选做题全国高考文科数学历年试题分类汇编
2011-2018高考真题全国卷文科数学试题分类汇编含答案
2011-2018高考真题全国卷文科数学试题分类汇编含答案第一章 集合与常用逻辑用语1.(2011全国1文1)已知集合,,,则的子集共有( ).A.个B.个C.个D.个 2.(2012全国文1)已知集合,,则( ).A. B. C. D. 3.(2013全国I 文1)已知集合,则( ).A. B. C. D. 4.(2013全国II 文1)已知集合,,则( ).A. B. C. D.5(2014新课标Ⅰ文1)已知集合,,则( )A. B. C. D.6.(2014新课标Ⅱ文1)已知集合,,则( )A. B. C. D. 7. (2015全国I 文1)已知集合,则集合中元素的个数为( ).A. 5B. 4C. 3D. 28. (2015全国II 文1)已知集合,,则( ). A. B. C. D. 9. (2016全国I 文1)设集合,,则(B )10.(2016全国II 文1)已知集合,则(D )(A ) (B ) (C ) (D ) 11.(2017全国I 文1)已知集合A ={}|2x x <,B ={}|320x x ->,则 ( A ){}0,1,2,3,4M ={}1,3,5N =P MN =P 2468{}220A x x x =<--{}11B x x =<<-A B ⊂≠B A ⊂≠A B =AB =∅{}{}21234A B x x n n A ===∈,,,,,A B ={}14,{}23,{}916,{}12,{}|31M x x =-<<{}3,2,1,0,1N =---MN ={}2,1,0,1--{}3,2,1,0---{}2,1,0--{}3,2,1---{|13}M x x =-<<{|21}N x x =-<<MN =(2,1)-(1,1)-(1,3))3,2(-{}2,0,2A =-{}2|20B x x x =--=AB =∅{}2{}0{}2-{32,},{6,8,10,12,14}A x x n n B ==+∈=N A B {|12}A x x =-<<{}03B x x =<<=B A ()13,-()10,-()02,()23,{1,3,5,7}A ={|25}B x x =≤≤A B ={123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},A .{1,3}B .{3,5}C .{5,7}D .{1,7}A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R12(2017全国II 文1设集合{}{}123234A B ==,,, ,,, 则=AB (A )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,13.【2018全国一文1】已知集合{}02A =,,{}21012B =--,,,,,则A B =(A )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 14.【2018全国二文2】已知集合,,则(C )A .B .C .D .15.【2018全国三1】已知集合,,则(C )A .B .C .D .16.(2014新课标Ⅱ文3)函数在处导数存在,若;是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件17.(2013全国I 文5)已知命题;命题,则下列命题中为真命题的是( ).A. B. C. D. 18.(2014新课标Ⅰ文14)甲.乙.丙三位同学被问到是否去过,,三个城市时, 甲说:我去过的城市比乙多,但没去过城市; 乙说:我没去过城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为.第一章 集合答案 BBACB BDABD AAACC CBA{}1,3,5,7A ={}2,3,4,5B =AB ={}3{}5{}3,5{}1,2,3,4,5,7{|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}()f x 0x x =0:()0p f x '=0:q x x =()f x p q p q q p q q :2<3x x p x ∀∈R ,32:1q x x x ∃∈=-R ,p q ∧p q ⌝∧p q ∧⌝p q ⌝∧⌝A B C B C第2章 复数1.(2011·新课标全国高考文科·T2)复数512ii=-( ) A. B. C. D. 2.(2012全国文2)复数的共轭复数是( ). A. B. C. D. 3.(2013全国II 文2)( ). A.B.D. 4.(2014新课标Ⅰ文3)设,则( ) A.B.D.5.(2011全国文2)复数( ). A. B. C. D. 6.(2013全国I 文2)( ).A. B. C. D. 7.(2014新课标Ⅱ文2)( )A. B. C. D. 8. (2015全国I 文3)已知复数满足,则( ). A.B. C. D.9. (2015全国II 文2)若为实数,且,则( ). A.B. C. D.10. (2016全国I 文2)设的实部与虚部相等,其中a 为实数,则a =( )2i -12i -2i -+12i -+3i2iz -+=+2i +2i -1i -+1i --21i=+211i 1iz =++z =12225i12i=-2i -12i -2i -+12i -+()212i1i +=-11i 2--11i 2-+11i 2+11i 2-13i 1i+=-12i +12i -+12i -12i --z (1)i 1i z -=+z =2i --2i -+2i -2i +a 2i3i 1ia +=++a =4-3-34(12i)(i)a ++11.(2016全国II 文2)设复数z 满足,则= ( )(A )(B )(C )(D )12. (2017全国I 文3)下列各式的运算结果为纯虚数的是 ( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)13.(2017全国II 文2)(1+i )(2+i )= ( )A.1-iB. 1+3iC. 3+iD.3+3i14.(2017全国3文3)下列各式的运算结果为纯虚数的是 ( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)15.(2018全国I 文2)设1i2i 1iz -=++,则z = ( ) A .0B .12C .1 D16.【2018全国2卷1】A .B .C .D .17.【2018全国3卷2】 A .B .C .D .第2章 复数答案 CDCBC BBCDA CCBAC DDi 3i z +=-z 12i -+12i -32i +32i -()i 23i +=32i -32i +32i --32i -+()()1i 2i +-=3i --3i -+3i -3i +A .-3 B .-2 C .2 D .3第3章 平面向量1.(2011全国文13)已知与为两个不共线的单位向量,为实数,若向量与向量垂直, 则.2.(2012全国文15)已知向量夹角为,且,,则3.(2013全国I 文13)已知两个单位向量的夹角为,,若,则4.(2013全国II 文14)已知正方形的边长为,为的中点,则__.5.(2014新课标Ⅱ文4)设向量满足( )A. B. C. D.6.(2014新课标Ⅰ文6)设分别为的三边的中点,则( )A.B.C. D. 7.(2015全国II 文7)已知三点,,,则外接圆的圆心到原点的距离为( ).A. B.C. D. 8.(2015全国I 文2) 已知点,向量,则向量( ).A. B. C. D. 9.(2015全国II 文4)向量,,则( ). A.B. C. D.10.(2016全国文15)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =11.(2016全国II 文13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.12.(2017全国文13)已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =____________. 13.(2017全国II 文)设非零向量a ,b 满足+=-b b a a 则( )A a ⊥b B. =b a C. a ∥b D. >b a14.(2018全国1文7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = ( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + a b k +a b k -a b k =,a b 451=a 2-=a b =b ,a b 60()1t t =+-c a b 0⋅=b c t =ABCD 2E CD AE BD ⋅=,a b +=a b -a b ⋅=a b 1235F E D ,,ABC △AB CA BC ,,=+2121()1,0A (B (C ABC △3532135234(0,1),(3,2)A B ()4,3AC =--BC =()7,4--()7,4()1,4-()1,4()1,1=-a ()1,2=-b ()2+⋅=a b a 1-012开始结束开始结束答案:1、 1 , 2、,3、3 ,4、2, 5A ,6A ,7B ,8A , 9C ,1011 -6 12 7 13 A第4章 算法初步1.(2013全国II 文7)执行右面的程序框图,如果输入的,那么输出的( ).A. B. C. D. 2.(2013全国I 文7)7. 执行右面的程序框图,如果输入的,则输出的属于( ).A.B.C.D. 3.(2014新课标Ⅰ文9)执行如图所示的程序框图,若输入的分别为1,2,3,则输出的( )A. B. C. D.第3题 第2题 第1题4.(2011全国文5)执行如图所示的程序框图,如果输入的是6,则输出的是( ). A. B. C.D.=b 23-4N =S =1111234+++1111232432+++⨯⨯⨯111112345++++111112324325432++++⨯⨯⨯⨯⨯⨯[]13t ∈-,s []34-,[]52-,[]43-,[]25-,,,a b k M =20372165158N p 120720144050405.(2014新课标Ⅱ文8)执行如下图所示程序框图,如果输入的均为,则输出的( ) A. B. C. D.6.(2012全国文6)如果执行下边的程序框图,输入正整数和市属,输出,则 ( )A.为的和B.为的算术平均数 C.和分别是中最大的数和最小的数 D.和分别是第4题 第5题 6题7.(2015全国I 文9)执行如下图所示的程序框图,如果输入的,则输出的( ).A. 5B. 6C.D.8. (2015全国II 文8)如下图所示,程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的.分别为14.18,则输出的( ). A. B. C. D.9.(2016全国I 文10).执行下面的程序框图,如果输入的 n =1,则输出的值满足( )(A ) (B ) (C ) ( D ),x t 2S =4567()2N N …12,,...,N a a a ,A B A B +12,,...,N a a a 2A B+12,,...,N a a a A B 12,,...,N a a a A B 12,,...,N a a a 0.01t =n =78a b a =024140,1,x y ==,x y 2y x =3y x =4y x =5y x =第7题 第8题 第9题 10.(2017全国I 文10)如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入 ( )A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2答案:BADBD CCBCDnm1S=1,n=0,m=12?输入t否第5章 三角函数与解三角形1.(2014全国I 文2)若,则()A. B. C. D. 2.(2011全国文11)设函数,则(). A.在单调递增,其图象关于直线对称 B.在单调递增,其图象关于直线对称 C.在单调递减,其图象关于直线对称 D.在单调递减,其图象关于直线对称 3. .在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③4.(2014新课标Ⅱ文14)函数的最大值为5.(2012全国文9)已知,直线和是函数图像的两条相邻的对称轴,则(). A.B. C. D.6.(2015全国I 文8) 函数的部分图像如图所示,则的单调递减区间为(). A. B.C. D.7.(2013全国II 文16)函数的图象向右平移个tan 0α>sin 0α>cos 0α>sin 20α>cos20α>ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x π0,2⎛⎫ ⎪⎝⎭π4x =()f x π0,2⎛⎫ ⎪⎝⎭π2x =()f x π0,2⎛⎫ ⎪⎝⎭π4x =()f x π0,2⎛⎫ ⎪⎝⎭π2x =cos 2y x =cos y x =cos 26y x π⎛⎫=+ ⎪⎝⎭tan 24y x π⎛⎫=- ⎪⎝⎭π()sin()2sin cos f x x x ϕϕ=+-0ω>0ϕ<<π4x π=4x 5π=()()sin f x x ωϕ=+ϕ=4π3π2π43π()cos()f x x ωϕ=+()f x ()13π,π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132π,2π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()13,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132,244k k k ⎛⎫-+∈ ⎪⎝⎭Z cos(2)(ππ)y x ϕϕ=+-剟π2单位后,与函数的图象重合,则_________. 8.(2011全国1文7)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则().A. B. C. D. 9.(2013全国II 文6)已知,则().A.B.C. D.10.(2013全国I 文9)函数在的图象大致为().11.(2013全国I 文16)设当时,函数取得最大值,则.12.(2015全国II 文11)如图所示,长方形的边,,是的中点,点沿着,与运动,记.将动点到,两点距离之和表示为的函数,则的图像大致为().πsin 23y x ⎛⎫=+⎪⎝⎭ϕ=θx 2y x =cos2θ=45-35-35452sin 23α=2πcos 4α⎛⎫+= ⎪⎝⎭16131223()()1cos sin f x x x =-[]ππ-,D.C.B.A.x θ=()sin 2cos f x x x =-cos θ=ABCD 2AB =1=BC O AB P BC CD DA BOP x ∠=P A B x ()f x ()y f x =A. B. C. D.13.(2013全国II 文4)的内角的对边分别为,已知,,,则的面积为().A. B.C.14.(2015全国II 文17)中,是上的点,平分,. ,求.15.(2011全国文15)中,,,,则的面积为.16.(2013全国I 文10)已知锐角的内角的对边分别为,,,,则().A. B. C. D.17.(2014新课标Ⅱ文17)(本小题满分12分)四边形的内角与互补,,,.(1)求和;(2)求四边形的面积.424424424424ABC △,,A B C ,,a b c 2b =π6B =π4C =ABC△2121ABC △D BC AD BAC ∠2BD DC =60BAC =B ∠ABC △120B =7AC =5AB =ABC △ABC △A B C ,,a b c ,,223cos cos20A A +=7a =6c =b =10985ABCD A C 1AB =3BC =2CD DA ==C BD ABCD18.(2012全国文17)已知分别为△三个内角的对边, (1)求;(2)若,△.19.(2014新课标Ⅰ文16)如图所示,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高20. (2015全国I 文17)已知分别为内角的对边,.(1)若,求;(2)设,且的面积.21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=(),,a b c ABC ,,A B C sin cos c C c A =-A 2a =ABC ,b c MN A C A M 60MAN ∠=︒C 45CAB ∠=︒75MAC ∠=︒C 60MCA ∠=︒100m BC =MN =,,a b c ABC △,,A B C 2sin 2sin sin B A C =a b =cos B 90B ∠=a =ABC △a =2c =2cos 3A =A BC .2D .322. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= 24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为A .B .C .D .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= ( )A .15BCD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.π435π4A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)高考真题试题详解1.解析由得是第一.三象限角,若是第三象限角,则A ,B 错; 由知,C 正确;取时,,D 错.故选C. 评注本题考查三角函数值的符号,判定时可运用基本知识.恒等变形及特殊值等多种方法,具有一定的灵活性.2.解析因为,当时,,故在单调递减. 又当是的一条对称轴.故选D.3.解析①,最小正周期为;②由图像知的最小正周期为;③的最小正周期;④的最小正周期.因此选A.评注本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图像判断其最小正周期. 4.解析,所以.5.分析利用三解函数的对称轴求得周期.解析由题意得周期,所以,即,所以,所以 ,.因为,所以. 所以,所以.故选A. 6.解析由图可知,得,.画出图中函数的一条对称轴,如图tan 0α>ααsin 22sin cos ααα=sin 20α>απ32211cos 22cos 121022αα⎛⎫=-=⨯-=-< ⎪⎝⎭ππππ()sin 2cos 2sin 2cos 24444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭π02x <<02πx <<()f x x =π0,2⎛⎫⎪⎝⎭π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =()y f x =cos 2cos 2y x x ==πcos y x =ππcos 26y x ⎛⎫=+⎪⎝⎭2ππ2T ==πtan 24y x ⎛⎫=- ⎪⎝⎭π2T =()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-…()max 1f x =512ππ2π44T ⎛⎫=-=⎪⎝⎭2π2πω=1ω=()sin()f x x ϕ=+ππsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭5π5πsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭0πϕ<<ππ5π444ϕ<+<ππ42ϕ+=π4ϕ=511244T =-=2T =2ππTω==()f x 0x x =所示.由图可知,则,可得,则,得.由,得的单调递减区间为. 故选D.7.分析先进行平移,得出的三角函数与所给的三角函数进行比较,求出的值. 解析:的图象向右平移个单位得到的图象,整理得.因为其图象与的图象重合,所以,所以,即.又因为,所以. 8.解析设为角终边上任意一点,则. 当时,;当时,.因此.故选B.9.分析结合二倍角公式进行求解.解析:因为,所以故选A. 10.分析先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点.解析:在上,因为,所以是奇函数,所以的图象关于原点对称,排除B.取,则,排除A.因为,所以令,则或. 034x =3πcos 14ϕ⎛⎫+=-⎪⎝⎭3π2ππ4k ϕ+=+()π2π4k k ϕ=+∈Z ()πcos π4f x x ⎛⎫=+ ⎪⎝⎭π2ππ2ππ4k x k ++剟()f x 132244k xk -+剟ϕ()cos 2y x ϕ=+2πcos 22y x ϕ⎡π⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦()cos 2y x ϕ=-π+sin 23y x π⎛⎫=+ ⎪⎝⎭2k ϕππ-π=-+π322k ϕππ=+π-+π322k ϕ5π=+π6ϕ-ππ≤<5ϕπ=6(,2)(0)P t t t ≠θcos θ=0t>cos θ=0t<cos θ=223cos 22cos 1155θθ=-=-=-2sin 23α=221cos 211sin 213cos .42226αααπ⎛⎫++- ⎪π-2⎛⎫⎝⎭+==== ⎪⎝⎭[],-ππ()()()()()1cos sin 1cos sin f x x x x x -=---=--=⎡⎤⎣⎦()()1cos sin x x f x --=-()f x ()f x 2x π=1cos 10f ππ⎛⎫⎛⎫=-= ⎪ ⎪22⎝⎭⎝⎭>()()1cos sin f x x x =-()()sin sin 1cos cos f x x x x x '=⋅+-2221cos cos cos 2cos cos 1.x x x x x =-+-=-++()0f x '=cos 1x =1cos 2x =结合,求得在上的极大值点为,靠近,故选C. 11.分析先利用三角恒等变换求得函数的最大值,再利用方程思想求解. 解析:, 则所以,所以, 所以又因为时,取得取大值,所以.又,所以即.12.解析由已知可得,当点在边上运动时,即时,;当点在边上运动时,即,时,当时,; 当点在边上运动时,即时,.从点的运动过程可以看出,轨迹关于直线对称,,且轨迹非直线型.故选B. 评注本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想. 13.分析先由正弦定理解出的值,再运用面积公左求解. 解析:因为,,所以 由正弦定理,得,即所以.故选B. 14.分析 (1)根据题意,由正弦定理可得.[],x ∈-ππ()f x (]0,π23ππsin 2cos y x x x x ⎫=-=⎪⎭cos sin αα=)()sin cos cossin .y x x ααα=-=-x ∈R x α-∈R max y =x θ=()f x ()sin 2cos fθθθ=-=22sin cos 1θθ+=sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩cos θ=P BC π04x剟PA PB +=tan x P CD π3π44x 剎?π2x ≠PA PB +=π2x =PA PB +=P AD 3ππ4x 剎?tan PA PB x +=P π2x =ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭c 6B π=4C π=7.A B C πππ=π--=π--=6412sin sin b c B C =2sin sin c =ππ64212=c =117sin 212212ABC S bc A π==⨯⨯=△sin 1sin 2B DC C BD ∠==∠(2)由诱导公式可得,由(1)可知,所以,. 解析 (1)由正弦定理得,,.因为平分,,所以. (2)因为,,所以.由(1)知,所以,即. 评注三角是高中数学的重点内容,在高考中主要利用三角函数,三角恒等变换及解三角形的正弦定理及余弦定理,在求解时,注意角的转化及定理的使用.15.解析由余弦定理知,即,解得.故.故答案为. 16.分析先求出角的余弦值,再利用余弦定理求解.解析:由得,解得.因为是锐角,所以.又,所以,所以或.又因为,所以.故选D.17.解析(1)由题设及余弦定理得,①. ②由①,②得,故,()1sin sin sin 22C BAC B B B ∠=∠+∠=∠+∠2sin B ∠=sin C ∠tan 3B ∠=30B ∠=sin sin AD BD B BAD =∠∠sin sin AD DCC CAD=∠∠AD BAC ∠2BD DC =sin 1sin 2B DC C BD ∠==∠()180C BAC B ∠=-∠+∠60BAC ∠=()1sin sin sin 2C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 3B ∠=30B ∠=2222cos120AC AB BC AB BC =+-⋅249255BC BC =++3BC =11sin120532224ABC S AB BC =⋅=⨯⨯⨯=△4A 223cos cos 20A A +=2223cos 2cos 10A A +-=1cos 5A =±A 1cos 5A =2222cos a b c bc A =+-214936265b b =+-⨯⨯⨯5b =135b =-0b >5b >2222cos 1312cos BD BC CD BC CD C C =+-⋅=-2222cos 54cos BD AB DA AB DA A C =+-⋅=+1cos 2C =60C =BD =(2)四边形的面积评注本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18.解析(1)由.由于,所以. 又,故. (2)的面积,故.而,故 . 解得.19.解析在中,,,所以. 在中,,,从而,由正弦定理得,,因此.在中,,,由得,故填.20. 解析(1)由正弦定理得,.又,所以,即.则. (2)解法一:因为,所以,即,亦即.又因为在中,,所以,则,得.所以为等腰直角三角形,得,所以. 解法二:由(1)可知,①因为,所以,②将代入得,则,所以.ABCD 1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭sin cos c C c A =-sinA C -cos sin sin 0A C C -=sin 0C ≠π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<π3A =ABC △1sin 2S bc A ==4bc =2222cos a b c bc A =+-228b c +=2b c ==Rt ABC △45CAB ∠=100BC =m AC =m AMC △75MAC ∠=60MCA ∠=45AMC ∠=sin 45sin 60AC AM=AM=m Rt MNA △AM =m 60MAN∠=sin 60MNAM=150MN ==m 15022b ac =a b =22a ac=2a c =22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅90B ∠=()2sin 12sin sin 2sin sin 90B A C A A ===-2sin cos 1A A =sin 21A =ABC △90B ∠=090A <∠<290A ∠=45A ∠=ABC △a c ==112ABC S ==△22b ac =90B ∠=222a c b +=②①()20a c -=a c ==112ABC S ==△21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=答案:D解析:本题考察余弦定理,根据题目条件画出图形可以列出等式,带入已知条件化简可得,解得.22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为答案:D解析:该函数的周期为,所以函数向右平移,得,化简可得y =2sin(2x –π3).23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)=.答案: 解析:本题考察同角的三角函数关系,三角函数的符号判断以及诱导公式的运用:,因为θ是第四象限角,且,所以也在第四象限,即,所以24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为a =2c =2cos 3A =2222cos a b c bc A =+-23830b b --=3b =2T ππω==4π2sin(2())46y x ππ=-+π435π443-cos()4πθ-=3cos()sin()4245πππθθ+-=+=cos()4πθ-=354πθ-4sin()45πθ-=-sin()44tan()43cos()4πθπθπθ--=--ABC .2D .3A . y =2sin(2x +π4) B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 B A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= BA .15B C D .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为.第6章 极坐标与参数方程1.(2013全国2文23)动点都在曲线(为参数)上,对应参数分别为与(),为的中点.(1)求的轨迹的参数方程;(2)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.2.(2014新课标Ⅱ文23)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆的极坐标方程为,.(1)求的参数方程;(2)设点在上,在处的切线与直线垂直,根据(1)中你得到的参数方程,确定的坐标.P Q ,2cos 2sin x tC :y t=⎧⎨=⎩t t α=2t α=0<<2παM PQ M M d a M xOy x C 2cos ρθ=0,2θπ⎡⎤∈⎢⎥⎣⎦C D C CD :2l y =+D3(2012全国文23)已知曲线的参数方程是为参数,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为.(1)求点的直角坐标; (2)设为上任意一点,求的取值范围.4.(2015全国II 文23) 在直线坐标系中,曲线:(为参数,)其中.(1) 求与交点的直角坐标;1C 12cos ,:3sin ,x C y ϕϕ=⎧⎨=⎩(ϕ)x 2C 2ρ=ABCD 2C ,,,A B C D A π2,3⎛⎫⎪⎝⎭,,,A B C D P 1C 2222PA PB PC PD +++xOy 1C cos sin x t y t αα=⎧⎨=⎩t 0t ≠0πα剟2C 3C5.(2015全国I 文23)在直角坐标系中,直线:,圆:,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求的极坐标方程. (2)若直线的极坐标方程为,设与的交点为,求的面积.6.(2011全国文23))在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线.(1)求的方程;(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.xOy 1C 2x =-2C ()()22121x y -+-=12,C C 3C ()π4θρ=∈R 2C 3C ,M N 2C MN △xOy 1C 2cos ,22sin .x y αα=⎧⎨=+⎩αM 1C P 2OP OM =P 2C 2C O x π3θ=1C A 2C B AB7(2013全国I 文23)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标8(2016全国卷1 23.)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,曲线C 1的参数方程为(t 为参数,a >0)。
高考数学真题2011年—2018年新课标全国卷(1、2、3卷)文科数学试题分类汇编—11.解析几何
2011年—2018年新课标全国卷文科数学分类汇编11.解析几何一、选择题(2018·新课标Ⅰ,文4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为()A .13B .12C .22D .223(2018·新课标Ⅱ,文6)双曲线22221(0,0)x y a b a b-=>>的离心率为)A .y =B .y =C .y x =D .y =(2018·新课标Ⅱ,文11)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A .312-B .2C .312D 1-(2018·新课标Ⅲ,文8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是()A .[]26,B .[]48,C .D .⎡⎣(2018·新课标Ⅲ,文10)已知双曲线22221x y C a b-=:(00a b >>,,则点()40,到C 的渐近线的距离为()A B .2C .322D .(2017·新课标Ⅰ,文5)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为()A .13B .12C .23D .32(2017·新课标Ⅰ,文12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1][9,)+∞ B .[9,)+∞ C .(0,1][4,)+∞ D .[4,)+∞ (2017·新课标Ⅱ,文5)若a >1,则双曲线2221-=x y a的离心率的取值范围是()A.+∞)B.2)C. D.12(,)(2017·新课标Ⅱ,文12)过抛物线C :y 2=4x 的焦点F ,C 于点M (M 在x 轴上方),l 为N 在MN ⊥l,则M NF )A. B. C. D.(2017·新课标Ⅲ,文11)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .3B .3C .3D .13(2016·新课标Ⅰ,文5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()A .13B .12C .23D .34(2016·新课标Ⅱ,文5)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =A .12B .1C .32D .2(2016·新课标Ⅱ,文6)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =()A .43-B .34-C D .2(2016·新课标Ⅲ,文12)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为().A .13B .12C .23D .34(2015·新课标Ⅰ,文5)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=()A .3B .6C .9D .12(2015·新课标Ⅱ,文7)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.53B.C.D.43(2014·新课标Ⅰ,文10)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=054x ,则x 0=()A .1B .2C .4D .8(2014·新课标Ⅰ,文4)已知双曲线)0(13222>=-a y a x 的离心率为2,则a=()A .2B .26C .25D .1(2014·新课标Ⅱ,文10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A 、B 两点,则|AB |=()A B .6C .12D .(2014·新课标Ⅱ,文12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是()A .[1,1]-B .11[]22-,C .[D .[(2013·新课标Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为()A .y =14x ±B .y =13x ±C .y =12x ±D .y =±x(2013·新课标Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF 的面积为()A .2B .C .D .4(2013·新课标Ⅱ,文5)设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为()A .6B .13C .12D .3(2013·新课标Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为()A .1y x =-或1yx =-+B .(1)3y x =-或(1)3y x =--C .1)y x =-或1)y x =-D .(1)2y x =-或(1)2y x =--(2012·新课标Ⅰ,文4)设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为()A .12B .23C .34D .45(2012·新课标Ⅰ,文10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为()A B .C .4D .8(2011·新课标Ⅰ,文4)椭圆221168x y +=的离心率为()A .13B .12C .3D .2(2011·新课标Ⅰ,文9)已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为C 的准线上一点,则ABP △的面积为().A .18B .24C .36D .48二、填空题(2018·新课标Ⅰ,文15)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =.(2016·新课标Ⅰ,文15)设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若AB =,则圆C 的面积为.(2016·新课标Ⅲ,文15)已知直线:60l x -+=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l的垂线与x 轴交于C 、D 两点,则CD =_________.(2015·新课标Ⅰ,文16)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当ΔAPF 周长最小时,该三角形的面积为.(2015·新课标Ⅱ,文15)已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为.三、解答题(2018·新课标Ⅰ,文20)设抛物线2:2C y x =,点()2,0A ,()2,0B -,过点A 的直线l 与C 交于M ,N两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.(2018·新课标Ⅱ,文20)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.(2018·新课标Ⅲ,文20)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++= .证明:2FP FA FB =+ .(2017·新课标Ⅰ,文20)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程.(2017·新课标Ⅱ,文20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.(2017·新课标Ⅲ,文20)在直角坐标系xOy 中,曲线2–2y x mx =+与x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(2016·新课标Ⅰ,文20)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OHON;(2)除H 以外,直线MH 与C 是否有其他公共点?请说明理由.(2016·新课标Ⅱ,文21)已知A 是椭圆E :22143x y +=的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当|AM|=|AN|2k <<.(2016·新课标Ⅲ,文20)已知抛物线2:2C y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.(2015·新课标Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)OM ON ⋅=12,其中O 为坐标原点,求|MN |.(2015·新课标Ⅱ,文20)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2)在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A 、B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(2014·新课标Ⅰ,文20)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积.(2014·新课标Ⅱ,文20)设F 1,F 2分别是椭圆C :12222=+by a x (a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为43,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(2013·新课标Ⅰ,文21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.(2013·新课标Ⅱ,文20)在平面直角坐标系xoy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.(2012·新课标Ⅰ,文20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
2012-2021十年全国高考数学(文科)真题分类汇编解析 逻辑与推理(解析版)
2012-2021十年全国高考数学(文科)真题分类汇编解析逻辑与推理(解析版)一、选择题1.(2021年全国高考乙卷文科)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是 ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A解析:由于1sin 1x -≤≤,所以命题p 为真命题; 由于0x ≥,所以||e 1x ≥,所以命题q 真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2019年高考数学课标Ⅲ卷文科)记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④【答案】A【解析】作出等式组6,20x y x y +⎧⎨-⎩的平面区域为D .在图形可行域范围内可知: 命题:(,)p x y D ∃∈,29x y +;是真命题,则p ⌝假命题;命题:(,)q x y D ∀∈,212x y +.是假命题,则q ⌝真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p q⌝∨假;③p q∨真;②p q∧⌝真;④p q⌝∧⌝假;故答案①③真,正确.故选:A.3.(2019年高考数学课标Ⅱ卷文科)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【答案】A【解析】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点评】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.(2017年高考数学课标Ⅱ卷文科)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .【考点】推理【点评】推理实际考查数据处理能力,从众多数据中,挑选关键数据进行分类讨论,一般利用反证法、类比法、分析法得到结论.5.(2013年高考数学课标Ⅰ卷文科)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是: ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【答案】B解析:由指数函数的性质知,命题p 是假命题.而命题q 是真命题.故选B .考点:(1)命题真假的判断;(2)真值表的运用难度:B备注:高频考点二、填空题6.(2016年高考数学课标Ⅱ卷文科)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_________.【答案】()1,3【解析】由题意得:丙不拿()2,3,若丙()1,2,则乙()2,3,甲()1,3满足,若丙()1,3,则乙()2,3,甲()1,2不满足,故甲()1,3,7.(2014年高考数学课标Ⅰ卷文科)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【答案】A解析:∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.考点:1.简单的逻辑关系;难度:A。
历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划
A. {0}
B. {1}
【解析】∵ A {x | x 1} ,∴ A B {1,2} .
C. {1, 2}
D. {0,1, 2}
【答案】C
7(2017 全国 I 卷文 1)已知集合 A= x|x 2 ,B=x|3 2x 0 ,则
A.
A
B=
x|x
3
2
B. A B
C.
A
B
x|x
a
|
0、| b
|
0
.
5π
D.
6
∵
(a
b)
b
,∴
(a
b)
b
a
b
|
b
|2
0
,即
a
b
|
b
|2
.
设
a
与b
之间的夹角为
,则
cos
|
aa||bb
|
|
|b |2 a || b
|
| |
ba
| |
,∵ |
a
|
2|
b
| ,∴
cos
1 2
.
∵ 0 π ,∴ π . 3
【答案】B 3.(2019 全国 II 卷文 3)已知向量 a=(2,3),b=(3,2),则|a-b|=
【解析】 (1 i)(2 i) 3 i .
C. 3 i D. 3 i
【答案】D 7.(2017 全国 I 卷文 3)下列各式的运算结果为纯虚数的是
A. i(1 i)2
B. i2 (1 i)
C. (1 i)2
D. i(1 i)
【解析】A: i(1 i)2 i 2i 2 ,B: i2 (1 i) (1 i) i 1,
高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列
2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
五年(2018-22)全国高考文科数学真题分类汇编(全国卷新高考卷等)专题1 集合(练习版)
2018-2022五年全国各省份高考数学真题分类汇编专题1 集合一、选择题1.(2022高考北京卷·第1题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则UA( )A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)--2.(2022年浙江省高考数学试题·第1题)设集合{1,2},{2,4,6}A B ==,则A B ⋃= ( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2022年全国高考甲卷数学(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}4.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-5.(2022新高考全国I 卷·第1题)集合{4},{31}M x N x x =<=≥∣,则MN =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭6.(2022年高考全国乙卷数学(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则MN =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}7.(2021年高考浙江卷·第1题)设集合{}1A x x =≥,{}12B x x =-<<,则AB = ( )A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<8.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}9.(2021年新高考Ⅰ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,410.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,412.(2021高考天津·第1题)设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( )A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}13.(2021高考北京·第1题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃= ( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤14.(2020年高考课标Ⅰ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}15.(2020年高考课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}16.(2020年高考课标Ⅲ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为 ( )A .2B .3C .4D .517.(2020年新高考全国Ⅰ卷(山东)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = ( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}18.(2020年新高考全国卷Ⅱ数学(海南)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB =( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}19.(2020年浙江省高考数学试卷·第10题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有4个元素D .若S 有3个元素,则S ∪T 有5个元素20.(2020年浙江省高考数学试卷·第1题)已知集合P ={|14}<<x x ,{}23Q x =<<,则PQ =( )A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}<<x x21.(2020天津高考·第1题)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---22.(2020北京高考·第1题)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则AB = ( ).A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}23.(2019年高考浙江文理·第1题)已知全集U={1,0,1,2,3}-,集合{0,1,2}A =,{1,0,1}B =-,则U ()=A B ( )A .{1}-B .{}0,1C .{1,2,3}-D .{1,0,1,3}-24.(2019年高考天津文·第1题)设集合{}1,1,2,3,5A =-,{}2,3,4B =,{|13}C x R x =∈≤<,则()A CB =( )A .{2}B .{2,3}C .{1,2,3}-D .{1,2,3,4}25.(2019年高考全国Ⅲ文·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B = ( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}26.(2019年高考全国Ⅱ文·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则AB = ( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ27.(2019年高考全国Ⅰ文·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =() ( ) A .{}1,6B .{}1,7C .{}6,7D .{}1,6,728.(2019年高考北京文·第1题)已知集合{}|12A x x =-<<,{}|1B x x =>,则AB = ( )A .()1,1-B .()1,2C .()1,-+∞D .()1,+∞29.(2018年高考数学浙江卷·第1题)已知全集{1,2,3,4,5}U =,{1,3}A =,则UA = ( )A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}30.(2018年高考数学天津(文)·第1题)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()AB C = ( )A.{1,1}-B.{0,1}C .{1,0,1}- D .{2,3,4}31.(2018年高考数学课标Ⅲ卷(文)·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 32.(2018年高考数学课标Ⅱ卷(文)·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,733.(2018年高考数学课标卷Ⅰ(文)·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则AB =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--34.(2018年高考数学北京(文)·第8题) 设集合{(,)|,,}142=-≥+>-≤A x y x y ax y x ay ,则( )A.对任意实数a ,(,)21∈AB.对任意实数a ,(,)21∉A () C .当且仅当0<a 时,(,)21∉AD .当且仅当32≤a 时,(,)21∉A 35.(2018年高考数学北京(文)·第1题)已知集合{|||},{,,,}22012Ax x B,则A B( )A .01{,} B .{,,}101-C .{,,,}2012-D .{,,,}1012-二、填空题36.(2020江苏高考·第1题)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.37.(2019年高考上海·第1题)已知集合()(),32,A B =-∞=+∞、,则=B A ________.38.(2019年高考江苏·第1题)已知集合{}=1,0,1,6A -,{}=B x x x R >0,∈,则=A B ______. 39.(2018年高考数学江苏卷·第1题)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .40.(2018年高考数学浙江卷·第11题)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为,,x y z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x =______,y =_______.。
2011-2019高考真题全国(1卷2卷3卷)文科数学试题分类汇编含答案(全套)
2011-2019高考真题全国(1卷2卷3卷)文科数学试题分类汇编含答案第1章 复数1.(2011·新课标全国高考文科·T2)复数512ii=-( ) A. B. C. D. 2.(2012全国文2)复数的共轭复数是( ). A. B. C. D. 3.(2013全国II 文2)( ). A. B.D. 4.(2014新课标Ⅰ文3)设,则( ) A.B. C. D.5.(2011全国文2)复数( ). A. B. C. D. 6.(2013全国I 文2)( ).A. B. C. D. 7.(2014新课标Ⅱ文2)( )A. B. C. D. 8. (2015全国I 文3)已知复数满足,则( ). A.B. C. D.9. (2015全国II 文2)若为实数,且,则( ). A.B. C. D.2i -12i -2i -+12i -+3i2iz -+=+2i +2i -1i -+1i --21i=+211i 1iz =++z =122225i12i=-2i -12i -2i -+12i -+()212i1i +=-11i 2--11i 2-+11i 2+11i 2-13i 1i+=-12i +12i -+12i -12i --z (1)i 1i z -=+z =2i --2i -+2i -2i +a 2i3i 1ia +=++a =4-3-3410. (2016全国I 文2)设的实部与虚部相等,其中a 为实数,则a =( ) A .-3B .-2C .2D .311.(2016全国II 文2)设复数z 满足,则= ( ) (A )(B )(C )(D )12. (2017全国I 文3)下列各式的运算结果为纯虚数的是 ( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)13.(2017全国II 文2)(1+i )(2+i )= ( )A.1-iB. 1+3iC. 3+iD.3+3i14.(2017全国3文3)下列各式的运算结果为纯虚数的是 ( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)15.(2018全国I 文2)设1i2i 1iz -=++,则z = ( ) A .0B .12C .1 D16.【2018全国2卷1】A .B .C .D .17.【2018全国3卷2】 A .B .C .D .18.【2019年高考全国Ⅰ卷文数】设3i12iz -=+,则||z = A .2BCD .119.【2019年高考全国Ⅱ卷文数】设)i i (2z =+,则z = A .12i +B .12i -+C .12i -D .12i --20.【2019年高考全国Ⅲ卷文数】若(1i)2i z +=,则z = A .1i --B .1i -+C .1i -D .1i +第1章 复数答案 CDCBC BBCDA CCBAC DDCDD(12i)(i)a ++i 3i z +=-z 12i -+12i -32i +32i -()i 23i +=32i -32i +32i --32i -+()()1i 2i +-=3i --3i -+3i -3i +第2章 集合与常用逻辑用语1.(2011全国1文1)已知集合,,,则的子集共有( ).A.个B.个C.个D.个 2.(2012全国文1)已知集合,,则( ).A. B. C. D. 3.(2013全国I 文1)已知集合,则( ).A. B. C. D. 4.(2013全国II 文1)已知集合,,则( ).A. B. C. D.5(2014新课标Ⅰ文1)已知集合,,则( )A. B. C. D.6.(2014新课标Ⅱ文1)已知集合,,则( )A. B. C. D. 7. (2015全国I 文1)已知集合,则集合中元素的个数为( ).A. 5B. 4C. 3D. 28. (2015全国II 文1)已知集合,,则( ). A. B. C. D. 9. (2016全国I 文1)设集合,,则(B )A.{1,3}B.{3,5}C.{5,7}D.{1,7}10.(2016全国II 文1)已知集合,则(D )(A ) (B ) (C ) (D ) 11.(2017全国I 文1)已知集合A ={}|2x x <,B ={}|320x x ->,则 ( A ) A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R12(2017全国II 文1设集合{}{}123234A B ==,,, ,,, 则=AB (A ){}0,1,2,3,4M ={}1,3,5N =P MN =P 2468{}220A x x x =<--{}11B x x =<<-A B ⊂≠B A ⊂≠A B =AB =∅{}{}21234A B x x n n A ===∈,,,,,A B ={}14,{}23,{}916,{}12,{}|31M x x =-<<{}3,2,1,0,1N =---MN ={}2,1,0,1--{}3,2,1,0---{}2,1,0--{}3,2,1---{|13}M x x =-<<{|21}N x x =-<<MN =(2,1)-(1,1)-(1,3))3,2(-{}2,0,2A =-{}2|20B x x x =--=AB =∅{}2{}0{}2-{32,},{6,8,10,12,14}A x x n n B ==+∈=N A B {|12}A x x =-<<{}03B x x =<<=B A ()13,-()10,-()02,()23,{1,3,5,7}A ={|25}B x x =≤≤AB ={123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,13.【2018全国一文1】已知集合{}02A =,,{}21012B =--,,,,,则A B =(A )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 14.【2018全国二文2】已知集合,,则(C )A .B .C .D .15.【2018全国三1】已知集合,,则(C )A .B .C .D .16.(2014新课标Ⅱ文3)函数在处导数存在,若;是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不充分也不必要17.(2013全国I 文5)已知命题;命题,则下列命题中为真命题的是( ).A. B. C. D. 18.(2014新课标Ⅰ文14)甲.乙.丙三位同学被问到是否去过,,三个城市时, 甲说:我去过的城市比乙多,但没去过城市; 乙说:我没去过城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为.19.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则=A C B UA .{}1,6B .{}1,7C .{}6,7D .{}1,6,720.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞)B .(-∞,2)C .(-1,2)D .∅21.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2{}1,3,5,7A ={}2,3,4,5B =AB ={}3{}5{}3,5{}1,2,3,4,5,7{|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}()f x 0x x =0:()0p f x '=0:q x x =()f x p q p q q p q q :2<3x x p x ∀∈R ,32:1q x x x ∃∈=-R ,p q ∧p q ⌝∧p q ∧⌝p q ⌝∧⌝A B C B C22.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面第2章 答案 BBACB BDABD AAACC CBA C C AB第3章 平面向量1.(2011全国文13)已知与为两个不共线的单位向量,为实数,若向量与向量垂直, 则.2.(2012全国文15)已知向量夹角为,且,,则3.(2013全国I 文13)已知两个单位向量的夹角为,,若,则4.(2013全国II 文14)已知正方形的边长为,为的中点,则__.5.(2014新课标Ⅱ文4)设向量满足( )A. B. C. D.6.(2014新课标Ⅰ文6)设分别为的三边的中点,则( )A.B.C. D. 7.(2015全国II 文7)已知三点,,,则外接圆的圆心到原点的距离为( ).A. B.C. D. 8.(2015全国I 文2) 已知点,向量,则向量( ).A. B. C. D. 9.(2015全国II 文4)向量,,则( ). A.B. C. D.10.(2016全国文15)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =11.(2016全国II 文13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.12.(2017全国文13)已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =____________. 13.(2017全国II 文)设非零向量a ,b 满足+=-b b a a 则( )A a ⊥b B. =b a C. a ∥b D. >b aa b k +a b k -a b k =,a b 451=a 2-=a b =b ,a b 60()1t t =+-c a b 0⋅=b c t =ABCD 2E CD AE BD ⋅=,a b +=a b -a b ⋅=a b 1235F E D ,,ABC △AB CA BC ,,=+FC EB AD AD 21BC BC 21()1,0A (B (C ABC △3532135234(0,1),(3,2)A B ()4,3AC =--BC =()7,4--()7,4()1,4-()1,4()1,1=-a ()1,2=-b ()2+⋅=a b a 1-012开始开始14.(2018全国1文7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = ( ) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 15.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3 D .5π616.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |= AB .2C .D .5017.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.答案:1、 1 , 2、,3、3 ,4、2, 5A ,6A ,7B ,8A , 9C ,1011 -6 12 7 13 A 14 A 15B 16A 17第4章 算法初步1.(2013全国II 文7)执行右面的程序框图,如果输入的,那么输出的( ).A. B. C. D. 2.(2013全国I 文7)7. 执行右面的程序框图,如果输入的,则输出的属于( ).A.B.C.D.3.(2014新课标Ⅰ文9)分别为1,2,3,则输出的( )A.B.D.=b 23-4N =S =1111234+++1111232432+++⨯⨯⨯111112345++++111112324325432++++⨯⨯⨯⨯⨯⨯[]13t ∈-,s []34-,[]52-,[]43-,[]25-,,k M =203165158第3题 第2题 第1题4.(2011全国文5)执行如图所示的程序框图,如果输入的是6,则输出的是( ).A. B. C. D.5.(2014新课标Ⅱ文8)执行如下图所示程序框图,如果输入的均为,则输出的( ) A. B. C. D.6.(2012全国文6)如果执行下边的程序框图,输入正整数和市属,输出,则 ( )A.为的和B.为的算术平均数 C.和分别是中最大的数和最小的数 D.和分别是中最小的数和最大的数N p 12072014405040,x t 2S =4567()2N N 12,,...,N a a a ,A B A B +12,,...,N a a a 2A B+12,,...,N a a a A B 12,,...,N a a a A B 12,,...,N a a a 开始输入a ,b ,k结束否是输出M开始 输入x ,t否 是输出S第4题 第5题 第6题7.(2015全国I 文9)执行如下图所示的程序框图,如果输入的,则输出的( ).A. 5B. 6C.D.8. (2015全国II 文8)如下图所示,程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的.分别为14.18,则输出的( ). A. B. C. D.9.(2016全国I 文10).执行下面的程序框图,如果输入的 n =1,则输出的值满足( )(A ) (B ) (C ) ( D )0.01t =n =78a b a =024140,1,x y ==,x y 2y x =3y x =4y x =5y x =输出nm=m2,n=n+1S=S-mS=1,n=0,m=12开始S>t ?输入t结束否是否a>ba =a -bb =b -aa ≠b输入a,b是结束输出a开始是否第7题 第8题 第9题 10.(2017全国I 文10)如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入 ( )A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.【2019年高考全国Ⅰ卷文数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+12.【2019年高考全国Ⅲ卷文数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122-B .5122-C .6122-D .7122-答案:BADBD CCBCD AC第5章 三角函数与解三角形1.(2014全国I 文2)若,则()A. B. C. D.2.(2011全国文11)设函数,则().A.在单调递增,其图象关于直线对称B.在单调递增,其图象关于直线对称C.在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称 3. .在函数①,②,③,④中,最小正周期为tan 0α>sin 0α>cos 0α>sin 20α>cos20α>ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x π0,2⎛⎫ ⎪⎝⎭π4x =()f x π0,2⎛⎫ ⎪⎝⎭π2x =()f x π0,2⎛⎫ ⎪⎝⎭π4x =()f x π0,2⎛⎫ ⎪⎝⎭π2x =cos 2y x =cos y x =cos 26y x π⎛⎫=+ ⎪⎝⎭tan 24y x π⎛⎫=- ⎪⎝⎭π的所有函数为()A.①②③B. ①③④C. ②④D. ①③4.(2014新课标Ⅱ文14)函数的最大值为5.(2012全国文9)已知,直线和是函数图像的两条相邻的对称轴,则(). A.B. C. D.6.(2015全国I 文8) 函数的部分图像如图所示,则的单调递减区间为().A. B.C. D.7.(2013全国II 文16)函数的图象向右平移个单位后,与函数的图象重合,则_________. 8.(2011全国1文7)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则().A. B. C. D. 9.(2013全国II 文6)已知,则().A. B.C. D.10.(2013全国I 文9)函数在的图象大致为().()sin()2sin cos f x x x ϕϕ=+-0ω>0ϕ<<π4x π=4x 5π=()()sin f x x ωϕ=+ϕ=4π3π2π43π()cos()f x x ωϕ=+()f x ()13π,π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132π,2π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()13,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132,244k k k ⎛⎫-+∈ ⎪⎝⎭Z cos(2)(ππ)y x ϕϕ=+-π2πsin 23y x ⎛⎫=+⎪⎝⎭ϕ=θx 2y x =cos2θ=45-35-35452sin 23α=2πcos 4α⎛⎫+= ⎪⎝⎭16131223()()1cos sin f x x x =-[]ππ-,11.(2013全国I 文16)设当时,函数取得最大值,则.12.(2015全国II 文11)如图所示,长方形的边,,是的中点,点沿着,与运动,记.将动点到,两点距离之和表示为的函数,则的图像大致为().A. B. C. D.13.(2013全国II 文4)的内角的对边分别为,已知,,,则的面积为().A. B.C.D.C.B.A.x θ=()sin 2cos f x x x =-cos θ=ABCD 2AB =1=BC O AB P BC CD DA BOP x ∠=P A B x ()f x ()y f x =424424424424ABC △,,A B C ,,a b c 2b =π6B =π4C =ABC△212114.(2015全国II 文17)中,是上的点,平分,. (1)求; (2)若,求.15.(2011全国文15)中,,,,则的面积为.16.(2013全国I 文10)已知锐角的内角的对边分别为,,,,则().A. B. C. D.17.(2014新课标Ⅱ文17)(本小题满分12分)四边形的内角与互补,,,.(1)求和;(2)求四边形的面积.18.(2012全国文17)已知分别为△三个内角的对边, (1)求;(2)若,△的面积为,求.19.(2014新课标Ⅰ文16)如图所示,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高ABC △D BC AD BAC ∠2BD DC =sin sin BC∠∠60BAC ∠=B ∠ABC △120B =7AC =5AB =ABC △ABC △A B C ,,a b c ,,223cos cos20A A +=7a =6c =b =10985ABCD A C 1AB =3BC =2CD DA ==C BD ABCD ,,a b c ABC ,,A B C 3sin cos c a C c A =-A 2a =ABC 3,b c MN A C A M 60MAN ∠=︒C 45CAB ∠=︒75MAC ∠=︒C 60MCA ∠=︒100m BC =MN =20. (2015全国I 文17)已知分别为内角的对边,.(1)若,求;(2)设,且的面积.21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=( )22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= 24 (2017全国I 文8).函数sin21cos xyx=-的部分图像大致为A .B .,,a b c ABC △,,A B C 2sin 2sin sin B A C =a b =cos B 90B ∠=a =ABC △a =2c =2cos 3A =π435π4A BC .2D .3A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)C .D .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= ( )A .15BCD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.29.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .30.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .31.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,2sin cos ++x xx xcos A =−14,则b c=A .6B .5C .4D .332.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2B .32C .1D .1233.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α= A .15BCD34.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为A .2B .3C .4D .535.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.37.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.高考真题试题详解1.解析由得是第一.三象限角,若是第三象限角,则A ,B 错; 由知,C 正确;取时,,D 错.故选C. 评注本题考查三角函数值的符号,判定时可运用基本知识.恒等变形及特殊值等多种方法,具有一定的灵活性.2.解析因为, 当时,,故在单调递减. tan 0α>ααsin 22sin cos ααα=sin 20α>απ32211cos 22cos 121022αα⎛⎫=-=⨯-=-< ⎪⎝⎭ππππ()sin 2cos 2224444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭π02x <<02πx <<()f x x =π0,2⎛⎫⎪⎝⎭又当是的一条对称轴.故选D.3.解析①,最小正周期为;②由图像知的最小正周期为;③的最小正周期;④的最小正周期.因此选A.评注本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图像判断其最小正周期. 4.解析,所以.5.分析利用三解函数的对称轴求得周期. 解析由题意得周期,所以,即,所以,所以 ,.因为,所以.所以,所以.故选A. 6.解析由图可知,得,.画出图中函数的一条对称轴,如图所示.由图可知,则,可得,则,得.由,得的单调递减区间为. 故选D.7.分析先进行平移,得出的三角函数与所给的三角函数进行比较,求出的值. 解析:的图象向右平移个单位得到的图象,整理得.因为其图象与的图象重合,所以,所以π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =()y f x =cos 2cos2y x x ==πcos y x =ππcos 26y x ⎛⎫=+⎪⎝⎭2ππ2T ==πtan 24y x ⎛⎫=- ⎪⎝⎭π2T =()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-()max 1f x =512ππ2π44T ⎛⎫=-=⎪⎝⎭2π2πω=1ω=()sin()f x x ϕ=+ππsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭5π5πsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭0πϕ<<ππ5π444ϕ<+<ππ42ϕ+=π4ϕ=511244T =-=2T =2ππTω==()f x 0x x =034x =3πcos 14ϕ⎛⎫+=-⎪⎝⎭3π2ππ4k ϕ+=+()π2π4k k ϕ=+∈Z ()πcos π4f x x ⎛⎫=+ ⎪⎝⎭π2ππ2ππ4k x k ++()f x 132244k xk -+ϕ()cos 2y x ϕ=+2πcos 22y x ϕ⎡π⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦()cos 2y x ϕ=-π+sin 23y x π⎛⎫=+ ⎪⎝⎭2k ϕππ-π=-+π32,即.又因为,所以. 8.解析设为角终边上任意一点,则. 当时,;当时,.因此.故选B.9.分析结合二倍角公式进行求解.解析:因为,所以故选A. 10.分析先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点.解析:在上,因为,所以是奇函数,所以的图象关于原点对称,排除B.取,则,排除A.因为,所以令,则或. 结合,求得在上的极大值点为,靠近,故选C.11.分析先利用三角恒等变换求得函数的最大值,再利用方程思想求解. 解析:, 则所以,所以, 所以又因为时,取得取大值,所以.又,所以即.2k ϕππ=+π-+π322k ϕ5π=+π6ϕ-ππ≤5ϕπ=6(,2)(0)Pt t t ≠θcos θ=0t >cos θ=0t <cosθ=223cos 22cos 1155θθ=-=-=-2sin 23α=221cos 211sin 213cos .42226αααπ⎛⎫++- ⎪π-2⎛⎫⎝⎭+==== ⎪⎝⎭[],-ππ()()()()()1cos sin 1cos sin f x x x x x -=---=--=⎡⎤⎣⎦()()1cos sin x x f x --=-()f x ()f x 2x π=1cos 10f ππ⎛⎫⎛⎫=-= ⎪ ⎪22⎝⎭⎝⎭()()1cos sin f x x x =-()()sin sin 1cos cos f x x x x x '=⋅+-2221cos cos cos 2cos cos 1.x x x x x =-+-=-++()0f x '=cos 1x =1cos 2x =[],x ∈-ππ()f x (]0,π23ππsin 2cos y x x x x ⎫=-=⎪⎭cos sin αα=)()sin cos cossin .y x x ααα=-=-x ∈R x α-∈R max y =x θ=()f x ()sin 2cos fθθθ=-=22sin cos 1θθ+=sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩cos θ=12.解析由已知可得,当点在边上运动时, 即时,;当点在边上运动时,即,时,当时,; 当点在边上运动时,即时,.从点的运动过程可以看出,轨迹关于直线对称,,且轨迹非直线型.故选B. 评注本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想. 13.分析先由正弦定理解出的值,再运用面积公左求解. 解析:因为,,所以 由正弦定理,得,即所以.故选B. 14.分析 (1)根据题意,由正弦定理可得.(2)由诱导公式可得,由(1)可知,所以,. 解析 (1)由正弦定理得,,.因为平分,,所以. (2)因为,,所以.由(1)知,所以P BC π04xPA PB +=tan x P CD π3π44x π2x ≠PA PB +=π2x =PA PB +=P AD 3ππ4x tan PA PB x +=P π2x =ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭c 6B π=4C π=7.A B C πππ=π--=π--=6412sin sin b c B C =2sin sin c =ππ64212=c =117sin 212212ABC S bc A π==⨯⨯=△sin 1sin 2B DC C BD ∠==∠()1sin sin sin 22C BAC B B B ∠=∠+∠=∠+∠2sin B ∠=sin C ∠tan B ∠=30B ∠=sin sin AD BD B BAD =∠∠sin sin AD DCC CAD=∠∠AD BAC ∠2BD DC =sin 1sin 2B DC C BD ∠==∠()180C BAC B ∠=-∠+∠60BAC ∠=()1sin sin cos sin 22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠,即. 评注三角是高中数学的重点内容,在高考中主要利用三角函数,三角恒等变换及解三角形的正弦定理及余弦定理,在求解时,注意角的转化及定理的使用.15.解析由余弦定理知,即,解得.故.故答案为. 16.分析先求出角的余弦值,再利用余弦定理求解.解析:由得,解得.因为是锐角, 所以.又,所以,所以或.又因为,所以.故选D.17.解析(1)由题设及余弦定理得,①. ②由①,②得,故,(2)四边形的面积 评注本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18.解析(1)由.由于,所以. 又,故. (2)的面积,故.而,故 . 解得.tan 3B ∠=30B ∠=2222cos120AC AB BCAB BC =+-⋅249255BC BC =++3BC =11sin120532224ABC S AB BC =⋅=⨯⨯⨯=△4A 223cos cos 20A A +=2223cos 2cos 10A A +-=1cos 5A =±A 1cos 5A =2222cos a b c bc A =+-214936265b b =+-⨯⨯⨯5b =135b =-0b5b 2222cos 1312cos BD BC CD BC CD C C =+-⋅=-2222cos 54cos BD AB DA AB DA A C =+-⋅=+1cos 2C =60C =BD =ABCD 1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭sin cos c C c A =-sin A C -cos sin sin 0A C C -=sin 0C ≠π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<π3A =ABC △1sin 2S bc A ==4bc =2222cos a b c bc A =+-228b c +=2b c ==19.解析在中,,,所以. 在中,,,从而,由正弦定理得,,因此.在中,,,由得,故填. 20. 解析(1)由正弦定理得,.又,所以,即.则.(2)解法一:因为,所以,即,亦即.又因为在中,,所以,则,得.所以为等腰直角三角形,得,所以. 解法二:由(1)可知,①因为,所以,②将代入得,则,所以. 21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=答案:D解析:本题考察余弦定理,根据题目条件画出图形可以列出等式,带入已知条件化简可得,解得.22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为Rt ABC △45CAB ∠=100BC =m AC =m AMC △75MAC ∠=60MCA ∠=45AMC ∠=sin 45sin 60AC AM=AM =m Rt MNA △AM =m 60MAN∠=sin 60MNAM=150MN ==m 15022b ac =a b =22a ac =2a c =22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅90B ∠=()2sin 12sin sin 2sin sin 90B A C A A ===-2sin cos 1A A =sin 21A =ABC △90B ∠=090A <∠<290A ∠=45A ∠=ABC △a c ==112ABC S ==△22b ac =90B ∠=222a c b +=②①()20a c -=a c ==112ABC S ==△a =2c =2cos 3A =2222cos a b c bc A =+-23830b b --=3b =A BC .2D .3答案:D解析:该函数的周期为,所以函数向右平移,得,化简可得y =2sin(2x –π3).23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)=.答案:解析:本题考察同角的三角函数关系,三角函数的符号判断以及诱导公式的运用:,因为θ是第四象限角,且,所以也在第四象限,即,所以24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .2T ππω==4π2sin(2())46y x ππ=-+π435π443-cos()4πθ-=3cos()sin()4245πππθθ+-=+=cos()4πθ-=354πθ-4sin()45πθ-=-sin()44tan()43cos()4πθπθπθ--=--A . y =2sin(2x +π4) B . y =2sin(2x +π3) C . y =2sin(2x –π4) D . y =2sin(2x –π3)25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 B A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= BA .15BCD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为. 29.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,2sin cos ++x xx x排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 30.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒123+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查.31.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则b c=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果.32.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.33.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.34.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点. 35.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.37.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2).【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭. 【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.第6章 极坐标与参数方程1.(2013全国2文23)动点都在曲线(为参数)上,对应参数分别为与(),为的中点.(1)求的轨迹的参数方程;(2)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.P Q ,2cos 2sin x tC :y t =⎧⎨=⎩t t α=2t α=0<<2παM PQ M M d a M2.(2014新课标Ⅱ文23)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆的极坐标方程为,.(1)求的参数方程;(2)设点在上,在处的切线与直线垂直,根据(1)中你得到的参数方程,确定的坐标.3(2012全国文23)已知曲线的参数方程是为参数,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为.(1)求点的直角坐标; xOy x C 2cos ρθ=0,2θπ⎡⎤∈⎢⎥⎣⎦C D C CD :2l y =+D 1C 12cos ,:3sin ,x C y ϕϕ=⎧⎨=⎩(ϕ)x 2C 2ρ=ABCD 2C ,,,A B C D A π2,3⎛⎫⎪⎝⎭,,,A B C D(2)设为上任意一点,求的取值范围.4.(2015全国II 文23) 在直线坐标系中,曲线:(为参数,)其中.(1) 求与交点的直角坐标;5.(2015全国I 文23)在直角坐标系中,直线:,圆:,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求的极坐标方程. (2)若直线的极坐标方程为,设与的交点为,求的面积. P 1C 2222PA PB PC PD +++xOy 1C cos sin x t y t αα=⎧⎨=⎩t 0t ≠0πα2C 3C xOy 1C 2x =-2C ()()22121x y -+-=12,C C 3C ()π4θρ=∈R 2C 3C ,M N 2C MN △6.(2011全国文23))在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线.(1)求的方程;(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.7(2013全国I 文23)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标xOy 1C 2cos ,22sin .x y αα=⎧⎨=+⎩αM 1C P 2OP OM =P 2C 2C O x π3θ=1C A 2C B AB 1C 45cos 55sin x ty t=+⎧⎨=+⎩t x 2C 2sin ρθ=1C 1C 2C ()00<2πρθ≥≤,8(2016全国卷1 23.)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。
全国各地高考文科数学试题分类汇编 选修部分学生版
2013年全国各地高考文科数学试题分类汇编16:选修部分一、选择题1 .(2013年高考大纲卷(文))不等式222x -<的解集是( )A .()-1,1B .()-2,2C .()()-1,00,1D .()()-2,00,2二、填空题 2 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.DBCE P A3 .(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x的不等式||||2x a x b -+->的解集是______.5 .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.6 .(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s=+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____ 7 .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ .8 .(2013年高考广东卷(文))(几何证明选讲选做题)如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______.图 39 .(2013年上海高考数学试题(文科))若2011x =,111x y =,则x y +=________.三、解答题 10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:(I);FEB CEB ∠=∠ (II)2.EF AD BC =11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.(Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF ∆外接圆的半径.15.(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+.(Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围 16.(2013年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.17.(2013年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.18.(2013年高考辽宁卷(文))选修4-4:坐标系与参数方程 在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.。
全国各地高考文科数学试题分类汇编 选修部分学生版
2013年全国各地高考文科数学试题分类汇编16:选修部分一、选择题1 .(2013年高考大纲卷(文))不等式222x -<的解集是 ( )A .()-1,1B .()-2,2C .()()-1,00,1D .()()-2,00,2二、填空题 2 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.DBCE P A3 .(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x的不等式||||2x a x b -+->的解集是______.5 .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.6 .(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s=+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____ 7 .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ .8 .(2013年高考广东卷(文))(几何证明选讲选做题)如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______.图 3E C B D A9 .(2013年上海高考数学试题(文科))若2011x =,111x y =,则x y +=________. 三、解答题 10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:(I);FEB CEB ∠=∠ (II)2.EF AD BC =11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.(Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;CA B FE(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF ∆外接圆的半径.15.(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+.(Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围 16.(2013年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.17.(2013年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.18.(2013年高考辽宁卷(文))选修4-4:坐标系与参数方程 在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.。
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。
2012-2021十年全国高考数学真题分类汇编(文科) 圆锥曲线选择题(原卷版)
2012-2021十年全国高考数学真题分类汇编 (文科)圆锥曲线选择题(原卷版)一、选择题1.(2021年高考全国甲卷文科)点()3,0到双曲线221169x y -=的一条渐近线的距离为( )A .95B .85C .65D .452.(2021年全国高考乙卷文科)设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B CD .23.(2020年高考数学课标Ⅰ卷文科)设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( )A .72B .3C .52D .24.(2020年高考数学课标Ⅱ卷文科)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 ( ) A .4B .8C .16D .325.(2020年高考数学课标Ⅲ卷文科)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( )A .1,04⎛⎫⎪⎝⎭ B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)6.(2019年高考数学课标Ⅲ卷文科)已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为 ( )A .32B .52C .72D .927.(2019年高考数学课标Ⅱ卷文科)设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点.若PQ OF =,则C 的离心率为 ( )ABC .2D8.(2019年高考数学课标Ⅱ卷文科)若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p =( ) A .2 B .3 C .4 D .89.(2019年高考数学课标Ⅰ卷文科)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为() ( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=10.(2019年高考数学课标Ⅰ卷文科)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C的离心率为()( )A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(2018年高考数学课标Ⅲ卷文科)已知双曲线22221x y C a b-=:(00a b >>,)()40,到C 的渐近线的距离为 ( )AB .2 CD.12.(2018年高考数学课标Ⅱ卷文科)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 ( )A.1-B.2CD113.(2018年高考数学课标Ⅱ卷文科)双曲线22221(0,0)x y a b a b-=>>的离心率为( ) A.y = B.y =C.y x = D.y = 14.(2018年高考数学课标Ⅰ卷文科)已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12CD15.(2017年高考数学课标Ⅲ卷文科)已知椭圆,的左、右顶点分别为,且以线段为直径的圆与直线相切,则的离心率为( )22221x y C a b+=:0a b()12A A ,12A A 20bx ay ab -+=CABCD.16.(2017年高考数学课标Ⅱ卷文科)过抛物线的焦点,于点(在轴上方),为的准线,点在上,且⊥,则到直线的距离为()A B.C.D.17.(2017年高考数学课标Ⅱ卷文科)若,则双曲线的离心率的取值范围是( )A.B.C.D.18.(2017年高考数学课标Ⅰ卷文科)设是椭圆长轴的两个端点,若上存在点满足,则的取值范围是( )A.B.C.D.19.(2017年高考数学课标Ⅰ卷文科)已知是双曲线的右焦点,是上一点,且与轴垂直,点的坐标是,则的面积为( )A.B.C.D .20.(2016年高考数学课标Ⅲ卷文科)已知O为坐标原点,F是椭圆C:F的左焦点,A B,分别为C的左,右顶点.P为C上一点,且PF x⊥轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A.13B.12C.23D.3421.(2016年高考数学课标Ⅱ卷文科)设F为抛物线:C24y x=的焦点,曲线()0ky kx=>与C交于点P,PF x⊥轴,则k=( ).A.12B.1C.32D.222.(2016年高考数学课标Ⅰ卷文科)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为( )132:4C y x=F C M M x l C N l MN l M NF1a>2221xya-=)+∞)2(()1,2,A B22:13x yCm+=C M 120AMB∠=︒m(][)0,19,+∞([)9,+∞(][)0,14,+∞([)4,+∞F22:13yC x-=P C PF xA(1,3)APF△13122332A .13B .12C .23D .3423.(2015年高考数学课标Ⅰ卷文科)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )A .3B .6C .9D .12 24.(2014年高考数学课标Ⅱ卷文科)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30︒的直线交C 于A .B 两点,则||AB = ( )AB .6C .12D .25.(2014年高考数学课标Ⅰ卷文科)已知抛物线C :x y =2的焦点为F ,A 00(,)x y 是C 上一点,|AF |=540x ,则0x = ( ) A .1B .2C .4D .826.(2014年高考数学课标Ⅰ卷文科)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A .2B .26C .25 D .127.(2013年高考数学课标Ⅱ卷文科)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( )A .1y x =-或1y x =-+B .1)3y x =-或(1)3y x =--C .1)y x =-或1)y x =-D .1)y x =-或1)y x =- 28.(2013年高考数学课标Ⅱ卷文科)设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为 ( )A B .13C .12D29.(2013年高考数学课标Ⅰ卷文科)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )A .2B .C .D .430.(2013年高考数学课标Ⅰ卷文科)已知双曲线2222:1x y C a b-=(0,0)a b >>C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±31.(2012年高考数学课标卷文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =,则C 的实轴长为 ( )AB .C .4D .832.(2012年高考数学课标卷文科)设12,F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30︒的等腰三角形,则E 的离心率为 ( ) A .12B .23C .34D .45。
全国高考文科数学历年试题分类汇编
A.1
B. 1
C. i
(D) i
z2
( 2014 卷 1 )已知复数 z 1 i ,则
()
z1
A. 2
B. - 2 C. 2i D. - 2i
( 2016 卷 1) 设 (1 2i)( a i) 的实部与虚部相等,其中
( A )- 3( B)- 2(C) 2(D ) 3
a为实数,则 a=
( 2016 卷 2 )设复数 z 满足 z i 3 i ,则 z =
A.(-1 , 3)
B.(-1 , 0 ) C.(0 ,2) D.(2 , 3)
( 2019 卷 1 )已知集合 M x | 1 x 3 , B x | 2 x 1 ,则 M I B ( )
A. ( 2,1)
B. ( 1,1) C. (1,3)
D. ( 2,3)
2
( 2019 卷 2) 已知集合 A=﹛-2,0,2 ﹜, B=﹛ x | x - x - 2 0 ﹜,则 A B ( )
r
r
uuur
0 ,| a | 1,|b | 2 ,则 AD
1r 1r ab
(A) 3 3
2r 2r ab
(B) 3 3
3r 3r ab
(C) 5 5
4r 4r ab
(D) 5 5
(
2017
卷
1
)
已知 a与 b为两个不共线的单位向量, k为实数,若向量 a+b与向量 ka-b垂直,则 k=_____________ .
D .i(1+i)
3. 向量
uuur
uuur
( 2019 卷 1 )已知点 A(0,1), B(3,2) ,向量 AC ( 4, 3) ,则向量 BC ( )
全国各地高考文科数学试题分类汇编1:集合.doc
亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!%(AU〃)二()A. {1,3,4}B. {3,4}C.⑶D. {4}【答案】D3 . (2013 年高考浙江卷(文))设集合S二{x|x>-2},T二{x|-4WxWl},则SQT二()A. [一4,+8)B. (一2, +8)C. [一4, 1]D. (-2, 1]【答案】D(2013年高考天津卷(文))己知集合/二匕丘斤B= Ue/?| A<1},则AnB =( )A. (-oo,2]B. [1,2]C. [-2,2]D. [-2, 1]【答案】D(2013年高考四川卷(文))设集合A = {1,2,3},集合5 = {-2,2),则=( )A. 0B. {2}C. {—2,2}D. .{-2,1,2,3}【答案】B(2013年髙考山东卷(文))己知集合A、B均为全集C/ = {1,2,3,4}的子集,且Q「(AUB) = {4}, 3二{1,2},则二() A. {3} B.⑷ C. {3,4} D. 0【答案】A(2013年高考辽宁.卷(文))已知集合A = {l,2,3,4},B = {x|x<2},WUnB =( )A. {0} B・{0,1} C. {0,2} D. {0,1,2}【答案】B(2013 年高考课标II卷(文))已知集合M= {x |-3<X<1}, N= {-3, -2, -1, 0, 1},则MDN二( )A. {~2, ~1, 0, 1)B. {一3, 一2, 一1., 0}C. {~2,_1, 0}D. {一3, 一2, 一1 } 【答案】C(2013年高考课标I卷(文))己知集合A = {1,2,3,4}, B = {x\x = n\ne A},则A AB = ( ) A. {0} B・{T,,0} C. {0,1} D. {-l,,0, 1}【答案】A(2013年高考江西卷(文))若集合A = {xGR|ax2+ax+l=0}其中只有一个元素,则a二( )A. 4B. 2C. 0D. 0 或4【答案】A(2013年高考湖北卷(文))已知全集U = {1,2,3,4,5},集合A = {1,2), B = {2,3,4},则3述/= ( ) A. {2} B. {3,4} C. {1,4,5} D. {2,3,4,5}【答案]B(2013年高考广东卷(文))设集合S = [x\x2 + 2x = 0,xe R}, T = {x\x2 -2x = 0,xe R},则SPIT = ( ) A. {0} B. {0,2} C. {-2,0} D. {—2,0,2}【答案】A(2013年高考福建卷(文))若集合A = {1,2,3},〃 = {1,3,4},则ARB的子集个数为( )A. 2B. 3C. 4D. 16【答案】C(2013年高考大纲卷(文))设集合1/={1,2,3,4,5},集合力二{1,2},则©/二( )A. {1,2}B. {3,4,5}C. {1,2,3,4,5}D. 0【答案】B15. (2013 年高考北京卷(文.))已知集合A二{一1,0,1}, fi = {x|-l<x<l},则AC[I3 =( )A. {0}B. {-1,0}C. {0,1}D. {—1,0,1}【答案】B16.(2013年高考安徽(文))已知A={JV|X +1>0},B={—2,—1,0,1}£I J(C R A)C B=.( )A. {—2, —1}B. {—2}C. {—1,0,1J.D. {0,1}【答案】A二、填空题17.(2013年高考湖南(文))对于E={a b a2,. a.oo}的子集X= (a., a2,, a n},定义X的“特征数列” 为Xi,X2, Xioo,其•中Xi=Xi0=Xn=l.其余项均为0,例如子集{比,a:J的“特征数列”为0, 1, 0, 0,, 0(1)子集{a b axa5}的“特征数列”的前三项和等于_____________ ;(2)若E的子集P的“特征数列"P b P2,, Pwo满足Pi+Pi沪1, lWiW99;E的子集Q的“特征数列” qi, q2, qioo满足qi=l, q】+qj+i+qj+2=l,lWjW98,则PHQ的元素个数为__________【答案】⑴2 ⑵.1718.(2013年高考湖南(文))已知集合[/= {2,3,6,8},A = {2,3},B = {2,6,8},则(Cu A)nB= _______【答案】{2,6,8}19.(2013年高考福建卷(文))设5,厂是R的两个非空子集,如果存在-•个从S到丁的函数y = fM满足;(i) T = {f(x)\xe S} ; (ii)对任意兀小w S,当<x2时,恒有) < /(x2). 那么称这两个集合“保序同构”.现给出必下3对集合:~① A = N,B = N";② A = {x\-\<x<3],B = {x\-8<x<10};® A = {x\0 < x <\}, B = R.其中,“保序同构”的集合对的序号是___________ (写出所有“保序同构”的集合对的序号) 【答案】①②③。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考文科数学近三年试题分类汇编
大题分类之选做题
(1)坐标系与参数方程
1.(2015卷1)在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点为极点,x 轴
的正半轴为极轴建立极坐标系.
(1)求12,C C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=
∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.
2.(2015卷2)在直角坐标系xOy 中,曲线1cos :sin x t C y t αα
=⎧⎨=⎩(t 为参数,且0t ≠),其中0απ≤<,在以O 为极
点,x 轴的正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:C ρθ=
(1)求23,C C 交点的直角坐标;(2)若1C 与2C 相交于A ,1C 与3C 相交于B ,求AB 的最大值.
3.(2016卷1)在直角坐标系xOy 中,曲线1C 的参数方程cos 1sin x a t y a t =⎧⎨=+⎩
(t 为参数,且0a >),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=
(1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;
(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求0α.
4.(2016年卷2)在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=
(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;
(2)直线l 的参数方程为cos sin x t y t αα
=⎧⎨
=⎩(t 为参数),l 与C 相交于,A B 两点,AB =l 的斜率.
5.(2017年卷1)在直角坐标系xOy 中,曲线C 的参数方程3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a t y t
=+⎧⎨=-⎩(t 为参数),
(1)若1a =-,求C 与l 交点的坐标;(2)若C 上的点到l ,求a .
6.(2017年卷2)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=
(1)M 为曲线1C 的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;
(2)设点A 的极坐标为(2,
)3π,点B 在曲线2C 上,求OAB V 的面积的最大值.
7.(2017年卷3)在直角坐标系xOy 中,直线1l 的的方程为2x t y kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x m m y k =-+⎧⎪⎨=⎪⎩
(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹方程为C
(1)写出C 的普通方程;
(2)以坐标原点为极点,x
轴的正半轴为极轴建立极坐标系,设3:(cos sin )0l ρθθ+=,M 为3l 与C 的交点,求M 的极径.
(2)不等式选讲
1.(2015卷1)已知函数()12,0f x x x a a =+-->
(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图像与x 轴围成的面积大于6,求a 的取值范围.
2.(2015卷2)设,,,a b c d 均为正数,且a b c d +=+,证明:
(1)若ab cd >
>
(2
>a b c d -<-的充要条件.
3.(2016卷1)已知函数()123f x x x =+--
(1)画出()y f x =的图像;(2)求不等式()1f x >的解集
4.(2016卷2)已知函数11()22
f x x x =-++,M 为不等式()2f x <的解集 (1)求M ;(2)证明:当,a b R ∈时,1a b ab +<+.
5.(2017年卷1)已知函数2
()4f x x ax =-++,()11g x x x =++-
(1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.
6.(2017年卷2)已知330,0,2a b a b >>+=,证明:
(1)55()()4a b a b ++≥;
(2)2a b +≤.
7(2017年卷3)已知函数()12f x x x =+--
(1)求不等式()1f x ≥的解集;
(2)若不等式2()f x x x m ≥-+的解集非空,求m 的取值范围.。