培优十速度关联类问答求解
专题+关联速度的问题
N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(
)
A.v0
B.2v0
C.
D
.
ℎ
1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2
A.
B.
C.
D.
)
绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短
绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(
即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入
5关联速度问题
关联速度问题考点规律分析①对“关联速度”的理解用绳、杆相牵连的物体在运动过程中的速度通常不同,但两物体沿绳或杆方向的分速度大小相等。
②“关联速度”问题的解题步骤a.确定合速度:牵连物端点的速度(即所连接物体的实际速度)是合速度。
b.分解合速度:按平行四边形定则进行分解,作好矢量图。
合运动所产生的实际效果:一方面产生使绳或杆伸缩的效果;另一方面产生使绳或杆转动的效果。
两个分速度的方向:沿绳或杆方向和垂直于绳或杆方向。
常见的模型如图所示:c.沿绳或杆方向的分速度大小相等,列方程求解。
例如:v=v∥(甲图);v∥′(乙图、丙图)。
=v∥例题讲解(多选)如图所示,做匀速直线运动的汽车A通过一根绕过定滑轮的长绳吊起一重物B,设重物和汽车的速度的大小分别为v B、v A,则()A.v A=v B B.v A<v BC.v A>v B D.重物B的速度逐渐增大[规范解答]如图所示,汽车的实际运动是水平向左的运动,它的速度v A可以产生两个运动效果:一是使绳子伸长,二是使绳子与竖直方向的夹角增大,所以车的速度v A应有沿绳方向的分速度v0和垂直绳的分速度v1,由运动的分解可得v0=v A cosα;又由于v B=v0,所以v A>v B,故C正确。
因为随着汽车向左行驶,α角逐渐减小,所以v B逐渐增大,故D正确。
[完美答案]CD绳(杆)联问题,关键点是把合速度沿杆垂直杆,沿绳垂直绳分解。
沿杆或者沿绳分速度相等。
另外,实际运动方向就是合速度方向。
举一反三作业1.如图所示,用船A拖着车B前进时,若船匀速前进,速度为v A,当OA绳与水平方向夹角为θ时,则:(1)车B运动的速度v B为多大?(2)车B是否做匀速运动?答案(1)v A cosθ(2)不做匀速运动解析(1)把v A分解为一个沿绳子方向的分速度v1和一个垂直于绳的分速度v2,如图所示,所以车前进的速度v B大小应等于v A的分速度v1,即v B=v1=v A cosθ。
高一物理力学专题提升专题14关联速度问题
专题14 关联速度问题【专题概述】1. 什么是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
2. 解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
解题的原则:速度的合成遵循平行四边形定则3. 解题方法:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示【典例精讲】1. 绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时()A.小车运动的速度为v0 B.小车运动的速度为2v0C.小车在水平面上做加速运动 D.小车在水平面上做减速运动【答案】C【解析】将小车速度沿着绳子方向与垂直绳子方向进行分解,如图:2. 杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()A.水平向左,大小为vB.竖直向上,大小为vtan θC.沿A杆向上,大小为v/cos θD.沿A杆向上,大小为vcos θ【答案】C【解析】两杆的交点P参与了两个分运动:与B杆一起以速度v水平向左的匀速直线运动和沿B杆竖直向上的运动,交点P的实际运动方向沿A杆斜向上,则交点P的速度大小为v P=,故C正确, A、B、D错误.故选C.3. 关联物体的动力学问题典例 3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为FT,在此后的运动过程中,下列说法正确的是()A.物体A做加速运动B.物体A做匀速运动C.FT可能小于mgsin θD.FT一定大于mgsin θ【答案】D【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来看:A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。
关联速度问题
1、如图所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.则( )A .小船的速度v 2总小于汽车速度v 1B .汽车速度v 1总小于小船的速度v 2C .如果汽车匀速前进,则小船加速前进D .如果汽车匀速前进,则小船减速前进2、如图所示,轻质不可伸长的细绳,绕过光滑定滑轮C ,与质量为m 的物体A 连接,A 放在倾角为θ的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B 连接.现BC 连线恰沿水平方向,从当前位置开始B 以速度v 0匀速下滑.设绳子的张力为T ,在此后的运动过程中,下列说法正确的是( )A .物体A 做变速运动B .物体A 做匀速运动C .T 小于mgsinθD .T 大于mgsinθ3、自行车转弯时,可近似看成自行车绕某个定点O(图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,OB 距离为L ,前轮所在平面与车身夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s.则轮轴A 的速度v 1大小为( )A. m/s B .2 m/s C. m/s D .3 m/s4、一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B. θωcos h C. θω2cos h D .hωtan θ5、如图所示,当小车A以恒定的速度v向左运动时,对于B物体,下列说法正确的是( ) A.匀加速上升B.B物体受到的拉力大于B物体受到的重力C.匀速上升D.B物体受到的拉力等于B物体受到的重力6、(2016上海松江期末)如图所示,A、B两球分别套在两光滑无限长的水平直杆上,两球通过一轻绳绕过一定滑轮(轴心固定不动)相连,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,A 球向左的速度为v,此时B球的速度为______________________7、如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地面上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方0点处,在杆的中点C处拴一细绳,通过两个滑轮后挂上重物M,C点与o点距离为L,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平(转过了90°角).下列有关此过程的说法中正确的是()A.重物M做匀速直线运动B.重物M做变速直线运动C.重物M的最大速度是2ωL D.重物M的速度先减小后增大8、如右图所示,一根长为l的轻杆OA,O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个高为h的物块上。
速度关联问题常见模型与解题方法
速度关联问题常见模型与解题方法1. 速度与时间的关系1.1 速度、时间与距离的基本关系速度问题就像是生活中的“速食餐”,简单快捷但又能让你饱腹。
要搞懂速度问题,我们得知道几个基本概念:速度、时间和距离。
速度就像你开车的速度,时间是你开车的时长,距离则是你走过的路。
公式是这样的:距离等于速度乘以时间。
简单吧?比如说,你开车的速度是60公里每小时,开了2小时,那你就跑了120公里。
这个公式很基础,却是解题的“必杀技”。
1.2 常见的速度问题类型有时候,速度问题就像是刮风的日子,复杂又不确定。
比如说,两个小伙伴一起跑步,一个跑得快,一个跑得慢,他们要怎么才能赶到同一个地点?这时候,你得用到“相对速度”了。
相对速度就是两者之间的速度差。
比如说,甲和乙一前一后跑,甲的速度是5米每秒,乙的速度是3米每秒,那他们之间的相对速度就是2米每秒。
这种问题看似简单,但解决起来却需要耐心和细心。
2. 速度与其他因素的关系2.1 速度与加速度的关系说到加速度,这就像是在开车的时候突然踩油门,车子一下子就飞了起来。
加速度就是速度变化的快慢,越大表示速度变得越快。
公式是这样的:加速度等于速度变化量除以时间。
如果你车子的速度从0到60公里每小时用了5秒,那加速度就是12公里每小时每秒。
这种计算常见于物理题目里,不过有时候它就像是恶作剧一样,搞得你一头雾水。
2.2 速度与阻力的关系我们生活中常常会碰到阻力,比如走在风中感觉特别累,或者水里的游泳感觉有些费劲。
阻力就是影响速度的那个“无形敌人”。
在物理问题中,阻力会影响物体的速度,导致物体的运动变得缓慢。
阻力的计算有点儿复杂,通常需要考虑很多因素,比如物体的形状、表面光滑程度等。
不过,掌握了这些,你就能在遇到实际问题时得心应手。
3. 解题方法与技巧3.1 基本公式的应用速度问题最基础的解题方法就是用公式。
公式就像是你的“万用工具”,简单易懂却功能强大。
只要你把公式运用熟练了,各种速度问题就像是手到擒来的小猫咪。
速度关联类问题求解
速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.如图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =①由速度的定义:物体移动的速度为v 物=②人拉绳子的速度v =③由①②③解之:v 物=解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.θcos BDtBCt s ∆=∆∆1t BDt s ∆=∆∆2θcos v 图4-1图4-2图4-3图4-4图4-5图4-6所以v 物=解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=图4-7[例2]一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练θcos v θcos v一、选择题1.如图4-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A v .沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度2.如图4-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。
(尖子生培优)行程问题-四年级数学思维拓展含参考答案
专题08行程问题行程问题是研究速度、时间和路程之间的关系的实际问题,解决这类问题,我们一般是根据数量关系式进行解答。
一般行程问题的数量关系式有:速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米? 3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车? 4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间? 10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?能力巩固提升综合拔高拓展19.A、B两地相距960km。
四年级数学上册 解决问培优解答应用专项训练专项训练带答案解析
四年级数学上册解决问培优解答应用专项训练专项训练带答案解析一、四年级数学上册应用题解答题1.某人步行每分钟走90米,从甲地到乙地要22分钟才能到达,当他步行了480米后,改乘汽车,他乘汽车行了多少米?解析:1500米【分析】首先根据速度×时间=路程,用某人步行的速度乘从甲地到乙地用的时间,求出两地之间的距离;然后用两地之间的距离减去已经行的路程,求出他乘汽车行了多少米即可。
【详解】90×22-480=1980-480=1500(米)答:他乘汽车行了1500米。
【点睛】此题主要考查行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握。
2.下图中长方形花圃的长增加到54米,宽不变,扩建后的面积是多少平方米?②你喜欢谁的想法,说说她解决问题的思路。
解析:见详解【分析】÷=(米),小兰的做题思路是先根据面积和长,求出长方形的宽,126187⨯=(平方米)。
根据题意可知宽不变,再根据扩建后的长可求出面积,754378÷=,小慧在解决这道题目时,先求出长方形的长增加到了原来的多少倍,54183⨯=(平方再根据宽不变,则长扩大到原来的3倍,面积扩大到原来的3倍,为3126378米)。
÷=(米),小丽的做题思路是先根据面积和长,求出长方形的宽,126187⨯=(平方米),根据题意可知宽不变,再根据扩建后的长可求出面积,754378-=(平方米),求出的结果是扩建后增加的面积,不符合题中的问题。
378126252÷=,小美在解决这道题目时,先求出长方形的长增加到了原来的多少倍,54183再根据宽不变,则长扩大到原来的3倍,面积扩大到原来的3倍,扩大后的面积比原来的面积多2倍,(3−1)×126=2523−1×126=252(平方米),求出的结果是扩建后增加的面积,不符合题中的问题。
培优十——速度关联类问题求解重点讲义资料
培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是().A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算.其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt,物体前进的位移Δs1=BC,如图所示.过C点作CD⊥AB,当Δt→0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v2.(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs1=BB’,如图所示. 过B’点作B’E ⊥BD .当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=t BB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos由于定滑轮上绳子的速度都是相同的,得到AB v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v2020241=21•21=21==mv v m mv E W k ∆6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin 联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 则:v 2=2ωL /cos60° vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为 h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零.将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2)∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B=2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v(5)θθθ2B cos 1cos 2cos +=gR v(6)。
培优十—速度关联类问题求解
培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是().A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算.其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v2.(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运动的合成可知,橡皮的速度大小为3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB’,如图所示. 过B’点作B’E ⊥BD .当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=t BB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos 由于定滑轮上绳子的速度都是相同的,得到A B v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k ∆ 6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度. v =v A cos对B 球进行速度分解,得到v =v B sin联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 则:v 2=2ωL /cos60° vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为 h =2H-H=(2-1)HW G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零.将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2) ∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v (5)θθθ2B cos 1cos 2cos +=gR v(6)OA精品文档.。
新高考2022届物理备考专题:关联速度问题【权威预测,冲刺985精品】
专题:关联速度问题一、方法策略1.问题特点:沿绳(或杆)方向的速度分量大小相等。
2.思路与原则(1)思路①明确合速度:物体的实际运动速度v②明确分速度:沿绳(或杆)的分速度v1与绳(或杆)垂直的分速度v2(2)原则:v1与v2的合成遵循平行四边形定则。
3.解题方法把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(或杆)方向的分速度大小相等求解。
常见的模型如图所示:4.连接体加速度不一定同时为零如果两个绳连接体速度通过分解,速度之间有三角函数关系、二次函数关系等非线性关系,就不能在题干中说:“两个物体加速度同时为零”,即两个物体不能同时达到平衡。
只有当两个绳连接体速度为线性关系时,两者才能同时达到平衡,如图(a)、(b)。
二、典例分析例1. [绳关联问题一]如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车拉着绳子以速度v匀速向右运动且运动到绳子与水平方向的夹角为θ时,下列关于物体A的说法正确的是()A. 物体A此时的速度大小为vcosθ,物体A做减速运动,绳子拉力小于物体重力B. 物体A此时的速度大小为vcosθ,物体A做加速运动,绳子拉力大于物体重力C. 物体A此时的速度大小为vcosθ,物体A做减速运动,绳子拉力小于物体重力D. 物体A此时的速度大小为vcosθ,物体A做加速运动,绳子拉力大于物体重力【答案】B【解析】将小车的速度分解为沿绳子方向和垂直于绳子方向,小车沿绳子方向的速度等于物体A的速度,则物体A的速度v A=vcosθ;小车匀速向右运动时,θ减小,则A的速度增大,所以A加速上升,加速度方向向上,根据牛顿第二定律有T−G A=m A a,可知绳子拉力大于物体重力,B正确,A、C、D错误.故选B。
例2.[绳关联问题二]如图所示,A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A 物体以速度v向左运动时,系A、B的绳分别与水平方向成30°、60°角,此时B物体的速度大小为()A. √3vB. √33v C. √34v D. 4√33v【答案】A【解析】对A物体的速度沿着绳子方向与垂直绳子方向进行分解,则有沿着绳子方向的速度大小为v A cos30°对B物体的速度沿着绳子方向与垂直绳子方向进行分解,则有沿着绳子方向的速度大小为v B cos60°由于沿着绳子方向速度大小相等,所以则有v A cos30°=v B cos60°因此v B=v A cos30°cos60∘=√3v,故A正确,BCD错误。
2020人教版八年级上学期同步单元专题大培优:速度计算专题练习
八年级上学期同步单元专题大培优:速度计算专题练习1.如图为南沙大桥,它连接了广州市南沙区与东莞市沙田镇,是继港珠澳大桥之后,又一座世界级桥梁工程。
大桥全长约13km,设计行车最高速度为100km/h,总投资达11.8亿元。
(1)若汽车在不超速情况下,通过南沙大桥最少需要多长时间?(2)若一辆货车通过南沙大桥的时间为10min,则该货车的平均速度为多少?2.据统计,全国发生的车祸中有超过四分之一是超速引起的!为此,我市近年来加大了道路限速监控管理.一种是“定点测速”,即监测汽车在某点的车速;另一种是“区间测速”,就是测算出汽车在某一区间行驶的平均速度。
如果超过了该路段的最高限速,即被判为超速.若监测点A、B相距15km,全程限速,一辆轿车通过监测点A、B的速度分别为100km/h和110km/h,通过两个监测点的时间如图所示。
(1)采用“定点测速”,该轿车通过监测点A、B时会不会被判超速?并说明理由?(2)采用“区间测速”,这辆轿车在该路段会不会被判超速?(请通过计算进行说明)(3)若要确保通过4B路段区间测速不会被判超速,则通过路段时间最短是多少秒?3.小豪同学上学时,前一半时间内的平均速度为v1=4m/s,后一半时间内的平均速度为v2=6m/s;放学回家时,前一半路程内的平均速度为v1=4m/s,后一半路程内的平均速度为v2=6m/s。
求:(1)小豪同学上学时的平均速度v;(2)小豪同学上学所用时间与放学回家所用时间的比值。
4.D315次列车由北京开往苏州,自北京到苏州铁路长1200km,根据列车运行时刻,求:(1)此次列车从济南到南京需要多长时间?(2)列车由北京到苏州的平均速度;(3)列车以30m/s的速度通过某一大桥,用时72s,已知列车全长360m,则求该大桥的长。
5.某兵工厂生产了一批新式步枪,为测试子弹飞行的平均速度,士兵手持步枪在空旷的靶场瞄准510m外的靶子射击,枪筒旁边的声波探测器先后探测到两次较强声波,并在示波器上显示出来(如图);已知:第一次是枪响的声波,第二次是子弹击中靶的声波,示波器上每一大格时间相差1s,求:子弹飞行的平均速度?(声音在空气中的传播速度是340m/s)6.高速公路已广泛应用ETC收费系统,这种系统是对过往车辆无需停车即能实现收费的电子系统.如图乙是某高速公路入口处的ETC通道示意图.现有一辆汽车在某高速路上以如图甲所示的速度计所指的速度匀速行驶25min后到达收费站,在进入ETC收费岛区域前S1=50m处开始减速,经t1=4s后运动至ETC收费岛边界,然后再以6m/s的速度匀速通过ETC收费岛,其长S2=36m.不计车长.求:(1)汽车到达收费站前匀速行驶的路程;(2)汽车通过ETC收费岛所用的时间2;(3)汽车从减速开始到离开ETC收费岛全过程的平均速度大小.7.甲乙两地的距离是900km,一列火车从甲地早上7:30出发开往乙地,途中停靠了几个车站,在当日16:30到达乙地。
14 关联速度的问题
14 关联速度的问题关联速度问题是指在绳或杆相连的物体运动中,两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
解此类题的思路是明确合运动即物体的实际运动速度和分运动,其中分运动表现在沿绳方向的伸长或收缩运动,以及垂直于绳方向的旋转运动。
解题的原则是速度的合成遵循平行四边形定则。
解题方法是把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示。
在绳关联物体速度的分解中,典例1如图,一人以恒定速度v通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时小车运动的速度为v。
在杆关联物体的速度的分解中,典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A,另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为沿A杆向上,大小为v/cosθ。
在关联物体的动力学问题中,典例3如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为θ的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接。
现BC连线恰沿水平方向,从当前位置开始B以速度v匀速下滑。
设绳子的张力为FT,在此后的运动过程中,正确的说法是物体A做加速运动,FT可能小于mgsinθ。
总之,在处理关联速度问题时,需要区分清楚合速度和分速度,将没有沿绳子方向的速度向绳方向和垂直于绳的方向分解。
最常见的情况是从运动情况来看,A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。
高考物理重点难点5 速度关联类问题求解
高考物理重点难点5 速度关联类问题求解速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cosθ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度. 由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =t BD t s ∆=∆∆2③由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-1图5-2图5-3 图5-4图5-5其中:v=v物cosθ,使绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动.v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos图5-7[例2](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。
关联速度问题补偿训练
关联速度问题补偿训练1.(多选)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d。
现将小环从与定滑轮等高的A处由静止释放,当小环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)()A.小环刚释放时轻绳中的张力一定大于2mgB.小环到达B处时,重物上升的高度为(2-1)dC.小环在B处的速度与重物上升的速度大小之比等于2 2D.小环在B处的速度与重物上升的速度大小之比等于2[解析]小环释放后,v增加,而v1=v cos θ,v1增大,由此可知小环刚释放时重物具有向上的加速度,故绳中张力一定大于2mg,A项正确;小环到达B处时,绳与直杆间的夹角为45°,重物上升的高度h=(2-1)d,B项正确;如图所示,将小环速度v进行正交分解,其分速度v1与重物上升的速度大小相等,v1=v cos 45°=22v,所以,小环在B处的速度与重物上升的速度大小之比等于2,C项错误,D项正确。
[答案]ABD2.一轻杆两端分别固定质量为m A和m B的两个小球A和B(可视为质点)。
将其放在一个光滑球形容器中从位置1开始下滑,如图8所示,当轻杆到达位置2时球A与球形容器球心等高,其速度大小为v1,已知此时轻杆与水平方向成θ=30°角,B球的速度大小为v2,则()A.v2=12v1 B.v2=2v1 C.v2=v1D.v2=3v1解析:选C球A与球形容器球心等高,速度v1方向竖直向下,速度分解如图所示,有v11=v1sin 30°=12v1,球B此时速度方向与杆成α=60°角,因此v21=v2cos 60°=12v2,沿杆方向两球速度相等,即v21=v11,解得v2=v1,C项正确。
3.如图所示,长为L的直棒一端可绕固定轴转动,另一端搁在升降平台上,平台以速度v匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为()A.v sin αL B.vL sin αC.v cos αL D.vL cos α解析:选B棒与平台接触点的实际运动即合运动方向是垂直于棒指向左上方,如图所示,合速度v实=ωL,沿竖直向上方向上的速度分量等于v,即ωL sin α=v,所以ω=vL sin α。
培优十速度关联类问题求解
培优十速度关联类问题求解1、如下图,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多项选择)如下图,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,以下说法正确的选项是().A.橡皮的速度大小为2vB .橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如下图,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如下图,假设物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如下图,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,假设A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如下图,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开场向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如下图,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.定滑轮到杆的距离为3m.物体m2由静止从AB 连线为水平位置开场下滑1 m时,m1、m2恰受力平衡如下图.重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如下图,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,SO=L,假设M以角速度ω绕O点逆时针匀速转动,那么转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为mP端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开场时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q 端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,那么小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如下图,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开场释放A,A、B便开场运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进展,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开场、进展、同时完毕,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取适宜的连结点(该点必须能明显地表达出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定那么确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳〞问题:所谓“抽绳〞问题,是指同一根绳的两端连着两个物体,其速度各不一样,常常是一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动.(2)如何分解的问题由于沿同一绳上的速度分量大小一样,所以可将合速度向沿绳方向作“投影〞,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据条件进展相应计算.其实这也可以理解成“根据实际效果将合运动正交分解〞的思路.1、如下图,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt,物体前进的位移Δs1=BCC点作CD⊥AB,当Δt→0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如下图进展分解其中:v =v 物cos θ,使绳子收缩v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F ,那么对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,那么绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以 v 物=θcos v2.(多项选择)如下图,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,以下说法正确的选项是( ).A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析 钉子沿斜面匀速运动,橡皮具有向上的分速度v ,同时具有沿斜面方向的分速度v ,根据运动的合成可知,橡皮的速度大小为3v ,速度与水平方向成60°角,选项B 、C 正确.答案 BC2、如下图,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D .BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB’,如下图. 过B’点作B’E ⊥BD .当Δt →0时,∠BDB’极小,在△BDB’中,可以认为DE =B’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=tBB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度一样,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体〞的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,那么人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,那么绳子对物体做功的功率为分为2局部,BD 绳对物体做功的功率为P 2=Fv 0cos ,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如下图,假设物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,那么a =h /sin θ令棒绕O 点转动角速度为ω,那么:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如下图,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,假设A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,那么v =v A cos 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,那么v =v B cos 由于定滑轮上绳子的速度都是一样的,得到AB v v αβcos cos =5、如下图,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开场向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? 解析:地面上的人是以恒定速度拉动小球的,那么人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是一样的.对小球进展分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k ∆ 6、如下图,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进展分解,设杆上的速度为v那么对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度. v =v A cos对B 球进展速度分解,得到v =v B sin联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开场下滑1 m 时,m 1、m 2恰受力平衡如下图.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离 解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有: T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如下图,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,SO =L ,假设M 以角速度ω绕O 点逆时针匀速转动,那么转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,那么:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S′又在反射光线OS ′上,它参与沿光线OS ′v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω 那么:v 2=2ωL /cos60° vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为mP 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开场时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开场时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为 h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,那么小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:qE=mg ,那么小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgL gL v Q 2=又小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零. 将小球过最低点时的速度沿竖直向下与水平向右分解,那么突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合t t =v /v sin β整理下得到s =d /sin β那么要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ①由v =πt 可知其切向加速度大小为a τ=π(m/s 2)∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ°如下图,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开场释放A ,A 、B 便开场运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B 速度的大小(表示成θ 的函数).、由题设条件知,假设从地面参考系观测,那么任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .假设以B 为参考系,从B 观测,那么A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v(5)θθθ2B cos 1cos 2cos +=gR v(6)。
14关联速度的问题
关联速度的问题【专题概述】1. 什么是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
2. 解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
解题的原则:速度的合成遵循平行四边形定则3. 解题方法:和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示【典例精讲】1. 绳关联物体速度的分解把物体的实际速度分解为垂直于绳(杆)典例1(多选)如图,一人以恒定速度V o通过定滑轮竖直向下拉小车在水平面上运动, 当运动到如图位置时,细绳与水平成60°角,则此时(A.、一、、1小车运动的速度为V o2.小车运动的速度为2v oC. 小车在水平面上做加速运动.小车在水平面上做减速运动2. 杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点A. 水平向左,大小为vB. 竖直向上,大小为vtan 0C. 沿A杆向上,大小为v/cos 0D. 沿A杆向上,大小为vcos 00的斜杆A.另一竖直杆B以速度v水平向左P的速度方向和大小分别为()有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住 把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况:A 的运动是沿绳子方向的,所以不需要分解A 的速度,但是B 运动的方向没B 的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。
分解了,然后根据两者沿杆方向上的速度相等来找两者之间的关系。
【专练提升】1.如图所示,人在岸上拉船,已知船的质量为m,水的阻力恒为船的速度为v ,此时人的拉力大小为 F ,则此时()J F —F船的加速度为mN 点的过程中,关于物体A 的运动和受力情况,下列说法正确的是( )3.关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮 C 与质量为m 的物体A 连接,A 放在倾角为二的光滑斜面上,绳的另一端和套在固定竖直杆上的物体 B 连接•现BC 连线恰沿水平方向,从当前位置开始B 以速度V 0匀速下滑.设绳子的张力为F T ,在此后的运动过程中,下列说法正确的是(A.物体A 做加速运动B. 物体A 做匀速运动C. F T 可能小于mgs in 0 F T 一定大于mgsin 0【总结提升】D.情况一:从运动情况来看有沿绳子,所以就需要分解A 和B 的运动方向都不沿绳,所以在处理速度的时候需要把A 和B 的速度都F f ,当轻绳与水平面的夹角为0时,A.人拉绳行走的速度为 VCOS 0B. 人拉绳行走的速度为 v/cos 0C. 船的加速度为D.2.( 多选)如图所示,在不计滑轮摩擦和绳子质量的条件下,小车匀速地从B 点运动到 M 点,再运动到情况二:从运动上来看,情况二图A. 物体A 也做匀速直线运动B. 物体A 的速度可能为零C.绳的拉力总是等于 A 的重力D. 绳的拉力总是大于 A 的重力 3如图所示,在水平力F 作用下,物体 B 沿水平面向右运动,物体 A 恰匀速上升,那么以下说法正确的是()A. 物体B 正向右做匀减速运动B.物体B 正向右做加速运动C. 地面对B 的摩擦力减小D. 斜绳与水平成30°时,V A :V B =:3:24. 如图所示,中间有孔的物块 A 套在光滑的竖直杆上,通过定滑轮用不可伸长的轻绳将物体拉着匀速向上运动.则关于拉力 F 及拉力作用点的移动速度 v 的下列说法正确的是()A. F 不变、 v 不变B. F 增大、 v 不变C. F 增大、 v 增大D. F 增大、 v 减小5.(多选)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )()A.小环刚释放时轻绳中的张力一定大于2mgB. 小环到达B 处时,重物上升的高度约为 (、、2 — 1)d D.小环在B 处的速度与重物上升的速度大小之比等于26. 一辆车通过一根跨过定滑轮的轻绳提升一个质量为m 的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是 H.车由静止开始向左做匀加速运动,经过时间 试求:(1) 车向左运动的加速度的大小; (2) 重物m 在t 时刻速度的大小.套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将小环从与定滑轮等高的A 处由静止释放, C.小环在B 处的速度与重物上升的速度大小之比等于 t ,绳子与水平方向的夹角为 0,如图所示,关联速度的问题答案【典例精讲】典例1【答案】D【解析】由題意可知.将B 的实际运动分解成两个分运动,如團所示,根搗平行四边刑罡则,可育:vBsina^绳:因B 以軸诫匀速下滑,又削衽増大「所以绳子速度在塔大,则A 蛀于剂速运动,很据爱力分析,结合牛顿第二定律,则有:FT>m gS ine,故A 、D 正确,氐C 销島故选扎D.典例2【答案】C【解析】两杆的交点 P 参与了两个分运动:与 B 杆一起以速度v 水平向左的匀速直线运动和沿直向上的运动,交点 P 的实际运动方向沿 A 杆斜向上,则交点 P 的速度大小为V P =——,故C 正确,COSPD 错误.故选C.典例3【答案】C【解析】将小车速度沿着绳子方向与垂直绳子方向进行分解,如图:人拉绸的速度与代沿绳子方向的分速度是相等的,根鷹三角函数关系:TTCQS 60D =VO则 v=―^—^2v0cos 60°随小车向左运动「卜车与水平方向的夹角越来越大,由知它越来越犬,则小车在水平面上■»加速运动.故B 、C 正确一 COS L Z【专练提升】1、【答案】CB 杆竖 A 、 B【解析】船的速度产生了两个效果:一是滑轮与齬间的绳缩短「二是绳绕滑轮■噸时针转动,因此将船 的速度进行分解如图所示,人拉绳行走的速度v 人二农酹亦A 对,E 错;绳对船的披力等于人拉绳的力,即绳的拉力大小为F,r" _ … … gj-"与水平方向成0角,因此Feos e-FU ma ;得a= — ------------------ - , CT 对,D 错一2、 【答案】D【解析】设和小车连接的绳子与水平面的夹角为乩■!■车的速度为耳则这个速度分解为沿總方向向上 和垂直绳方向叵TF 的速度,脾三角形得^方问的速度为侃Z 随看小车匀連向左运动・显然e 逐渐先増大 后减Is 所以绳方问的分速度先越来樹卜后越来越大,又知物俸去的速度耳龟方冋分速度犬彳一祥,则在 小车从右向左匀速行驶的过程中物偉A 先问下做屁速运动,然后问上做加速运幼,加連度始^向上,当小 车到达M 点时,绳子的速度対零,则物■体心的連度也为零.则由牛顿第二走律得:F —mg 二应,即 + m r 因此,绳的拉力总大于物体A 的重力,故选顷仏C 错误,选项氐DIE 确.3、 【答案】D【解析】A 、将B 的运动分解为沿绳子方向和垂直于绳子方向,沿绳子方向上的分速度等于如團,1鳩平行四站绽则有汕所以% =丄_⑷臧H 所以B 的速度减小,但不是匀咸速.故 cos aA :B 留误.匚在竖岂方问上•対BE IDE -F 沪论心F E 辱a>Js 则支持力増尢,抿搏E LM 賦関軾 増大.故C 错误.D 、根据斜绳与水平成3W,耳:勺=击::2 一故D 正确-4、【答案】D【解析】设绳子与竖直方向的夹角为B,因为A 做匀速直线运动,在竖直方向上合力为零,有:FcosO =mg,因为日増大,则F 増大.物体A 沿绳子方向上的分速度i= v^cose,因为日増天,则v 减小.D 正 确5、【答案】ABD【解析】如图所示,将小环速度v进行正交分解如图所示,A 的速度,其分速度与重牧Lb 升的速度大小相等八匸VHgyJL,所叽小环在B 处的速度与重物上升2的速度犬小之比尊于庞,C 顼错误,二项正确.小环释放后,i •噌加,8减卜而讥=口巡诃增大, 由此可知<1侨刚释於时黄物具有向上的抑速度,故绳中舐力一走大于加皿A 顶正确:4耶到达B 处吋, 绳与直杆间的夹角浙斗咒 重物上升的高度h=(庞-1乩H 项正确.2x 2H所以a =——f 广 tan £⑵车的速度v 车=at由运动的分解知识可知,车的速度v 车沿绳的分速度与重物 m 的速度相等,目卩v 物=v 车cos6、【答案】⑴二2Hcos& rtaa&【解析】(1)车在时间 t 内向左运动的位移:Hx= ----- tan#得v 物=itXi&1H ftan8。
14-关联速度的问题
关联速度的问题【专题概述】1. 什么是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
2. 解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
解题的原则:速度的合成遵循平行四边形定则3. 解题方法:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示【典例精讲】1. 绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳和水平成60°角,则此时()A.小车运动的速度为v0 B.小车运动的速度为2v0C.小车在水平面上做加速运动 D.小车在水平面上做减速运动2. 杆关联物体的速度的分解典例2如图所示,水平面上固定一个和水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()A.水平向左,大小为vB.竖直向上,大小为vtanθC.沿A杆向上,大小为v/cosθD.沿A杆向上,大小为vcosθ3. 关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C和质量为m的物体A连接,A放在倾角为 的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为F T,在此后的运动过程中,下列说法正确的是()A.物体A做加速运动B.物体A做匀速运动C.F T可能小于mgsinθD.F T一定大于mgsinθ【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来看:A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。
20-21版:专题强化 小船渡河与关联速度问题(步步高)
[学习目标] 1.能利用运动的合成与分解的知识,分析小船渡河问题和关联速度问题.2.建立两种模型的一般分析思路和解法.一、小船渡河问题 1.运动分析小船渡河时,同时参与了两个分运动:一个是船相对水的运动(即船在静水中的运动),一个是船随水漂流的运动. 2.两类常见问题 (1)渡河时间问题①渡河时间t 取决于河宽d 及船沿垂直河岸方向上的速度大小,即t =dv ⊥. ②若要渡河时间最短,只要使船头垂直于河岸航行即可,如图1所示,此时t =d v 船.图1(2)最短位移问题①若v 水<v 船,最短的位移为河宽d ,船头与上游河岸夹角满足cos θ=v 水v 船,如图2甲所示.图2②若v 水>v 船,如图乙所示,从出发点A 开始作矢量v 水,再以v 水末端为圆心,以v 船的大小为半径画圆弧,自出发点A 向圆弧作切线即为船位移最小时的合运动的方向.这时船头与河岸夹角θ满足cos θ=v 船v 水,最短位移x 短=dcos θ.(多选)(2019·宜宾市高一质检)如图3所示为长江一段平行江道,一轮船的船头始终垂直指向江岸方向,轮船在静水中运动的速度保持不变,水匀速流动(假设整个江道水流速度相同),下列说法正确的是( )图3A .水流速度越大,轮船行驶位移越大B .水流速度增大,轮船行驶位移不变C .水流速度越大,过江时间越短D .水流速度增大,过江时间不变 答案 AD解析 因为船垂直于江岸方向的速度不变,而水流方向是垂直于这个方向的,在这个方向上没有分速度,设江道宽为d ,船垂直于江岸的速度为v ,则t =dv ,所以不论水流速度多大,船过江时间不变,故C 错误,D 正确.水流速度越大,相同时间内沿水流速度方向的位移就越大,船在水中运动的总位移也就越大,故B 错误,A 正确.已知某船在静水中的速度为v 1=5 m/s ,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m ,水流速度为v 2=3 m/s ,方向与河岸平行. (1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少; (2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v 2′=6 m/s ,船在静水中的速度为v 1=5 m/s 不变,船能否垂直河岸渡河? 答案 (1)20 s 2034 m (2)25 s (3)不能解析 (1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t =d v 1=1005s =20 s.如图甲所示,当船到达对岸时,船沿平行于河岸方向也发生了位移,由几何知识可得,船的位移大小为l =d 2+x 2,由题意可得x =v 2t =3×20 m =60 m ,代入得l =2034 m.(2)当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v 1=5 m/s ,大于水流速度v 2=3 m/s ,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v 1cos θ=v 2,cos θ=v 2v 1=0.6,则sin θ=1-cos 2 θ=0.8,船的实际速度大小为v =v 1sin θ=5×0.8 m/s =4 m/s ,所用的时间为t ′=d v =1004 s =25 s.(3)当水流速度v 2′=6 m/s 时,则水流速度大于船在静水中的速度v 1=5 m/s ,不论v 1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.1.要使船垂直于河岸横渡,即路程最短,应使v 船在水流方向的分速度和水流速度等大、反向,这种情况只适用于v 船>v 水时.2.要使船渡河时间最短,船头应垂直指向河对岸,即v 船与水流方向垂直,渡河时间与v 水无关.3.要区别船速v 船及船的合运动速度v 合,前者是发动机(或划行)使船在静水中产生的速度,后者是合速度.针对训练1 (2019·泸州市高一检测)一艘船的船头始终正对河岸方向行驶,如图4所示.已知船在静水中行驶的速度为v 1,水流速度为v 2,河宽为d .则下列说法正确的是( )图4A .船渡河时间为d v 2B .船渡河时间为dv 12+v 22C .船渡河过程被冲到下游的距离为v 2v 1dD .船渡河过程被冲到下游的距离为v 2v 12+v 22d答案 C解析 船正对河岸运动,渡河时间最短,t =dv 1,沿河岸方向运动的位移大小x 2=v 2t =v 2v 1d ,故A 、B 、D 错误,C 正确. 二、关联速度问题1.关联速度问题:两物体通过不可伸长的轻绳(杆)相牵连,当两物体都发生运动,且物体运动的方向不在绳(杆)的直线上,两物体的速度是关联的.(下面为了方便,统一说“绳”). 2.处理方法:(1)物体的实际速度一定是合速度,分解时两个分速度方向应取沿绳方向和垂直绳方向.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量大小相等.3.常见的速度分解模型(如图5)图5(2019·湖北荆门龙泉中学高一下月考)如图6所示,A、B物体通过不可伸长的轻绳连接,A在外力作用下向右以速度v0匀速移动,当轻绳与水平方向夹角为θ时,物体B的速度为v,不计滑轮的质量和摩擦,与A相连的轻绳水平,则下列说法正确的是()图6A.v=v0cos θB.v=v0cos θC.B将向右匀速运动D.B将向右减速运动答案 B解析将B物体水平方向的速度沿轻绳方向和垂直轻绳方向分解可得:v0=v cos θ,解得:v=v0cos θ,故A错误,B正确;由公式v=v0cos θ可知,A物体向右运动过程中θ变大,所以cos θ变小,v变大,所以B物体将向右加速运动,故C、D错误.针对训练2(2019·鹤壁市期末)如图7所示,物体A套在竖直杆上,经细绳通过光滑轻质定滑轮拉动物体B在水平面上运动,开始时A、B间的细绳呈水平状态,现由计算机控制物体A的运动,使其恰好以速度v沿杆匀速下滑(B始终未与滑轮相碰),则()图7A.绳与杆的夹角为α时,B的速率为v sin αB.绳与杆的夹角为α时,B的速率为v cos αC.物体B也做匀速直线运动D.物体B做匀加速直线运动答案 B解析如图所示,将物体A的速度按图示两个方向分解,绳子速率v绳=v∥=v cos α;而绳子速率等于物体B的速率,则物体B的速率v B=v绳=v cos α,故A错误,B正确;因物体A 向下运动的过程中α减小,则cos α增大,v B增大,物体B加速运动,但不是匀加速运动,故C、D错误.1.(小船渡河模型)(多选)下列图中实线为河岸,河水的流动方向如图中v的箭头所示,虚线为小船从河岸M驶向对岸N的实际航线.则其中可能正确的是()答案AB解析小船渡河的运动可看成水流的运动和小船运动的合运动.虚线为小船从河岸M驶向对岸N的实际航线,即合速度的方向,小船合运动的速度方向就是其实际运动的方向,分析可知,实际航线可能正确的是A、B.2.(小船渡河模型)(多选)在一条宽200 m的河中,水的流速v1=1 m/s,一只小船要渡过河至少需要100 s的时间.则下列判断正确的是()A.小船相对于静水的速度为2 m/sB.无论小船怎样渡河都无法到达正对岸C.若小船以最短时间渡河,到达对岸时,距正对岸100 mD.若小船船头的指向与上游河岸成60°,则小船渡河位移最短答案 ACD解析 当小船的船头始终正对河岸时,渡河时间最短t =d v 船,因此v 船=d t =200100 m/s =2 m/s ;小船以最短时间渡河,到达对岸时,沿河岸方向运动的位移x =v 水t =1×100 m =100 m ,即在正对岸下游100 m 处靠岸,故A 、C 正确.当合速度与河岸垂直,小船到达正对岸,设船头的指向与上游河岸的夹角为θ,如图所示,cos θ=v 水v 船=12,解得θ=60°,故B 错误,D 正确.3.(关联速度模型)(多选)如图8所示,一人以恒定速度v 0通过光滑轻质定滑轮竖直向下拉绳使小车在水平面上运动,当运动到绳与水平方向成45°角时( )图8A .小车运动的速度为12v 0B .小车运动的速度为2v 0C .小车在水平面上做加速运动D .小车在水平面上做减速运动 答案 BC解析 将小车速度沿绳方向与垂直绳方向进行分解,如图所示人拉绳的速度与小车沿绳方向的分速度大小是相等的,根据三角函数关系v cos 45°=v 0,则v =v 0cos 45°=2v 0,B 正确,A 错误;随着小车向左运动,绳与水平方向的夹角越来越大,设夹角为α,由v =v 0cos α知,v 越来越大,则小车在水平面上做加速运动,C 正确,D 错误.4.(关联速度模型)(多选)如图9所示,人在岸上用跨过光滑轻质定滑轮的绳子拉船,已知船的质量为m ,水的阻力恒为F f ,当轻绳与水面的夹角为θ时,船的速度为v ,人的拉力大小为F ,则此时( )图9A .人水平拉绳行走的速度大小为v cos θB .人水平拉绳行走的速度大小为vcos θC .船的加速度大小为F cos θ-F fmD .船的加速度大小为F -F fm答案 AC解析 船的运动产生了两个效果:一是使滑轮与船间的绳缩短,二是使滑轮与船间的绳转动,因此将船的速度按如图所示(沿绳方向与垂直于绳方向)方式进行分解,人拉绳行走的速度大小v 人=v ∥=v cos θ,选项A 正确,B 错误;绳对船的拉力大小等于人拉绳的力的大小,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,解得a =F cos θ-F f m ,选项C 正确,D 错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题: (1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动. (2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算. 其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如图所示进行分解其中:v=v物cosθ,使绳子收缩v⊥=v物sinθ,使绳子绕定滑轮上的A点转动v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos2.(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角解析钉子沿斜面匀速运动,橡皮具有向上的分速度v,同时具有沿斜面方向的分速度v,根据运动的合成可知,橡皮的速度大小为3v,速度与水平方向成60°角,选项B、C正确.答案BC2、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB ’,如图所示. 过B ’点作B ’E ⊥BD .当Δt →0时,∠BDB ’极小,在△BDB ’中,可以认为DE =B ’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB ’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=tBB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos由于定滑轮上绳子的速度都是相同的,得到AB v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有:T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大?解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgLgL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零. 将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是? 解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合tt =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ① 由v =πt 可知其切向加速度大小为a τ=π(m/s 2) ∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v (5)θθθ2B cos 1cos 2cos +=gR v(6)。