夹角为θ的斜杆A .另一竖直杆B 以速度v 水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为vtanθC .沿A 杆向上,大小为v/cosθD .沿A 杆向上,大小为vcosθ6.如图所示,细绳一端固定在天花板上的O 点,另一端穿过一张CD 光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD 光盘按在桌面上,并沿桌面边缘以速度v 匀速移动,移动过程中,CD 光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为( )A .v sin θB .v cos θC .v cos θD .v sin θ关联速度问题参考答案【题型1】【答案】 AC【解析】 船的运动产生了两个效果:一是使滑轮与船间的绳缩短,二是使滑轮与船间的绳偏转,因此将船的速度按如图所示(沿绳方向与垂直于绳方向)方式进行分解,人拉绳行走的速度大小v 人=v ∥=v cos θ,选项A 正确,B 错误;绳对船的拉力大小等于人拉绳的力的大小,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,解得a =F cos θ-F f m,选项C 正确,D 错误.【题型2】【答案】C【解析】将A 端的速度沿杆方向和垂直于杆的方向分解,沿杆方向的分速度为v 1∥=v 1cos θ,将B 端的速度沿杆方向和垂直于杆方向分解,沿杆方向的分速度v 2∥=v 2sin θ.由于v 1∥=v 2∥.所以v 1=v 2tan θ,故C 正确,A 、B 、D 错误.【题型3】【答案】D【解析】由运动的合成与分解可知,物体A 参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A 的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A 的合运动,它们之间的关系如图所示.由几何关系可得v =v 0 cos θ,所以D 正确.【题型4】【答案】 C【解析】 根据运动的效果可知物块向右运动的速度,如图所示.沿杆和垂直于杆的方向分解成1v 和2v ,根据平行四边形定则可得θθcos cos 1v v v B ==,θθsin sin 2v v v B ==,根据几何关系可得θsin h OB =,由于B 点的线速度为ωθ⋅==OB v v sin 2,所以h v OB v θθω2sin sin ==,所以A 点的线速度hLv L v A θω2sin ==,故C 正确。

关联速度问题高一

关联速度问题高一

关 联 速 度 问 题 ( 高绳子末端速度的分解问题,是“运动的合成与分解”中的一个难 点也是易错点。

同学们在处理此类问题时,往往因搞不清哪一个是合 速度(实际速度),哪一个是分速度而导致解题失败。

希望能通过下 面几个例题,帮助同学们消除解题中的困惑。

例1:如图1的A 所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为V ,当绳与水平面成B 角时,船的速度是多少?解析:图11、 找关联点(A 点)2、 判断合速度(水平向左)3、 速度的合成与分解(沿绳子与垂直绳子)4、 验证正误(新位置在两坐标轴方向上)船的实际运动是水平运动,它产生的实际效果可以从图 B 中的A点为例说明:A 是绳子和船的公共点,一是 A 点沿绳的收缩方向的运河南省信阳高级中学 陈庆威2015.02.02方法动,二是A点绕0点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v i和垂直于绳的速度V2,如图1所示。

由图可知:v = v1/cos 0方法二:微元法:如图C1、关联点在很短时间内经过一小位移S2、绳子缩短了S' =OA-OB=PA=Sc0<S3、速度比即是位移比。

例2.如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是()A.加速上升,且加速度不断增大B.加速上升,且加速度不断减小C.减速上升,且加速度不断减小D.匀速上升解析:物体A的速率即为左段绳子上移的速率,而左段绳子上移的速率与右段绳子在沿着绳长方向的分速率是相等的。

右段绳子实际上同时参与两个运动:沿绳方向拉长及向上摆动。

将右段绳子与汽车相连的端点的运动速度v沿绳子方向和与绳子垂直方向分解,如图3所示,则沿绳方向的速率即为物体A的速率V A=V I=VS in 0。

随着汽车的运动,0增大,V A=V I增大,故A应加速上升。

由v-t图线的意义知,其斜率为加速度,在0°〜90°范围内,随B角的增大,曲线y=sin B的斜率逐渐减小,所以A上升的加速度逐渐减小。

关联速度的问题

关联速度的问题

关联速度的问题【专题概述】1. 什么是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。

2. 解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。

解题的原则:速度的合成遵循平行四边形定则3. 解题方法:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示【典例精讲】1. 绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时()A.小车运动的速度为v0 B.小车运动的速度为2v0C.小车在水平面上做加速运动 D.小车在水平面上做减速运动2. 杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()A.水平向左,大小为vB.竖直向上,大小为vtanθC.沿A杆向上,大小为v/cosθD.沿A杆向上,大小为vcosθ3. 关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为 的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为F T,在此后的运动过程中,下列说法正确的是()A.物体A做加速运动B.物体A做匀速运动C.F T可能小于mgsinθD.F T一定大于mgsinθ【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来看:A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。

高考物理重点难点5 速度关联类问题求解

高考物理重点难点5 速度关联类问题求解

高考物理重点难点5 速度关联类问题求解速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cosθ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度. 由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =t BD t s ∆=∆∆2③由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-1图5-2图5-3 图5-4图5-5其中:v=v物cosθ,使绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动.v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos图5-7[例2](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

速度关联问题解法探究

速度关联问题解法探究

速度关联问题解法探究陕西省宝鸡市陈仓区教育局教研室邢彦君正确建立连接体间的速度关联关系,是求解连接体有关速度问题的切入点,也是求解有关连接体综合问题的关键。

[原型问题]如图1-1所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动。

当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?[解法探究]解法一:应用微元法求解设经过短暂时间Δt,则:物体的位移Δs1=BC。

如图1-2所示:过C点作CD ⊥AB,当Δt→0时,∠BAC极小,在△ACD中,可以认为AC=AD,在Δt时间内,人拉绳子移动的距离Δs2=BD,即为在Δt时间内绳子端点的位移。

由图可知:BC=;由速度的定义知:物体移动的速度为v物=;人拉绳子的速度,即绳子端点移动的速度v=解以上三式得:v物=解法二:应用合运动与分运动的关系求解绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度是合速度,选物体(质点)为研究对象,物体也就是绳子端点水平向左的运动造成的效果,一是使滑轮右边的绳子缩短,即使绳收缩;二是使θ变小,使绳绕滑轮顺时针转动。

也就是说物体一方面参与沿绳斜向左上的运动,一方面参与垂直于绳斜向左下的运动。

这样,物体水平向左运动速度v物可按如图1-3所示进行分解。

由于运动中绳子不发生伸缩及弯曲形变,故有:v=v物cosθ(使绳子收缩),v=v物sinθ(使绳子绕定滑轮上的A点转动)。

⊥解以上两式得:v物=易错提示:弄不清合运动与分运动,将物体沿水平面的运动当成了分运动,将绳子收缩的速度按图1-4所示分解,从而得出错解v物=v1=v cosθ。

解法三:应用能量转化及守恒定律求解设当绳子与水平方向成θ角时,人拉绳的力大小是F,由于定滑轮不改变力的大小,所以绳拉物体的力大小也是F。

则此时:人对绳子的拉力F对绳子做功的功率为P1=Fv;绳子对物体的拉力F对物体做功的功率为P2=Fv物cosθ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB .橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A 到B的距离也为H,车过B点时的速度为v B.求在车由A 移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A 杆的位置用表示,为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算.其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v2.(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运动的合成可知,橡皮的速度大小为3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB’,如图所示. 过B’点作B’E⊥BD.当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=tBB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为分为2部分,BD绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos 由于定滑轮上绳子的速度都是相同的,得到A B v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k ∆ 6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin 联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有:T cos∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零.将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2) ∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s)此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4πφ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用 表示, 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV (2) 因而θcot A B v v = (3) 由能量守恒2B B 2A A A 2121cos v v m m gR m +=θ (4) 由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v (5)θθθ2B cos 1cos 2cos +=gR v (6)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档