高中数学必修一1.1.2集合的基本关系
高中数学 1.1.2 集合间的基本关系教案 新人教A版必修1
1.1.2 集合间的基本关系
教学过程:
(I)复习回顾
问题1:元素与集合之间的关系是什么?
问题2:集合有哪些表示方法?集合的分类如何?
)班的学生
通过观察就会发现,这五组集合中,集合A都是集合B的一部分,从而有:
1.子集
B
规定:空集∅是任何集合的子集,即对于任意一个集合A都有∅A。
是两条边相等的三角形
问题3:观察(7)和(8),集合A与集合B的元素,有何关系?
⇒集合A与集合B的元素完全相同,从而有:
问题4:(1)集合A是否是其本身的子集?(由定义可知,是)
(2)除去∅与A本身外,集合A的其它子集与集合A的关系如何?(包含于A,但不等于A)
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)A⊆A (任何集合都是其自身的子集);
(2)若A⊆B,而且A≠B(即B中至少有一个元素不在A中),则称集合A是集合B的真
子集(proper subset),记作A⊂≠B。
(空集是任何非空集合的真子集)
(3)对于集合A,B,C,若A⊆B,B⊆C,即可得出A⊆C;对A⊂≠B,B⊂≠C,同样有A⊂≠C, 即:
包含关系具有“传递性”。
4.证明集合相等的方法:
(1)证明集合A,B中的元素完全相同;(具体数据)
(2)分别证明A⊆B和B⊆A即可。
(抽象情况)
对于集合A,B,若A⊆B而且B⊆A,则A=B。
1.1.2集合间的基本关系
1.1.2 集合间的基本关系尊敬的各位评委、老师,大家好!我叫樊丽霞,今天我说课的内容是《普通高中课程标准实验教科书•数学》必修一第一章集合与函数概念第一节集合的第二小节集合间的基本关系。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法分析、教学过程分析和板书分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、说教材集合语言是现代数学的基本语言,高中数学将其作为一种语言来学习。
《集合与函数》是高中数学必修一第一章的主要内容,而《集合间的基本关系》是本章的第一节的第二部分,是继学习了元素与集合的关系后的一个重要内容,它对后续内容----集合的基本运算起到了铺垫的作用,在集合的有关计算中,可以用子集和真子集来解决相关参数的取值问题。
同时在这一部分内容的学习中,也体现了分类讨论的数学思想,因此,这部分内容在本章中有重要的作用。
二、说教法本节课的主要内容是子集与真子集涵义的认识与理解,在课堂教学中,结合5组引例,让学生观察两集合间的元素特征,初步认识这种包含关系。
从数学概念的关键词上加以强调说明。
并通过例子讲解认识子集的本质,突出本节课的主要内容。
结合数学练习把握并尝试应用数学符号来反映这一关系,体现数学语言与符号语言的转换与一致。
在难点的处理上,通过分组与分层次的练习,让学生进一步认识属于符号与包含符号的区别以及各自的作用,同时引导学生把握考查的元素与集合还是集合与集合的关系,尽早培养学生审题、解题的能力与方法引导。
三、说学习目标(一)、知识与技能1.了解集合间包含关系的意义.2.理解子集、真子集的概念和意义.3.会判断简单集合的相等关系.(二)、过程与方法1.观察、分析、归纳.2.数学化表示日常问题.3.提高学生的逻辑思维能力,培养学生等价和化归的思想方法.(三)情感态度与价值观1.培养数学来源于生活,又为生活服务的思维方式.2.个体与集体之间,小集体构成大社会的依存关系.3.发展学生抽象、归纳事物的能力,培养学生辩证的观点.学习重点:子集、真子集的概念.学习难点:元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解.教具准备:中国地图、多媒体、胶片.四、教学过程一、创设情景,引入新课师:今天我们先来看一看中国地图,先看河南省区域在什么地方?再看一看中国的区域.请问:河南省的区域与中国的区域有何关系?生:河南省的区域在中国区域的内部.师:如果我们把河南省的区域用集合A来表示,中国的区域用集合B来表示,则会发现集合A在集合B内,即集合A中的每一个元素都在集合B内.再看一看下面两个集合之间的关系(投影胶片,胶片上可以用一组人群表示)A={x|x为河南人},B={x|x为中国人},生:河南人是中国人.师:我说的是从集合的角度看是什么关系?生:集合A中的元素都是集合B中的元素.师:说得对,再来看一看下面给出的集合A中的元素与集合B中的元素有什么关系?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为海门中学高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.生:均有集合A中的元素都是集合B中的元素.由此引出子集的概念.二、讲解新课1.子集对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B ⊇A).读作“A含于B”(或“B包含A”).其数学语言的表示形式为:若对任意的x∈A,有x∈B,则A⊆B.——为判别A是B的子集的方法之一.很明显:N⊆Z,N⊆Q,R⊇Z,R⊇Q.若A不是B的子集,则记作A B(或B A).读作“A不包含于B”(或“B不包含A”).例如,A={2,4},B={3,5,7},则A B.2.图示法表示集合(1)Venn图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图(必要时还可以用小写字母分别定出集合中的某些元素).由此,A⊆B的图形语言如下图.BA(2)数轴在数学中,表示实数取值范围的集合,我们往往借助于数轴直观地表示.例如{x|x>3}可表示为又如{x|x≤2}可表示为还比如{x|-1≤x<3=可表示为3.集合相等对于C={x|x是两条边相等的三角形},D={x|x是等腰三角形},由于“两条边相等的三角形”是等腰三角形,因此,集合C、D都是由所有等腰三角形组成的集合,即集合C中任何一个元素都是集合D中的元素.同时,集合D中任何一个元素也都是集合C中的元素.这样,集合D的元素与集合C的元素是一样的.我们可以用子集概念对两个集合的相等作进一步的数学描述.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.事实上,A⊆B,B⊆A⇔A=B.上述结论与实数中的结论“若a≥b,且b≥a,则a=b”相类比,同学们有什么体会?4.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(或B A).例如,A={1,2},B={1,2,3},则有A B.子集与真子集的区别就在于“A B”允许A=B或A B,而“A B”是不允许“A=B”的,所以若“A⊆B”,则“A B”不一定成立.5.空集我们把不含有任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,即∅⊆A.例如{x|x2+1=0,x∈R},{边长为3,5,9的三角形}等都是空集.可以让同学们列举多个生活中空集的例子.空集是任何非空集合的真子集,即若A≠∅,则∅ A.6.子集的有关性质(1)A⊆A;(2)A⊆B,B⊆C⇒A⊆C;A B,B C⇒A C.7.例题讲解【例1】写出集合{a,b}的子集.解:∅,{a},{b},{a,b}.方法引导:写子集时先写零个元素构成的集合,即∅,然后写出一个元素构成的集合,再写两个元素构成的集合,依此类推.师:请写出{a,b,c}的所有子集.生:∅,{a},{b},{c},{a,b},{a,c}{b,c},{a,b,c}.师:写出{a}的子集.生:∅,{a}.师:∅的子集是什么?生:∅.师:我们可以列一个表格(板演),先猜一猜4个元素集合的子集个数是多少?生:16个.师:从上面写出的集合子集我们可以看出集合的子集个数与集合的元素个数之间有什么关系?换句话:你能否猜想n个元素集合的子集共有多少个子集?生:2n个.师:猜得很好.因为我们所学知识还不能证明这个结论,要等到高二学过排列、组合知识后就可以证明了,有兴趣的同学可以自己先学.【例2】写出不等式x-3>2的解集并进行化简(即化成直接表明未知数本身的取值范围的解集).解:不等式x-3>2的解集是{x|x-3>2}={x|x>5}.【例3】在以下六个写法中,错误写法的个数是①{0}∈{0,1}②∅{0}③{0,-1,1}⊆{-1,0,1}④0∈∅⑤Z={全体整数}⑥{(0,0)}={0}A.3B.4C.5D.6思路分析:①中是两个集合的关系,不能用“∈”;④ 表示空集,空集中无任何元素,所以应是0∉∅;⑤集合符号“{}”本身就表示全体元素之意,故此“全体”不应写;⑥等式左边集合的元素是平面上的原点,而右边集合的元素是数零,故不相等.只有②和③正确.故选B.【例4】已知A={x|x=8m+14n,m、n∈Z},B={x|x=2k,k∈Z},问:(1)数2与集合A的关系如何?(2)集合A与集合B的关系如何?师:元素与集合之间、集合与集合之间分别用什么符号连接?生:元素与集合之间用“∈”或“∉”连接,集合与集合之间用“⊆”“”“=”或“”等连接.师:本问题的第(1)问给了我们什么启示?生:要判别2是否属于A,只需考虑2能否表示成8m+14n的形式,若能写成8m+14n的形式,则说明2∈A,否则2∉A.师:很好.现在的问题是2能否写成8m+14n的形式?生:能,并且可以有多种写法,比如:2=8×2+14×(-1),且2∈Z,-1∈Z,2=8×(-5)+14×3,且-5∈Z,3∈Z等.所以2∈A.师:我们从第(2)问中读到了什么?生:判定两个集合A、B的关系,应优先考察它们的包含关系.对于本题,我们的思考是A⊆B 成立吗?B⊆A成立吗?如果两个方面都成立,则A=B;如果只有一个方面成立,则应考虑是否是真子集;如果两个方面都不成立,则两集合不具备包含关系.师:回答得很好,问题是如何判别A⊆B?生:用定义法.任取x∈A,只要能够证明x∈B,则A⊆B就成立了.师:好,现在我们一起解决问题(2).生:任取x0∈B,则x0=2k,k∈Z.∵2k=8×(-5k)+14×3k,且-5k∈Z,3k∈Z,∴2k∈A,即B ⊆A.任取y0∈A,则y0=8m+14n,m、n∈Z,∴y0=8m+14n=2(4m+7n),且4m+7n∈Z.∴8m+14n∈B,即A⊆B.由B ⊆A且A⊆B,∴A=B.师:对于本题我们能够得到A=B,现在的问题是在集合有关问题中如何证明两个集合相等? 生1:欲证A=B,根据定义,只需证A⊆B,且B ⊆A即可.生2:如果A、B是元素较少的有限集合,也可用穷举法判别它们相等.师:很好,两位同学的方法加以组合,判别两个集合相等的方法就完美了.由此,平时的学习中,只要敢于探究,善于探究,我们一定能挖掘出自身的潜能,使自己的学习永远立于不败之地,这对我们今后的学习和工作将十分有益.三、课堂练习教科书P8练习题2答案:(1)∈ (2)∈ (3)= (4) (5) (6)=四、课堂小结1.本节学习的数学知识:子集、集合相等、真子集、子集的性质.2.本节学习的数学方法:归纳的思想、定义法、穷举法.五、布置作业1.教科书P8练习题3.2.教科书P13习题1.1 A 组第5题.3.满足条件{1,2} M ⊆{1,2,3,4,5}的集合M 的个数是A.3B.6C.7D.8 4.已知集合A={x ,xy ,1-xy },B={0,|x|,y },A=B ,求实数x 、y 的值.5.已知M ⊆{1,2,3,4,5},且a ∈M 时,也有6-a ∈M ,试求集合M 所有可能的结果.6.若a 、x ∈R ,A={2,4,x2-5x+9},B={3,x2+ax+a },C={x2+(a+1)x -3,1},求:(1)使A={2,3,4}的x 的值;(2)使2∈B ,BA 的a 、x 的值;(3)使B=C 的a 、x 的值.五、板书设计1.1.2 集合间的基本关系子集 Venn 图集合相等 真子集空集子集的性质例1 例2例3 例4课堂练习。
高中数学(高一至高三)知识点汇总
高中数学第一部分必备知识点第二部分学习难点必修1知识点重难点高考考点第一章:集合与函数1.1.1、集合1.1.2、集合间的基本关系1.1.3、集合间的基本运算1.2.1、函数的概念1.2.2、函数的表示法1.3.1、单调性与最大(小)值1.3.2、奇偶性重点:1、集合的交、并、补等运算。
2、函数定义域的求法3、函数性质难点:函数的性质1、集合的交、并、补等运算。
2、集合间的基本关系3、函数的概念、三要素及表示方法4、分段函数5、奇偶性、单调性和周期性第二章:基本初等函数(Ⅰ)2.1.1、指数与指数幂的运算2.1.2、指数函数及其性质2.2.1、对数与对数运算2..2.2、对数函数及其性质2.3、幂函数重点:1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算难点:1、指数函数与对数函数相结合2、指数对数与不等式、导数、三角函数等结合1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算5、数值大小的比较6、习惯与不等式、导数、三角函数等结合,难度较大第三章:函数的应用3.1.1、方程的根与函数的零点3.1.2、用二分法求方程的近似解3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例重点:1、零点的概念2、二分法求方程近似解的方法难点:1、函数模型2、函数零点与导数,含有字母的参数相结合1、零点的概念2、二分法必修2知识点重难点高考考点第一章:空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积重点:1、认识柱、锥、台、球及其简单组合体的结构特征2、几何体的三视图和直观图3、会利用公式求一些简单几何体的表面积和体积难点:空间想象能力1、几何体的三视图和直观图2、空间几何体的表面积与体积第二章:点、直线、平面之间的位置关系(重点)1、空间点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质重点:1、线面平行、面面平行的有关性质和判定定理2、证明线面垂直3、点到平面的距离难点:1、线面垂直2、点到平面的距离1、以选择填空的形式考查线与面、面与面的平行关系,考查线面位置的关系2、以解答的形式考查线与面、面与面的位置3、证明线面垂直4、点到平面的距离第三章:直线与方程1、直线的倾斜角与斜率2、直线方程3、直线的交点坐标与距离公式重点:1、初步建立代数方法解决几何问题的观念2、正确将几何条件与代数表示进行转化3、掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。
人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件
回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?
高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系
1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。
人教版高中数学必修一1.1.2集合间的基本关系ppt课件
【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2
a
1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×
人教A版高中数学必修一《1.1.2集合间的基本关系》课件
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=
数学必修1 1.1.2《集合间的基本关系》同步讲练
高中数学必修1 编辑:鼎吉教育高中数学必修一《集合间的基本关系》导学导练【知识要点】1. Venn 图与数轴法表示集合 2. 子集的概念 3. 两个集合相等的条件 4. 真子集的概念 5. 空集及其有关的问题【范例析考点】考点一.判断集合间的关系例1:已知M={}x y R y =∈ N={}2m x R x =∈,则下列关系中正确的是 ( ) A .MN B. N M = C.N M ≠ D. NM【针对练习】1、已知集合}0,0|),{(><+=xy y x y x M 和}0,0|),{(<<=y x y x P ,那么( )A.PM B.M P C.P M = D.MP2、集合A={x|x=2n +1,n ∈Z}, B={y|y=4k ±1,k ∈Z},则A 与B 的关系为( )A .A ≠⊂B B .A ≠⊃B C .A=B D .A ≠B3、集合{}Z k k x x A ∈==,2,{}Z k k x x B ∈+==,24,则有( ) (A)B A = (B) B A ⊆ (C)A B ⊆ (D) 以上都不是 4、设集合}1|),{(}|),{(====xyy x B x y y x A 则集合B A ,之间的关系是( )A 、B A ⊆ B 、B A ⊇C 、B A =D 、以上都不是 5、已知集合A={}1,0 B={}A x x ∈,则A 与B 的关系正确的是 ( )A .B A ⊆ B. AB C. B A ⊇ D. B A ∈6、设集合A={0,1},集合B={x|x A ⊆},则A 与B 的关系如何?7、已知},|{}|{},1,0{*∈∈=⊆==N x A x x C A x x B A ,试确定A ,B ,C 之间的关系考点二:确定集合的个数问题例2:满足关系式{}{}5,4,3,2,12,1⊆⊆A 的集合A 的个数为( )(A) 4 (B)6 (C) 7 (D) 8 【针对练习】1、集合},,{c b a 的子集有( )个 (A) 5 (B)6 (C) 7 (D) 82、满足{}M a ⊆{a,b,c,d}的集合M 共有( )A .6个 B. 7个 C. 8个 D. 15个3、若}8,4,2,0{},3,2,1,0{,,==⊆⊆C B C A B A 则满足上述条件的集合A 有 个 4、设P 、Q 为两个非空实数集合,定义集合},|{Q b P a b a Q P ∈∈+=+,若},5,2,0{=P }6,2,1{=Q ,则P +Q 中元素的个数是________考点三:利用集合间的关系求字母参数问题 例3:已知集合}52|{≤<-=x x A ,}121|{-≤≤+-=m x m x B ,且A B ⊆,求实数m 的取值范围。
2021北师大版(2019)高中数学必修一教案::1.1.2 集合的基本关系含解析
第一章预备知识第1节集合1.2集合的基本关系集合的基本关系是继上一节集合的基本概念之后的又一个基本知识,集合之间的关系是包含与被包含的包含关系,元素与集合是属于与不属于的从属关系,在言语表达和符号书写时,要求要准确、简洁,它是高中数学的基本符号语言,为下一节集合的运算奠定基础,同时对于学生养成简洁、准确的数学语言,良好的思维习惯和规范的书写习惯等都非常重要。
(1)知识目标:掌握子集、真子集的含义及其符号表示,准确使用“包含”“包含于”等语言表述和“、 、 、=”等符号表示;掌握集合相等的含义;能使用Venn图表示集合间的包含关系,熟练写出一个集合的子集和真子集。
(2)核心素养目标:灵活运用集合的符号语言表示有关数学对象,读懂、会用抽象的数学符号(数学语言)进行数学表达,提升学生的数学抽象能力和概括能力,同时培养学生良好的思维习惯和规范的书写习惯。
(1)集合与集合的关系,子集、真子集的概念;(2)熟练使用“、 、 、=”等符号表示集合间的关系,以及用Venn图表示集合间的关系;掌握空集是任何集合的子集,熟练写出一个集合的所有子集,了解一个集合的子集个数的计算;(3)数学语言和符号表示的规范性和准确性。
多媒体课件一、知识的引入思考讨论:问题1:某学校高一(1)班全体35位同学组成集合,其中女同学组成集合:若,则与集合是什么关系?问题2:用表示所有矩形组成的集合,表示所有平行四边形组成的集合:若,则与集合是什么关系?问题3:所有有理数都是实数,则有:若,则试问以上问题所涉及到的两个集合之间有什么关系?二、新知识1、子集的概念一般地,对于两个集合与,如果集合中的任何一个元素都属于集合,即若,则,那么称集合是集合的子集。
符号表示: (或)读作:集合包含于集合(或集合包含集合)如上面问题1“女生集合包含于班级集合”,记作。
注意:①概念中的关键词“任何一个元素”,相当于“所有元素”;②元素与集合的关系是“属于”或“不属于”的从属关系,集合与集合的关系是“包含”或“不包含”的包含关系;③符号“”的开口方向的集合要“大”一些。
高中数学必修一1.1.2集合间的基本关系
2 5, x , x 4 x 中的元素 1、若 x N ,则
x必
须满足什么条件?
2、已知 x N ,A 5, x, x 2 4 x
B 2, x 2 4, x 6 若A=B,试求
x 的值。
【引一引★温故知新】
集合与集合 之间呢?
• 一个元素的集合:子集共有2个、真子集有2-1个。 • 两个元素的集合:子集共有4个、真子集有4-1个。 • 三个元素的集合:子集共有8个、真子集有8-1个。 • n个元素的集合:子集共有2n个、真子集有2n -1个。
【听一听★更上一层】
k 1 k 1 例2.集合M { x | x , k Z }, N { x | x , k Z }. 2 4 4 2 则( ) . B.M N C.M N D.M与N没有相同元素
2k 1 , k Z }, 4
A.M N
C.M N
D.M与N没有相同元素
分析:M { x | x
N {x | x
k2 , k Z }. 4
当k Z时, 2k 1为奇数,k 2为整数,因为奇数都 是整数,且整数不都是奇数.
M N,故选C.
解 : 集合{a, b}的所有子集为:
,{a}, {b}, {a, b}
真子集为: ,{a}, {b}
【听一听★更上一层】 变式
写出集合a, b,c的所有子集,并指出它的真子集.
解 : 没有元素的子集:; 有1个元素的子集 : {a}, {b}, {c}; 有2个元素的子集 : {a, b}, {a, c},{b, c};
规定:空集是任何集合的子集,即 A.
空集是任何非空集合的真子集. 即: B. ( B )
1.1.2集合的基本关系(2015新人教版高中数学必修一导学案)
1.1.2集合间的基本关系教案【教学目标】(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.【教学重难点】重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.【教学过程】一、导入新课问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.二、新知探究问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为某中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
如图l 和图2分别是表示问题2中实例1和实例3的Venn 图.问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论?教师引导学生通过类比,思考得出结论: 若,,A B B A A B ⊆⊆=且则.3、核对预习学案的答案 学生发言、补充,教师完整归纳。
高中数学必修一1.1.2集合间的基本关系
②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} (× )
④A={a,b,c,d}, B={d,b,c,a} (√ )
定义
一般地,对于两个集合A与B, 如果集 合A中的任何一个元素都是 集合B的元素, 同时集合B中的任何一个元素都是集A=合BA 的元素,则称集合A等于集合B,记作
1.1.2 集合间的基本关系
复习引入
1.集合、元素 2.集合的分类:有限集、无限集、空集 3.集合元素的特性:确定性、互异性,无序性 3.集合的表示方法:列举法、描述法 4.常用数集:N , N *, Z , Q, R 用列举法表示下面集合: {x | x3 2x2 x 2 0} {数字和为5的两位数}
观察以下几组集合,并指出它们元 素间的关系: ① A={1,2,3}, B={1,2,3,4,5}; ② A={x| x>1}, B={x | x2>1}; ③ A={四边形}, B={多边形}; ④ A={x | x是两边相等的三角形},
B={x| x是等腰三角形} .
定义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说这两个集合有包含 关系,称集合A为集合B的子集(subset)
例1(1) 写出N,Z,Q,R的包
含关系,并用Venn图表示
(2) 判断下列写法是否正确 AA
①Φ A ②Φ A
③ A A ④A A
例2 写出集合a,b的所有子集, 并
指出哪些是它的真子集
思考: 集合a1, a2,, an 有多少个
子集、 真子集?
重要结论
结论:含n个元素的集合的所有 子集的个数是2n,
高中-数学-人教A版-必修(第一册)-1.1.2集合间的基本关系_教案
1.1.2集合间的基本关系一、教学目标:.1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系二、教学重难点:教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.三、教学课时:1课时四、教学过程:课题引入:实数有相等关系,大小关系,元素与集合之间有属于与不属于关系,那类比他们的关系,集合之间是否具备类似的关系?思考:例1:观察下面三个集合, 找出它们之间的关系:A={1,2,3},B={1,2,7},C={1,2,3,4,5}子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B 的元素,称集合A是集合B的子集,记作A B.读作“A包含于B”或“B 包含A”.韦恩图:思考: A= {x | x 是两条边相等的三角形} B= {x | x 是等腰三角形} 有A ⊆B ,B ⊆A ,则A =B.集合相等:若A ⊆B ,B ⊆A ,则A =B.思考:A ={1, 2, 7},B ={1, 2, 3, 7},真子集:如果A ⊆B ,但存在元素x ∈B 且x ∉A ,称A 是B 的真子集. 记作A B(或B A).读作A 真包含于B ,或B 真包含A 。
思考:指出{}01|2=+=x x B 的元素空集:不含任何元素的集合为空集,记作∅规定:空集是任何集合的子集,是任何非空集合的真子集思考:2.若A B ⊆,B C ⊆,则A C ⊆. 即:子集的传递性例(1)写出集合{a 、b }的所有子集;(2)写出集合{a 、b 、c }的所有子集;(3)写出集合{a 、b 、c 、d }的所有子集;一般地:集合A 含有n 个元素则A 的子集共有2n 个.A 的真子集共有2n – 1个. AB R ___Q ___Z ___N ___N .1*课题总结:子集:A B⊆⇔任意x∈A⇒x∈B真子集:A B⇔任意x∈A⇒x∈B,但存在x0∈B,且x0∉A. 集合相等:A = B⇔A B⊆且B A⊆空集∅:不含任何元素的集合性质:①A∅⊆,若A非空,则A≠⊂φ②A A⊆.③A B⊆,B C A C⊆⇒⊆. 课堂作业:8页练习。
新人教A版必修1高中数学1.1.2集合间的基本关系导学案
高中数学 1.1.2集合间的基本关系导学案新人教A版必修1 学习目标:1、理解集合之间包含与相等的含义。
2、掌握子集、真子集的概念。
3、了解空集的含义及性质。
4、了解集合的韦恩图表示。
学习难点:子集、真子集、空集概念的应用。
学习过程:观察下面几个例子,你能发现两个集合间的关系吗?1、A={1,2,3},B={1,2,3,4,5}2、设A为开滦二中高一(1)班全体女生组成的集合,B为这个班全体学生组成的集合3、设C={x x是两条边相等的三角形},D={x x是等腰三角形}一、子集的概念:,用符号表示为:,读作:。
用韦恩图表示为:子集的性质:1、2、二、集合相等的概念:。
真子集的概念:,用符号表示为。
三、空集及其性质:。
性质:1、2、例题1、用适当的符号填空:(1)a {a,b,c} (2) o {02=x}x(3) φ {x∈R2x+1=0}(4){0,1} N (5) {0} {x x2=x}(6) {2,1} {x x2-3x+2=0}例题2、写出下列集合的所有子集:(1){a}: (2) {a,b}: (3) {a,b,c}: .例题3、判断下列两个集合之间的关系:(1)A={1,2,4} , B={x x是8的约数};(2)A={x x=3k,k∈N}, B={x x=6z,z N∈}(3)A={x x是4与10的公倍数,x∈N},+}.B={x x=20m,m∈N+例题4、已知:{1,2}⊆A}4,3,2,1{⊂,试写出集合A.例题5、设集合M={x x=2n+1,n∈Z},N={y y=4k±1,k∈Z},则M与N的关系是()A.M⊆NB.M⊇NC.M=ND.M⊂N且M⊃N例题6、已知集合A={x0<x<9},集合B={x1<x<a}, 若非空集合B⊆A,求实数a的取值范围。
例题7、已知集合A={x,xy,x-y}, 集合B={0,x,y}, 且A=B,求实数x、y的值。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 1.2集合间的基本关系教案
【教学目标】
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
【教学重难点】
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
【教学过程】
一、导入新课
问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.
二、新知探究
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?
(1){1,2,3},{1,2,3,4,5}A B ==;
(2)设A 为某中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;
(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形
(4){2,4,6},{6,4,2}E F ==.
组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:
①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我
们就说这两个集合有包含关系,称集合A 为B 的子集.
记作:()A B B A ⊆⊇或
读作:A 含于B(或B 包含A).
②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
如图l 和图2分别是表示问题2中实例1和实例3的Venn 图.
图1 图2
问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出
什么结论?
教师引导学生通过类比,思考得出结论: 若,,A B B A A B ⊆⊆=且则.
3、核对预习学案的答案 学生发言、补充,教师完整归纳。
三、 例题
例题1.某工厂生产的产品在质量和长度上都合格时,该产品才合格。
若用A 表示合格
产品,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成
立?
,,,A B B A A C C A ⊆⊆⊆⊆
试用Venn 图表示这三个集合的关系。
分析:学生先思考、讨论集合的关系,教师指导学生此类题的处理方法
答案: B 是A 的子集 , C 是A 的子集
变式训练1用适当的符号(⊇⊆⊃⊂∉∈、、、、、)填空:
①4 ∈ }{6,4,2,0 ②11 ∈ }{Z m m ∈+,34
③}{
21, ⊆ }{4321,,, ④}{65, ⊇ }{6 例题2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
分析:(1)集合之间的关系的应用;(2)子集的书写规律
答案:{a,b},{a},{b},∅
变式训练2写出集合{0,1,2}的所有子集,并指出哪些是它的真子集.
答案:{0,1,2} {0,1} {0,2} {1,2} {0} {1} {2} ∅
四、课堂小结
1.请学生回顾本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又那些.
2. 在本节课的学习过程中,还有那些不太明白的地方,请向老师提出.
【板书设计】
一、 集合间的基本关系
二、 典型例题
例1: 例2:
【作业布置】第13页习题 1.1A 组第5题.
1.1. 2集合间的基本关系
课前预习学案
一、预习目标:
初步理解子集的含义,能说明集合的基本关系。
二、预习内容:
阅读教材第7页中的相关内容,并思考回答下例问题:
(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?
(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?
(3)0,{0}与∅三者之间有什么关系?
(4)包含关系{}a A ⊆与属于关系a A ∈正义有什么区别?试结合实例作出解释.
(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?
(6)能否说任何一人集合是它本身的子集,即A A ⊆?
(7)对于集合A ,B ,C ,D ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?
三、提出疑惑
课内探究学案
一、学习目标
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
学习重点:集合间的包含与相等关系,子集与其子集的概念.
学习难点:难点是属于关系与包含关系的区别.
二、学习过程
1、 思考下列问题
问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你
会想到集合之间有什么关系呢?
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?
(1){1,2,3},{1,2,3,4,5}A B ==;
(2)设A 为某中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;
(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形
(4){2,4,6},{6,4,2}E F ==.
问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出
什么结论?
你对上面3个问题的结论是
2、例题
例题1..某工厂生产的产品在质量和长度上都合格时,该产品才合格。
若用A 表示合格
产品,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成
立?
,,,A B B A A C C A ⊆⊆⊆⊆
试用Venn 图表示这三个集合的关系。
.
变式训练1用适当的符号(⊇⊆⊃⊂∉∈、、、、、)填空:
①4 }{6,4,2,0 ②11 }{Z m m ∈+,34
③}{
21, }{4321,,, ④}{65, }{6 例题2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
变式训练2写出集合{0,1,2}的所有子集,并指出哪些是它的真子集.
5 课堂小结
三、当堂检测
(1)讨论下列集合的包含关系
①A={本年天阴的日子},B={本年天下雨的日子};
②A={-2,-1,0,1,2,3},B={-1,0,1}。
(2)写出集合A={1,2,3}的所有非空真子集和非空子集
课后练习与提高
1用”
⊇
⊂
⊆连接下列集合对:
、
“⊃
、
、
①A={济南人},B={山东人};
②A=N,B=R;
③A={1,2,3,4},B={0,1,2,3,4,5};
④A={本校田径队队员},B={本校长跑队队员};
⑤A={11月份的公休日},B={11月份的星期六或星期天}
2若A={a,b,c},则有几个子集,几个真子集?写出A所有的子集。
3设A={3m,m∈Z},B={6k,k∈Z},则A、B之间是什么关系?。