线性代数第五章 课后习题及解答教学提纲
线性代数第五章 课后习题及解答
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT-因此,A 的属于1λ的所有特征向量为:TTk k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任意常数)。
高教线性代数第五章二次型——课后习题答案
第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。
1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; 3)32312122216223x x x x x x x x -+--;4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++;6)4342324131212422212222442x x x x x x x x x x x x x x x ++++++++; 7)43322124232221222x x x x x x x x x x ++++++.解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x (1)则()312221321444,,y y y y x x x f ++-=2223233121444y y y y y y ++-+-= ()222333142y y y y ++--=, 再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+=33223112121zy z y z z y (2)则原二次型的标准形为()2322213214,,z z z x x x f ++-=,最后将(2)代入(1),可得非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121z x z z z x z z z x (3)于是相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=100211212102110001021021100011011T ,且有⎪⎪⎪⎭⎫ ⎝⎛-='100040001AT T 。
2)已知()=321,,x x x f 23322221214422x x x x x x x ++++, 由配方法可得()()()233222222121321442,,x x x x x x x x x x x f +++++= ()()2322212x x x x +++=,于是可令⎪⎩⎪⎨⎧=+=+=333222112xy x x y x x y ,则原二次型的标准形为()2221321,,y y x x x f +=, 且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎭⎫⎝⎛--=100210211T ,且有⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--='000010001100210211420221011122011001AT T 。
《线性代数》第5章习题解答(r)new2_1
习题五(P213-215)1.写出下列二次型的矩阵:.)(),,,().4(;),,,().3(;),,,().2(;8223),,().1(211221111122142314321222∑∑∑∑==-=+=-=+=-=++-+-=ni i n i in n i i ini in x xn x x x f x xxx x x f x x x x x x x x f yz xz xy z y x z y x f解:(1)12123111442-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;(2)12121212000000000000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦;(3)1211221122111211111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) 111111111n n n ---⎡⎤⎢⎥---⎢⎥⎢⎥⎢⎥---⎣⎦。
2.若二次型123(,,)T f x x x X AX =对任意向量123(,,)T x x x 恒有0),,(321=x x x f ,试证明:A 是零矩阵.解:取(1,0,0),(0,1,0),(0,0,1)T T TX X X ===等三个向量代入0,TX AX =则二次型的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A 的所有元素),3,2,1,3,2,1(0===j i a ij 从而有A =0. 3.设B A ,是n阶实对称矩阵,且对任意的n维向量x 有BX X AX X ''=成立,试证明:.B A = 证:设,21][,][,)',,,(n n ij n n ij n b B a A x x x X ⨯⨯=== 则AX X '中的j i x x 的系数BX X a a a ij ji ij ',2=+中j i x x 的系数为,2ij ji ij b b b =+比较j i x x 的系数知),,,2,1,(n j i b a ij ij ==所以.B A = 4.试证明:不可能有实数矩阵⎥⎦⎤⎢⎣⎡=d c b a C 使1010,0101TC C ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦即⎥⎦⎤⎢⎣⎡1001与⎥⎦⎤⎢⎣⎡-1001是不合同的. 证:用反证法.若,10011001'⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡d c b a d c b a 则推得,122-=+d b 这是不可能的.所以⎥⎦⎤⎢⎣⎡1001与⎥⎦⎤⎢⎣⎡-1001是不.5. 设D C B A ,,,均为n阶对称矩阵,且B A ,是合同的,D C ,是合同的,试证明:⎥⎦⎤⎢⎣⎡B A 00与⎥⎦⎤⎢⎣⎡D C00也是合同的.证: 设,','D CQ Q B AP P ==则.00000000'⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D BQ P C A Q P 所以矩阵⎥⎦⎤⎢⎣⎡B A 00与矩阵⎥⎦⎤⎢⎣⎡D C00是合同的. 6. 用正交变换法,把下列二次型化为标准形:.32414321242322213231212322212222).2(;4844).1(x x x x x x x x x x x x f x x x x x x x x x f --+++++=---++=解:(1).正交变换矩阵为,032622231322326222⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Q 标准形为;455232221y y y f -+= (2) 正交变换矩阵为,0000212121212121212121212121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=Q 标准形为.324232221y y y y f +-+=7. 用配方法,把下列二次型化为标准形:2212121323121323(1).3226;(2).422.f x x x x x x x x f x x x x x x =--+-=-++解:(1).由已知2322321)2()(x x x x x f +-+-=,令,2333223211⎪⎩⎪⎨⎧=+=+-=x y x x y x x x y 则,33321221232322111⎪⎩⎪⎨⎧=-=-+=y x y y x y y y x 可逆线性变换矩阵为,1000121212321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=C 所以标准形为;2221y y f -=(2).先令⎪⎩⎪⎨⎧=-=+=,33212211yx y y x y y x 则,4)(4232223211y y y y f ++--=再令⎪⎩⎪⎨⎧==-=,33223111yz y z y y z 则⎪⎩⎪⎨⎧=+-=++=,33321212321211z x z z z x z z z x 可逆线性变换矩阵为,10011112121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=C 所以标准形为.44232221z z z f ++-= 8. 用初等变换法, 把下列二次型化为标准形:.22).2(;6422).1(3221232132********x x x x x x f x x x x x x x x f ++-=+-+-=解:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎪⎪⎭⎫ ⎝⎛100101100030001100010001032321211).1(531313E A ,令,10010113531Y X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= 则;3233132221y y y f +-= (2).令,110110111Y X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 则.2221y y f -= 9.已知二次型),0(233232232221>+++=a x ax x x x f 通过正交替换QY X =化为标准形,52232221y y y f ++=求参数a 及正交矩阵Q .解: 给定二次型及其标准形的矩阵分别为:,521,3030002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B a a A 由,4,10218,22==-=a a B A 得2=a (去舍2-=a ),与特征值 5,2,1321=λ=λ=λ 对应的特征向量分别为,)'1,1,0(,)'0,0,1(,)'1,1,0(321=α=α-=α 因特征向量321,,ααα是相互正交的,将它们单位化后得所求的正交巨阵.0001022222222⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Q10.求二次型11222121121(,,,)22n n n ini i i i f x x x x xx x x --+===+++∑∑ 的标准形,并指出该二次型的秩和正惯性指数。
线性代数第五章练习及解答
对应于同一特征值的不同特征向量的非零线性组合是 A 的特征向量。 证明由本节第 3 题可知属于不同特征值的特征向量的和不是特征向量,而属于同一特征值的不同特征 向量满足
Aξ1 = λξ1 , Aξ2 = λξ2 , 于是 A(k1 ξ1 + k2 ξ2 ) = k1 Aξ1 + k2 Aξ2 = λ(k1 ξ1 + k2 ξ2 ) 由定义命题得证 11.λ ̸= 0 是矩阵 A 的特征值,求 A−1 , A⋆ 的特征值。
证明:因为 A + E = A + AAT = A(A + E )T ,那么 |A + E |(1 − |A|) = 0,于是 |A + E | = 0, 即 λ = −1 是 A 的一个特征值
5. 设 A1 , A2 , A3 是 3 个非零的 n 阶矩阵 n ≥ 3 , 满足 A2 i = Ai (i = 1, 2, 3), 且 Ai Aj = O (i ̸= j ; j = 1, 2, 3)
1
若 Ai 有非零和 1 的特征值 λ,由于 λ2 − λ = 0, 故有且仅有 0 和 1 为特征值
(2) 若 Aj ξ = ξ, 那么 Ai (Aj ξ ) = Ai ξi , 即 Ai ξ = 0ξ (3) 反证,若三个向量线性相关不妨设 α3 = k1 α1 + k2 α2
那么 A3 α3 = k1 A3 α1 + k2 A3 α2 , 由 (2) 知 A3 αj = 0(j = 1, 2) 那么 α3 = 0 与特征向量的定义矛盾 2 0 0 2 0 0 与 B = 6. 已知矩阵 A = 0 0 y 0 0 1 0 0 −1 0 1 x P −1 AP = B
线性代数第五章(答案)
第五章 相似矩阵与二次型一、是非题〔正确打√,错误打×〕1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. <√>2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. <√>3.n 阶正交阵A 的n 个行<列>向量构成向量空间n R 的一个规X 正交基. <√>4.若A 和B 都是正交阵,则AB 也是正交阵. <√>5.若A 是正交阵,Ax y =,则x y =. <√>6.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. <×>7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. <×>8.n 阶矩阵A 在复数X 围内有n 个不同的特征值. <×>9. 矩阵A 有零特征值的充要条件是0=A . <√>10.若λ是A 的特征值,则)(λf 是)(A f 的特征值<其中)(λf 是λ的多项式>.<√>11.设1λ和)(212λλλ≠是A 的特征值,1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. <×>12.T A 与A 的特征值相同. <√>13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. <×>14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足:B PAP =-1,则A 与B 有相同的特征值. <√>15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. <√>16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. <√>17.实对称矩阵A 的非零特征值的个数等于它的秩. <√>18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. <√>19.实对称阵A 与对角阵 Λ相似:Λ=-AP P 1,这里P 必须是正交阵. <×>20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. <×>21.任一实对称矩阵合同于一对角矩阵. <√>22.二次型Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为标准型.<×>23.任给二次型Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化为规X 型.<×>二、填空题1.向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,求两向量2α=____,3α=____,使321,,ααα两两正交.Ans:()T 1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α 2.若A 是正交阵,即E A A T =,则=A _____. Ans:1或-13.设⎪⎪⎪⎭⎫ ⎝⎛--=121001065A ,则A 的特征值为________.<-1,2,3>4.n 阶方阵A =)(ij a 的特征值为n λλλ,,,21 ,则=A ___________,=+++nn a a a 2211_____________.5.设二阶行列式A 的特征值为2,3,λ,若行列式482-=A ,则____=λ.<-1>6.设三阶矩阵A 的特征值为-1,1,2,则=--E A 14_____,=-+*E A A 23______. Ans:-15,97. 已知⎪⎪⎪⎭⎫ ⎝⎛=x A 00110002的伴随矩阵*A 有一特征值为2-,则=x -1或2 .8. 若二阶矩阵A 的特征值为1-和1,则2008A =E .9.当x =___时,矩阵⎪⎪⎪⎭⎫ ⎝⎛=01010110x A 能对角化.<-1,见教材>10.设A 为2阶矩阵,1α,2α是线性无关的二维列向量,01=αA ,2122ααα+=A ,则A 的非零特征值为_______.提示:由⎪⎪⎭⎫ ⎝⎛=1200)()(2,12,1ααααA 知A 与⎪⎪⎭⎫ ⎝⎛1200相似,⎪⎪⎭⎫ ⎝⎛1200非零特征值为1.11、设A 为正交矩阵,λ为A 阵的特征值,则λA E -=_____0___.12、设3阶方阵A 的特征值为互不相同,若0=A 行列式则A 的秩为_____.<2>13.<3分>二次型32312123222144)(x x x x x x x x x a f +++++=经过正交变换Py x =可化为标准型216y f =,则a =_____.<a =2>14.二次型()222123123121323,,222f x x x x x x x x x x x x =+++++的秩是______; 二次型432143212),,,(x ax x x x x x x f -=的秩为2,则=a .15.已知二次型yz xz xy z y x a f 222)(222-++++=,a 的取值为_____时f 为正定, a 的取值为_____时f 为负定. <1;2- a a >16. 二次型322322214332x x x x x f +++=经过正交变换=⎪⎪⎪⎭⎫ ⎝⎛321x x x ______⎪⎪⎪⎭⎫ ⎝⎛321y y y 化为标准形=f _______,从而1),,(321=x x x f 表示的曲面类型是_________. Ans:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3212121212132100001y y y x x x ,23222152y y y f ++=,椭球面 三、 选择题 1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一特征值为< C >.<A> 22a ; <B>22a - ; <C>22-a ; <D>22--a .2.若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有<A >个线性无关.<A> 3个; <B> 1个; <C> 2个; <D> 4个.3.特征值一定是实数的矩阵是<B ><A>正交矩阵 <B> 对称矩阵<C>退化矩阵 <D>满秩矩阵4. 设α是矩阵A 对应于其特征值λ的特征向量,则其对角化矩阵AP P 1- 对应于λ的特征向量为< D >.<A>α1-P ; <B>αP ; <C>αT P ; <D>α .5. 若A 为n 阶实对称矩阵,且二次型Ax x x x x f T n =),,,(21 正定,则下列结论不正确的是< C > .(A) A 的特征值全为正;<B> A 的一切顺序主子式全为正; <C> A 的元素全为正;<D>对一切n 维列向量x ,Ax x T 全为正.6.下列各式中有<A >等于22212136x x x x ++.<A> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛21213421,x x x x ; <B> ()112213,23x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; <C> ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--21213511,x x x x ; <D> ()112211,43x x x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 7.矩阵〔 C 〕是二次型22212136x x x x ++的矩阵. <A>⎪⎪⎭⎫ ⎝⎛--3111;<B>⎪⎪⎭⎫ ⎝⎛3421;<C>⎪⎪⎭⎫ ⎝⎛3331; <D>⎪⎪⎭⎫ ⎝⎛3151;8.设A 、B 为同阶方阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,且BX X AX X T T =,当〔 D 〕时,B A =. <A>)()(B r A r =; <B>A A =T ;<C>B B =T ; <D>A A =T 且B B =T ;9.A 是n 阶正定矩阵的充分必要条件是〔 D 〕. <A>0>A ; <B>存在n 阶矩阵C,使C C A T =; <C>负惯性指标为零; <D>各阶顺序主子式均为正数; 10.1)()()(),,(22221,21--++-+-=n a x a x a x x x x f n n 是< B >. <A>非正定二次型 ;<B>正定; <C>负定; <D>不定;11.正定二次型),,(,21n x x x f 的矩阵应是〔 B 〕.<A>非对称且左右对角线上元素都是正数;<B>对称且各阶顺序子式都是正数;<C> 对称且所有元素都是正数;<D> 对称且矩阵的行列式是正数;12.使实二次型 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x k k k k k z y x 0101),,( 正定的参数k 应该是< C >.<A>0>k ;<B>02>k ;<C>不存在; <D>0<k ;13.阶矩阵A 为正定的充分必要条件是< C >. <A>0>A ; <B> 存在n 阶矩阵,使A=C C T ;<C> A 的特征值全大于0; <D> 存在n 维列向量α≠0,有0>ααA T ;14.次型232221321)2()1()1()(x k x k x k x x x f -+-++=,当< B >时是正定的.<A>k>0; <B> k>2; <C> k>1;<D> k=1;15.设A ,B 为正定矩阵,则< C >.<A>AB 、B A +都正定; <B>AB 正定,B A +不一定正定; <C>AB 不一定正定,B A +正定; <D>AB 和B A +都不一定正定;16.设A ,B 都是n 阶实对称矩阵,且都正定,那么AB 是<C> <A>实对称矩阵 <B> 正定矩阵<C>可逆矩阵 <D>正交矩阵17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B ,则A 与B<A>合同, 且相似. <B> 合同, 但不相似 .<C>不合同, 但相似. <D> 既不合同, 又不相似.[ B ]18. 设矩阵⎪⎪⎭⎫ ⎝⎛=1221A , 则在实数域上与A 合同矩阵为〔 D 〕 <A> ⎪⎪⎭⎫ ⎝⎛--2112 <B>⎪⎪⎭⎫ ⎝⎛--2112 <C> ⎪⎪⎭⎫ ⎝⎛2112<D> ⎪⎪⎭⎫ ⎝⎛--1221 19.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是<A> 01≠λ <B> 02≠λ <C> 01=λ <D>02=λ [ B ]20.n 阶实对称矩阵A 为正定矩阵的充分必要条件是 < C > <A> 所有k 级子式为正),,2,1(n k = <B>A 的所有特征值非负 <C> 1-A 为正定矩阵 <D>秩<A >=n。
线性代数第五章答案解析
第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T=E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量.对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A 的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T)32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T)31 ,32 ,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T)2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x . 因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T .令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ, 从而A =P ΛP -1, A k =P Λk P -1. 因此ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161 ⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫ ⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p .当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3=(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x yy y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为a 11=1, 2111a a a -=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性: (1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A . 因为0211<-=a , 0116112>=--, 038||<-=A ,所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4.解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A . 因为 0111>=a , 043111>=--, 06902031211>=--, 024>=A ,所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U T U , 即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使P T AP =diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ, 即A =P ΛP T ,其中λ1, λ2, ⋅ ⋅ ⋅, λn 均为正数. 令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1, A =P Λ1Λ1T P T .再令U =Λ1T P T , 则U 可逆, 且A =U T U .。
线性代数第五章答案
第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记 γ=k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r =-(l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r ), 则k 1, k 2, ⋅⋅⋅, k n -r 不全为0, 否则l 1, l 2, ⋅⋅⋅, l n -t 不全为0, 而l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0,与b 1, b 2, ⋅⋅⋅, b n -t 线性无关相矛盾.因此, γ≠0, γ是A 的也是B 的关于λ=0的特征向量, 所以A 与B 有公共的特征值, 有公共的特征向量.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ+2,则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A)的特征值,故|A*+3A+2E|=|-6A-1+3A+2E|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设A、B都是n阶矩阵,且A可逆,证明AB与BA相似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x ,得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T)31 ,32 ,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T)2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T ,p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T . 因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ,A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A n n⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ, 从而A =P ΛP -1, A k =P Λk P -1. 因此 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p .当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223*********y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3;解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3=(x 1+x 3)2+x 32+2x 2x 3;=(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C . (3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=. 令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为 a 11=1, 2111a a a -=, )45(5212111+-=--a a a a . 因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A . 因为 0211<-=a , 0116112>=--, 038||<-=A , 所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4.解 二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛------=19631690230311211A . 因为 0111>=a , 043111>=--, 06902031211>=--, 024>=A , 所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U T U , 即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使P T AP =diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ, 即A =P ΛP T ,其中λ1, λ2, ⋅ ⋅ ⋅, λn 均为正数.令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1, A =P Λ1Λ1T P T .再令U =Λ1T P T , 则U 可逆, 且A =U T U .。
线性代数第五章答案
线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法==11111a b , ???? ??-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b (2)---=011101110111) , ,(321a a a解根据施密特正交化方法-==110111a b-=-=123131],[],[1112122b b b a b a b-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b2. 下列矩阵是不是正交阵:(1)---121312112131211; 解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891. 解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3 设x 为n 维列向量 x Tx 1 令H E 2xx T证明H 是对称的正交阵证明因为 HT(E 2xx T )TE 2(xx T )T E 2(xx T )T E 2(x T )T x TE 2xx T所以H 是对称矩阵因为 H THHH (E 2xx T )(E 2xx T )E 2xx T 2xxT (2xx T )(2xx T)E 4xx T 4x (x Tx )x TE 4xx T4xx TE所以H 是正交矩阵4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A B 是n 阶正交阵, 故A1A T B1B T(AB )T(AB )B T A TABB 1A 1AB E故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A故A 的特征值为1(三重). 对于特征值1 由----=+000110101101325213~E A得方程(A E )x 0的基础解系p 1(1 1 1)T向量p 1就是对应于特征值1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A故A 的特征值为10 2139.对于特征值10, 由=000110321633312321~A得方程A x 0的基础解系p 1(1 1 1) T向量p 1是对应于特征值10的特征值向量. 对于特征值21, 由=+000100322733322322~E A得方程(A E )x0的基础解系p 2(1 1 0)T向量p 2就是对应于特征值21的特征值向量对于特征值39, 由--???? ??---=-00021101113333823289~E A得方程(A 9E )x 0的基础解系p 3(1/2 1/2 1)T向量p 3就是对应于特征值39的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A故A 的特征值为121341.对于特征值121, 由=+000000011010011001011001101001~E A得方程(A E )x 0的基础解系p 1(1 0 0 1) Tp 2(0 1 1 0)T向量p 1和p 2是对应于特征值121的线性无关特征值向量.对于特征值341, 由------=-00000000011010011001011001101001~E A得方程(A E )x 0的基础解系p 3(1 0 0 1)Tp 4(0 1 1 0)T向量p 3和p 4是对应于特征值341的线性无关特征值向量.6 设A 为n 阶矩阵证明A T与A 的特征值相同证明因为|ATE ||(A E )T ||AE |T |A E |所以A T与A的特征多项式相同从而A T与A的特征值相同7设n阶矩阵A、B满足R(A)R(B)n证明A与B有公共的特征值有公共的特征向量证明设R(A)r R(B)t则r t n若a1a2a n r是齐次方程组A x0的基础解系显然它们是A的对应于特征值0的线性无关的特征向量类似地设b1b2b n t是齐次方程组B x0的基础解系则它们是B 的对应于特征值0的线性无关的特征向量由于(n r)(n t)n(n r t)n故a1a2a n r b1b2b n t必线性相关于是有不全为0的数k1k2k n r l1l2l n t使k1a1k2a2k n r a n r l1b1l2b2l n r b n r0记k1a1k2a2k n r a n r(l1b1l2b2l n r b n r)则k1k2k n r不全为0否则l1l2l n t不全为0而l1b1l2b2l n r b n r0与b1b2b n t线性无关相矛盾因此0是A的也是B的关于0的特征向量所以A与B有公共的特征值有公共的特征向量8设A23A2E O证明A的特征值只能取1或2证明设是A的任意一个特征值x是A的对应于的特征向量则(A23A2E)x2x3x2x(232)x0因为x0所以2320即是方程2320的根也就是说1或29设A为正交阵且|A|1证明1是A的特征值证明因为A为正交矩阵所以A的特征值为1或1(需要说明)因为|A|等于所有特征值之积又|A|1所以必有奇数个特征值为1即1是A的特征值10设0是m阶矩阵A m n B n m的特征值证明也是n阶矩阵BA 的特征值证明设x是AB的对应于0的特征向量则有(AB)x x于是B(AB)x B(x)或BA(B x)(B x)从而是BA 的特征值且B x 是BA 的对应于的特征向量11 已知3阶矩阵A 的特征值为1 2 3 求|A 35A27A |解令()3527 则(1)3 (2)2(3)3是(A )的特征值故 |A 35A27A ||(A )|(1)×(2)×(3)3231812 已知3阶矩阵A 的特征值为1 2 3 求|A *3A 2E | 解因为|A |12( 3)60 所以A 可逆故A *|A |A 16A 1 A *3A 2E 6A13A 2E 令()6132 则(1)1 (2)5 (3)5是(A )的特征值故 |A *3A 2E ||6A 13A 2E ||(A )|(1)×(2)×(3)15(5)2513 设A 、B 都是n 阶矩阵且A 可逆证明AB 与BA 相似证明取P A 则P 1ABP A 1ABA BA即AB 与BA 相似 14设矩阵=50413102x A 可相似对角化求x解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为l 1=6, l 2=l 3=1.因为A 可相似对角化, 所以对于l 2=l 3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解设l 是特征向量p 所对应的特征值, 则(A -lE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得l =-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A得A 的特征值为1231由-???? ??----=-00011010111325211~r b E A知R (A E )2 所以齐次线性方程组(A E )x 0的基础解系只有一个解向量因此A不能相似对角化16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A由λλλλ-------=-20212022E A (1)(4)(2)得矩阵A 的特征值为122134.对于12, 解方程(A 2E )x 0 即0220232024321=----x x x得特征向量(1 2 2)T单位化得T)32 ,32 ,31(1=p对于21, 解方程(A E )x 0即0120202021321=-----x x x 得特征向量(2 1 2) T单位化得T)32 ,31 ,32(2-=p对于34, 解方程(A 4E )x 0即0420232022321=-------x x x 得特征向量(2 2 1) T单位化得T)31 ,32 ,32(3-=p于是有正交阵P (p 1 p 2 p 3)使P 1AP diag(2 1 4)(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A由λλλλ-------=-542452222E A (1)2(10),得矩阵A 的特征值为121310. 对于121, 解方程(A E )x 0即=???? ?????? ??----000442442221321x x x得线性无关特征向量(2 1 0)T和(2 0 1)T将它们正交化、单位化得T 0) 1, ,2(511-=pT5) ,4 ,2(5312=p对于310, 解方程(A 10E )x 0即=???? ?????? ??-------000542452228321x x x 得特征向量(1 2 2)T单位化得T)2 ,2 ,1(313--=p于是有正交阵P (p 1 p 2 p 3) 使P 1AP diag(1 1 10)17设矩阵------=12422421x A 与-=Λy 45相似求x y 并求一个正交阵P 使P 1AP解已知相似矩阵有相同的特征值显然54y 是的特征值故它们也是A 的特征值因为4是A 的特征值所以)4(9524242425|4|=-=---+---=+x x E A 解之得x 4 已知相似矩阵的行列式相同因为100124242421||-=-------=A yy2045||-=-=Λ所以20y 100 y 5 对于5 解方程(A5E )x 0 得两个线性无关的特征向量(1 0 1) T(12 0)T将它们正交化、单位化得T)1 ,0 ,1(211-=pT)1 ,4 ,1(2312-=p对于4解方程(A 4E )x 0 得特征向量(2 1 2)T单位化得T)2 ,1 ,2(313=p于是有正交矩阵?--=23132212343102313221P 使P 1AP18. 设3阶方阵A 的特征值为122231; 对应的特征向量依次为p 1(0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 解令P (p 1 p 2 p 3) 则P 1AP diag(2 2 1)A P P1因为---=???? ??=--1101110110111111101 1P所以 ???? ??---???? ?-???? ??=Λ=-1101110111000200020111111101P P A------=24435433219 设3阶对称阵A 的特征值为112130 对应1、2的特征向量依次为p 1(122)Tp 2(2 1 2)T求A 解设=653542321x x x x x x x x x A 则A p 12p 1A p22p 2 即=++=++=++222222122653542321x x x x x x x x x ①=-+-=-+-=-+2 22122222653542321x x x x x x x x x ②再由特征值的性质有x 1x 4x 61230 ③由①②③解得 612131xx --= 6221x x =634132x x -=。
线性代数课后习题解答第五章习题详解
第五章 相似矩阵及二次型1.试用施密特法把下列向量组正交化:(1) ⎪⎪⎪⎭⎫⎝⎛=931421111),,(321a a a ; (2) ⎪⎪⎪⎪⎭⎫⎝⎛---=011101110111),,(321a a a 解 (1) 根据施密特正交化方法:令⎪⎪⎪⎭⎫ ⎝⎛==11111a b , [][]⎪⎪⎪⎭⎫ ⎝⎛-=-=101,,1112122b b b a b a b , [][][][]⎪⎪⎪⎭⎫ ⎝⎛-=--=12131,,,,222321113133b b b a b b b b a b a b ,故正交化后得: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=311132013111),,(321b b b .(2) 根据施密特正交化方法:令⎪⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ; [][]⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=123131,,1112122b b b a b a b , [][][][]⎪⎪⎪⎪⎭⎫⎝⎛-=--=433151,,,,222321113133b b b a b b b b a b a b 故正交化后得 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=5431153321531051311),,(321b b b2.下列矩阵是不是正交矩阵?并说明理由:(1) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211; (2) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 (1) 第一个行向量非单位向量,故不是正交阵.(2) 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T ,所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4.设A 与B 都是n 阶正交阵,证明AB 也是正交阵. 证明 因为B A ,是n 阶正交阵,故A AT =-1,B B T =-1E AB A B AB A B AB AB T T T===--11)()(故AB 也是正交阵.5.求下列矩阵的特征值和特征向量:(1)⎪⎭⎫⎝⎛-4211; (2)⎪⎪⎪⎭⎫ ⎝⎛633312321; (3)())0(,12121≠⎪⎪⎪⎪⎭⎫ ⎝⎛a a a a a a a n nΛM .并问它们的特征向量是否两两正交? 解 (1) ① )3)(2(4211--=---=-λλλλλE A . 故A 的特征值为3,221==λλ.② 当21=λ时,解方程0)2(=-x E A ,由⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=-00112211)2(~E A 得基础解系⎪⎭⎫⎝⎛-=111P所以)0(111≠k P k 是对应于21=λ的全部特征值向量. 当32=λ时,解方程0)3(=-x E A ,由⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=-00121212)3(~E A 得基础解系⎪⎪⎭⎫ ⎝⎛-=1212P 所以)0(222≠k P k 是对应于33=λ的全部特征向量.③ 023121)1,1(],[2121≠=⎪⎪⎭⎫ ⎝⎛--==P P P P T 故21,P P 不正交.(2) ① )9)(1(633312321-+-=---=-λλλλλλλE A . 故A 的特征值为9,1,0321=-==λλλ. ② 当01=λ时,解方程0=Ax ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=000110321633312321~A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1111P故)0(111≠k P k 是对应于01=λ的全部特征值向量. 当12-=λ时,解方程0)(=+x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=0112P故)0(222≠k P k 是对应于12-=λ的全部特征值向量 当93=λ时,解方程0)9(=-x E A ,由⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A 得基础解系⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=121213P故)0(333≠k P k 是对应于93=λ的全部特征值向量.③ 0011)1,1,1(],[2121=⎪⎪⎪⎭⎫⎝⎛---==P P P P T , 012121)0,1,1(],[3232=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==P P P P T , 012121)1,1,1(],[3131=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==P P P P T, 所以321,,P P P 两两正交.(3) λλλλ---=-2212221212121n n n n na a a a a a a a a a a a a a a E A ΛMO M M ΛΛ=)(222211n n n a a a +++--Λλλ[])(222211n n a a a +++-=-Λλλ∑==+++=∴ni i na a a a 12222211Λλ, 032====n λλλΛ当∑==ni ia121λ时,()E A λ-⎪⎪⎪⎪⎭⎫⎝⎛------------=-212221212223211212122322n n n n nnn a a a a a a a a a a a a a a a a a a a a a ΛΛMO M M ΛΛΛΛ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛----000000000121ΛΛM M O M M ΛΛn n n n a a a a a a取n x 为自由未知量,并令n n a x =,设112211,,--===n n a x a x a x Λ.故基础解系为⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a P M 211当032====n λλλΛ时,()⎪⎪⎪⎪⎭⎫⎝⎛=⋅-22122212121210n n n n n a a a a a a a a a a a a a a a E A ΛM M M ΛΛ⎪⎪⎭⎫ ⎝⎛00000021~ΛM M M ΛΛn a a a 初等行变换 可得基础解系 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=112312200,,00,00a a P a a P a a P n n M ΛM M综上所述可知原矩阵的特征向量为 ()⎪⎪⎪⎪⎭⎫ ⎝⎛--=112212100,,,a a a a a a a P P P n n n ΛM M M ΛΛΛ6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,⋅⋅⋅,a n-r,b1,b2,⋅⋅⋅,b n-t必线性相关.于是有不全为0的数k1,k2,⋅⋅⋅,k n-r,l1,l2,⋅⋅⋅,l n-t,使k1a1+k2a2+⋅⋅⋅+k n-r a n-r+l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA 的特征值, 且B x 是BA 的对应于λ的特征向量.11. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.解 令ϕ(λ)=λ3-5λ2+7λ, 则ϕ(1)=3, ϕ(2)=2, ϕ(3)=3是ϕ(A )的特征值, 故 |A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ2+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故|A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设B A ,都是n 阶方阵,且0≠A ,证明AB 与BA 相似. 证明 0≠A 则A 可逆BA BA A A A AB A ==--))(()(11 则AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则 (A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量.因此A 不能相似对角化.16.试求一个正交的相似变换矩阵,将下列对称矩阵化为对角矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022; (2)⎪⎪⎪⎭⎫ ⎝⎛----542452222. 解 (1) λλλλ-------=-20212022E A )2)(4)(1(+--=λλλ故得特征值为4,1,2321==-=λλλ. 当21-=λ时,由0220232024321=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----x x x . 解得 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛2211321k x x x . 单位特征向量可取:⎪⎪⎪⎭⎫ ⎝⎛=3232311P 当12=λ时,由0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----x x x . 解得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛2122321k x x x . 单位特征向量可取: ⎪⎪⎪⎭⎫ ⎝⎛-=3231322P 当43=λ时,由0420232022321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------x x x . 解得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1223321k x x x . 单位特征向量可取: ⎪⎪⎪⎭⎫ ⎝⎛-=3132323P得正交阵 ⎪⎪⎪⎭⎫ ⎝⎛--==12221222131),,(321P P P P . ⎪⎪⎪⎭⎫ ⎝⎛-=-4000100021AP P (2) ⎪⎪⎪⎭⎫ ⎝⎛-------=-λλλλ542452222E A )10()1(2---=λλ, 故得特征值为10,1321===λλλ当121==λλ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000442442221321x x x . 解得 ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10201221321k k x x x 此二个向量正交,单位化后,得两个单位正交的特征向量⎪⎪⎪⎭⎫ ⎝⎛-=012511P ; ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=*15452012540122P 单位化得 ⎪⎪⎪⎭⎫⎝⎛=15452352P 当103=λ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x . 解得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛2213321k x x x . 单位化⎪⎪⎪⎭⎫⎝⎛--=221313P . 得正交阵),,(321P P P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=323503215545131155252. ⎪⎪⎪⎭⎫⎝⎛=-1000100011AP P . 17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λy 00040005相似,求y x ,;并求一个正交阵P ,使Λ=-AP P 1.解 方阵A 与Λ相似,则A 与Λ的特征多项式相同,即E E A λλ-Λ=-λλλ---------⇒12422421x λλλ----=4000005y ⎩⎨⎧==⇒54y x .18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以 ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎭⎫⎝⎛------=244354331.19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=.令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此 ⎪⎪⎭⎫ ⎝⎛-=022********A .20.设3阶对称矩阵A 的特征值6,3,3,与特征值6对应的特征向量为)1,1,1(1TP =,求A .解 设⎪⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1116111A , 知① ⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x3是A 的二重特征值,根据实对称矩阵的性质定理知E A 3-的秩为1,故利用 ① 可推出⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---33111333653542653542321~x x x x x x x x x x x x x x x 秩为1. 则存在实的b a ,使得②⎩⎨⎧-=-=)3,,()1,1,1(),3,()1,1,1(653542x x x b x x x a 成立.由①②解得1,4,1564132======x x x x x x .得 ⎪⎪⎪⎭⎫ ⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量. 对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100), ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1). (1)求关系式⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此 ⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x . 解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由 )1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T .令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24.(1) 设⎪⎭⎫⎝⎛--=3223A ,求9105)(A A A -=ϕ;(2) 设⎪⎪⎪⎭⎫ ⎝⎛=122221212A ,求891056)(A A A A +-=ϕ.解 (1) ⎪⎭⎫⎝⎛-=3223A Θ是实对称矩阵. 故可找到正交相似变换矩阵⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P . 使得 Λ=⎪⎭⎫ ⎝⎛=-50011AP P从而11,--Λ=Λ=P P A P P A k k因此 1911091055)(--Λ-Λ=-=P P PP A A A ϕ11011050055001--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=P P P P10004-⎪⎭⎫ ⎝⎛-=P P ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2) 同(1)求得正交相似变换矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=31036312166312166P . 使得 11,500010001--Λ=Λ=⎪⎪⎪⎭⎫ ⎝⎛-=P P A AP P891056)(A A A A +-=ϕ)5)(()56(828E A E A A E A A A --=+-=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⋅Λ=-42223121302221121118P P ⎪⎪⎪⎭⎫ ⎝⎛----=4222112112.25.用矩阵记号表示下列二次型:(1) yz z xz y xy x f 4244222+++++=; (2) ;4427222yz xz xy z y x f ----+=(3) .46242423241312124232221x x x x x x x x x x x x x x f -+-+-+++=解 (1) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121),,(.(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211),,(.(3) ⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211),,,(x x x x x x x x f .26. 写出下列二次型的矩阵:(1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎭⎫ ⎝⎛=1312A .(2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=987654321A .27.求一个正交变换将下列二次型化成标准形:(1) 322322214332x x x x x f +++=;(2) 43324121242322212222x x x x x x x x x x x x f +--++++=.解 (1) 二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=320230002Aλλλλ---=-320230002E A )1)(5)(2(λλλ---=故A 的特征值为1,5,2321===λλλ. 当21=λ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A . 得基础解系 ⎪⎪⎪⎭⎫ ⎝⎛=0011ξ. 取 ⎪⎪⎪⎭⎫ ⎝⎛=0011P当52=λ时,解方程0)5(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A 得基础解系 ⎪⎪⎪⎭⎫⎝⎛=1102ξ. 取 ⎪⎪⎪⎭⎫ ⎝⎛=212102P .当13=λ时,解方程0)(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A 得基础解系 ⎪⎪⎪⎭⎫⎝⎛-=1103ξ. 取 ⎪⎪⎪⎭⎫ ⎝⎛-=212103P ,于是正交变换为⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3213212121021210001y y y x x x . 且有 23222152y y y f ++=. (2) 二次型矩阵为 ⎪⎪⎪⎪⎭⎫⎝⎛----=111111001111011A λλλλλ--------=-1101111001111011E A 2)1)(3)(1(--+=λλλ,故A 的特征值为1,3,14321===-=λλλλ当11-=λ时,可得单位特征向量⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=212121211P ,当32=λ时,可得单位特征向量⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=212121212P , 当143==λλ时,可得单位特征向量⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0210213P ,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2102104P .于是正交变换为 ⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎭⎫ ⎝⎛432143212102121021212121021210212121y y y y x x x x 且有242322213y y y y f +++-=.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21 ,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29.证明:二次型Ax f xT=在1=x 时的最大值为矩阵A 的最大特征值.证明 A 为实对称矩阵,则有一正交矩阵T ,使得B TAT n =⎪⎪⎪⎪⎭⎫⎝⎛=-λλλO 211成立. 其中n λλλ,,,21Λ为A 的特征值,不妨设1λ最大,T 为正交矩阵,则T T T =-1且1=T ,故T T T B T B T A ==-1则Ax x f T =By y BTx T x TT T ==2222211n n y y y λλλ+++=Λ. 其中Tx y =当1====x x T Tx y 时, 即122221=+++n y y y Λ即122221=+++n y y y Λ 1122111)(λλλ==++=y n n y y f 最大最大Λ. 故得证.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32=(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223*********y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2. 令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C . (3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x ,二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为a 11=1, 2111a a a -=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32.判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=;(2)424131212423222162421993x x x x x x x x x x x x f -++-+++=4312x x -解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---=401061112A ,0211<-=a ,0116112>=--,038401061112<-=---, 故f 为负定. (2) ⎪⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A , 0111>=a ,043111>=--, 06902031211>=--,024>=A . 故f 为正定.33.证明对称阵A 为正定的充分必要条件是:存在可逆矩阵U ,使U U A T =,即A 与单位阵E 合同. 证明 A 正定,则矩阵A 满秩,且其特征值全为正.不妨设n λλ,,1Λ为其特征值,n i i ,,10Λ=>λ由定理8知,存在一正交矩阵P使⎪⎪⎪⎪⎭⎫⎝⎛=Λ=n TAP PλλλO 21⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n λλλλλλOO2121 又因P 为正交矩阵,则P 可逆,P P T =-1.所以)(PQ PQ P PQ A TT Q T ⋅==.令U PQT=)(,U 可逆,则U U A T =.。
线性代数第五章答案
l1b1l2b2 lnrbnr0 与b1 b2 bnt线性无关相矛盾
因此 0 是A的也是B的关于0的特征向量 所以A与B有公共的特征值 有 公共的特征向量
8 设A23A2EO 证明A的特征值只能取1或2 证明 设是A的任意一个特征值 x是A的对应于的特征向量 则
(A23A2E)x2x3x2x(232)x0 因为x0 所以2320 即是方程2320的根 也就是说1或2
9 设A为正交阵 且|A|1 证明1是A的特征值 证明 因为A为正交矩阵 所以A的特征值为1或1 (需要说明) 因为|A|等于所有特征值之积 又|A|1 所以必有奇数个特征值为1 即1 是A的特征值
10 设0是m阶矩阵AmnBnm的特征值 证明也是n阶矩阵BA的特征值 证明 设x是AB的对应于0的特征向量 则有
(AB)xx 于是 B(AB)xB(x) 或 BA(B x)(Bx) 从而是BA的特征值 且Bx是BA的对应于的特征向量
11 已知3阶矩阵A的特征值为1 2 3 求|A35A27A| 解 令()3527 则(1)3 (2)2 (3)3是(A)的特征值 故
|A35A27A||(A)|(1)(2)(3)32318
12 已知3阶矩阵A的特征值为1 2 3 求|A*3A2E| 解 因为|A|12(3)60 所以A可逆 故
A*|A|A16A1 A*3A2E6A13A2E 令()6132 则(1)1 (2)5 (3)5是(A)的特征值 故 |A*3A2E||6A13A2E||(A)|
6 设A为n阶矩阵 证明AT与A的特征值相同 证明 因为
线性代数第五章答案
线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。
线性代数第五章习题答案
72 −1
第五章 相似矩阵及二次型
得基础解系 p = −1 . 所以 k p (k = 0) 是对应于 λ1 = λ2 = λ3 = −1 的全部特征值向量. 1 (2) 由 1−λ 2 3 |A − λE | = 2 1−λ 3 = −λ(λ + 1)(λ − 9), 3 3 6−λ
1
b3 = a3 −
[b1 , a3 ] [b2 , a3 ] 1 b1 − b2 = [b1 , b1 ] [b2 , b2 ] 5
−1
3 . 3 4
故正交化后得
0 −1 (b1 , b2 , b3 ) = −1 2 3 1 1 3 70
H T = (E − 2xxT )T = E T − 2(xxT )T = E − 2(xT )T (xT ) = E − 2xxT = H.
所以 H 是对称的. 又
H T H = (E − 2xxT )(E − 2xxT ) = E − 2xxT − 2xxT + 4xxT xxT = E. (xT x = 1)
得 A 的特征值为 λ1 = 0, λ2 = −1, λ3 = 9. 当 λ1 = 0 时, 解方程 Ax = 0, 由 1 2 3 1 2 3 1 −1 0 r2 − 2r1 r +r 0 −3 −3 1 2 0 A= 1 1 2 1 3 , r3 − r1 − r2 r2 ÷ (−3) 3 3 6 0 0 0 0 0 0
0 p3 = 0 , 1
1
1 p4 = 1 . 0
线性代数第五章课后习题与解答
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:2 3(1);3 12 3 2解:I A3 7 0,313373 37 ,12221I A 37 2 3 1 1 3 372 1 0 1 37 6, T所以, ( 1I A)x 0 的基础解系为: (6,1 37) .T因此, A 的属于 1 的所有特征向量为: k 1( 6,1 37) (k 1 0).2I A1 337 211 3731 6372,T所以, ( 2 I A)x 0 的基础解系为: (6,1 37) .T A的属于 2 的所有特征向量为:k2 (6,1 37) (k2 0).因此,3 1 1(2) 2 0 1 ;1 1 23 1 1解:I A 2 1 ( 1)( 22)1 1 2所以,特征值为: 1 1(单根), 2 2 (二重根)2 1 1 1 0 01I A 2 1 1 0 1 11 1 1 0 0 0T 所以,( 1I A)x 0 的基础解系为:( 0,1,1) .TA的属于 1 的所有特征向量为:k1( 0,1,1) (k1 0).因此,1 1 1 1 1 02 I A 2 2 1 0 0 11 1 0 0 0 0T 所以,( ) 02 I A x 的基础解系为:(1,1,0 ).T 因此,A的属于 2 的所有特征向量为:k2(1,1,0) (k2 0).20 0 (3) 111 ;1 1 320 0 解: IA 1 1 1 (32)113所以,特征值为:12 (三重根 )0 0 1 1 11I A 1 1 1 0 0 0 1 11T T所以, ( 1I A)x 0 的基础解系为: (1,1, 0) ,( 1,0 ,1) .因此, A 的属于 1 的所有特征向量为:Tk Tk 1(1,1, 0 )2( 1,0,1) ( k 1, k 2 为不全为零的任 意常数 )。
1 2 3 4 0 1 2 3 (4);0 0 1 2 0 0 0 112 3 4解: I A0 0 0 1 2 1 3 2 ( 1)40 0 0 1所以,特征值为:11(四重根 )0 2 3 41I A 02320 0 0 0T所以,( 1I A) x 0的基础解系为:(1, 0, 0,0) .因此,A的属于1的所有特征向量为:Tk1(1, 0, 0,0 )( k1 0 ) 4 5 2(5) 2 2 1 ;1 1 14 5 2解:I A 2 2 1 ( 31)1 1 1所以,特征值为: 1 1(三重根)3 5 2 1 0 11I A 2 3 1 0 1 11 1 0 0 0 0T 所以,( 1I A)x 0 的基础解系为:( 1,1,1) .因此,A的属于 1 的所有特征向量为:Tk1( 1,1,1) ( k1 0 )2 2 0 (6) 2 1 2 ;0 2 02 2 0解:( 1)( 4)( 2)I A 2 1 20 2所以,特征值为: 1 1(单根), 2 4 (单根), 3 2(单根),1 2 0 1 0 11I A 20 2 0 2 10 2 1 0 0 0T所以,( 1I A)x 0 的基础解系为:( 2, 1,2 ).因此,A的属于 1 的所有特征向量为:Tk1( 2, 1,2) ( k1 0 )2 2 0 1 0 22I A 2 3 2 0 1 20 2 4 0 0 0T 所以,( 2 I A)x 0的基础解系为:(2, 2 ,1) .因此,A的属于 2 的所有特征向量为:Tk2(2, 2,1) ( k2 0 )4 2 0 2 0 12 3 2 0 1 13 I A0 2 2 0 0 0T 所以,( 3I A) x 0的基础解系为:(1,2,2) .因此,A的属于 3 的所有特征向量为:Tk3(1,2,2) ( k3 0 )7 4 12. 已知矩阵A 4 7 1的特征值 1 3 (二重), 2 12 , 求x的值,并求其特征4 4 x向量。
线性代数(含全部课后题详细答案5-1.
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr n。
4 7
4 7
0 0
0 0
0 0
0 0
0 0
x1
13 7
3 7
x3
13 7
x4
x2
4 7
2 7
x3
4 7
x4
25
13 7
令 x3 x4 0,
得
4 7
0
0
又原方程组对应的齐次方程组的通解是
x1 x3
2x2 3
10 x4
1 5
x4
令
x2 x4
1
0
得
1
1 0 0
1
5
令
x2
x4
0
1
得
2
0 3
10 1
2
举例说明消元法具体步骤:
例1:解线性方程组
2 4
x1 x1
2 x1
2 1 3
解:(
A,
b)
4 2
线性代数(同济大学第五版)第五章
十、化二次型为标准形
定理1: 任给可逆矩阵C, 令B=CTAC(A与B为合同 矩阵), 如果A为对称矩阵, 则B也为对称矩阵. 说明1: 若A与B是合同矩阵,则: 1.正(负,零) 特征值的个数相同,2.具有相同的秩. 说明2: 二次型 f 经可逆变换 x=Cy 后, 其秩不变, 但 f 的矩阵由A变为B=CTAC; 用正交变换化二次型为标准形的具体步骤: 1. 将二次型表示成矩阵形式 f = xTAx, 求出A; 2. 求出A的所有特征值1, 2, ·, n ; · · 3. 求出对应特征值i 的正交单位化的特征向量组, 从而有正交规范向量组 1, 2, ·, n ; · · 4. 记P=(1, 2, ·, n ), 作正交变换x=Py, 则得 f 的 · · 标准形: f = 1y12+2y22+·+nyn2 . · ·
十二、正定二次型
如果对任意的 x 0, 都有 f(x)>0, 则称 f 为正定 二次型, 并称对称矩阵A为正定矩阵; 如果对任意的 x 0, 都有 f(x)<0, 则称 f 为负定 二次型, 并称对称矩阵A为负定矩阵. 概念:正惯性指数,负惯性指数 推论: 对称矩阵A为正定的充分必要条件是A的特 征值全为正. 定理3(霍尔维茨定理): (1)对称矩阵A为正定的充 分必要条件是A的各阶主子式为正, 即
七、相似矩阵
P-1AP = B 定理1: 若n阶矩阵A与B相似, 则A与B的特征多项 式相同, 从而A与B的特征值亦相同. 推论: 若n阶方阵A与对角阵=diag(1, 2,·, n ) · · 相似, 则1, 2,·, n 既是A的n个特征值. · · 相似矩阵的性质: 若A与B相似, 则Am与Bm相似(m为正整数). (A)与 (B) 相似 当矩阵A与对角阵=diag(1, 2,·, n )相似时, · · 则 (A)= P()P-1. 而
线性代数第五习题答案详解
第五章n 维向量空间习题一1. 解:a-b = a+(-b)= (1,1,0)T +(0,-1,-1)T = (1,0,-1)T3a+2b-c = 3a+2b+(-c)= (3,3,0)T +(0,2,2)T +(-3,-4,0)T = (0,1,2)T2. 解: 3(a 1-a)+2(a 2+a) = 5(a 3+a) 3a 1+2a 2+(-3+2)a = 5a 3+5a 3a 1+2a 2+(-a) = 5a 3+5a3a 1+2a 2+(-a)+a+(-5)a 3 = 5a 3+5a+a+(-5)a 3 3a 1+2a 2+(-5)a 3 = 6a61[3a 1+2a 2+(-5)a 3] = 616a21a 1+31a 2+(-65)a 3 = a将a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,-1,1)T 代入a =21a 1+31a 2+(-65)a 3 中可得: a=(1,2,3,4)T .3. (1) V 1是向量空间.由(0,0,…,0)∈V 1知V 1非空.设a=(x 1,x 2,…,x n )∈V 1,b=(y 1,y 2,…,y n )∈V 1,则有x 1+x 2+…+x n =0,y 1+y 2+…+y n =0.因为(x 1+y 1)+(x 2+y 2)+…+(x n +y n )= (x 1+x 2+…+x n )+( y 1+y 2+…+y n )=0所以a+b=( x 1+y 1,x 2+y 2,…,x n +y n )∈V 1.对于k ∈R ,有 kx 1+kx 2+…+kx n =k(x 1+x 2+…+x n )=0所以ka=( kx 1,kx 2,…,kx n ) ∈V 1.因此V 1是向量空间.(2) V 2不是向量空间.因为取a=(1, x 2,…,x n )∈V 2 ,b=(1, y 2,…,y n )∈V 2,但a+b=(2, x 2+y 2,…,x n +y n )∉V 2.因此V 2不是向量空间.习 题 二1. 求向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式:(1) 解:设向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=k 1a 1+k 2a 2+k 3a 3+k 4a 4其中, k 1,k 2,k 3,k 4为待定常数.则将b=(0,2,0,-1)T ,a 1=(1,1,1,1)T ,a 2=(1,1,1,0)T ,a 3=(1,1,0,0)T ,a 4=(1,0,0,0)T 向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式中可得: (0,2,0,-1)T =k 1(1,1,1,1)T +k 2(1,1,1,0)T +k 3(1,1,0,0)T +k 4(1,0,0,0)T 根据对分量相等可得下列线性方程组:⎪⎪⎩⎪⎪⎨⎧-====++++++1201213214321k k k k k k k k k k解此方程组可得:k 1=-1,k 2=1,k 3=2,k 4=-2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-a 1+a 2+2a 3-2a 4 .(2) 与(1)类似可有下列线性方程组:⎪⎪⎩⎪⎪⎨⎧===-=+++++++++121332223212143214321k k k k k k k k k k k k k由方程组中的第一和第二个方程易解得:k 2=4,于是依次可解得:k 1=-2,k 3=-9, k 4=2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-2a 1+4a 2-9a 3+2a 4 .2.(1) 解:因为向量组中向量的个数大于每个向量的维数,由推论2知a 1,a 2 ,a 3,a 4线性相关.(2) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛=400510111220510111331621111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.(3) 解:()⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-=00021011142012601117131442111321a a a因为()32321<=a a a R所以a 1,a 2,a 3线性相关.(4) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=500410111320410111211301111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.3. 证明:假设有常数k 1,k 2,k 3,使 k 1b 1+k 2b 2+k 3b 3=0又由于b 1=a 1,b 2=a 1+a 2,b 3=a 1+a 2+a 3,于是可得 k 1a 1+k 2(a 1+a 2)+k 3(a 1+a 2+a 3)=0 即(k 1+k 2+k 3)a 1+ (k 2+k 3)a 2+k 3a 3=0 因为a 1,a 2,a 3线性无关,所以有⎪⎩⎪⎨⎧==+=++000332321k k k k k k 解得⎪⎩⎪⎨⎧===000321k k k因此向量组b 1,b 2,b 3线性无关.4. 设存在常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0因为b 1=a 1+a 2,b 2= a 2+a 3,b 3=a 3+a 4,b 4= a 4+a 1 于是可得:k 1 (a 1+a 2)+k 2(a 2+a 3)+k 3(a 3+a 4)+k 4(a 4+a 1)=0 整理得:(k 1+k 4)a 1+ (k 2+k 1)a 2+(k 2+k 3)a 3+(k 3+k 4)a 4=0, (下用两种方法解)法 一:因为a 1,a 2,a 3,a 4为同维向量,则 (1) 当向量组a 1,a 2,a 3,a 4线性无关时,k 1+k 4=0, k 2+k 1=0,k 2+k 3=0,k 3+k 4=0可解得:k 2=- k 1,k 4=- k 1,k 3=k 1取k 1≠0可得不为0的常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0 因此b 1,b 2,b 3,b 4线性相关。
东北大学线性代数第五章课后习题详解 特征值与特征向量
基本教学要求:1.理解矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量.2.了解相似矩阵的概念和性质.3.了解矩阵对角化的充分必要条件和对角化的方法.4.会用正交矩阵把实对称矩阵相似对角化.第五章矩阵的特征值与特征向量一、矩阵的特征值与特征向量(P107)1. 定义定义5.1 设A为n阶矩阵,如果存在数λ0和非零向量ξ,使得Aξ=λ0ξ, (5.1) 则称λ0是A的特征值,ξ是A的属于特征值λ0的一个特征向量.特征值与特征向量的含义:非零向量ξ使Aξ=λ0ξ⇔(λ0E-A)x=ο有非零解ξ⇔det(λ0E-A)=0⇔λ0是方程det(λE-A)=0的根定义5.2设A为n阶矩阵,称行列式det(λE-A)为矩阵A的特征多项式,det(λE-A)=0为矩阵A的特征方程.易见,若A=diag(λ1,λ2,…,λn),则λ1,λ2,…,λn是A的全部特征值.2. 求特征值与特征向量的步骤步骤1:计算A的特征多项式det(λE-A);步骤2:因式分解det(λE-A),求出全部特征值λ1,λ2,…,λn;步骤3:解齐次线性方程组(λi E-A)x=ο(i=1,2,…,n),求属于λi的特征向量.例5.1(例5.1 P 108) 例5.2(例5.2 P 109)两例说明,不同的矩阵可以有完全相同的特征值.例5.3(例5.3 P 110) 这是一种类型题3. 特征值与特征向量的性质(P 110)性质5.1 设λ1,λ2,…,λn 是n 阶矩阵A 的全部特征值,则nniii i 1i 1a===λ∑∑, (5.2)12n det A =λλλ. (5.3)其中a 11+a 22+…+a nn 称为矩阵A 的迹. (性质5.1 P 110)推论 矩阵A 可逆的充分必要条件是A 的特征值都不为零. (推论 P 110)性质5.2 设λ是矩阵A 的特征值,ξ是A 的属于λ的特征向量,p(x )是关于x 的多项式,则p(λ)是矩阵p(A )的特征值,ξ是p(A )属于特征值p(λ)的特征向量. (性质5.2 P 110)例5.4(例5.4 P 111) 设三阶矩阵A 的特征值是1,2,3,求行列式|A *-3A+2E|. 解 A(A *-3A+2E)=|A|E-3A 2+2A =-3A 2+2A+6E |A *-3A+2E|=|-3A 2+2A+6E|/|A|=(-3×12+2×1+6)(-3×22+2×2+6)(-3×32+2×3+6)/6 =5×(-2)×(-15)/6=25.注意:如果A 不可逆,在本题的条件下是不能计算|A *-3A+2E|的.性质5.3 设λ1,λ2,…,λs 是矩阵A 的互异特征值,ξ1,ξ2,…,ξs 是分别属于它们的特征向量,那么ξ1,ξ2,…,ξs线性无关. (性质5.3 P 111)性质5.4设λ1,λ2是矩阵A的两个互异的特征值,ξ1,ξ2,…,ξs和η1,η2,…,ηt分别是属于λ1,λ2的线性无关的特征向量,那么ξ1,ξ2,…,ξs,η1,η2,…,ηt线性无关. (性质5.4 P111)证设数k1,k2,…,k s和l1,l2,…,l t使k1ξ1+k2ξ2+…+k sξs+l1η1+k2η2+…+k tηt=ο. (1)令ξ=k1ξ1+k2ξ2+…+k sξs,η=l1η1+k2η2+…+k tηt,则ξ,η分别是λ1,λ2的特征向量.若ξ≠ο,则η=-ξ≠ο,那么由已知条件可知,k1,k2,…,k s与l1,l2,…,l t都不全为零,但ξ+η=ο却与性质5.3矛盾.矛盾说明ξ=η=ο,式(1)成立当且仅当k1=k2=…=k s=l1=l2=…=l t=0,即ξ1,ξ2,…,ξs,η1,η2,…,ηt线性无关.推论矩阵A的全部互异特征值的所有线性无关的特征向量都是线性无关的. (P112)二、矩阵相似对角化(P112)1. 定义定义5.3设A,B为n阶矩阵,若有可逆矩阵P,使P-1AP = B,则称B是A的相似矩阵,或称A与B相似,称运算P-1AP是对A做相似变换,P是把A变为B的相似变换矩阵.A相似B ⇔∃P,∂P-1AP=B.2. 矩阵相似的性质定理5.1相似矩阵有相同的特征值. (定理5.1 P112).证因为A相似B ⇔∃P,∂P-1AP=B,所以det(λE-B)=det(λE-P-1AP)=det[P-1(λE-A)P]=det(P-1)det(λE-A)det(P)=det(λE-A).从而A与B有相同的特征值.定理5.1 的逆命题不成立.例如,1001⎛⎫⎪⎝⎭与⎛⎫⎪⎝⎭1011的特征值相同,但它们不相似.推论1若A与对角矩阵diag(λ1,λ2,…,λn)相似,则λ1,λ2,…,λn是A的n个特征值. (推论 P112) 推论2 若A与B相似,则det(A)=det(B).推论3设A与B相似,f(x)是多项式,则f(A)与f(B)相似,且det[f(A)]=det[f(B)].例5.5(例5.5 P112) 设矩阵224A=a31003⎛⎫⎪-⎪⎪⎝⎭与100B04000b⎛⎫⎪= ⎪⎪⎝⎭相似,求a,b的值.解A与B相似5b8,a1,4b3(62a)b 3.+==⎧⎧⇒⇒⎨⎨=-=⎩⎩例5.6 设A与D相似,且D=diag(-1,2,0,1),求det(2A5-3A4+A2-4E).解A与D相似⇒2A5-3A4+A2-4E与2D5-3D 4+D 2-4E相似⇒|2A5-3A4+A2-4E|=|2D 5-3D 4+D 2-4E|=(2×(-1)5-3×(-1)4+(-1)2-4)(2×25-3×24+22-4)(-4)(2×15-3×14+12-4)=-211.3. 矩阵相似对角化(P113)分析:A与D=diag(λ1,λ2,…,λn)相似⇔∃P,∂P-1AP=D.若设P=(ξ1,ξ2,…,ξn),则P-1AP=D ⇔A(ξ1,ξ2,…,ξn)= (ξ1,ξ2,…,ξn)D⇔Aξi=λiξi, i=1,2,…,n⇔ξi(i=1,2,…,n)是A的属于λi的特征向量,且ξ1,ξ2,…,ξn线性无关由此,有如下重要结论:定理5.2n阶矩阵A与对角矩阵相似的充分必要条件是A有n个线性无关的特征向量. (定理5.2 P114)推论 如果n 阶矩阵A 有n 个互异的特征值,则A 与对角矩阵相似. (推论 P 114)例如,例5.1中的A 不能与对角矩阵相似,而例5.2中的A 与diag(1,1,4)相似.例5.7 对于例5.2中的A ,求A 2014.解 由于A 的3个特征向量ξ1=(2,-1,0)T ,ξ2 =(4,0,-1)T ,ξ3=(1,1,0)T 线性无关,所以A 与diag(1,1,4)相似. 令P=(ξ3,ξ1,ξ2),则A=Pdiag(4,1,1)P -1,20142014120142014201420142014201420144A P 1P 112441241 1101114300110034241241 4101143001003422(41)4(41)1 413-⎛⎫ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=--⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪=-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭+--=-201420142(40.5)4(41).003⎛⎫ ⎪+- ⎪ ⎪⎝⎭关于特征值与特征向量,还有如下结论.定理5.3 设λ0是n 阶矩阵A 的k 重特征值,则属于λ0的线性无关的特征向量的个数不大于k . (定理5.3 P 115)定理5.3表明,若λ是n 阶矩阵A 的k 重特征值,则n-R(λ0E-A)≤k ,且A 的线性无关特征向量的总数≤n .推论 设λ1,λ2,…,λs 是n 阶矩阵A 的全部互异特征值,其重数分别为k 1,k 2,…,k s ,那么矩阵A 与对角矩阵相似的充分必要条件是属于λi (i=1,2,…,s )的线性无关的特征向量恰有k i 个,即R(λi E-A)=n-k i (i=1,2,…,s). (推论2 P 116)推论表明,矩阵A 与对角矩阵相似的充分必要条件是,每个特征值的重数等于属于它的线性无关特征向量的个数.例如,例5.1、例5.2.例5.8(例5.6 P 116)把矩阵A 相似变换为对角矩阵的步骤:步骤1 求n 阶矩阵A 的全部互异特征值λ1,λ2,…,λs ;步骤 2 求齐次线性方程组(λi E-A)x =ο(i=1,2,…,s)的基础解系(即求A 的n 个线性无关的特征向量ξ1,ξ2,…,ξn );步骤3 相似变换矩阵P=(ξ1,ξ2,…,ξn ),P 使得12s 1k 2k 1s k E E P AP E -λ⎛⎫ ⎪λ⎪=⎪ ⎪ ⎪λ⎝⎭.三、实对称矩阵的相似对角化1. 实对称矩阵的特征值与特征向量的性质定理5.4 实对称矩阵的特征值都是实数. (定理5.4 P 117)定理5.4表明:实对称矩阵的特征向量必为实向量,从而每个特征值的特征向量空间的“基础解系”可正交化.定理5.5 实对称矩阵的属于不同特征值的特征向量是正交的. (定理5.5 P 118)定理5.5表明:实对称矩阵不同特征值的特征向量空间的“基础解系”互相正交.例5.9(例5.7 P118) 设3阶实对称矩阵A不可逆,且满足1010A10100103⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求矩阵A的全部特征值与特征向量.解已知条件表明k(1,1,0)T(k≠0)是A的属于1的全部特征向量,k(0,0,1)T(k≠0)是A的属于3的全部特征向量. 由于A不可逆,所以1,3,0是A的全部特征值,且属于0的一个特征向量显然为(1,-1,0)T,属于0的全部特征向量为k(1,-1,0)T(k≠0).2. 实对称矩阵的正交相似对角化(P118)定理5.6设A为实对称矩阵,则必有正交矩阵Q,使Q -1A Q = Q T A Q为对角矩阵. (定理5.6 P118)定理5.6指出,实对称矩阵必相似对角矩阵,且可正交相似对角矩阵.结合定理5.3的推论,有如下结论.推论 设λ0是n 阶实对称矩阵A 的k 重特征值,那么属于λ0的线性无关的特征向量恰有k 个. (推论 P 120)把实对称矩阵正交相似对角化的步骤(P 120)步骤1 求n 阶矩阵A 的全部互异特征值λ1,λ2,…,λs ;步骤 2 求齐次线性方程组(λ1E-A)x =ο(i=1,2,…,s)的基础解系(即求A 的n 个线性无关的特征向量ξ1,ξ2,…,ξn );步骤3 将每个基础解系分别正交化、规范化(即求n 个正交规范的线性无关的特征向量ε1,ε2,…,εn ); 步骤4 正交相似变换矩阵为Q=(ε1,ε2,…,εn ),Q 使得12s 1k 2k1T s k E E Q AQ Q AQ E -⎛⎫ ⎪⎪==⎪ ⎪ ⎪⎝⎭λλλ.例5.10(例5.8 P 121)例5.11(例5.9 P 122) 设3阶实对称矩阵A 的特征值为1,-1,0,向量α1=(1,1,0)T ,α2=(0,0,1)T 分别是属于特征值1和-1的特征向量,求矩阵A 和A n .解 易见,α3=(1,-1,0)T是属于特征值0的特征向量,正交相似变换矩阵22220Q 22220001⎛⎫⎪=- ⎪ ⎪⎪⎝⎭使得TT1A Q 0Q122220222201 22220022220001100122002222012120 22002222012120.001001001⎛⎫⎪= ⎪ ⎪-⎝⎭⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=-=⎪⎪ ⎪ ⎪⎪ ⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭nn Tn n n 1A Q 0Q 122220222201 22220022220001(1)001220022220 22002222000(1)00112120 12120.00(1)⎛⎫⎪=⎪ ⎪-⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-- ⎪ ⎪⎪ ⎪ ⎪⎪- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪- ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪ ⎪-⎝⎭四、习题(P 127) 选择题 1. C 2. B 3. D 4. B提示:方法一 两矩阵相似 ⇒ 0,2,b 是3个特征值⇒ |2E-A|=0, |bE-A|=0⇒ 13r r 21a102a 0a 2b a a 2b a 4a 01a 11a 1+------=---=-=----13c c 2b 1a 1b a 1a 0aa 2ab 01a b 1b a b 1--------=-=-=------⇒ a=0, b 任意 ⇒ 选B方法二 两矩阵相似 ⇒ 0,2,b 是3个特征值13r r 1a 1101a b a a ba 1a11a1-λ-----λ--=λ-λ----λ---λ-31c c 100a b2a 1a2+=λ-λ----λ- 2222222[(b)(2)2a ][(b 2)2(b a )]b 2b 4b 48a b 2b 4b 48a ()()22=λλ-λ--=λλ-+λ+-++-+++--++=λλ-λ-当a=0,得λ1=0,λ2=(b+2+|b-2|)/2,λ3=(b+2-|b-2|)/2. 此时, 若b ≥2,得λ1=0,λ2=b,λ3=2;若b<2,得λ1=0,λ2=2,λ3=b. 故选B .当a=2,b=0,得λ1=0,λ2=4,λ3=-2,排除C,D. 5. B提示:1Q P 111⎛⎫ ⎪= ⎪⎪⎝⎭11111Q AQ 11P AP 1111---⎛⎫⎛⎫ ⎪ ⎪⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111111112111111111212⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=- ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭6. D提示:方法一设λ是A 的特征值,则λ2+λ=0 (λ2+λ是A 2+A 的特征值)⇒ λ=0或1 (说明A 的特征值只能是0或1)R(A)=3 ⇒ 0是A 的单特征值 ⇒ -1是A 的3重特征值⇒ 选D方法二 R(A)=3 ⇒ 0是A 的单特征值A 2+A=O ⇒ A(A+E)=O ⇒ R(A)+R(A+E)≤4⇒R(E+A)=1 ⇒-1是A的3重特征值⇒选D二、填空题1. 提示:设λ是βαT的非零特征值,ξ是βαT属于λ的特征向量⇒(βαT)ξ=λξ⇒(βαT)(βαT)ξ=λ(βαT)ξ⇒2(βαT)ξ=λ(βαT)ξ⇒2λξ=λ2ξ⇒λ(λ-2)ξ=ο⇒λ=0或2⇒βαT的非零特征值为2关于本题:一般地,若n维列向量α,β满足βαT=a≠0,则βαT的非零特征值为a. 此外,αTβ=a≠0 ⇒α≠ο,β≠ο⇒βαT≠O, R(β)=R(α)=1⇒1≤R(βαT) ≤min(R(β), R(αT))=1⇒R(βαT)=1 ⇒0是βαT的n-1重特征值⇒a是βαT的单特征值⇒R(aE-A)=n-12. 提示:B相似于diag(2,3,4,5)⇒|B-E|=(2-1)(3-1)(4-1)(5-1)=243. 提示:|A|≠0 ⇒A可逆⇒λ-1是A-1的特征值⇒|A|/λ是A*的特征值⇒|A|2/λ2是(A*)2的特征值⇒(|A|2+1)/λ2是(A*)2+E的特征值4. 1个为n,n-1个为0.5. 提示:AA*=5E ⇒B的特征值都为5,任意非零的n维向量皆为B的特征向量三、解答题1.-3.参考:P108-109的例5.1-例5.2、P116的例5.6P121的例5.84.提示:|E-A|=0 ⇒t为任意实数5.提示:参考P110的例5.36.提示:反证法 假设A 相似于diag(λ1,λ2,…,λn ),则[diag(λ1,λ2,…,λn )]n =[diag(λ1k ,λ2k ,…,λn k )]相似于A k ,所以λi k =0, i=1,2,…,n ⇒ λi =0, i=1,2,…,n ⇒ A=O这与A ≠O 产生矛盾,故A 不能与对角阵相似.7.提示:|λE-A T |=|λE-A|=0.8.提示:假若ξ1+ξ2是A 的属于λ的特征向量,则A(ξ1+ξ2)=λ(ξ1+ξ2),即 (λ1-λ)ξ1+(λ2-λ)ξ2=ο.由于ξ1,ξ2线性无关,则有λ=λ1, λ=λ2,这与λ1≠λ2矛盾.故ξ1+ξ2不是A 的特征向量.9.提示:A 与B 相似 ⇔∃P ,∂P -1AP=B ,因而(1) |B|=|P -1AP|=|A|;(2) (P -1AP)T =B T ,即P T A T (P -1)T =B T ,所以A T 与B T 相似.(3)由(1)可知,|A|≠0的充分必要条件是|B|≠0,即A 是可逆矩阵的充分必要条件是B 为可逆矩阵.另由P -1AP=B ,(P -1AP)-1=B -1,即P -1A -1P=B -1,所以A -1与B -1相似.10.提示:|A|≠0 ⇒ A -1(AB)A=BA ⇒ AB 与BA 相似11.提示:A 与B 相似,C 与D 相似 ⇔∃P ,Q ,∂P -1AP=B, Q -1CQ=D ,⇒ 11--⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A P B P C Q D Q ⇒ ⎛⎫ ⎪⎝⎭A C 与⎛⎫⎪⎝⎭BD B 相似12.提示:A αi =i αi (i=1,2,3)⇒ 1231231A(,,)2(,,)3⎛⎫ ⎪ααα=ααα ⎪ ⎪⎝⎭⇒ 11231231A (,,)2(,,)3-⎛⎫ ⎪=αααααα ⎪ ⎪⎝⎭=…13.提示:已知条件 ⇒ A 与diag(1,2,…,n)相似⇒ 2A+E 与diag(3,5,…,2n+1)相似 ⇒ |2A+E|=(2n+1)!!14.提示:方法一A 可逆 ⇔ |A|=λ1λ2…λn ≠0 ⇔ λ1,λ2,…,λn 都不为零 方法二 A 可逆 ⇔ |A|≠0 ⇔ |0E-A|≠0⇔ 0不是A 的特征值15.提示:A ξ=λξ且|A|≠0 ⇒ λ≠0且A -1ξ=λ-1ξ,A *ξ=λ-1|A|ξ⇒ λ-1是A -1的特征值,λ-1|A|是A *的特征值16.提示:令123(1,1,1)0⎛⎫ ⎪= ⎪ ⎪⎝⎭x x x ,即x 1+x 2+x n =0. 解之得关于特征值λ=3的线性无关特征向量ξ2=(-1,1,0)T ,ξ3=(0,1,-1)T .于是,()()11123212331A 1106110 11131111013101--λ⎛⎫⎪=ξξξλξξξ ⎪ ⎪λ⎝⎭--⎛⎫⎛⎫⎛⎫⎪⎪⎪==⎪⎪⎪ ⎪⎪⎪--⎝⎭⎝⎭⎝⎭17.提示:112112A ...11511-⎛⎫⎛⎫⎛⎫== ⎪⎪⎪---⎝⎭⎝⎭⎝⎭18.提示:(1)方法一 A 的特征值为-1,1,x ,B 的特征值为1,1,y A 与B 相似 ⇒ x=1,y=-1 方法二 A 与B 相似 ⇒ x y 2x 1x y y 1=+=⎧⎧⇒⎨⎨-==-⎩⎩(2)略19.提示:123220E A 1431431a51a5λ--λ--λ+λ-=λ-=λ---λ---λ-2110100(2)143(2)1331a 511a 533(2)(2)(8183a)1a 5-=λ-λ-=λ-λ---λ----λ-λ-=λ-=λ-λ-λ++--λ- 若λ=2为二重根,则22-8×2+18+3a=0,得a=-2,此时1231232E A 123000123000--⎛⎫⎛⎫⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⇒ R(2E-A)=1.故当a=-2时,A 能与对角矩阵相似.若λ=2不是二重根,则令64-4(18+3a)=0,即a =-2/3,此时λ=4是二重根.但3231034E A 1030131231000-⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⇒ R(4E-A)=2.故当a =-2/3时,A 不能与对角矩阵相似.20.提示:充分性 设A 与对角矩阵D 1相似,B 与对角矩阵D 2相似,且D 1=D 2,那么∃P ,Q,∂P -1AP=D 1, Q -1BQ=D 2,且P -1AP=Q -1BQ ,因此, A=PQ -1BQ P -1=PQ -1B(PQ -1)-1, 即A 与B 相似.必要性 设A 与B 相似,则∃P ,∂P -1AP=B ,因此|λE -B|=|λE -A|.所以A,B 有相同的特征值.21.提示:方法一A 2=A ⇒ A(A-E)=O ⇒ R(A)+R(A-E )≤n .另 E =A+(E-A) ⇒ n=R(E)≤R(A)+R(E-A)于是R(A)+R(A-E)=n ,而这表明A x =ο的基础解系的秩与(E-A)x =ο的基础解系的秩之和为n ,因此A 有n 个线性无关的特征向量,所以A 能与对角阵相似.方法二 A 2=A ⇒ A 的特征值为0或1(例5.3 P 110) A(A-E)=O ⇒ R(A)+R(E-A )≤n设R(A)=r ,则A x =ο的基础解系的秩为n-r ,而(E-A)x =ο的基础解系的秩为n-R(E-A)≥R(A)=r ,因此A 有n 个线性无关的特征向量,故A 能与对角阵相似.22.提示:R(A)+R(B)<n ⇒ A R R(A)R(B)n B ⎛⎫≤+<⎪⎝⎭⇒ A x 0B ⎛⎫= ⎪⎝⎭有非零解ξ,即A ξ=ο, B ξ=ο⇒ ξ是A 和B 属于特征值0的公共特征向量23.提示:R(A)=2 ⇒ 0是A 的特征值余下参看P 118例5.724.提示:n 阶矩阵A 的每行元素之和都为a⇒ A(1,1,…,1)T =a(1,1,…,1)T⇒ (1,1,…,1)T 是A 属于特征值a 的特征向量若A 可逆,则a -1是A -1的特征值. 由A(1,1,…,1)T =a(1,1,…,1)T ⇒ A -1(1,1,…,1)T =a -1(1,1,…,1)T ,所以A -1的每行元素之和都为a -1.24. 提示:设该地区第i 年农村人口有x i 万,城市人口有y i 万,i=1,2,…,10,则11000.80.1,0.20.9200,100.i i i i x x y y x y ++⎧⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪==⎩ 所以,1010100.80.12000.20.9100x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 又0.80.110.20.90.7⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 所以……. 附加题:1.设A 为三阶矩阵,且E-A,2E-A,E+A 都是不可逆矩阵,求行列式|A|. 提示:E-A,2E-A,E+A 都不可逆⇒ |E-A|=0, |2E-A|=0, |E+A|=0 ⇒ 1,2,-1是A 的全部特征值 ⇒ |A|=-22.已知矩阵012301000010A 0001a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪----⎝⎭, (1)求A 的特征多项式;(2)如果λ0是A 的特征值,证明(1, λ0, λ02, λ03)是A 属于λ0的特征向量.提示:(1)4323210E A a a a a λ-=λ+λ+λ+λ+;(2)432003020100E A a a a a 0λ-=λ+λ+λ+λ+=002200330012301010010010A 0001a a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪λλ ⎪ ⎪⎪= ⎪ ⎪⎪λλ ⎪ ⎪⎪λ----λ⎝⎭⎝⎭⎝⎭02000230034001λ⎛⎫⎛⎫⎪⎪λλ ⎪ ⎪==λ ⎪ ⎪λλ ⎪ ⎪ ⎪λλ⎝⎭⎝⎭. 020301()⎛⎫⎪λ ⎪⇒≠ο ⎪λ ⎪λ⎝⎭是A 属于λ0的特征向量.3.设三阶实对称矩阵A 的各行元素之和均为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 是线性方程组A x =ο的两个解,求矩阵A.提示:A 实对称,A(1,1,…,1)T =3(1,1,…,1)T , A α1=ο, A α2=ο,110P 121111-⎛⎫ ⎪⇒=- ⎪ ⎪-⎝⎭且13P AP 00-⎛⎫⎪= ⎪ ⎪⎝⎭⇒ A=Pdiag(3,0,0)P -1=…4.试构造一个三阶实对称矩阵A ,使其特征值为1,1,-1,且特征值1有特征向量ξ1=(1,1,1)T , ξ2=(2,2,1)T .提示:ξ3垂直ξ1,ξ2,易见ξ1=(1,-1,0)T ,或计算ξ3=ξ1×ξ2.正交化ξ1,ξ2及单位化ξ1,ξ2,ξ3,得正交相似变换矩阵Q=(ξ1,ξ2,ξ3),使A=QDQ -1=QDQ T =……5.设矩阵303A 10x 303⎛⎫ ⎪=-- ⎪ ⎪⎝⎭与对角阵相似,求x .提示:()()2123E A 424,2λ-=λ-λ+⇒λ=λ=λ=-,()R 4E A 13031014E A 10x 00x 1x 1303000-=⎛⎫⎛⎫ ⎪ ⎪-=--→-+⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.6. 设m m 101m f (x)a x a xa -=+++,证明:若n 阶矩阵A 使f(A)=O ,那么A 的特征值λ使f(λ)=0.提示:若λ是A 的特征值,则f(λ)是f(A)的特征值.另f(A)=O ,所以f(A)的特征值全部为零,所以f(λ)=0.7. 设ξ是矩阵A 的属于特征值λ的一个特征向量,P 是可逆矩阵,求矩阵P -1AP 的属于特征值λ的一个特征向量.提示:A ξ=λξ ⇒ P -1A ξ=λP -1ξ ⇒ P -1AP(P -1ξ)=λ(P -1ξ) 故P -1ξ是P -1AP 属于特征值λ的一个特征向量.8.设A 是正交矩阵,且detA<0,证明:-1是A 的特征值.提示:方法一A 是正交矩阵 ⇒ A T A=E ⇒ [detA]2=1 由于detA<0 ⇒ detA=-1⇒ det(E+A)=det[(E+A T )A]=det(E+A T )detA=-det(E+A) ⇒ det(E+A)=0,即-1是A 的特征值方法二 A ξ=λξ ⇒ A T A ξ=λA T ξ ⇒ A T ξ=λ-1ξ因为A 与A T 有相同的特征值 ⇒ λ=λ-1 ⇒ λ2=1 ⇒ λ=±1 detA<0 ⇒ -1是A 的特征值9. 已知A,B 分别是m×n 和n×m 矩阵,证明AB 与BA 有相同的非零特征值.提示:n nm m mE B EBE AB OE AB A E -==-λλλ 121c c An 0m1E BA BOE -≠-=λλλλm n m n n 1E E BA E BA -=⋅-=-λλλλ⇒ AB 与BA 有相同的非零特征值10.设三阶矩阵A 的特征值为1,2,3,对应的特征向量依次为ξ1=(1,1,1)T ,ξ2=(1,2,4)T , ξ3=(1,3,9) T ,又向量β=(1,1,3)T .(1)用ξ1,ξ2, ξ3表示β; (2)求A n β (n 为正整数).提示:()1231A2,P ,,3⎛⎫ ⎪=ξξξ ⎪ ⎪⎝⎭(1)设β=P x ⇒ x =P -1β,()1002P 01020011⎛⎫⎪β→- ⎪ ⎪⎝⎭, ⇒ x =(2,-2,1)T ⇒ β=2ξ1-2ξ2+ξ3.(2)方法一 nn11A P 2P 3-⎛⎫⎪β=β ⎪ ⎪⎝⎭nn 1n n 1n 2n 1n 3n 2n 21223 P 2x P 222332233++++++⎛⎫⎛⎫-+⎛⎫⎪ ⎪ ⎪==-=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭.方法二 n n123A A (22)β=ξ-ξ+ξn n n112233n 1n n 1n n 2n 1123n 3n 222223 223223.223++++++=λξ-λξ+λξ⎛⎫-+ ⎪=ξ-ξ+ξ=-+ ⎪ ⎪-+⎝⎭五、计算实践实践指导:(1)理解矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量. (2)了解相似矩阵的概念和性质.(3)了解矩阵对角化的充分必要条件和对角化的方法. (4)会用正交矩阵把实对称矩阵相似对角化.例5.1 设A 为二阶矩阵,α1,α2为线性无关的2维列向量,且A α1=ο, A α2=2α1+α2,则A 的特征值为 0, 1 . (2008 数一)解 A α1=ο, A α2=2α1+α2⇒ A α1=0α1, A(2α1+α2)=2α1+α2 ⇒ 0,1是A 的两个特征值例5.2 三阶实对称矩阵A 的特征值为λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T 是A 的属于λ1的一个特征向量,记B=A 5-4A 3+E ,(Ⅰ)验证α1是B 的特征向量,并求B 的全部特征值和特征向量; (Ⅱ)求矩阵B . (2007 数一) 解 (Ⅰ) A α1=λ1α1⇒ A k α1=λ1k α1⇒ B α1=(λ15-4λ13+1)α1=-2α1所以α1是B 的属于-2的特征向量.因为A 与对角矩阵D=diag(1,2,-2)相似,所以B 与D 5-4D 3+E 相似,故三阶对称矩阵B 的全部特征值为-2,1,1. 属于-2的特征向量为k(1,-1,1)T (k≠0),属于1的特征向量与α1垂直,为k 1(1,0,-1)T +k 2(1,2,1)T ,其中k 1,k 2为任意不全为零的实数.(Ⅱ)11231232111111B ( )1( )3263261--⎛⎫⎪=αααααα ⎪ ⎪⎝⎭T 1231232111111()1( )3263261011101110-⎛⎫⎪=αααααα ⎪ ⎪⎝⎭-⎛⎫⎪= ⎪ ⎪-⎝⎭例 5.3 已知三阶矩阵A 与3维向量x 使向量组x ,A x ,A 2x 线性无关,且满足A 3x =3A x -2A 2x .设P=(x ,A x ,A 2x ),求三阶矩阵B 使A=PBP -1,并计算行列式|A+E|. (2001 数一)解 分析:A=PBP -1 ⇒ PB=AP⇒ PB=(A x ,A 2x ,A 3x ) ⇒ B=P -1(A x ,A 2x ,A 3x )(A x ,A 2x ,A 3x )=(A x ,A 2x ,3A x -2A 2x )=(x ,A x ,A 2x )000103012⎛⎫ ⎪ ⎪ ⎪-⎝⎭=P 000103012⎛⎫ ⎪⎪ ⎪-⎝⎭⇒ B=P -1 P 000103012⎛⎫ ⎪ ⎪ ⎪-⎝⎭=000103012⎛⎫⎪⎪ ⎪-⎝⎭⇒ |A+E|=|B+E|=-4例5.4 设A 是n 阶矩阵,2,4,…,2n 是A 的n 个特征值.计算行列式|A-3E|的值. 解 2,4,…,2n 是A 的n 个特征值⇒ A 与diag(2,4,…,2n)相似 ⇒ A-3E 与diag(2,4,…,2n)-3E 相似⇒ |A-3E|=-(2n-3)!!例5.5 若四阶矩阵A 与B 相似,矩阵A 的特征值为1/2,1/3,1/4,1/5,则行列式|B -1-E|= 24 .解 因为A 与B 相似,矩阵A 的特征值为1/2,1/3,1/4,1/5,所以B -1的特征值为2,3,4,5,且B -1与diag(2,3,4,5)相似.故B -1-E 与diag(1,2,3,4)相似,|B -1-E|=24.例5.6 设A,B 为n 阶矩阵,且A 与B 相似,则必有 (A) λE-B=λE-A ;(B) A 与B 有相同的特征值与特征向量; (C) A 与B 都相似于一个对角阵; (D)对任意常数t ,tE-A 与tE-B 相似. 提示:选D.由A 与B 相似,推不出A =B ,故排除A ;由A 与B 相似,能推出A 与B 有相同的特征值,但推不出有相同的特征向量,故排除B ; 由A 与B 相似,推不出A,B 与对角矩阵相似,故排除C ;由A 与B 相似,即∃P , ∂P -1AP=B ,能推出P -1(tE-A)P=tE-B ,故选D .例5.7 设λ1,λ2是矩阵A 的的两个不同特征值,对应的特征向量为分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是(A) λ1≠0; (B) λ2≠0; (C) λ1=0; (D) λ2=0. 解 选B.方法一 (α1, A(α1+α2))=(α1, λ1α1+λ2α2)=(α1,α2)1210⎛⎫ ⎪⎝⎭λλ故α1,A(α1+α2)线性无关的充分必要条件是121R 20λ⎛⎫=⎪λ⎝⎭,即λ2≠0. 故选B .方法二 k 1α1+ k 2A(α1+α2)=ο⇔ (k 1+ k 2λ1)α1+k 2λ2α2=ο12,⇔αα线性无关11222k k 0k 0+λ=⎧⎨λ=⎩()()()2121122121122111120k k 0,A 0A ,A λ≠⇒==⎧⎪⇒αα+α⎪⇒⎨λ=⇒α+α=λα+λα=λα⎪⎪⇒αα+α⎩线性无关线性相关若若故选B .例5.8 设矩阵A 与B 相似,且1112A 242,B 232a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭.(1)求a,b 的值; (2)求可逆矩阵P 使P -1AP=B .解 因为A 与B 相似,所以()a 5b 46a 14b a 5b 6a 5b 4A 2E 0⎧+=+⎧⎪⎨-==⎧⎩⎪⇒⎨⎨=+=+⎧⎩⎪⎪⎨⎪-=⎪⎩⎩或 . 求解 (2E-A)ξ=ο2E-A 111000000-⎛⎫ ⎪→ ⎪ ⎪⎝⎭⇒ ξ1=(1,-1,0)T , ξ2=(1,0,1)T (6E-A)ξ=ο6E-A 210301000⎛⎫ ⎪→- ⎪ ⎪⎝⎭⇒ ξ3=(1,-2,3)T于是所求可逆矩阵111P 102013⎛⎫ ⎪=-- ⎪ ⎪⎝⎭.例5.9 设A 是三阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足A α1=α1+α2+α3, A α2= 2α2+α3, A α3=2α2+3α3,(1)求矩阵B ,使A(α1,α2,α3)=(α1,α2,α3)B ;(2)求矩阵A 的特征值;(3)求可逆矩阵P ,使P -1AP 为对角矩阵.解 (1)A α1=α1+α2+α3, A α2= 2α2+α3, A α3=2α2+3α3⇒ A(α1,α2,α3)=(α1,α2,α3)100122113⎛⎫ ⎪ ⎪ ⎪⎝⎭123,,100B 122B 114113A B ⎧⎛⎫⎪ ⎪=⇒⎪ ⎪⇒⎨ ⎪⎝⎭⎪⎪⎩线性无关矩阵的特征值为,,ααα (2)矩阵A 的特征值为1,1,4.(3)解方程组(E-B)η=ο和(4E-B)η=ο,得η1=(-1,1,0)T , η2=(-2,0,1)T , η3=(0,1,1)T .()()11231231,,B ,,14-⎛⎫⎪ηηηηηη= ⎪ ⎪⎝⎭()()()()111231*********,,,,A ,,,,14--⎛⎫⎪⇒ηηηααααααηηη= ⎪ ⎪⎝⎭()()()()123123123121323120P ,,,,,,101011 ,2,--⎛⎫ ⎪⇒=αααηηη=ααα ⎪ ⎪⎝⎭=-α+α-α+αα+α ⇒ P -1AP=diag(1,1,4)例5.10 设三阶实对称矩阵A 的各行元素之和均为3,向量α1=(1,2,-1)T ,α2=(0,-1,1)T 是线性方程组A x =ο的两个解. (2006 数三)(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得Q T AQ=Λ;(Ⅲ)求A 及(A-1.5E)6,其中E 为三阶单位矩阵.解 (Ⅰ) α1=(1,2,-1)T ,α2=(0,-1,1)T 是线性方程组A x =ο的两个解()121220R A 10A A ,A ,A ≤⎧⎪⇒⎨⎧α=οα=ο⇒⎨⎪αα⎩⎩是的重特征值是属于的特征向量 A 的各行元素之和均为3()A O R A 1131A 133A 1A 3131≠⇒≥⎧⎪⎛⎫⎛⎫⎛⎫⎪⇒⎨ ⎪ ⎪ ⎪=⇒⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎩是的特征值,是的特征向量属于 所以R(A)=1,且0,0,1是A 的全部特征值,c 1α1+c 2α2(c 1,c 2是不同时为0的实数)是A 属于0的全部特征向量;c 3(1,1,1)T (c 3是不为0的实数)是A 属于1的的全部特征向量.(Ⅱ)将α1,α2正交化和规范化,得T T 12(0,22,22),(66,66,66)η=-η=-,所求正交矩阵63063263Q 263263263⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,T 0Q AQ 03⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭. (Ⅲ) AQ=QA T 003AQ 003003003111A 003Q 111111003⎛⎫ ⎪⇒= ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪⇒== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 66T66T 33 A E Q E Q 223233729Q Q E E.226432⎛⎫⎛⎫-=Λ- ⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎪⎛⎫ ⎪=-== ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭六、知识扩展 1.设矩阵123A 1431a 5-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (2004 数一)提示:|λE -A|=(λ-2)(λ2-8λ+18+3a)若λ=2是二重根,则(λ2-8λ+18+3a)|λ=2=0,得a=-2,这时R(2E-A)=1,说明A 可相似对角化.若λ=2不是二重根,则λ2-8λ+18+3a 为完全平方项,从而64-4(18+3a)=0,得a=-2/3,这时λ=4是二重根,而R(4E-A)=2,说明A 不可相似对角化.2.设3维列向量α,β满足αT β=2,则矩阵βT α的非零特征值为 2 . (2009 一)3.设α,β为3维列向量,若αβT 相似于diag(2,0,0),则βT α= 2 . (2009 二)。
线性代数第五章课后习题及解答
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数第五章课后习题及解答第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。
(4) ;1000210032104321⎪⎪⎪⎪⎪⎭⎫⎝⎛解:4)1(1210032104321-=----------=-λλλλλλA I 所以,特征值为:11=λ(四重根)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-00002000320043201A I λ 所以,0)(1=-x A I λ的基础解系为:.)0,0,0,1(T因此,A 的属于1λ的所有特征向量为:Tk )0,0,0,1(1(01≠k )(5) ;111122254⎪⎪⎪⎭⎫ ⎝⎛-----解:3)1(111122254-==--+--=-λλλλλ A I所以,特征值为:11=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛---=-0001101010111322531 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,1(T-因此,A 的属于1λ的所有特征向量为:Tk )1,1,1(1-(01≠k )(6) ;020212022⎪⎪⎪⎭⎫⎝⎛----解:)2)(4)(1(20212022+--==--=-λλλλλλλ A I 所以,特征值为:11=λ(单根), 42=λ(单根), 23-=λ(单根),⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎭⎫ ⎝⎛-=-0001201011202020211 A I λ所以,0)(1=-x A I λ的基础解系为:.)2,1,2(T--因此,A 的属于1λ的所有特征向量为:Tk )2,1,2(1--(01≠k )⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛=-0002102014202320222 A I λ所以,0)(2=-x A I λ的基础解系为:.)1,2,2(T-因此,A 的属于2λ的所有特征向量为:Tk )1,2,2(2-(02≠k )⎪⎪⎪⎭⎫ ⎝⎛--→→⎪⎪⎪⎭⎫ ⎝⎛---=-0001101022202320243 A I λ所以,0)(3=-x A I λ的基础解系为:.)2,2,1(T因此,A 的属于3λ的所有特征向量为:Tk )2,2,1(3(03≠k )2. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛----=x A 44174147的特征值31=λ(二重),122=λ, 求x 的值,并求其特征向量。
解:123377++=++x 4=∴x⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0000001441441441443 A I所以,0)3(=-x A I 的基础解系为:.)4,0,1(,)0,1,1(TT -因此,A 的属于3的所有特征向量为:TT k k )4,0,1()0,1,1(21+-(21,k k 为不全为零的任意常数)⎪⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎪⎭⎫ ⎝⎛--=-00011010184415414512 A I所以,0)12(=-x A I 的基础解系为:.)1,1,1(T--因此,A 的属于12的所有特征向量为:Tk )1,1,1(3--(03≠k )3. 设21,x x 是矩阵A 不同特征值的特征向量,证明21x x +不是A 的一个特征向量。
证:(反证法)若21x x +是A 的属于特征值λ的一个特征向量,21,x x 是A 的属于特征值21,λλ的特征向量且21λλ≠,则:2211212121)()(x x Ax Ax x x A x x λλλ+=+=+=+所以,0)()(2211=-+-x x λλλλ21,x x 属于不同特征值 21,x x ∴线性无关0,021=-=-∴λλλλ即21λλλ==与21λλ≠矛盾。
所以,21x x +不是A 的一个特征向量。
4. 设321,,x x x 分别是矩阵A 对应于互不相同的特征值321,,λλλ的特征向量,证明321x x x ++不是A 的一个特征向量。
证:类似3题可证。
5. 证明对合矩阵A (即I A =2)的特征值只能为1或1-.证:0)1()1(2=-=-=-=-n I I I A I λλλλ2A ∴的特征值只有1.若λ为A 的特征值,则2λ为2A 的特征值A ∴的特征值只能为1或1-.6. 设A 可逆,讨论A 与*A 的特征值(特征向量)之间的相互关系。
解:1-*=A A A∴若,x Ax λ=则x Ax A λ=*.7. 若,1B AP P =-问:I B P I A P 2)2(1-=--是否成立?解:成立。
8. 已知,2001~⎪⎪⎭⎫⎝⎛-=∧A 求).det(I A - 解:,~∧A 相似矩阵具有相同的特征值)2)(1(-+=-∴λλλA I2)21)(11()1()det(2-=-+=--=-A I I A9. 已知,2001,23121⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛--=-AP P P 求.nA 解:⎪⎪⎭⎫ ⎝⎛-==--n nn nAP P P A P 200)1()(11⎪⎪⎭⎫ ⎝⎛+-⋅--+-⋅--=⎪⎪⎭⎫ ⎝⎛-=∴+++++-21111212)1(323)1(62)1(223)1(2200)1(n n n n n n n n n nn P P A*10. 设x AP P B ,1-=是矩阵A 属于特征值0λ的特征向量。
证明:x P 1-是矩阵B 对应其特征值0λ的一个特征向量。
证:AP P B x Ax 10,-==λ)()(10011111x P x P Ax P x APP P x P B ------====∴λλ*11. 设A 为非奇异矩阵,证明AB 与BA 相似。
证:A 为非奇异矩阵 1-∴A 存在BA A AB A =-)(1∴AB 与BA 相似*12. 设,~,~D C B A 证明:.00~00⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛D B C A 证:D C B A ~,~ ∴存在可逆矩阵Q P ,, 使得D CQ Q B AP P ==--11,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----D B CQ Q APP Q P C A Q P Q P C A Q P 000000000000000011111.00~00⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∴D B C A *13. 证明:m 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=01010 J 只有零特征值,且特征子空间是mR 的一维子空间,并求它的基。
解:0==-m J I λλJ ∴只有零特征值。
⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-01010 J0=-∴Jx 的基础解系为:.)0,,0,1(T14. 若A I +可逆,A I -不可逆,那么,关于A 的特征值能做出怎样的断语?解:A I + 可逆,A I -不可逆0,0=-≠+∴A I A I∴1-不是A 的特征值,1是A 的特征值。
15. 若,0)det(2=-A I 证明: 1或1-至少有一个是A 的特征值。
证:A I A I A I -+=-=)det(02 0=+∴A I 或0=-A I∴1或1-至少有一个是A 的特征值。
16. 在第1题中,哪些矩阵可对角化?并对可对角化的矩阵A , 求矩阵P 和对角矩阵∧, 使得.1∧=-AP P解:由矩阵可对角化的条件及第1题的求解过程易知:(1), (6)可对角化。
(1) ).2373,2373(,37137166-+=∧⎪⎪⎭⎫ ⎝⎛+-=diag P (2) ).2,4,1(,212221122-=∧⎪⎪⎪⎭⎫⎝⎛---=diag P17. 主对角元互不相等的上(下)三角形矩阵是否与对角阵相似(说明理由)?解:可以,因为有n 个互不相等的特征值。
18. 设n 阶矩阵A 的2n 个元素全为1,试求可逆矩阵,P 使AP P 1-为对角阵,并写出与A 相似的对角阵。
解:1112121)(0000111)(),,(111111111)(),,(111111111--=-=++-------=++---------=-n n n n n r r r r n r r r r A I λλλλλλλλλλλλ所以,特征值为:n =1λ(单根),02=λ(1-n 重根)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---→→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-0000110010101001111111111n n n A nI所以,0)(=-x A nI 的基础解系为:.)1,,1,1(T⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-000000111111111111 A所以,0=-Ax 的基础解系为:.)1,0,,0,1(,,)0,,0,1,1(TT--所以,,1001010101110011⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=P 与A 相似的对角阵为:).0,,0,(1 n diag AP P =-19. 已知4阶矩阵A 的特征值为11=λ(三重),;32-=λ对应于1λ的特征向量有,)1,1,1,0(,)0,1,1,1(,)0,0,1,1(321T T T x x x --=--=-=对应于2λ的特征向量为.)1,1,0,0(4T x -=问:A 可否对角化?如能对角化,求出A 及n A (n 为正整数)。