高一数学必修1 集合教案
高中数学 必修一 集合的概念 教案
集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。
2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。
【教学重难点】教学重点:集合的含义与表示方法。
教学难点:表示法的恰当选择。
【教学过程】一、创设情景,揭示课题。
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。
举例和互相交流。
与此同时,教师对学生的活动给予评价。
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
二、研探新知。
1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程2560-+=的所有实数根;x xx->的所有解;(7)不等式30(8)国兴中学2004年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。
一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
a b c d…表4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,示。
三、质疑答辩,排难解惑,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。
使学生明确集合元素的三大特性,即:确定性。
《高中数学集合》教案模板
《高中数学集合》教案模板一、教学目标1.知识与技能:●理解集合的概念及其表示方法(列举法、描述法)。
●掌握集合的基本性质:确定性、无序性、互异性。
●能够运用集合的基本运算:并集、交集、补集。
2.过程与方法:●通过实例引入,让学生感受集合概念在现实生活中的应用。
●通过讨论与探索,培养学生的逻辑推理能力和抽象思维能力。
3.情感态度与价值观:●激发学生对数学学习的兴趣和好奇心。
●培养学生的团队合作精神和数学表达的自信心。
二、教学重点与难点1.教学重点:●集合的定义与表示方法。
●集合的基本运算。
2.教学难点:●对集合概念的理解及其在实际问题中的应用。
●集合运算的灵活运用。
三、教学准备•多媒体课件,包括集合的基本概念、表示方法、运算的演示。
•黑板及粉笔,用于板书重点概念和例题。
•练习题册或教学软件,用于学生课堂练习和巩固。
四、教学过程1.导入新课●通过生活中的实例(如班级学生的集合、水果种类的集合等)引出集合的概念。
●提问学生:“你们认为什么是集合?”引导学生初步思考。
2.讲授新课●讲解集合的定义和表示方法(列举法、描述法),并举例说明。
●介绍集合的基本性质,并通过实例让学生理解这些性质。
●讲解集合的基本运算(并集、交集、补集),通过图示和实例帮助学生理解运算过程。
3.互动探究●分组讨论:让学生分组讨论集合概念在实际生活中的应用,并分享讨论结果。
●教师引导:针对学生的讨论结果,教师进行点评和总结,并引导学生深入思考。
4.巩固练习●学生独立完成练习题册中的题目,教师巡视指导。
●针对学生练习中出现的问题,教师进行解答和讲解。
5.课堂小结●总结本节课的学习内容,强调集合概念和运算的重要性。
●布置课后作业,包括复习本节课知识点和完成相关练习题。
五、板书设计●集合的定义与表示方法•列举法•描述法●集合的基本性质•确定性•无序性•互异性●集合的基本运算•并集•交集•补集六、教学反思●在课后对本节课的教学效果进行反思,总结教学中的成功之处和不足。
高中数学第一章集合教案1
高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。
一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。
教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。
高一必修一数学集合教案
高一必修一数学集合教案高一必修一数学集合教案篇1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的"属于"和"不属于"关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2021级新生;(6) 血压很高的人;(7) 的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A4A,等等。
高一数学必修(1)“集合”教学设计
高一数学必修(1)“集合”教学设计第一节集合第一课时一、设计思路:本节教学设计遵循普通高中数学课程标准兼以义务教育数学课程基础为基础预备先导,注重学生探究能力的培养,重视数学基本概念的理解,本着促进学生的知识与技能、过程与方法、情感态度与价值观等方面的发展为宗旨,进一步提高学生未来发展所需要的科学素养,同时也为学生学习其他相关课程模块提供基础知识储备。
着重突出集合学习过程中的探究过程和学习探究过程中的趣味性。
二、教材分析与学情分析教学要求:1.通过本章的引言,使学生初步了解本章所研究的问题是集合的有关知识,并认识到用数学解决实际问题离不开集合的知识。
2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。
3.从集合及其元素的概念出发,初步了解属于关系的意义。
教材分析:1.集合是中学数学的一个重要的基本概念。
在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。
例如,在代数中用到的有数集、解集等;在几何中用到的有点集。
这些可以帮助学生认识学习本章的知识。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。
例如,下一节讲函数的概念与性质,就离不开集合的知识。
2.1.1.1节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
3.这节课主要学习集合的基本概念。
引发学生的学习兴趣,使学生认识学习本节乃至本章的意义。
4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。
在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。
教科书给出的“一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,也简称集。
高一数学必修1第一章集合全章教案
第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3. 集合相等:构成两个集合的元素完全一样。
4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。
数学人教版高中一年级必修1 高一数学集合教学案(4课时)
高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。
情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。
(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
难点:能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本P 3(2)集合:把一些能够 的 的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个 叫做这个集合的元素,元素通常用 表示2、元素与集合的关系(1)属于:记作:A a ___;(2)不属于:记作:A a ___;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为(3) 方程方程21x =的解的全体构成的集合; 其中元素为(4) 不等式122x x +>+的解的全体构成的集合. 其中元素为 你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1) ;(2) ;(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点O 的距离等于定长r 的点的全体;(3) 方程12x x +=+的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有 个元素的集合叫做有限集(2)含有 个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集: 的集合.记作 ;(2)正整数集: 的集合.记作 ;(3)整数集: 的集合.记作 ;(4)有理数集: 的集合.记作 ;(5)实数集: 的集合.记作 。
人教版高中数学必修1第一章教案
1.1.1集合的含义通过本节学习应到达如下目标:(1)初步理解集合的含义,知道常用数集及其记法.,初步了解“∈〞关系的意义.。
.(2)通过实例,初步体会元素与集合的〞属于〞关系,从观察分析集合的元素入手,正确地理解集合.(3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(4)学会借助实例分析、探究数学问题(如集合中元素确实定性、互异性).(5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事求是、扎实严谨的科学态度.学习重点:集合概念的形成。
学习难点:理解集合的元素确实定性和互异性.学习过程〔一〕自主学习阅读课本,完成以下问题:1、例〔3〕到例〔8〕和例〔1〕〔2〕是否具有相同的特点,它们能否构成集合,如果能,他们的元素是什么?结合现实生活,请你举出一些有关集合的例子。
2、一般地,我们把研究对象称为.,把一些元素组成的总体叫做。
3、集合的元素必须是不能确定的对象不能构成集合。
4、集合的元素一定是的,相同的几个对象归于同一个集合时只能算作一个元素。
5、集合通常用大写的拉丁字母表示,如。
元素通常用小写的拉丁字母表示,如。
6、如果a是集合A 的元素,就说a属于A ,记作,读作〞〞。
如果a不是集合A的元素,就说a不属于A ,记作,读作〞〞。
7、非负整数集〔或自然数集〕,正整数集,整数集,有理数集,有理数集,实数集。
〔二〕合作探讨1、以下元素全体是否构成集合,并说明理由〔1〕世界上最高的山〔2〕世界上的高山。
(3) 2的近似值(4)爱好唱歌的人〔5〕本届奥运会我国取得优秀成绩的运发动。
〔6〕本届奥运会我国参加的所有运动工程。
2、结合具体例子,请你说明你对集合中元素具有的互异性和确定性的理解。
3、如果用A表示高一〔3〕班全体学生组成的集合,用a表示高一〔3〕班的一位同学,b是高一〔4〕班的一位同学,那么a, b与集合A有什么关系?由此可见元素与集合间有什么关系?4、请你指出以下集合中的元素。
高中数学_必修1_集合教案1
集合(第2课时)一、知识目标:①内容:深入理解集合的基本概念,掌握集合元素的三个特征并会应用,了解有限集、无限集的概念②重点:集合元素的三个特征,空集③难点:集合元素的三个特征的应用二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;③由运用集合的观点分析、处理实际问题,培养由具体到抽象,由抽象到具体的思维方式,形成正确的认知观;三、教学过程:1)情景设置:复习上一节课所学的主要内容①集合的概念:某些指定的对象集在一起就成为一个集合。
集合非常类似于电脑中的文件夹,文件夹就是一个集合,文件夹的内容就是该集合的元素②元素:集合中的每个对象③元素与集合的关系:∈、∉④集合中元素的特征:确定性、互异性、无序性⑤常用数集2)新课讲授例1、下列指定的对象,能构成一个集合的是①很小的数②不超过30的非负实数③直角坐标平面内横坐标与纵坐标相等的点④π的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体分析:①“很小”是不明确的,不确定的②“π的近似值”也是不确定的③“优秀”不确定例2、给出下列说法:①较小的自然数组成一个集合②集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合③某同学的数学书和物理书组成一个集合④若a∈R,则a∉Q⑤已知集合{x,y,z}与集合{1,2,3}是同一个集合,则x=1,y=2,z=3其中正确说法个数是()A、1个B、2个C、3个D、4个例3、已知集合A={a+2,(a+1)2,a 2+3a+3},且1∈A ,求实数a 的值 解:若a+2=1,则a=-1,此时A={1,0,0}违反互异性,舍去 若(a+1)2=1,则a=0或-2当a=0时,此时A={2,1,3}当a=-2时,此时A={0,1,1}违反互异性,舍去若a 2+3a+3=1,则a=-1(舍去)或a=-2(舍去) 所以a=0练习1:在下列各题中,分别指出集合的所有元素① 世界上最高的山峰② 组成中国国旗图案的颜色 ③ 所有大于0且小于10的奇数 ④ 小于100的自然数 ⑤ 由1,2,3这三个数字抽出一部分或全部数字所组成的一切自然数(没有重复)⑥ 不等式x-3>2的解集⑦ 平面内到一定点o 的距离等于定长1的所有的点P ⑧ 两边之和小于第三边的三角形练习2:集合{3,x,x 2-2x}中,x 应满足什么条件? 解:根据集合元素的互异性,x 应满足 x ≠3,且x 2-2x ≠3,且x 2-2x ≠x 解得x ≠3且x ≠0且x ≠-1为进一步研究集合,需要将行行色色的集合进行分类,假如这项工作由你来做,你会选用什么标准对集合进行分类呢?(拿刚才的练习题为例加以讨论) 师生共同探讨形成共识:根据“集合中元素个数”可将形形色色集合分成以下三类:a) 有限集——含有有限个元素的集合 b) 无限集——含有无限个元素的集合c) 空集——不含任何元素的集合,记作φ练习3:指出下列集合中哪些是有限集?哪些是无限集?哪些是空集?为什么? ①{0}②{x 2+x+2=0的解}③{使得x6为自然数的整数}④{不等式x-3>2的解}思考题:已知集合{关于x 的 方程ax 2+2x+1=0的解}只含1个元素,求a 的值。
数学集合教案模板高中
数学集合教案模板高中
1. 理解集合的概念;
2. 掌握集合的表示方法;
3. 能够进行集合的运算;
4. 能够解决集合相关的实际问题。
教学重点:
1. 集合的概念;
2. 集合的表示方法;
3. 集合的运算。
教学难点:
1. 集合的运算;
2. 集合相关的实际问题解决。
教学准备:
1. 教材:高中数学课本;
2. 教具:黑板、彩色粉笔、投影仪、实物集合模型。
教学过程:
一、导入(5分钟)
1. 老师介绍本节课的教学目标,并利用生活中的例子引入集合的概念。
二、讲授(15分钟)
1. 老师讲解集合的定义,并举例说明;
2. 老师介绍集合的表示方法,包括列举法、描述法和集合结合图等;
3. 老师讲解集合的运算,包括并集、交集和差集。
三、练习(20分钟)
1. 学生进行集合的表示方法练习;
2. 学生进行集合的运算练习;
3. 学生解决实际问题练习。
四、总结(5分钟)
1. 老师回顾本节课的内容,并强调重点和难点;
2. 学生对本节课所学内容进行总结。
五、作业布置(5分钟)
1. 布置集合相关的作业,如练习题或实际问题解决。
教学反思:
本节课的教学设计主要围绕集合的概念、表示方法和运算展开,通过生活中的例子引入,引发学生的兴趣,使学生能够理解和掌握集合的相关知识。
在教学过程中,要注重引导学生进行实际操作,培养学生的分析和解决问题的能力。
同时,教师要根据学生的掌握情况进行及时调整,确保学生能够真正理解并掌握所学知识。
高中数学集合全集教案
高中数学集合全集教案
一、教学目标:
1.了解集合的概念和基本性质;
2.掌握集合的表示方法;
3.掌握集合的运算;
4.能够解决集合问题。
二、教学重点:
1.理解集合的概念和基本性质;
2.掌握集合的表示方法。
三、教学难点:
1.掌握集合的运算;
2.解决集合问题。
四、教学过程:
1.引入:老师向学生介绍集合的概念,让学生了解集合的基本性质。
2.讲解:教师详细讲解集合的表示方法和运算规则,让学生掌握集合的基本知识。
3.练习:老师出一些练习题,让学生巩固所学的知识,提高解题能力。
4.拓展:教师可对集合的运算和表示方法进行拓展,让学生了解更多相关知识。
五、作业:布置相关的作业,让学生巩固所学知识,并在下节课进行讲解。
六、教学反思:
1.学生普遍对集合的概念和表示方法掌握得比较好;
2.集合的运算部分学生掌握得不够好,需要加强练习;
3.结合实际生活场景,讲解更多集合问题,提高学生的综合能力。
七、教学反馈:
1.通过作业和课堂练习,发现学生对集合的运算和表示方法掌握得较好;
2.需要加强对集合问题的讲解,并综合运用所学知识解决问题。
关于高中数学集合的教案
关于高中数学集合的教案教学目标:1. 理解集合的基本概念和符号表示方法;2. 能够进行集合的运算,包括并集、交集、差集等;3. 掌握集合的性质和定理,能够应用于解决实际问题。
教学内容:1. 集合的定义和基本概念;2. 集合的表示方法:枚举法、描述法、集合运算符号;3. 集合的运算:并集、交集、差集、补集等;4. 集合的性质和定理:包括幂集、空集、全集等;5. 集合的应用:解决实际问题。
教学方法:1. 讲解结合理论知识,引导学生理解概念;2. 通过示例和练习,让学生熟练掌握集合的运算;3. 案例分析,让学生应用集合理论解决实际问题;4. 小组讨论,促进学生之间的合作和交流。
教学流程:1. 引入:通过一个简单的例子引入集合的概念;2. 讲解:介绍集合的定义、基本概念和表示方法;3. 练习:让学生进行一些简单的集合运算,并检查结果;4. 案例分析:给出一些实际问题,让学生应用集合理论解决;5. 总结:总结集合的性质和定理,强调重点和难点;6. 练习:布置一些练习题,巩固所学知识。
教学资源:1. 教材:高中数学教材;2. 视频:相关集合理论的教学视频;3. PPT:集合理论相关的PPT资源。
评估方式:1. 日常练习:检查学生对集合概念的掌握情况;2. 作业:布置集合运算和问题解决的作业,检查学生能力;3. 考试:进行期中和期末考试,检验学生对集合理论的掌握程度。
教学反思:通过本节课的教学,学生应该对集合的基本概念和运算有了初步的了解和掌握。
教师需要及时总结学生学习情况,发现问题并及时纠正,以提高教学效果。
同时,引导学生积极参与学习,加强练习和实践,真正掌握集合理论知识。
高一数学苏教版必修1教学案:第1章1集合的含义及其表示
江苏省泰兴中学高一数学教学案(6)必修1_01 集合(1) 集合的含义及其表示班级姓名目的要求:(1)使学生掌握集合的概念;(2)理解集合与元素的属于关系;(3)熟悉常用的数集及其符号表示.重点难点:重点:理解集合的含义;难点:集合的表示法.教学过程:一、问题情境:1.请仿照课本叙述,向全班同学介绍一下你的家庭、原来读书的的学校、现在的班级等情况.2.请分析:像“家庭”、“学校”、“班级”、“男生”、“女生”等概念有什么共同特征?二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set).集合中的每一个对象称为该集合的元素(element),简称元.2.数学研究对象与集合的关系:如果a是集合A的元素,就记作_______;读作“___________”;如果a不是集合A的元素,就记作__ _或__ _读作“______”. 3.集合的基本特征:(1)确定性.设A是一个给定的集合,a是某一研究对象,则a是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;(2)互异性.对于一个给定的集合,它的任何两个元素都是不同的;(3)无序性.集合与其中元素的排列次序无关.4. 常用的数集及其记法:一般地,自然数集记作_______,正整数集记作________或________ 整数集记作_____ ,有理数记作_______,实数集记作________5.集合的表示方法:(1)列举法:将集合的元素______出来,并______________表示集合的方法叫列举法.元素之间要用__________分隔,但列举时与_________________无关.(2)描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成_________的形式,称之为描述法.注:{()}x p x 中x 为集合的代表元素,()p x 指元素x 具有的性质.(3)图示法(Venn 图):用平面上封闭曲线的内部示意集合.6. 集合的分类:有限集与无限集及空集空集:7.集合相等:如果两个集合,A B 所含的元素_______, 则称这两个集合相等,记为:____三、数学运用:例1、求不等式235x ->的解集.例2、用符号∈或∉填空:(1) 1 {}1,(2)a {}1,1,-+a a a , (3)0____N ,(4,(5)π____Q , (61 1|2x x ⎧⎫>⎨⎬⎩⎭. 例3、用适当的方法表示下列集合:(1){小于12的质数} (2)方程0136422=++-+y x y x 的解集(3)正偶数集 (4)坐标平面内第一、三象限角平分线上的点集 例4、试分析下列集合的含义:(1){}{}2211|10,|10A x x x B y y =++==+<;(2){}2223|1,|4A y y x x B y y ⎧⎫==++=≥⎨⎬⎩⎭; (3){}23(,)|1A x y y x x ==++,{}23(,)|1,11B x y y x x x ==++-≤≤(4){}24|10A a x ax =++=方程无实数根例5、若{}220152015,,1,,0,ab a a a b b a ⎧⎫=++⎨⎬⎩⎭求的值.四、课堂练习1、用适当的方法表示下列集合:(1){a | 0≤a<5,a ∈N};(2){(x,y )|0≤x ≤2, 0≤y <2,x,y ∈Z};(3)“mathematics ”中字母构成的集合.2、已知集合{}22,2512A a a a =-++,且3A -∈,则a =五、课堂小结六、教学反思 江苏省泰兴中学高一数学作业(6)班级 姓名 得分1、 用列举法表示集合{}|15x x 为的正约数为 .2、 若{}2|0A x x x =-=,则1- A (用“∈”或“∉”填空).3、已知集合A ={a -3,2a -1, 21a -},若-3是集合A 的一个元素,则a 的取值是________.4、若A {}23<<-∈=x N x ,在A 中所有元素之和是________.5、已知{}x x x A +=2,,2,若A ∈6,则实数x =________.6、化简集合{}y x y x y x 232,1),(-==+且=________7、已知集合{}R a x ax x A ∈=++=,022,若A 中元素至多只有1个,则实数a 的取值范围是________.8、按要求表示下列集合:(1)用列举法表示{ (y x ,) |052=-+y x ,x ∈N,y ∈N};(2)用描述法表示{ 1 ,3,5,7,9}.9、用适当的方法表示下列集合.(1)方程(2x -1)(x +2)(2x +1)=0的解集;(2)不等式-3x +2<-4的解集;(3)第二、四象限内点的集合.10、已知两个元素的集合M={-2,24x x +-},若x ∈M,求由满足条件的实数x 组成的集合.11、已知集合A ={}{}y x B y x xy x ,,0,,,=-且A =B ,求x 与y 的值.。
新教材高一数学必修一教案,集合的定义
《集合的含义与表示》教案(一)教学目标1 •知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义•理解集合相等的含义(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2. 过程与方法(1)通过实例,初步体会元素与集合的属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法•3. 情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合. 通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识概念形成第一组实例(幻灯片一):(1)“小于10”的自然数0,1 ,2, 3,……, 9.(2)满足3x - >x+3的全体实数.(3)所有直角二角形.(4 )到两定点距离的和等于两定点间的距离的点.(5 )咼一(1)班全体同学.(6)参与中国加入WTO谈判的中方成员.1.集合:一般地,把一些能够确定的不冋的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).2 .集合的兀素(或成员):即构成集合的每个对象(或成员),教师提问:①以上各例(构成集合)有什么特点?请大家讨论.学生讨论交流,得出集合概念的要点,然后教师肯定或补充.②我们能否给出集合一个大体描述?……学生思考后回答,然后教师总结.③上述六个例子中集合的元素各是什么?④请同学们自己举一些集合的例子.通过实例,引导学生经历并体会集合(描述性)概念形成的过程,引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合.概念深化第二组实例(幻灯片二):(1 )参加亚特兰大奥运会的所有中国代表团的成员构成的集合.(2)方程x2 = 1的解的全体构成的集合.(3)平行四边形的全体构成的集合.(4)平面上与一定点0的距离等于r 的点的全体构成的集合.3.兀素与集合的关系:教师要求学生看第二组实例,并提问:①你能指出各个集合的元素吗?②各个集合的兀素与集合之间是什么关系?③例(2)中数0,- 是这个集合的元素吗?学生讨论交流,弄清兀素与集合之间是从属关系,即“属于”或“不属于”关系.引入集合语言描述集合.(1)小于10的所有自然数组成的集合;(2)方程x2 = X的所有实数根组成的集合;(3 )由1〜20以内的所有质数组成的集合•描述法:定义:用集合所含元素的共同特征表示集合的方法称为描述法•具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2试分别用列举法和描述法表示下列集合:(1)方程x2乞=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合•由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举法•例如:A = {9 , 8, 7, 6, 5, 4, 3, 2, 1 , 0}.(2)设方程x2 = x的所有实数根组成的集合为B,那么B = {0,1}.(3)设由1〜20以内的所有质数组成的集合为C,那么C = {2 , 3, 5, 7, 11, 13, 17, 19}.例2解答:(1)设方程x2 -2 = 0的实数根为x,并且满足条件x -2 =0,因此,用描述法表示为2A = {x€ R| x - = 0}.方程x2- = 0有两个实数根 2 , -2,因此,用列举法表示为A = { 2,—. 2}.(2)设大于10小于20的整数为x,它满足条件x€ Z,且10v x v 20. 因此,用描述法表示为B = {x€ Z | 10v x v 20}.大于10小于20的整数有11, 12, 13, 14, 15, 16, 17, 18, 19,因此,用列举法表示为B = {11 , 12, 13, 14, 15, 16, 17,备选例题例1 (1 )禾9用列举法表法下列集合:①{15的正约数}:②不大于10的非负偶数集(2)用描述法表示下列集合:①正偶数集;②{1,-3, 5,-7,…,439, 41}.【分析】考查集合的两种表示方法的概念及其应用【解析】(1)①{1 , 3, 5, 15}②{0 , 2, 4, 6, 8, 10}(2)①{x | x = 2n, n € N*}②{x | x = ( -) n-• (2n -1), n€ N*且n< 21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集例2用列举法把下列集合表示出来:9(1)A = {x € N € N };9 _x(2) B = {9€ N | x € N };9 -x(3) C :={ y = y = - + 6 , x € N , y € N }; (4) D : 2 ={(x , y) | y =+6 , x € N }; (5) E = p ={x 1= x , p + q = 5 , p € N , q € N *}qA 的元素是自然数 x ,它必须满足条件 -L 也9—x是自然数;集合 B 中的元素是自然数匕,它必须满足条件 x 也是自然数;集合 C 中的元素9—x是自然数y ,它实际上是二次函数 y = — + 6 (x € N )的函数值;集合 D 中的元素是点,这些点 必须在二次函数y = -2+ 6 (x € N )的图象上;集合E 中的元素是x,它必须满足的条件是 x =卫,q 其中 p +q = 5,且 p € N , q € N *.【解析】(1)当x = 0, 6, 8这三个自然数时, —=1, 3, 9也是自然数.9—x(5 )依题意知 p + q = 5 , p € N , q € N * ,则 p =0, P =1, p =2, p =3, p =4, q =5,q =4, q =3,q =2, q =1.Px 要满足条件x =-,q• E = {0,丄,2, 3 , 4}.4 3 2【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3已知-€ A = {a -3 , 2a -1, a 2 + 1},求a 的值及对应的集合 A.-3€ A ,可知是集合的一个元素,则可能 a 43 =3 或2a -1 =-,求出a ,再代入A , 求出集合A.【解析】由占€ A ,可知,a H3 = 或2a - =£,当a£ =,即a = 0时,A = {,-,1}【分析】先看五个集合各自的特点:集合•-A = {0 , 6, 9}(2 )由(1)知,B = {1 , 3, 9}.(3 )由 y = — + 6 , x € N , y € N 知 y < 6.••• x = 0 , 1 , 2 时,y = 6 , 5 , •-C = {2 , 5 , 6}.(4)点{x , y}满足条件 x =0, x =1, x =2, y =6, y =5,y =2.• D = {(0 , 6) (1, 5) (2 ,2符合题意. 2承 + 6 , x € N , y € N ,则有:2) }当2a -1 = H3,即a =-时,A = { -4 , £ , 2}.以此展开讨【评析】元素与集合的关系是确定的,43 € A,则必有一个式子的值为论,便可求得a.。
高中数学集合教案文库
高中数学集合教案文库
一、教学目标:
1. 了解集合的概念和基本表示方法;
2. 掌握集合的运算和集合关系;
3. 能够应用集合理论解决实际问题;
4. 培养学生的分析和逻辑思维能力。
二、教学内容:
1. 集合的概念和基本表示方法;
2. 集合的运算:并集、交集、差集、补集;
3. 集合关系:包含关系、相等关系、互斥关系;
4. 应用题:实际问题解决。
三、教学步骤:
1. 导入(5分钟)
通过生活中的例子引出集合的概念,引起学生的兴趣。
2. 讲解集合的概念和基本表示方法(15分钟)
介绍集合的概念以及集合用文字、图形或集合符号来表示。
3. 讲解集合的运算(20分钟)
分别讲解并集、交集、差集、补集的定义和运算规则,举例说明。
4. 讲解集合关系(15分钟)
介绍集合之间的包含关系、相等关系、互斥关系,并解释其概念。
5. 练习和应用(25分钟)
让学生进行练习题的训练,包括运算和关系的题目,引导学生应用集合理论解决实际问题。
6. 总结和作业布置(5分钟)
对本节课内容进行总结,布置作业要求学生复习巩固所学内容。
四、教学资源:
1. PowerPoint课件;
2. 练习题和应用题;
3. 学生教材和参考书籍。
五、教学评价:
在课堂上通过练习题和讨论来检查学生对集合概念和运算的掌握情况,作业内容继续考察学生对集合关系的理解和应用能力。
六、扩展阅读:
1. 课外阅读教材和参考书籍;
2. 网络资源:相关视频、文章等。
七、教学反思:
根据学生的反馈和课堂表现,及时调整教学方法和内容,以提高教学效果。
高一数学必修1《集合的含义与表示》教案
高一数学必修1《集合的含义与表示》教案【教学目标】1. 理解集合的概念,能够用通俗易懂的语言描述集合的含义。
2. 熟悉常见集合符号的表示及其含义。
3. 能够运用集合的相关性质解决实际问题。
4. 能够分别用文字描述和图形表示集合。
【教学重点】1. 集合的概念与基本符号的熟练掌握。
2. 集合运算的理解和运用。
【教学难点】1. 集合的基本概念,包括空集、全集、子集等。
2. 集合运算的细节及其运用。
【教学方法】1. 演讲法:介绍集合的基本概念和相关性质。
2. 互动式教学:让学生根据实际问题思考集合的处理方法,提高学生的思维能力。
3. 提问式教学:通过提出问题,引导学生自己思考和总结。
【教学资源】1. 高一数学必修1教材。
2. PPT。
3. 多媒体教学设备。
【教学过程】一、导入(15分钟)1. 引入集合概念。
通过图片或文字向学生展示几个集合,引导学生了解集合的概念。
2. 创建集合。
让学生自己尝试创建几个集合,并用文字或图形表示出来。
二、集合的概念(30分钟)1. 什么是集合?集合是由一些互不相同的元素所组成的整体。
例如,由0、1、2、3、4这5个元素组成的集合可以用花括号表示:{0,1,2,3,4}。
2. 集合的符号表示。
集合用大写字母表示,元素用小写字母表示。
例如,集合A={a1,a2,…,an}。
3. 集合的基本概念。
有限集合、无限集合、空集、全集、真子集、超集。
4. 练习。
通过几个例题,让学生巩固集合的基本概念。
三、集合的运算(45分钟)1. 集合的运算符号。
并集、交集、差集、补集、对称差集等。
2. 集合的运算法则。
交换律、结合律、分配律、消去律、德摩根定律等。
3. 练习。
通过较易的例题,让学生理解集合运算的概念和运算法则。
四、作业布置(10分钟)1. 课后练习。
布置一定量的集合练习题,让学生掌握集合概念和运算法则,并合理运用集合来解决实际问题。
2. 知识巩固。
要求学生按照课上所学知识,撰写一篇500字的集合概念详解。
高中数学集合教学教案
高中数学集合教学教案
教学目标:
1. 理解集合的基本概念和符号表示。
2. 掌握集合的运算法则和性质。
3. 能够解决集合运算问题和应用题。
教学重点:
1. 集合的基本概念和符号表示。
2. 集合的运算法则和性质。
教学难点:
1. 集合运算问题的解决方法。
2. 集合的应用题解决。
教学准备:
1. 书写清晰的板书内容。
2. 准备教学投影仪。
3. 预先准备相关示例题目。
教学过程:
一、引入(5分钟)
教师简要介绍集合的基本概念和符号表示,并引出本节课的学习目标。
二、讲解(15分钟)
1. 集合的定义和表示方法。
2. 集合的运算法则:并集、交集、差集等。
3. 集合的性质及运算法则的应用。
三、案例演练(20分钟)
教师以具体案例进行讲解,帮助学生理解并掌握集合运算法则及解决方法。
四、练习(15分钟)
请学生自己完成一些练习题,巩固所学内容,并帮助学生发现问题和解决方法。
五、讨论和拓展(10分钟)
教师带领学生讨论集合的应用和拓展,引导学生进行思维拓展和运用集合知识解决实际问题。
六、作业布置(5分钟)
布置相关作业,巩固学生对集合的理解和掌握。
教学反思:
通过本节课的教学,学生应能够掌握集合的基本概念和运算法则,并能够灵活运用集合知识解决实际问题。
在教学中,要多使用具体案例进行讲解,引导学生思考和讨论,激发学生的学习兴趣和积极性。
同时,要注重培养学生的逻辑思维能力和解决问题的能力,提高学生的数学素养和应用能力。
人教版高一数学必修一《集合》教案及教学反思
人教版高一数学必修一《集合》教案及教学反思一、教学目标1.知道集合的基本概念,掌握集合的特征和表示方法。
2.掌握集合的基本运算,会用运算符号表示集合的交、并、补、差等。
3.理解集合的包含关系和相关定理,掌握证明方法。
4.能够运用集合的基本知识解决实际问题,提高数学思维能力。
二、教学重难点教学重点:集合的基本概念、包含关系和相关定理。
教学难点:集合的证明方法、集合的运算和运算符号。
三、教学内容和方法1. 教学内容1.集合的概念和特征:元素、空集、全集、子集等概念。
2.集合的表示方法:文氏图、列举法、描述法等。
3.集合的运算:交、并、补、差等运算及其记号。
4.集合的包含关系和相关定理:包含关系、真子集、幂集等定理。
5.集合的证明方法:包含证明、反证法等。
2. 教学方法本节课采用“讲授-练习-板书”相结合的教学方法。
首先讲解集合的概念和基本特征,通过一些实例说明集合的元素和特征的含义。
之后介绍集合的表示方法和运算,通过练习巩固学生对集合运算的认识。
讲解集合的包含关系和相关定理,重点讲解真子集和幂集的概念和性质,并给出证明示例作为练习。
最后根据学生掌握情况综合演练习题,温故知新。
针对难点,采用举例讲解和反复练习的方法来加深学生的理解,带领学生进行试验,一步一步掌握证明方法。
四、教学过程1. 预习在上课前,老师要求学生预习本节课目的和基本内容,预习必修一中的集合部分,对基本概念进行认识。
2. 讲授1、引入通过类比生活中的集合来引导学生对概念和特征的整体认识。
2、概念讲授介绍集合、元素、空集、全集、子集等概念,并通过实例分别掌握其含义。
3、表示方法介绍文氏图、列举法、描述法等表示方法的使用和注意事项。
4、集合运算介绍集合的交、并、补、差等运算及其运算符号,引导学生理解和掌握。
5、包含关系和相关定理介绍集合的包含关系、真子集、幂集等概念和性质,并给出证明示例进行练习。
带领学生理解集合的学习目的和实际应用。
6、归纳总结通过练习和讨论,引导学生从总结入手,形成正确的集合概念,打下学习的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念§1.1集合(一)集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷方程x2+1=0的解;⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
练:A={2,4,8,16},则4∈A,8∈A,32∉A.(二)例题讲解:例1.用“∈”或“∉”符号填空:⑴8 N ; ⑵0 N ; ⑶-3 Z ; ⑷2 Q ;⑸设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。
练:5页1题例2.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。
练:⑴考察下列对象是否能形成一个集合?①身材高大的人 ②所有的一元二次方程③直角坐标平面上纵横坐标相等的点 ④细长的矩形的全体⑤比2大的几个数 ⑥2的近似值的全体⑦所有的小正数 ⑧所有的数学难题⑵给出下面四个关系:3∈R,0.7∉Q,0∈{0},0∈N,其中正确的个数是:( )A .4个B .3个C .2个D .1个⑶下面有四个命题:①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2} ⑶其中正确命题的个数是(⑷由实数-a , a , a ,a 2, -5a 5为元素组成的集合中,最多有几个元素?分别为什么?⑸求集合{2a ,a 2+a }中元素应满足的条件?⑹若t 1t1+-∈{t},求t 的值. 第二课时一、集合的表示方法⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;⑸列举法可表示有限集,也可以表示无限集。
当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。
⑹对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为{}1,2,3,4,5,......例1.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除而且大于4小于15的自然数组成的集合;(3)从51到100的所有整数的集合;(4)小于10的所有自然数组成的集合;(5)方程2x x=的所有实数根组成的集合;⑹由1~20以内的所有质数组成的集合。
⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:{}()x A p x∈如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;说明:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
写法{实数集},{R}也是错误的。
用符号描述法表示集合时应注意:1、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?2、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。
例2.用描述法表示下列集合:(1)由适合x2-x-2>0的所有解组成的集合;(2)到定点距离等于定长的点的集合;(3)方程220x-=的所有实数根组成的集合(4)由大于10小于20的所有整数组成的集合。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
练习:5页2题1.用适当的方法表示集合:大于0的所有奇数2.集合A={x|43x-∈Z,x∈N},则它的元素是。
3.已知集合A={x|-3<x<3,x∈Z},B={(x,y)|y=x2+1,x∈A},则集合B用列举法表示是4.判断下列两组集合是否相等?(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}二、集合的分类观察下列三个集合的元素个数1. {4.8, 7.3, 3.1, -9};2. {x ∈R ∣0<x<3};3. {x ∈R ∣x 2+1=0}由此可以得到集合的分类:::()em pty set ⎧⎪⎨⎪∅-⎩有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含有任何元素的集合三、文氏图集合的表示除了上述两种方法以外,还有文氏图法,即 画一条封闭的曲线,用它的内部来表示一个集合,如下图所示:典型例题【题型一】 元素与集合的关系1、设集合A ={1,a ,b },B={a ,a 2,ab },且A=B ,求实数a ,b.2、已知集合A ={a+2,(a+1)2,a 2+3a +3}若1∈A,求实数a 的值。
【题型二】 元素的特征1、⑴已知集合M={x ∈N ∣x+16∈Z },求M ⑵已知集合C={x+16∈Z ∣x ∈N },求C 点拔:要注意M 与C 的区别,集合M 中的元素是自然数 x ,满足x+16是整数,集合 C 是的元素是整数x +16,满足条件是x ∈N练习:1.给出下列四个关系式:①3∈R ;②π∉Q ;③0∈N ;④0∉φ其中正确的个数是() A.1B.2C.3D.42.方程组 的解组成的集合是( )A.{2,1}B.{-1,2}C.(2,1)D.{(2,1)}3.把集合{-3≤x ≤3,x ∈N }用列举法表示,正确的是( )A.{3,2,1}B.{3,2,1,0}C.{-2,-1,0,1,2}D.{-3,-2,-1,0,1,2,3}4.下列说法正确的是( )⎩⎨⎧=-=+13y x y x A 表示任意一个集合A 3,9,27 表示{3,9,27}A.{0}是空集B. {x ∈Q ∣x6∈Z }是有限集 C.{x ∈Q ∣x 2+x+2=0}是空集 D.{2,1}与{1,2}是不同的集合二填空题:5、以实数为元素构成的集合的元素最多有 个;6、以实数a 2,2-a .,4为元素组成一个集合A ,A 中含有2个元素,则的a 值为 .7、集合M={y ∈Z ∣y=x+38,x ∈Z },用列举法表示是M = 。
8、已知集合A ={2a,a 2-a },则a 的取值范围是 。
三、解答题:9、设A ={x ∣x 2+(b+2)x+b+1=0,b ∈R }求A 的所有元素之和。
10.已知集合A ={a,2b-1,a+2b }B={x ∣x 3-11x 2+30x=0},若A=B ,求a,b 的值。
1.1.2 集合间的基本关系比较下面几个例子,试发现两个集合之间的关系:(1){1,2,3}A =,{1,2,3,4,5}B =;(2){}C =北京一中高一一班全体女生,{}D =北京一中高一一班全体学生;(3){|}E x x =是两条边相等的三角形,{}F x x =是等腰三角形观察可得:⒈子集:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这 两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:()A B B A ⊆⊇或 读作:A 包含于B ,或B 包含A当集合A 不包含于集合B 时,记作A ⊈B(或B ⊉A) 用V enn 图表示两个集合间的“包含”关系:⒉集合相等定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。
如:A={x|x=2m+1,m ∈Z},B={x|x=2n-1,n ∈Z},此时有A=B 。
⒊真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集。
记作:A B (或B A ) 读作:A 真包含于B (或B 真包含A )4.空集定义:不含有任何元素的集合称为空集。
记作:φ用适当的符号填空:φ {}0; 0 φ ; φ {φ}; {}0 {φ}5.几个重要的结论:⑴空集是任何集合的子集;对于任意一个集合A 都有φ⊆A 。
⑵空集是任何非空集合的真子集;⑶任何一个集合是它本身的子集;⑷对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。
练习:填空:⑴2 N ; {2} N ; φ A;B A 表示:A B ⊆⑵已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N},则A B ; A C ; {2} C ; 2 C说明:⑴注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系; ⑵在分析有关集合问题时,要注意空集的地位。