高中数学-知识讲解_定积分的简单应用(提高)125
高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用
的图形的面积S,正确的是 ( )
A.S= 10 (x-x2)dx C.S= 10 (y2-y)dy
B.S= 10 (x2-x)dx D.S= 10 (y- y )dy
【解析】选A.根据题意,如图所示,阴影部分为曲线 y=x2与y=x所围成的图形,其面积S= 10 (x-x2)dx.
2.(选修2-2P67T7改编)直线y=3x与曲线y=x2围成图形
b a
f(x)dx=_F_(_b_)_-_F_(_a_)_,这个结论叫做微积
分基本定理,又叫做牛顿-莱布尼茨公式.其中F(x)叫做
f(x)的一个原函数.为了方便,常把F(b)-F(a)记成
F(x)|ab ,即
b a
f(x)dx=F(x)
|ab
=F(b)-F(a).
【常用结论】 1.定积分应用的两条常用结论 (1)当曲边梯形位于x轴上方时,定积分的值为正;当曲 边梯形位于x轴下方时,定积分的值为负;当位于x轴上 方的曲边梯形与位于x轴下方的曲边梯形面积相等时, 定积分的值为零.
(1)设函数y=f(x)在区间[a,b]上连续,则
b a
f(x)dx
= ab f(t)dt.
(
)
(2)若函数y=f(x)在区间[a,b]上连续且恒正,
则 ab f(x)dx>0. ( )
(3)若
b a
f(x)dx<0,那么由y=f(x),x=a,x=b以及x轴
所围成的图形一定在x轴下方. ( )
(4)微积分基本定理中的F(x)是唯一的. ( )
第五节 定积分的概念与微积分基本定理、
【知识梳理】 1.定积分的概念与几何意义 (1)定积分的定义 如果函数f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等分成n个
高中数学同步教学 第4章 §3 定积分的简单应用
0
0
=π(12x2-15x5)|01=π(12-15)=π×130=130π.
• 4.由曲线y=x2,直线x=1,x=2与x轴所围成的平面图形绕x
31π 5
轴[解旋析转] 一设周所得所旋得转旋体的转体体积的为 体V,积为________.
则 V=2π(x2)2dx=2πx4dx=5πx5|12=315π.
1
1
互动探究学案
命题方向1 ⇨不分割型平面图形面积的求解
• 典例 1 曲线y=x2与直线y=x所围成的封闭图形16 的面积 为____.
• [思路分析] 从图形上可以看出,所求图形的面积可以转化 为一个三角形与一个曲边三角形面积的差,进而可以用定积 分求出面积.为了确定出积分的上、下限,我们需要求出直 线[解和析抛] 物解线方程的组交yy点==xx的,2,横坐标.
第四章 定积分
• 本章知识概述:本章的主要内容是定积分的概念,计算和简 单应用.
• 教科书通过曲边梯形面积问题,变速直线运动物体的路程问 题,变力做功等问题,充分演示了定积分概念产生的背景以 及定积分概念形成过程中的思路.微积分基本定理为我们 处理积分的计算问题提供了有力工具,教科书主要介绍了求 简单图形的面积和求简单旋转体的体积.
1.平面图形的面积 如果函数 y=f(x)在区间[a,b]上连续且恒有 f(x)≥0,那么定积分b f(x)dx 表
a
示由__直__线__x_=__a_,x_=__b_(_a_≠_b_)_,y_=__0_和__曲__线__y_=__f_(_x)_______所围成的曲边梯形的面积. 2.简单几何体的体积
得 x1=0,x2=1. 故所求图形的面积为
S=1xdx-1x2dx
0
0
高中数学积分与定积分
高中数学积分与定积分1. 引言数学中的积分与定积分是高中数学的重要内容,它们被广泛应用于微积分、物理学等许多领域。
本文将重点介绍高中数学中的积分与定积分的定义、性质和应用。
2. 积分的定义积分是微积分的重要概念,它是对函数在某个区间上的累积变化的度量。
在高中数学中,我们主要学习了定积分的概念和性质。
定积分是把曲线下的面积分成无穷小的矩形,然后对这些矩形的面积进行求和得到的极限。
3. 定积分的基本性质定积分具有一些基本的性质。
首先,定积分与原函数具有关系,定积分可以看作是函数的反导函数在区间上的表现。
其次,定积分的值与区间的选取有关,选取不同的区间可能得到不同的定积分值。
此外,定积分具有线性性质,即对于任意常数a和b,有∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx。
4. 定积分的计算方法在高中数学中,我们主要学习了用换元法和分部积分法进行定积分的计算。
换元法是通过变量代换,将原函数的变量转化为另一个新的变量,从而简化定积分的计算。
分部积分法是积分算法中的一种方法,它将一个复杂函数的积分转化为两个简单函数的积分,通过计算这两个简单函数的积分再进行求和得到最终的结果。
5. 定积分的应用定积分在实际问题中具有广泛的应用。
例如,在物理学中,定积分可以用来计算物体的质量、体积和物体受力作用下的功率等。
在经济学中,定积分可以用来计算市场供需曲线之间的面积,从而得到市场的总消费和总生产等。
6. 积分的进一步学习高中数学中所学习的积分与定积分只是微积分的基础部分,随着学习的深入,我们可以进一步学习不定积分、曲线积分等更高级的积分概念和技巧。
掌握这些更高级的积分知识将为我们在大学或进一步的研究中打下坚实的数学基础。
7. 结论通过本文对高中数学中的积分与定积分的介绍,我们可以看到它们在数学和科学领域中的重要性和应用价值。
定积分作为积分的一种重要形式,其定义、性质和计算方法都需要我们进行深入的学习与理解。
定积分的应用
定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。
本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。
一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。
通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。
定积分的结果是一个数值。
二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。
例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。
这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。
三、定积分的物理应用定积分在物理学中有广泛的应用。
例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。
定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。
四、定积分的经济学应用定积分在经济学领域也被广泛应用。
例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。
定积分可以将变化的价格和数量转化为面积,以方便计算。
五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。
例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。
定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。
六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。
例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。
定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。
七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。
根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。
八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。
教你学会定积分:定积分知识点总结及简单应用
定积分知识点总结及简单应用知识点1.定积分的几何意义:如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么函数f (x )在区间[a ,b ]上的定积分的几何意义是直线________________________所围成的曲边梯形的________.2.定积分的性质(1)ʃb a kf (x )d x =__________________ (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =_____________________________________; (3)ʃb a f (x )d x =_______________________________________. 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做__________________,为了方便,我们常把F (b )-F (a )记成__________________,即ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).4.定积分在几何中的应用(1)当x ∈[a ,b ]且f (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(2)当x ∈[a ,b ]且f (x )<0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(3)当x ∈[a ,b ]且f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =______________________.(4)若f (x )是偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x ;若f (x )是奇函数,则ʃa-a f (x )d x =0.5.定积分在物理中的应用 (1)匀变速运动的路程公式做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )[v (t )≥0]在时间区间[a ,b ]上的定积分,即________________________.(2)变力做功公式一物体在变力F (x )(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向从x =a 移动到x =b (a <b )(单位:m),则力F 所做的功W =__________________________.自我检测1.计算定积分ʃ503x d x 的值为 ( ) A.752 B .75 C.252D .252.定积分ʃ10[1-(x -1)2-x ]d x 等于 ( )A.π-24B.π2-1C.π-14D.π-123.如右图所示,阴影部分的面积是 ( )A .2 3B .2- 3 C.323D.3534.ʃ421x d x 等于 ( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 25.若由曲线y =x 2+k 2与直线y =2kx 及y 轴所围成的平面图形的面积S =9,则k =________.探究点一 求定积分的值 例1 计算下列定积分: (1)2111()ex dx x x++⎰; (2)2sin 2cos )x x dx π-⎰(;(3)ʃπ0(2sin x -3e x +2)d x ; (4)ʃ20|x 2-1|d x .变式迁移1 计算下列定积分:(1)ʃ2π0|sin x |d x ;(2)ʃπ0sin 2x d x .探究点二 求曲线围成的面积例2 计算由抛物线y =12x 2和y =3-(x -1)2所围成的平面图形的面积S .变式迁移2 计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.探究点三 定积分在物理中的应用例3 一辆汽车的速度-时间曲线如图所示,求此汽车在这1 min 内所行驶的路程.变式迁移3 A 、B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t m/s ,到C 点时速度达24 m/s ,从C 点到B 点前的D 点以匀速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间.例 (12分)在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 S 1面积等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-ʃt 0x 2d x =23t 3.[2分]S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t ,即S 2=ʃ1t x 2d x -t 2(1-t )=23t 3-t 2+13.[4分] 所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).[6分]令S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12=0时,得t =0或t =12.[8分] t =0时,S =13;t =12时,S =14;t =1时,S =23.[10分]所以当t =12时,S 最小,且最小值为14.[12分]本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.总结;1.定积分ʃb a f (x )d x 的几何意义就是表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃ204-x 2d x =π (半径为2的14个圆的面积),ʃ2-24-x 2d x =2π.2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简单函数定积分的和或差.3.计算一些简单的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;第二步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F ′(x )=f (x )的F (x );第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值.检测题 一、选择题1.下列值等于1的积分是 ( )A .ʃ10x d xB .ʃ10(x +1)d xC .ʃ1012d xD .ʃ101d x2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x ≤1,3-x ,1<x ≤2,则ʃ20f (x )d x 等于 ( )A.13 B.176 C .6D .173.已知f (x )为偶函数且ʃ60f (x )d x =8,则ʃ6-6f (x )d x 等于 ( ) A .0B .4C .8D .164.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .ʃπ20(sin x -cos x )d xB .2ʃπ40(sin x -cos x )d xC .ʃπ20(cos x -sin x )d xD .2ʃπ40(cos x -sin x )d x5.函数f (x )=ʃx 0t (t -4)d t 在[-1,5]上 ( ) A .有最大值0,无最小值 B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 二、填空题6.若1 N 的力使弹簧伸长2 cm ,则使弹簧伸长12 cm 时克服弹力做的功为__________J.7.ʃ10(2x k+1)d x =2,则k =________.8.若f (x )在R 上可导,f (x )=x 2+2f ′(2)x +3,则ʃ30f (x )d x =________.三、解答题9.计算以下定积分: (1)ʃ21⎝⎛⎭⎫2x 2-1x d x ; (2)ʃ32⎝⎛⎭⎫x +1x 2d x ;(3)ʃπ30(sin x -sin 2x )d x ; (4)ʃ21|3-2x |d x .10.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.11.求曲线y =e x -1与直线x =-ln 2,y =e -1所围成的平面图形的面积. 答案1.x =a ,x =b (a ≠b ),y =0和曲线y =f (x ) 面积2.(1)k ʃb a f (x )d x (2)ʃb a f 1(x )d x ±ʃb a f 2(x )d x (3)ʃc a f (x )d x +ʃbc f (x )d x (其中a <c <b )3.微积分基本定理 F (x )|b a4.(1)ʃb a f (x )d x (2)-ʃb a f (x )d x (3)ʃba [f (x )-g (x )]d x 5.(1)s =ʃb a v (t )d t (2)ʃb a F (x )d x自我检测1.A 2.A 3.C 4.D 5.±3解析 由⎩⎪⎨⎪⎧y =x 2+k 2,y =2kx .得(x -k )2=0, 即x =k ,所以直线与曲线相切,如图所示,当k >0时,S =ʃk 0(x 2+k 2-2kx )d x=ʃk 0(x -k )2d x =13(x -k )3|k 0=0-13(-k )3=k 33,由题意知k 33=9,∴k =3.由图象的对称性可知k =-3也满足题意,故k =±3. 课堂活动区例1 分析 (1)与绝对值有关的函数均可化为分段函数. ①分段函数在区间[a ,b ]上的积分可分成几段积分的和的形式.②分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.(2)f (x )是偶函数,且在关于原点对称的区间[-a ,a ]上连续,则ʃa -a f (x )d x =2ʃa 0f (x )d x .解 (1)ʃe 1⎝⎛⎭⎫x +1x +1x 2d x =ʃe 1x d x +ʃe 11x d x +ʃe 11x2d x =12x 2|e 1+ln x |e 1-1x |e 1=12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11 =12e 2-1e +32.(2)ʃπ20(sin x -2cos x )d x=ʃπ20sin x d x -2ʃπ20cos x d x =(-cos x )|π20-2sin x |π2=-cos π2-(-cos 0)-2⎝⎛⎭⎫sin π2-sin 0 =-1.(3)ʃπ0(2sin x -3e x+2)d x =2ʃπ0sin x d x -3ʃπ0e x d x +ʃπ02d x =2(-cos x )|π0-3e x |π0+2x |π0=2[(-cos π)-(-cos 0)]-3(e π-e 0)+2(π-0) =7-3e π+2π. (4)∵0≤x ≤2,于是|x 2-1|=⎩⎪⎨⎪⎧x 2-1,1<x ≤2,1-x 2,0≤x ≤1,∴ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=⎝⎛⎭⎫x -13x 3|10+⎝⎛⎭⎫13x 3-x |21=2.变式迁移1 解 (1)∵(-cos x )′=sin x ,∴ʃ2π0|sin x |d x =ʃπ0|sin x |d x +ʃ2ππ|sin x |d x =ʃπ0sin x d x -ʃ2ππsin x d x =-cos x |π0+cos x |2ππ=-(cos π-cos 0)+(cos 2π-cos π)=4. (2)ʃπ0sin 2x d x =ʃπ0⎝⎛⎭⎫12-12cos 2x d x =ʃπ012d x -12ʃπ0cos 2x d x=12x |π0-12⎝⎛⎭⎫12sin 2x |π0 =⎝⎛⎭⎫π2-0-12⎝⎛⎭⎫12sin 2π-12sin 0=π2. 例2 分析: 求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值.解 作出函数y =12x 2和y =3-(x -1)2的图象(如图所示),则所求平面图形的面积S 为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =12x 2,y =3-(x -1)2,得⎩⎨⎧x =-23,y =29或⎩⎪⎨⎪⎧x =2,y =2.所以两曲线交点为A ⎝⎛⎭⎫-23,29,B (2,2). 所以S =ʃ2-23[3-(x -1)2]d x -ʃ2-2312x 2d x=ʃ2-23(-x 2+2x +2)d x -ʃ2-2312x 2d x=⎪⎪⎝⎛⎭⎫-13x 3+x 2+2x 2-23-⎪⎪16x 32-23 =⎝⎛⎭⎫-83+4+4-⎝⎛⎭⎫881+49-43-16×⎝⎛⎭⎫8+827 =42027. 变式迁移2 解如图, 设f (x )=x +3, g (x )=x 2-2x +3,两函数图象的交点为A ,B ,由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3.得⎩⎪⎨⎪⎧ x =0,y =3或⎩⎪⎨⎪⎧x =3,y =6.∴曲线y =x 2-2x +3与直线y =x +3所围图形的面积 S =ʃ30[f (x )-g (x )]d x=ʃ30[(x +3)-(x 2-2x +3)d x ] =ʃ30(-x 2+3x )d x=⎝⎛⎭⎫-13x 3+32x 2|30=92. 故曲线与直线所围图形的面积为92.例3 分析: 用定积分解决变速运动的位置与路程问题时,将物理问题转化为数学问题是关键.变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和,即可得到答案.s (t )求导后得到速度,对速度积分则得到路程.解 方法一 由速度—时间曲线易知. v (t )=⎩⎪⎨⎪⎧3t ,t ∈[0,10),30,t ∈[10,40),-1.5t +90,t ∈[40,60],由变速直线运动的路程公式可得s =ʃ1003t d t +ʃ401030d t +ʃ6040(-1.5t +90)d t=32t 2|100+30t |4010+⎝⎛⎭⎫-34t 2+90t |6040=1 350 (m). 答 此汽车在这1 min 内所行驶的路程是1 350 m.方法二 由定积分的物理意义知,汽车1 min 内所行驶的路程就是速度函数在[0,60]上的积分,也就是其速度曲线与x 轴围成梯形的面积,∴s =12(AB +OC )×30=12×(30+60)×30=1 350 (m).答 此汽车在这1 min 内所行驶的路程是1 350 m.变式迁移3 解 (1)设v (t )=1.2t ,令v (t )=24,∴t =20.∴A 、C 间距离|AC |=ʃ2001.2t d t=(0.6t 2)|200=0.6×202=240 (m).(2)由D 到B 时段的速度公式为v (t )=(24-1.2t ) m/s ,可知|BD |=|AC |=240 (m).(3)∵|AC |=|BD |=240 (m),∴|CD |=7 200-240×2=6 720 (m).∴C 、D 段用时6 72024=280 (s).又A 、C 段与B 、D 段用时均为20 s ,∴共用时280+20+20=320 (s).课后练习1.D 2.B 3.D 4.D 5.B6.0.36解析 设力F 与弹簧伸长的长度x 的关系式为F =kx ,则1=k ×0.02,∴k =50,∴F =50x ,伸长12 cm 时克服弹力做的功W =ʃ0.12050x d x =502x 2|0.120=502×0.122=0.36(J).7.1解析 ∵ʃ10(2x k +1)d x = ⎪⎪⎝⎛⎭⎫2k +1x k +1+x 10=2k +1+1=2,∴k =1.8.-18解析 ∵f ′(x )=2x +2f ′(2),∴f ′(2)=4+2f ′(2),即f ′(2)=-4,∴f (x )=x 2-8x +3,∴ʃ30f (x )d x =13×33-4×32+3×3=-18. 9.解 (1)函数y =2x 2-1x 的一个原函数是y =23x 3-ln x ,所以ʃ21⎝⎛⎭⎫2x 2-1x d x = ⎪⎪⎝⎛⎭⎫23x 3-ln x 21=163-ln 2-23=143-ln 2(2) ʃ32⎝⎛⎭⎫x +1x 2d x =ʃ32⎝⎛⎭⎫x +1x +2d x = ⎪⎪⎝⎛⎭⎫12x 2+ln x +2x 32=⎝⎛⎭⎫92+ln 3+6-(2+ln 2+4)=ln 32+92.(3)函数y =sin x -sin 2x 的一个原函数为y =-cos x +12cos 2x ,所以ʃπ30(sin x -sin 2x )d x= ⎪⎪⎝⎛⎭⎫-cos x +12cos 2x π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14.322(4)3232322311232(32)(23)2312x dx x dx x dxx dx x dx=-=-+-=-+-⎰⎰⎰⎰⎰=(3x -x 2)|321+(x 2-3x )|232=12.10.解 (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积S =ʃ10(x 2-2x +1)d x=⎝⎛⎭⎫13x 3-x 2+x |10=13.11.解 画出直线x =-ln 2,y =e -1及曲线y =e x -1如图所示,则所求面积为图中阴影部分的面积.由⎩⎪⎨⎪⎧ y =e -1,y =e x -1,解得B (1,e -1). 由⎩⎪⎨⎪⎧ x =-ln 2,y =e x -1,解得A ⎝⎛⎭⎫-ln 2,-12.此时,C (-ln 2,e -1),D (-ln 2,0).所以S =S 曲边梯形BCDO +S 曲边三角形OAD=ʃ1-ln 2(e -1)d x -ʃ10(e x -1)d x +||0-ln 2(e x -1)d x=(e -1)x |1-ln 2-(e x -x )|10+|(e x -x )|0-ln 2|=(e -1)(1+ln 2)-(e -1-e 0)+|e 0-(e -ln 2+ln 2)|=(e -1)(1+ln 2)-(e -2)+ln 2-12=eln 2+12。
高考讲定积分及其应用举例课件理
总结词
定积分的定义包括将函数分割成小段, 然后求和;定积分的性质包括奇偶性、 可加性等。
VS
详细描述
定积分的定义是将一个函数分割成许多小 段,然后求这些小段的面积和。具体来说 ,如果函数f(x)在区间[a,b]上连续,那么 对于这个区间上的任意两个点a和b,都 有定积分∫(f(x))dx = F(b) - F(a),其中 F(x)是f(x)的原函数。此外,定积分还具 有一些性质,例如奇偶性、可加性等。这 些性质在计算定积分时非常有用。
04
定积分的计算方法
直接积分法
第一季度
第二季度
第三季度
第四季度
总结词
直接积分法是最基本的 积分方法,主要依靠微 分的概念进行计算。
详细描述
直接积分法是将一个函 数的积分转化为另一个 函数的导数的过程。具
体地,对于一个函数 f(x),其不定积分就是 所有使得f(x)成立的函 数F(x)的导数。换句话 说,不定积分就是找到 一个函数,使得这个函 数的导数等于原函数。
微积分基本定理
01
微积分基本定理的定义
微积分基本定理是指对于一个给定的函数f(x),如果对其进行积分,那
么该积分等于f(x)的原函数在该区间上的增量。
02
微积分基本定理的意义
微积分基本定理是微积分学的基础,它揭示了可积函数的原函数与积分
之间的联系,为解决微积分问题提供了基本的方法和工具。
03
微积分基本定理的应用
05
定积分的应用扩展
物理应用
匀速直线运动
01
定积分可应用于计算位移,特别是在匀速直线运动中,速度是
恒定的,因此可以通过对速度的积分来求解位移。
简谐振动
02
定积分应用知识点总结
定积分应用知识点总结1. 定积分的概念定积分是微积分学中的一个重要概念,用于求解曲线下面积或者曲线围成图形的面积。
在实际问题中,定积分可以用来计算曲线与坐标轴之间的面积、质心、弧长、体积、工作、功等物理量。
2. 定积分的计算定积分的计算可以通过积分的定义或者牛顿-莱布尼茨公式来进行。
积分的定义是将一个曲线f(x)在区间[a,b]上分成无穷多段,每一段的面积为f(x)与x轴之间的面积的无限和,然后通过极限的方法求得。
而牛顿-莱布尼茨公式则是通过原函数的求导与积分的关系,直接求出定积分的值。
3. 定积分的性质定积分有很多重要的性质,包括线性性质、区间可加性、保号性等。
这些性质在定积分的计算和应用中起到了非常重要的作用,可以简化定积分的计算过程。
4. 定积分的应用定积分在实际问题中有着广泛的应用,例如可以用来求解曲线围成的图形的面积、计算质心、弧长、体积、工作、功等物理量。
在工程、物理、经济学等领域都有着重要的应用价值。
5. 定积分的计算技巧对于一些特定的函数,可以通过一些积分的技巧来简化定积分的计算,例如换元积分法、分部积分法等。
这些技巧可以帮助我们更快速、准确地求解定积分。
在实际问题中,我们经常会遇到需要利用定积分来计算一些物理量或者解决一些实际问题,下面我们通过一些实际例子来解释定积分的应用知识点。
1. 计算物体的质心在物理学中,质心是一个非常重要的概念,它可以帮助我们确定物体的平衡位置。
对于一个均匀密度的物体,我们可以通过定积分来计算它的质心位置。
假设物体在x轴上的密度分布函数为ρ(x),则物体的质心位置可以通过如下公式计算得出:\[X=\frac{\int_{a}^{b}xρ(x)dx}{\int_{a}^{b}ρ(x)dx}\]其中,\(\int_{a}^{b}xρ(x)dx\)表示物体的动量矩,而\(\int_{a}^{b}ρ(x)dx\)表示物体的总质量。
通过这个公式,我们就可以求得物体的质心位置。
定积分的应用-高中数学知识点讲解
定积分的应用
1.定积分的应用
【应用概述】
正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.
例 1:定积分3휋
2
| sinx dx 的值是.
|
解:3휋
2
휋
| sinx | dx = 푠푖푛푥푑푥+
3휋
2 ( ―
푠푖푛푥)푑푥0 0 휋
3휋
=﹣cosx |휋0 + cosx |
2
휋
=﹣(﹣)
11 0 1
=3.
3휋
这个题如果这样子出,在区间()上与轴所围成的面积,那么就成了一个应用题.如何解这类应sinx 0,x
2
用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.
【定积分在求面积中的应用】
1、直角坐标系下平面图形的面积
1/ 3
2、极坐标系下平面图形的面积
由连续曲线及射线所围成的平面图形的面积(图 6)为r=(r )=,=
3、用定积分求平面图形的面积的步骤
2/ 3
a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;
c)具体计算定积分,求出图形的面积.
3/ 3。
《定积分的简单应用》课件讲解学习
0
[解析] v=ddxt=(bt3)′=3bt2, 媒质阻力F阻=kv2=k(3bt2)2=9kb2t4,其中k为比例常
数,k>0.
当x=0时,t=0,当x=a时,t=ab13,
ds=vdt,故阻力做的功为W阻=
t
kv2·vdt=k
t
v3dt=k
t
0
0
0
(3bt2)3dt=277k3 a7b2.
• [点评] 本题常见的错误是在计算所做的功 时,误将W阻=∫t10F阻ds写为∫t10F阻dt.
(1)P从原点出发,当t=6时,求点P离开原点 的路程和位移;
(2)P从原点出发,经过时间t后又返回原点时 的t值.
• [解析] (1)由v(t)=8t-t2≥0得0≤t≤4, • 即当0≤t≤4时,P点向x轴正方向运动, • 当t>4时,P点向x轴负方向运动. • 故t=6时,点P离开原点的路程
对于已知运动规律求做功的问题,首先确定其运动速 度,进而由 ds=vdt 来确定做功的积分式 W=t Fvdt.
0
6.已知自由落体的速率v=gt,则落体从t= 0到tA=.13gt0t20所走的路程为B(.gt20 )
C.12gt20
D.16gt20
[答案] C
[解析] 如果变速直线运动的速度为v=v(t)(v(t)≥0),
那么从时刻t=a到t=b所经过的路程是bv(t)dt, a
∴
=12gt2t00 =12g(t20-0)=12gt02.故应选C.
7.如果1N能拉长弹簧1cm,为了将弹簧拉 长6cm,所耗费的功为
()
A.0.18J
B.0.26J
C.0.12J
D.0.28J
[答案] A
《定积分的简单应用》课件
通过令小区间的长度趋近于0,可以得 到更精确的面积计算结果。
不等式的应用
通过定积分可以推导出许多有用的不等式,如柯西不等式、黎曼和不等式等,从而解决数学中的各种问题。
定积分在物理学中的应用
1 速度与位移
定积分可以用于计算速度 与位移之间的关系,从而 描述物体的运动。
2 力与功
定积分可以计算力与功之 间的关系,用于描述物体 受力时的能量变化。
化学平衡
利用定积分可以计算化学反应平衡时不同物质 的浓度。
化学反应速率
定积分可以描述化学反应速率与反应进程的关 系,研究反应动力学。
电化学
通过定积分可以研究电化学反应中电荷传递和 离子浓度的变化。
定积分在工程学中的应用
工程学中广泛应用定积分,如在建筑设计中计算结构的受力情况、电力系统 中计算电能的变化等。
通过计算三角形的定积分,可以 得到三角形面积公式,即底乘高 除以2。
多边形的面积
对于规则多边形,可以通过计算 边长和高的定积分来得到多边形 的面积。
拆分区间求面积的方法
1
逼近面积
2
将每个小区间的面积逼近为矩形或梯形
的面积,再求和得到总面积。
3
区间拆分
通过将区间拆分成多个小区间,可以更 准确地计算曲线下的面积。
定积分的符号表示为∫f(x)dx,表示求函数f(x)在区间[a, b]上的定积分。它表示了函数f(x)所围成的曲线与x轴之 间的面积。
如何计算定积分
计算定积分可以通过求导数的逆运算——不定积分。利用不定积分的基本公 式和技巧,可以将定积分转化为更简单的求导数的问题。
定积分的性质及其应用
线性质
定积分具有线性性质,即对函数的和与差的定 积分等于对应的定积分的和与差。
定积分的求解方法及其应用
定积分的求解方法及其应用摘要:在数学分析这门课程里,定积分是最普遍而又重要的内容之一,同时也是数学研究中的重要工具,随着数学在生活中的广泛应用,定积分的相关解法和应用所蕴藏的巨大潜力越来越引起人们的关注.本论文从定积分的基本理论出发,系统阐述了牛顿莱布尼茨公式、换元法、分部积分法、凑微分法等几种常见的求解方法,并列举了相关的例子,更直观的了解求解定积分的方法的精髓.另外本文又介绍了定积分在数学、物理学和经济学当中的应用,实现了定积分在实际生活中的应用.通过这一系列的总结,可以进一步提升对定积分的认识,为以后的学习奠定了基础.关键词:定积分;求解方法;应用一、定积分的求解方法1.1 定积分概念定义1 不妨设在闭区间[m ,n ]中,不包含两个端点,共有1-k 个点,按照大小分别为m =0x <1x <2x <…<1-k x <k x =n ,这些点将闭区间[m ,n ]分割为大小不一的子区间,共有k 个,用i ∆表示这些子区间,即i ∆=[1-i x ,i x ],i =1,2, …,k 。
可以将k x x x ......,10点或[]n i xi x i i ......12,,1==∆-子区间视为分割了闭区间[m ,n ],令集合=A {0x ,1x ,…,k x }或{1∆,2∆,…,k ∆}.定义2 假设函数g 的定义域为 [m ,n ]。
将区间[m ,n ]分割为k 个,得分割区间的集合=A {1∆,2∆,…,k ∆},在区间i ∆上随意取点i ψ,即i ψ∈i ∆,i =1,2, …,k ,将该点函数值与自变量之差做乘积,累次相加得()iki ix g ∆∑=1ψ,该式是函数g 在定义域[m ,n ]上的积分和.定义3 假设函数g 的定义域为 [m ,n ],S 是给定的实数。
假如总能找到某个的正数θ,以及任何正数σ,在定义域 [m ,n ]进行任意大小的分割A ,并且在分割出来的区间中随意选择一个点组成集合{i φ},当A <θ时,存在σφ<-∆∑=S xg ni ii1)(,则函数g在定义域[m ,n ]上可积,即⎰=nmdx x g S )(。
定积分的应用
定积分的应用定积分是数学中的一个重要概念,它在许多领域中具有广泛的应用。
本文将介绍定积分的基本概念和性质,并探讨其在几何学、物理学和经济学等领域中的应用。
首先,让我们回顾一下定积分的定义。
在数学中,定积分是一个函数与另一个函数之间的一种关系,通常表示为∫f(x)dx。
其中,f(x)是被积函数,x是积分变量,dx表示对x的微小变化。
定积分表示的是函数f(x)在给定区间[a,b]上的面积或曲线下的总体积。
定积分具有以下几个重要的性质。
首先,如果f(x)是[a,b]上的连续函数,那么定积分存在且唯一。
这一性质保证了定积分的可靠性和确定性。
其次,定积分的值可以通过积分的上限和下限来计算。
换句话说,定积分是一个函数的区间值。
最后,定积分的值可以通过一种基本定理来计算,即牛顿—莱布尼茨公式。
该公式告诉我们,如果F(x)是f(x)的一个原函数,那么定积分可以通过求F(x)在区间[a,b]上的差值来计算。
在几何学中,定积分有着广泛的应用。
通过计算曲线下的面积,我们可以求解两个曲线之间的交集、计算物体的体积等。
例如,如果我们要求解一个曲线和x轴之间的面积,我们可以将该曲线表示为y=f(x),然后计算∫f(x)dx在所给区间上的值。
同样地,我们可以使用定积分来计算曲线的弧长,通过公式∫√(1+(dy/dx)^2)dx来实现。
定积分在几何学中的应用还包括求解曲线的重心和弦长等问题。
物理学是另一个应用定积分的领域。
在物理学中,物体的质量、力、功和能量等都与空间的分布有关。
通过将物体分成许多微小的部分,并计算每个部分的质量或力的大小,我们可以使用定积分来对整个物体的质量或力进行求和。
例如,我们可以使用定积分来计算一个线密度为λ(x)的细线段的质量,通过公式∫λ(x)dx来实现。
同样地,我们可以使用定积分来计算一个变力F(x)在区间[a,b]上所做的功,通过公式∫F(x)dx来实现。
定积分在物理学中的应用还包括计算速度、加速度和热量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的简单应用【学习目标】1.会用定积分求平面图形的面积。
2.会用定积分求变速直线运动的路程3.会用定积分求变力作功问题。
【要点梳理】要点一、应用定积分求曲边梯形的面积1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积:()[()()]b baaS f x dx f x g x dx ==-⎰⎰2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(0)(≤x f )围成的曲边梯形的面积:()()[()()]bb baaaS f x dx f x dx g x f x dx ==-=-⎰⎰⎰3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积:()caS f x dx =+⎰()bcf x dx ⎰=()c af x dx -⎰+()bcf x dx ⎰.4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围成图形的面积:1212[()()]()()b b baaaS f x f x dx f x dx f x dx =-=-⎰⎰⎰要点诠释:研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积;② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值);要点二、求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积。
要点三、定积分在物理中的应用① 变速直线运动的路程作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间[,]a b 上的定积分,即()baS v t dt =⎰.②变力作功物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W =()baF x dx ⎰.要点诠释:1. 利用定积分解决运动路程问题,分清运动过程中的变化情况是解决问题的关键。
应注意的是加速度的定积分是速度,速度的定积分是路程。
2. 求变力作功问题,要注意找准积分变量与积分区间。
【典型例题】类型一、求平面图形的面积例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
【解析】 201y x x x y x⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为(0,0)、(1,1), 面积S=1120xdx x dx =-⎰⎰,所以13112320021211d d 33333S x x x x x x ⎛⎫=-=-=-= ⎪⎝⎭⎰⎰【总结升华】1. 两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
2. 在直角坐标系下求平面图形的面积的四个步骤: ⑴.作图象;⑵.求交点,定积分上、下限; ⑶.用定积分表示所求的面积; ⑷.微积分基本定理求定积分。
举一反三:【变式】求曲线x y 2log =与曲线)(log x y -=42以及x 轴所围成的图形面积。
【答案】所求图形的面积为dy dy y f y g S y ⎰⎰⨯-=-11224)()()(【=e e y y 210224224log |)log -=⨯-=(例2.求抛物线2y x =与直线230x y --=所围成的图形的面积. 【思路点拨】画出简图,结合图形确定积分区间。
【解析】解法一:解方程组2,230,y x x y ⎧=⎨--=⎩得11x y =⎧⎨=-⎩或93x y =⎧⎨=⎩即交点(1,1),(9,3)A B -.由于阴影的面积不易直接由某个函数的定积分来求得,我们把它合理的划分一下,便于进行积分计算。
过A 点作虚线,把阴影部分分成了两部分,分别求出两部分的面积,再求和.1912011[()][(3)]2S S S x x dx x x dx =+=--+--⎰⎰ =199911113222xdx xdx xdx dx +-+⎰⎰⎰⎰=33219992201114233342x x x x ⎛⎫⎛⎫⎛⎫+-+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=323. 【总结升华】 从图形可以看出,所求图形的面积可以转化为一个梯形与两个曲线三角形面积的差,进而可以用定积分求出面积。
为了确定出被积函数和积分的上、下限,我们需要求出直线与曲线的交点的横坐标。
解法二:若选y 为积分变量,则上限、下限分别为-1和3,所以要求的面积为:321[(23)]S y y dy -=+-⎰=2233311132333y yy---+-=. 【总结升华】需要指出的是,积分变量不一定是x ,有时根据平面图形的特点,也可选y 作为积分变量,以简化计算。
但要注意积分上限、下限的确定. 举一反三:【变式1】计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S.作出直线4y x =-,曲线【答案】2y x =的草图,所求面积为上图阴影部分的面积.解方程组2,4y x y x ⎧=⎪⎨=-⎪⎩得直线4y x =-与曲线2y x =的交点的坐标为(8,4) .直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28044[(4)]x dx=+--⎰⎰⎰33482822044140||(4)|23x x x=-=.【变式2】求抛物线22y x=与直线4y x=-围成的平面图形的面积.【答案】由方程组⎩⎨⎧-==xyxy422解出抛物线和直线的交点为(2, 2)及(8, -4)解法一:选x作为积分变量,由图可看出S=A1+A2在A1部分:由于抛物线的上半支方程为y=y=1122200(AS dx x dx==⎰3163222223=⋅=x282[4(AS x dx=--⎰328)322214(82232=+-=xxx于是:16381833S=+=.解法二:选y作积分变量,将曲线方程写为22yx=及yx-=4dyyyS]2)4[(224--=⎰-2432)624(---=yyy301218=-=.类型二、求变速直线运动的路程例3.汽车以每小时36公里的速度行驶,到某处需要减速停车,设汽车以匀减速度2a=米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?【思路点拨】因为距离=速度⨯时间,所以找到该汽车从刹车开始到停车所用的时间与速度变化函数式成为该题的关键.【解析】因为距离=速度⨯时间,所以找到该汽车从刹车开始到停车所用的时间与速度变化函数式成为该题的关键.首先要求出从刹车开始到停车经过了多少时间,当0t=时,汽车速度36v=公里/小时=3610003600⨯米/秒=10米/秒.刹车后汽车减速行驶,其速度为()102V t V at t=-=-.当汽车停车时,速度()0V t=,故从()10V t =到()0V t =用的时间10052t -==秒. 于是在这段时间内,汽车所走过的距离是55()(102)S V t dt t dt ==-⎰⎰=2501(102)|252t t -⨯=(米)即在刹车后,汽车需走过25.【总结升华】解决实际应用问题,解题的关键是弄清事物变化发展的规律,再根据规律变化找到相应的函数式. 举一反三:【变式】 一点在直线上从时刻t=0(s )开始以速度v=t 2―4t+3(m /s )运动,求:(1)在t=4 s 时的位置; (2)在t=4 s 时运动的路程。
【答案】(1)在时刻t=4时该点的位置为:44232014(43)d 2333t t t t t t ⎛⎫-+=-+= ⎪⎝⎭⎰(m )。
即在t=4s 时该点距出发点43m 。
(2)因为v (t)=t 2―4t+3=(t ―1)(t ―3),所以区间[0,1]及[3,4]上的v (t )≥0,在区间[1,3]上,v (t )≤0,所以在t=4 s 时的路程为:134222013(43)d (43)d (43)d s t t t t t t t t t =-++-++-+⎰⎰⎰134222013(43)d (43)d (43)d 4(m)t t t t t t t t t =-+--++-+=⎰⎰⎰。
即在t=4 s 运动的路程为4 m 。
类型三、求变力做功例4.直径为20cm ,高为80cn 的圆柱体内充满压强为10N/cm 2的蒸气,设温度保持不变,要使蒸气的体积缩小为原来的一斗,求需要做多少功?【解析】设上端为活塞,且如图所示取定x 轴.另设底面面积为S ,活塞压缩至x 位置时气体的体积为()V x ,压强为()P x ,由于PV k =(其中k 为常数),则 ()()()k k P x V x S h x ==-,()kF P x S h x==-,其中(0)(0)80000()800()k P V N cm J ππ==⋅= 故所求的功为2201800ln 2().h h W Fdx k dx J h xπ===-⎰⎰【总结升华】求变力作功问题,一般利用定积分加以解决,但要注意寻找积分变量与积分区间。
举一反三: 【变式】求证: 把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·()Mmhk k h +,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径.【答案】 根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力f 为f = G ·122m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·2()Mmk x +故该物体从地面升到h 处所做的功为 0()hW f x =⎰d x =20()hMm G k x ⋅+⎰·d x = GMm 201()h k x +⎰dx = GMm 01()|hk x -+ =11()()MnhGMm G k h k k k h -+=⋅++. 类型四、定积分的综合应用 例5.已知抛物线2y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且此抛物线与x 轴所围成的平面图形的面积为S.问p 和q 为何值时,S 达到最大值?求出此最大值.【思路点拨】切线的斜率即是函数在切点处的导数值,再由积分式算出S 。