提公因式法及公式法因式分解练习题
七下数学每日一练:提公因式法因式分解练习题及答案_2020年计算题版
(1) x(y-3)-2y+6;
(2) (x-4)(x+1)+3x
考点: 提公因式法因式分解;因式分解﹣运用公式法;
答案
~~第7题~~
(2019东台.七下期中) 因式分解:
(1)
(2)
(3)
(4)
考点: 提公因式法因式分解;因式分解﹣运用公式法;十字相乘法因式分解;提公因式法与公式法的综合运用;
答案
七下数学每日一练:提公因式法因式分解练习题及答案_2020年计算题版
2020年 七 下 数 学 : 数 与 式 _因 式 分 解 _提 公 因 式 法 因 式 分 解 练 习 题
~~第1题~~
(2019嵊州.七下期末) 分解因式(1) 2x2-8(2) 4a2-3b(4a-3b)
考点: 提公因式法因式分解;因式分解﹣运用公式法;
(1) 分解因式
(2) 分解因式
考点: 提公因式法因式分解;提公因式法与公式法的综合运用;
答案
~~第5题~~ (2019来宾.七下期末) (1) 解方程组:
(2) 分解因式:9x2(a﹣b)+y2(b﹣a).
考点: 提公因式法因式分解;解二元一次方程组;
答案
~~第6题~~
(2019覃塘.七下期末) 因式分解:
答案
~~第2题~~
(2019衢州.七下期末) 因式分解:
(1) 4a2-9
(2) x3-2x2y+xy2
考点: 提公因式法因式分解;因式分解﹣运用公式法;
答案
~~第3题~~
(2019苏州.七下期末) 因式分解:
(1)
(2)
考点: 提公因式法因式分解;因式分解﹣运用公式法;
最新因式分解分类练习(提公因式法、公式法、十字相乘法)
因式分解:提公因式法专项训练一:确定下列各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。
因式分解常用方法及练习
1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1. 把下列各式因式分解(1)a xabxacxaxm m mm 2213(2)a ab a b a ab b a ()()()32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:a xabxacxaxax axbx c x m m mm m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n 222121;,是在因式分解过程中常用的因式变换。
解:a ab a b a ab ba ()()()32222)243)((]2)(2))[(()(2)(2)(222223b babab aa b b a a b a b a a b a ab b a a b a a 2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987987136813689875、中考点拨:例1。
因式分解322x x x ()()解:322x xx ()()322231x x xxx ()()()()说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。
因式分解经典例题练习题
提公因式法提公因式法:确定公因式的一般方法:①各项系数都是整数时,因式的系数应取各项系数的最大公约数;②字母取各项的相同的字母,而且各字母的指数取次数最低的. ③它们的乘积就是多项式的公因式例:用提公因式法分解因式(1)3a 2- 9ab 2 (2)-5x 2 + 25x 3 (3)4x 3y+2x 2y 2-6xy 3(4)-9m 2n-3mn 2+27m 3n 4 (5)2(x+y)2-4x(x+y) (6)2(a-1)+a(1-a)自我检测1、判断下列各题是否为因式分解:①m(a+b+c)= ma+mb+mc. ②a 2-b 2 = (a+b)(a-b) ③a 2-b 2 +1= (a+b)(a-b)+12、试一试:请找出下列多项式中各项的相同因式(公因式)(1) 3a+3b 的公因式是: (2)-24m 2x+16n 2x 公因式是:(3)2x(a+b)+3y(a+b)的公因式是: (4) 4ab-2a 2b 2的公因式是:3、.对下列多项式进行因式分解①-20a -25ab ②-32233b a b a - ③1+-m m aa④44252336279x a x a x a +- ⑤3a 2- 9ab4.、把下列各式分解因式①3 x 3 -3x 2 –9x ② 8a 2c+ 2b c ③ -4a 3b 3 +6 a 2 b-2ab ④ a(x-y)+by-bx5、把下列多项式分解因式① 2p 3q 2+p 2q 3 ② x n -x n y ③ a(x-y)-b(x-y)④ 4a 3b-2a 2b 2 ⑤323812a b ab c - ⑥ 323612ma ma ma -+-6、已知,x+y=2,xy=-3,求x 2y+xy 2的值.公式法(平方差公式)a 2-b 2=(a+b) (a-b)注意:①公式中的a 、b 可以是单项式(数字、字母)、还可以是多项式。
②分解因式最后结果中如果有同类项,一定要合并同类项。
因式分解培优题(超全面、详细分类)
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+⋯+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题 分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3(15)x 4ax 2xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和.例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题 分解因式:(1)x 214x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10对应练习题 分解因式:(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()22ax6ax82综合练习题分解因式:(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时, 整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 22ax1a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323(11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(1b 2)4ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为 a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。
因式分解常用的六种方法详解
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
因式分解培优题(超全面、详细分类)
因式分解培优题(超全面、详细分类)因式分解专题培优将一个多项式变形成几个整式的积的形式,这个变形过程称为因式分解。
初中阶段常用的因式分解方法如下:1.基本方法:提公因式法、公式法、十字相乘法、分组分解法。
2.常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。
3.考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法。
一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现在可以反向使用它们来进行因式分解,例如:1) a^2 - b^2 = (a + b) (a - b)2) a^2 ± 2ab + b^2 = (a ± b)^23) a^3 + b^3 = (a + b) (a^2 - ab + b^2)4) a^3 - b^3 = (a - b) (a^2 + ab + b^2)以下是几个常用的公式:5) a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^26) a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)7) an - bn = (a - b) (an-1 + an-2b + an-3b^2 + … + abn-2 + bn-1),其中n为正整数;8) an - bn = (a + b) (an-1 - an-2b + an-3b^2 - … + abn-2 - bn-1),其中n为偶数;9) an + bn = (a + b) (an-1 - an-2b + an-3b^2 - … - abn-2 + bn-1),其中n为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如:例题1:分解因式:-2x^5n-1yn+4x^3n-1yn+2-2xn-1yn+4;例题2:分解因式:a^3 + b^3 + c^3 - 3abc。
因式分解(一)提公因式法(含习题及答案)
因式分解(一)——提公因式法教学目标:因式分解的概念,和整式乘法的关系,公因式的相关概念,用提公因式法分解因式,学会逆向思维,渗透化归的思想方法.教学重点和难点:1. 因式分解;2. 公因式;3. 提公因式法分解因式.教学过程:一、提出问题,感知新知1.问题:把下列多项式写成整式的乘积的形式(1)x2+x =_________ (2)x2−1 =_________ (3)am+bm+cm =_ _学生思考,得出结果.2.分析特点:根据整式乘法和逆向思维原理(1)x2+x = x(x+1);(2)x2−1 = (x+1)(x−1);(3)am+bm+cm = m(a+b+c)分析特点:等号的左边:都是多项式等号的右边:几个整式的乘积形式.3.得到新知总结概念:像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.与整式乘法的关系:是整式乘法的相反方向的变形.注意:因式分解不是运算,只是恒等变形.形式:多项式 = 整式1×整式2×…×整式n4.分析例题:(1)x2+x =_________ (2)am+bm+cm =_ _(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m.因此,我们把每一项都含有的因式叫做公因式.5.认识公因式例:多项式 14m3n2+7m2n−28m3n3的公因式是?7m2n教师分析,学生解答二、学生动手,总结方法1.我们已经学习了公因式,下面请大家根据自己的理解完成下列的因式分解.把8a3b2−12ab3c分解因式.2.学生动手.3.分析过程:①先确定公因式:4ab2;②然后用每一项去除以公因式;③结果:4ab2(2a2b−3bc).4.总结方法:以上①②③的分解过程的方法叫做提公因式法.5.加强练习例:因式分解:① 2a(b+c)−3(b+c) ②3x3−6xy+x ③−4a3+16a2−18a ④6(x−2)+x(2−x)解:① 2a(b+c)−3(b+c) = (b+c)(2a−3)②3x3−6xy+x = x(3x2−6y+1)③−4a3+ 16a2−18a = −2a(2a2−8a+9)④6(x−2)+x(2−x) = (x−2)(6−x)三、小结:1.因式分解的概念;2.公因式;3.提公因式法.因式分解(二)——公式法教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x2−25和9x2−y2它们有什么共同特征?学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2−b2 = (a+b)(a−b)如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2 = ( )2②b2 = ( )2③ 0.16a4 =( )2④1.21a2b2 = ( )2⑤2x4 = ( )2⑥5x4y2 = ( )2解答:① 4a2 = ( 2a)2;②b2 = (b)2;③ 0.16a4 = ( 0.4a2)2;④ 1.21a2b2 = (1.1ab)2;⑤2x4 = (x2)2;⑥5x4y2 = (x2y)2.例2:下列多项式能否用平方差公式进行因式分解①−1.21a2+0.01b2②4a2+625b2③16x5−49y4④−4x2−36y2解答:①−1.21a2+0.01b2能用②4a2+625b2不能用③16x5−49y4不能用④−4x2−36y2不能用问题:根据学习用平方差公式分解因式的经验和方法,分析和推测运用完全平方公式分解因式吗?能够用完全平方公式分解因式的多项式具有什么特点?分析:整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.即:a2±2ab+b2 = (a±b)2公式特点:多项式是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数.例:分解因式:①16x2+24x+9 ②−x2+4xy−4y2解答:①16x2+24x+9 = (4x)2+2•3•(4x)+32 = (4x+3)2②−x2+4xy−4y2 = −[x2−2•x•2y+(2y)2] = −(x−2y)2随堂练习:三、小结:1.平方差公式;2.完全平方公式.典型例题1.如果a(a−b)2−(b−a) = (a−b)·M,那么M等于( )A.a(a−b) B.−a(a−b) C.a2−ab−1 D.a2−ab+1答案:D说明:因为a(a−b)2−(b−a) = a(a−b)2+(a−b) = (a−b)[a(a−b)+1] = (a−b)(a2−ab+1),所以M = a2−ab+1,答案为D.2.下列各项的两个多项式中没有公因式的一组是( )A.6xy+8yx2与−4x−3 B.(a+b)2与−a−bC.a−b与−a2+ab D.ax+y与x+y答案:D说明:选项A,6xy+8yx2= 2xy(3+4x),与−4x−3有公因式4x+3;选项B,(a+b)2与−a−b 有公因式a+b;选项C,−a2+ab = −a(a−b),与a−b有公因式a−b;选项D,ax+y与x+y没有公因式,所以答案为D.3.下列式子中,不能用平方差公式分解因式的是( )A.−m4−n2 B.−16x2+y 2 C.−x4 D.(p+q)2−9答案:A说明:选项A不能用平方差公式分解因式;选项B,−16x2+y2= (y+4x)(y−4x),可以用平方差公式分解因式;选项C,−x4 = (+x2)(−x2),可以用平方差公式分解因式;选项D,(p+q)2−9 = [(p+q)+3][(p+q)−3],也可以用平方差公式分解因式;所以正确答案为A.4.下列多项式中,能用公式法进行因式分解的是( )A.x2−xy+y2 B.x2+2xy−y2 C.x2+xy+y2 D.−x2+2xy−y2答案:D说明:观察四个选项中多项式的形式,不难得出A、B、C三个选项中的多项式不能用公式法进行因式分解,选项D,−x2+2xy−y2 = −(x2−2xy+y2) = −(x−y)2,可以用完全平方公式进行因式分解,所以答案为D.习题精选选择题:1.若多项式3x2+mx−4分解因式为(3x+4)(x−1),则m的值为( )A.7 B.1 C.−2D.3答案:B说明:因为因式分解并不改变多项式的值,所以(3x+4)(x−1) = 3x2+mx−4,而(3x+4)(x−1) = 3x2+4x−3x−4 = 3x2+x−4,因此,m = 1,答案为B.2.下列各式的分解因式中,正确的是( )A.3a2x−6bx+3x = 3x(a2−2b) B.xy2+x2y =xy(y+x) C.−a2+ab−ac = −a(a+b−c) D.9xyz−6x2y2= 3xyz(3−2xy)答案:B说明:选项A,3a2x−6bx+3x = 3x(a2−2b+1)≠3x(a2−2b),A错;选项B正确;选项C,−a2+ab−ac = −a(a−b+c)≠−a(a+b−c),C错;选项D,9xyz−6x2y2 = 3xy(3z−2xy)≠3xyz(3−2xy),D错;答案为B.3.若9x2−kxy+4y2是一个完全平方式,则k的值为( )A.6 B.±6 C.12 D.±12答案:D说明:由已知可设9x2−kxy+4y2 = (mx+ny)2 = m2x2+2mnxy+n2y2,所以m2 = 9,n2 = 4,2mn = k,由m2 = 9,n2 = 4可得m2n2 = 36,即(mn)2 = 36,则有mn =±6,所以k = 2mn =±12,答案为D.4.分解因式的结果为(x−2)(x+3)的多项式是( )A.x2+5x−6 B.x2−5x−6 C.x2+x−6D.x2−x−6答案:C说明:因为(x−2)(x+3) = x2−2x+3x−6 = x2+x−6,所以分解因式的结果为(x−2)(x+3)应该是x2+x−6,答案为C.5.下列从左边到右边的变形,是因式分解的是( )A.(x+1)(x−1) = x2−1 B.x2−1+x = (x+1)(x−1)+xC.x2−1 = (x+1)(x−1) D.2x·3x = 6x2答案:C说明:因式分解是把一个多项式化成几个整式的积的形式,则因式分解的结果首先应该是积的形式,因此,A、B都不正确;而选项D左边是两个单项式的乘积,它的变形过程只是简单的单项式乘以单项式的过程,不是因式分解,正确的答案应该是C.6.多项式5a3b3+ 15a2b−20a3b3的公因式是( )A.5a3b B.5a2b2 C.5a2b D.5a3b2答案:C说明:这个多项式中有三项,这三项的系数分别是5,15,−20,系数所含的公因式为5;第一项有因式a3,第二项中含因式a2,第三项中含因式a3,公因式则是a2,同样道理这三项还有公因式b,即这个多项式的公因式应该是5a2b,答案为C.7.下列分解变形中正确的是( )A.2(a+b)2−(2a+b) = 2(a+b)(a+b−1) B.xy(x−y)−x(y−x) =x(x−y)(y+1)C.5(y−x)2+3(x−y) = (y−x)(5x−5y+3) D.2a(a−b)2−(a−b) =(a−b)(a−b−1)答案:B说明:选项A,2a+b中没有a+b这个因式,因此,A中的变形是错误的;选项B,xy(x−y)−x(y−x) = (x−y)(xy+x) = x(x−y)(y+1),B正确;选项C,5(y−x)2+3(x−y) =(y−x)[5(y−x)+3] = (y−x)(5y−5x+3),C错误;选项D,2a(a−b)2−(a−b) = (a−b)[2a(a−b)−1] = (a−b)(2a2−2ab−1),D错误;答案为B.8.下列式子中,能用平方差公式分解因式的是( )A.a2+4 B.−x2−y2 C.a3−1 D.−4+m2答案:D说明:根据平方差公式的形式,不难得到能用平方差公式分解因式的应该是−4+m2 = (m+2)(m−2),答案为D.9.下列各题中,因式分解正确的是( )①(x−3)2−y2 = x2−6x+9−y2;②a2−9b2 = (a+9b)(a−9b);③4x6−1 = (2x3+1)(2x3−1);④(3x+2y)2−4y2 = 3x(3x+4y)A.①②③ B.②③④ C.③④ D.②③答案:C说明:①中的变形不是因式分解;②a2−9b2 = (a+3b)(a−3b)≠(a+9b)(a−9b),②中因式分解错误;③4x6−1 = (2x3+1)(2x3−1),③中因式分解正确;④(3x+2y)2−4y2 =(3x+2y+2y)(3x+2y−2y) = 3x(3x+4y),④中因式分解正确,所以答案为C.解答题:1.把下列各式分解因式:①9(x+y)2−4(x−y)2;②−8a4b3+2a2b;③4(a+b)−(a+b)2−4;④(a−2)(a−3)+ 5a−42.答案:①(5x+y)(x+5y);②2a2b(1+2ab)(1−2ab);③−(a+b−2)2;④(a+6)(a−6)说明:①9(x+y)2−4(x−y)2 = [3(x+y)+2(x−y)][3(x+y)−2(x−y)] =(3x+3y+2x−2y)(3x+3y−2x+2y) = (5x+y)(x+5y)②−8a4b3+2a2b = 2a2b(−4a2b2+1) = 2a2b(1+2ab)(1−2ab)③4(a+b)−(a+b)2−4 = −[(a+b)2−4(a+b)+4] = −[(a+b)−2]2 = −(a+b−2)2④(a−2)(a−3)+5a−42 = a2−3a−2a+6+5a−42 = a2−36 = (a+6)(a−6)2.已知a、b、c为三角形的三条边,且满足:a2+b2+c2−ab−bc−ac = 0,试判断△ABC 的形状,并说明理由.答案:a = b = c,等边三角形说明:因为2(a2+b2+c2−ab−bc−ac) = 2a2+2b2+2c2−2ab−2bc−2ac= (a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2) = (a−b)2+(a−c)2+(b−c)2再由已知a2+b2+c2−ab−bc−ac = 0,知2(a2+b2+c2−ab−bc−ac) = (a−b)2+(a−c)2+(b−c)2 = 0因为(a−b)2≥0,(a−c)2≥0 ,(b−c)2≥0,所以(a−b)2 = 0,(a−c)2 = 0,(b−c)2 = 0即a = b = c,所以该三角形为等边三角形.3.已知矩形面积是(x+2)(x+3)+x2−4(x>0),其中一边长是2x+1,求矩形的另一边长.答案:x+2说明:因为(x+2)(x+3)+x2−4 = (x+2)(x+3)+(x+2)(x−2) = (x+2)(x+3+x−2) =(x+2)(2x+1),即该矩形的面积是(x+2)(2x+1),而它的一边长为2x+1,所以它的另一边长为x+2.4.已知x3+x2+x+1 = 0,求1+x+x2+x3+…+x2003的值.答案:0说明:1+x+x2+x3+…+x2003 = (1+x+x2+x3)+(x4+x5+x6+x7)+…+(x4n+x4n+1+x4n+2+x4n+3)+…+(x2000+x2001+x2002+x2003) = (1+x+x2+x3)+x4(1+x+x2+x3)+...+x4n(1+x+x2+x3)+...+x2000(1+x+x2+x3) = (1+x+x2+x3)(1+x4+...+x4n+ (x2000)∵1+x+x2+x3 = 0,∴1+x+x2+x3+…+x2003 = (1+x+x2+x3)(1+x4+…+x4n+…+x2000) = 0。
多项式的因式分解_提公因式法练习题
多项式的因式分解学一学:看谁算得快:请每题答得最快的同学谈思路,得出最佳解题方法。
(1)若a=101,b=99,则a 2-b 2=___________;(2)若a=99,b=-1,则a 2-2ab+b 2=____________;(3)若x=-3,则20x 2+60x=__________议一议:观察: a 2-b 2=(a+b)(a-b), a 2-2ab+b 2 =(a-b)2 , 20x 2+60x=20x(x+3),找出它们的特点。
(等式的左边是一个什么式子,右边又是什么形式?)【归纳总结】把一个多项式表示成若干个多项式的乘积的形式称为吧这个多项式因式分解,也叫分解因式。
选一选:下列代数式变形中,哪些是因式分解?哪些不是?为什么?(1)x 2-3x+1=x(x-3)+1 ; (2)2m(m-n)=2m 2-2mn (3)3a 2+6ª = 3a (a+2)填一填:) )( (4-2 x继续观察:(a+b)(a-b)= a 2-b 2 ,(a-b)2= a 2-2ab+b 2,20x(x+3)= 20x 2+60x,它们是什么运算?与因式分解有何关系?因式分解结合:a 2-b 2 (a+b )(a-b )整式乘法说明:从左到右是因式分解,从右到左是整式乘法,因式分解与整式乘法是相反变形。
二、合作探究1. 检验下列因式分解是否正确:(1)x 2y-xy 2=xy(x-y); (2)2x 2-1=(2x+1)(2x-1);(3)x 2+3x+2=(x+1)(x+2).2. 下列各式由左边到右边的变形,哪些是因式分解,哪些是多项式乘法?(1)(x+5)(x+1)= x 2+6x+5 (2) (x+2)(x-2)= x 2-4(3) 12ax-12ay=12a(x-y) (4)x 2-10xy+25y 2=(x-5y)2提公因式法说一说:下列从左到右的变形是否是因式分解,为什么?(1)2x 2+4=2(x 2+2); (2)2t 2-3t+1=(2t 3-3t 2+t );(3)x 2+4xy -y 2=x (x+4y )-y 2; (4)m (x+y )=mx+my ;学一学:多项式xu xz xy -+中各项含有相同因式吗?,它们共有的因式是什么?请将上述多项式分别写成两个因式的乘积的形式。
因式分解常用方法
( )
⑧ 4 x 31x 15
3
分组分解法
拆项添项法
配方法
待定系数法
求根法
„„
一、提公因式法 只需找到多项式中的公因式, 然后用原多项式除以公因式,把所 得的商与公因式相乘即可。往往与 其他方法结合起来用。 提公因式法随堂练习:
1)15(m–n)+13(n–m)
2)4(x+y)+4( 将符合其形式的公式套进去即可 完成因式分解,有时需和别的方 法结合或多种公式结合。
五、常用到的式子:
a b c 2ab 2ac 2bc (a b c) 2
2 2 2
a3 b3 c3 3abc (a b c)(a 2 b2 c2 ab bc ac)
二、公式法 公式法随堂练习:
1)(a2–10a+25)(a2–25)
方法四、换元法
对结构比较复杂的多项式,若把其中某些 部分看成一个整体,用新字母代替(即换 元),则能使复杂问题简单化、明朗化, 在减少多项式项数,降低多项式结构复杂 程度等方面有独到作用。
例题:(分解因式) (第12届“五羊杯” 竞赛题)
( x x 4)(x x 3) 10
x 4 2 x 3 3x 2 2 x 1
六*、待定系数法 试因式分解 2x2+3xy–9y2+14x–3y+20。
通过十字相乘法得到 (2x–3y)(x+3y)
设原式等于(2x–3y+a)(x+3y+b)
a 2b 14 通过比较两式同类项的系数可得: 3a 3b 3 a 4 解得: b 5 ,∴原式 = (2x–3y+4)(x+3y+5)
因式分解-提公因式法(含答案)
因式分解 - 提公因式法【知能点分类训练】知能点 1因式分解的意义1.以下从左到右的变形,属于因式分解的是().A.( x+3)(x- 3) =x2- 9B. x2- 9+x=( x+3)( x- 3)- x C. xy2- x2y=xy(y-x)D. x2 +5x+4=x( x+5+)2.以下变形不属于分解因式的是().A.x2- 1=( x+1)( x- 1)B. x2+x+1=( x+1) 242C. 2a5- 6a2=2a2( a3- 3)D. 3x2-6x+4=3x( x- 2) +43.以下各式从左到右的变形中,哪些是整式乘法哪些是因式分解哪些二者都不是(1) ad+bd+cd+n=d( a+b+c) +n(2)ay2-2ay+a=a(y-1)2( 3)( x- 4)( x+4) =x2- 16(4)x2-y2+1=(x+y)(x-y)+1知能点 2提公因式法分解因式4.多项式- 7ab+14abx- 49aby 的公因式是 ________.5. 3x2y3, 2x2y,- 5x3y2z 的公因式是 ________.6.以下各式用提公因式法分解因式,此中正确的选项是().A.5a3+4a2- a=a( 5a2+4a)B. p( a- b)2+pq ( b- a)2=p( a-b )2(1+q)C.- 6x2( y- z)3+x( z- y)3=- 3x( z- y)2( 2x- z+y)D.- x n- x n+1- x n+2 =- x n( 1- x+x2)7.把多项式 a2( x- 2) +a( 2- x)分解因式等于().A.( x- 2)(a2+a)B.( x-2 )( a2- a)C. a( x-2)( a-1)D. a( x- 2)( a+1)8.以下变形错误的选项是().A.( y- x)2=( x- y)2B.- a- b=-( a+b)C.(a- b)3=-( b -a)3D.- m+n=-( m+n)9.分解以下因式 :( 1) 6abc- 3ac2( 2)- a3c+a4b+a3( 3)- 4a3+16a2- 26a(4)x(m-x)(m-y)-m(x-m)(y-m)知能点 3 利用因式分解解决问题10. 9992+999=__________=_________.11.计算(- 2)2007+(- 2)2008的结果是().A.2B.- 2C. 2007D.- 1 12.计算以下各题 :( 1)-× ;( 2)× +×-×13.先分解因式,再求值:xyz2+xy2z+x2yz,此中 x= 2, y=7,z=1.5204【综合应用提升】14.假如 3x2- mxy2 =3x( x- 4y2),那么 m 的值为 ________.15.写出以下各项的公因式 :( 1) 6x2+18x+6;( 2)- 35a( a+b)与42( a+b).16.已知 n 为正整数,试判断n2+n 是奇数仍是偶数,说明原因.17.试说明817- 279- 913能被 45 整除.因式分解 -公式法【知能点分类训练】知能点 1用平方差公式分解因式1.- b2+a2=___________________;9x 2- 16y2=________________________ .2.以下多项式(1) x2+y2;( 2)- 2a2- 4b2;(3)(-m)2-(-n)2;(4)-144x2+169y2;( 5)( 3a)2- 4( 2b)2中,能用平方差公式分解的有()A.1 个B.2 个C.3 个D.4 个3.一个多项式,分解因式后结果是(x3+2)( 2-x3),那么这个多项式是().A. x6-4B. 4- x6C. x9- 4D. 4- x94.以下因式分解中错误的选项是()A. a2- 1=( a+1)( a- 1)B.1- 4x2=( 1+2x)( 1- 2x)C. 81x2- 64y2=( 9x+8y)( 9x- 8y) D.(- 2y)2- x2=(- 2y+x)( 2y+x)5.分解因式 :(1) a2-( 2) 25( m+n)2- 16( m- n)244- 64x22-9y2(3)x( 4)( x+y)9知能点 2 用完整平方公式分解因式6. 4a2+______+81=( 2a- 9)2.7.多项式 a2- 4b2与 a2+4ab+4b2的公因式是().A.a2- 4b2B. a+2b C. a- 2b D.没有公因式8.以下因式分解中正确的选项是().A.x4- 8x2+16=( x-4)2B.- x2+x-1=-1(2x- 1)244C. x( m-n )- y( n- m)=( m-n)(x- y) ; D. a4- b4=( a2+b2)( a2-b2)9.以下各式:①-2212122222x - xy- y;② a +ab+2b;③- 4ab- a +4b;④ 4x +9y-12xy;2⑤ 3x2- 6xy+3y2. ?此中能用完整平方公式分解因式的有().10.分解以下因式 :( 1)- x 2+12xy - 36y 2( 2)25x 2-10x+1( 3)- 2x 7+36x 5- 162x 3( 4)( a 2+6a ) 2+18( a 2+6a ) +81知能点 3 利用因式分解解决问题11.计算: 2 0072 -72 =_____________;992+198+1=___________. 12.假如 ab=2, a+b=3,那么 a 2+b 2=________.13.若 a 2+2( m - 3) a+16 是完整平方式,则 m 的值为().A .- 5B .- 1C .7D .7 或- 114.已知 a=22, b=25,求( a+b ) 2-( a - b ) 2 的值.754415.利用因式分解计算 :( 1) 9×- 4× ;( 2) 80× +160×× +80×(3) 1812 6123012 1812【综合应用提升】16.分解以下因式:( 1) 9x2( a- b) +y2( b- a)(2)4a2b2-(a2+b2)2( 3) x4- 81(4)1-x2+6xy-9y217.已知 x- y=- 2,求( x2 +y2)2- 4xy( x2+y2) +4x2y2的值.【开放探究创新】18.已知 a, b, c 是△ ABC的三条边.(1)判断( a- c)2- b2的值的正负 ;(2)若 a, b, c 知足 a2+c2+2b (b -a- c) =0,判断△ ABC的形状.【中考真题实战】19.(沈阳)分解因式:2x2- 4x+2=________.20.(成都)把 a3+ab2- 2a2b 分解因式的结果是 ________.21.(衡阳)分解因式x3- x,结果为().A. x( x2- 1)B.x( x-1)2C.x( x+1)2D. x( x+1)( x-1)22.(北京)分解因式a2-4a+4- b2.因式分解阶段性复习一、阶段性内容回首1.把多项式化成几个整式_______的形式叫做因式分解,也叫________.2.多项式中每一项都含有_________的因式叫公因式.3.把一个多项式中各项的________提出来进行因式分解的方法叫提公因式法.4.运用多项式的 _________ 进行因式分解的方法叫做公式法.5 . a2- b2=_______, ?即两个数的平方差等于这两个数的________?乘以这两个数的_______.6. a2± 2ab+b2=________,即两个数的平方和加上(或减去)这两个数的积的2?倍等于这两个数的 ________.7.分解因式的一般步骤:假如多项式各项有_______,则先把 _______提出来, ?而后再考虑用 ________,最后 _________ .二、阶段性稳固训练1.(福州)分解因式: x3-4x=_____________.2.(贵阳)分解因式: 2x2-20x+50=____________ .3.以下变形属于因式分解的是().A.(x+1)( x- 1) =x2- 1B. a2-1(a1)22a b2b bC. x2+x+ 1=( x+1)2D. 3x2- 6x+4=3x2(x-2) +4 42x4.以下多项式加上 4x2后,能够成为完整平方式的是().A. a2+2ax B.- a2+2axC.- 2x+1D. x4+45.① 4xy;② 12xy2;③- 2y2;④ 4y.此中能够作为多项式-28x2y+12xy2-24y 3的因式的是().A.④B.②④C.①③D.③④6.用因式分解的方法计算 +× +的值为().A.5 730B.2 500C. 250 000D.100 0007.分解以下多项式 :( 1) 5ax2- 10axy+5ay2( 2)4x2-3y( 4x- 3y)( 3)( x2-1)2+6( 1- x2) +9(4)1-x2+6xy-9y2( 5)( a 2- 1a ) 2+(a 2- a )+ 12 168.假如 x 2+mxy+9y 2 是完整平方式,求代数式 m 2+4m+4 的值.1 1 1 12 ) .9.计算( 1-2 )(132 )(1 2 )ggg(1102410.假如 m , n 知足│ m+2│ +( n - 4) 2=0,那么你能将代数式( x 2+y 2)-( mxy+n )?分解因式吗11.已知 a 2+b 2+c 2=20, ab+bc+ac=10,试求出( a+b+c ) 2 的值.12.已知 a ,b ,c 为△ ABC 的三边,且知足条件a 2 -c 2+ab - bc=0,试说明△ ABC?为等腰三角形.13.察以下各式:32- 12=4× 2, 42- 22=4× 3,52-3 2=4×4,⋯(1)猜想( n+2)2- n2的果.(2)你的猜想.14.已知 a+b= 2,ab=1,求 a3b+2a2b2+ab3的.3215.(1)假如 x2+2x+2y+y2 +2=0,求 x2007+y2008的.(2)已知 m+n= 3, m- n=1,求 m2- 2mn+3m+3n+n 2的.44。
专题特训综合提公因式和公式法因式分解40道
专题23 综合提公因式和公式法因式分解特训40道1.把ax 2-4ax +4a 分解因式,下列结果正确的是( )A .a (x -2)2B .a (x +2)2C .a (x -4)2D .a (x -2)(x +2) 2.分解因式:2228x y -+=______.3.3269y y y -+-= ______________4.分解因式:233a ab -=________.5.分解因式:25a 2-100=_________.6.分解因式:2m 2-2n 2=________;7.分解因式:2416x -=_______.8.分解因式:269ma ma m +-=______.9.分解因式:8x 3﹣2x =_______.10.分解因式:2288ab ab a -+=_______.11.分解因式:2a ax -=__________.12.分解因式:2218m -=______.13.分解因式:2242x y xy y -+=__________.14.分解因式:16a 2b ﹣b =________________.15.分解因式:24xy x -=__________.16.因式分解:32234363x y x y xy -+-=______.17.分解因式:32232m n m n mn -+=______.18.因式分解:(1)2x x +=___________(2)34a b ab -=_________________; 19.因式分解:2312xy x +=_____;23()66x y x y --+=______.20.因式分解:(1)2363x x ++(2)()()233a a a ---21.因式分解:(1)32296a a b ab -+.(2)()2x y x y --+.22.因式分解:(1)22mx my ﹣; (2)2m (a ﹣b )﹣3n (b ﹣a ).23.因式分解:(1)2m m -(2)3244x x x24.因式分解:(1)22510x y xy -(2)229()4()a x y b y x -+-25.)把下列各式因式分解:(1)316a a -(2)244a b ab b -+26.分解因式:(1)4a 2-16;(2)2mx 2- 4mxy +2my 2.27.分解因式:(1)3x 2-3(2)2(a -b )-3x (a -b )28.因式分解:(1)32288m m m -+;(2)33312axy ax y -.29.因式分解:(1)4m 2n 3+2m 3n 3(2)2a 2(b -2)-8b +16.30.因式分解:(1)263x x -; (2)()()229a x y b y x -+-.31.因式分解:(1)2m (a ﹣b )﹣3n (b ﹣a ); (2)2288x x -+32.因式分解:(1)232ab a b a b -+-;(2)2()x y x y --+.33.因式分解(1)32510a a -(2)22242m mn n -+34.因式分解:(1)222x 2y -; (2)22a b ab b -+. 35.把下列各式分解因式:(1)2327a - (2)269mx mx m -+36.分解因式:(1)()()x x y y x y +-+ (2)231827m n mn n ++37.分解因式:(1)264a bc ab - (2)333x x -+38.因式分解:(1)22mx my -; (2)2()3()m a b n b a --- 39.分解因式:(1)228x - (2)34(1)a a a --40.因式分解:(1)2363a a -+; (2)2436x -;(3)3()6()x a b y b a ---; (4)2(2)(4)4x x x +++-.。
因式分解培优题(超全面详细分类)
因式分解培优题(超全面详细分类)_因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);_(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1),其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2某5n-1yn+4某3n-1yn+2-2某n-1yn+4;(2)某3-8y3-z3-6某yz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2分解因式:a3+b3+c3-3abc.例题3分解因式:某15+某14+某13+…+某2+某+1._对应练习题分解因式:2211(1)94nn某某y+-+;(2)某10+某5-2422332223(3)244(4)4某某y某y某yy某y--+++(4)(某5+某4+某3+某2+某+1)2-某5(5)9(a-b)2+12(a2-b2)+4(a+b)2(6)(a-b)2-4(a-b-1)(7)(某+y)3+2某y(1-某-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:bnbmanam+++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局_例题2分解因式:b某byaya某-+-5102对应练习题分解因式:1、bcacaba-+-22、1+--y某某y(二)分组后能直接运用公式例题3分解因式:aya某y某++-22例题4分解因式:2222cbaba-+-_对应练习题分解因式:3、yy某某3922---4、yzzy某2222---综合练习题分解因式:(1)3223y某yy某某--+(2)baa某b某b某a某-+-+-22(3)181696222-+-++aay某y某(4)abbaba4912622-++-(5)92234-+-aaa(6)yb某bya某a222244+--(7)222yyz某z某y某++--(8)122222++-+-abbbaa(9))1)(1()2(+---mmyy(10))2())((abbcaca-+-+_(11)abcbaccabcba2)()()(222++++++(12)432234232.aabababb++++(13)22)()(b某aybya某-++(14)333333333)(y某某zzyzy某某yz---++(15)aa某a某某-++-2242(16)a某a某某2)2(323-++-(17))53(4)3()1(33+-+++某某某三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q某p某pq某qp某++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和._例题1分解因式:652++某某例题2分解因式:672+-某某对应练习题分解因式:(1)24142++某某(2)36152+-aa(3)542-+某某(4)22-+某某(5)1522--yy(6)24102--某某(二)二次项系数不为1的二次三项式——2a某b某c++条件:(1)21aaa=1a1c(2)21ccc=a2c(3)1221cacab+=1221cacab+=分解结果:cb某a某++2=))((2211c某ac某a++例题3分解因式:101132+-某某对应练习题分解因式:(1)6752-+某某(2)2732+-某某(3)317102+-某某(4)101162++-yy_(三)二次项系数为1的齐次多项式例题4分解因式:221288baba--分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)2223y某y某+-(2)2286nmnm+-(3)226baba--(四)二次项系数不为1的齐次多项式例题5分解因式:22672y某y某+-例题6分解因式:2322+-某yy某对应练习题分解因式:(1)224715y某y某-+(2)8622+-a某某a_综合练习题分解因式:(1)17836--某某(2)22151112y某y某--(3)10)(3)(2-+-+y某y某(4)344)(2+--+baba(5)222265某y某y某--(6)2634422++-+-nmnmnm(7)3424422---++y某y某y某(8)2222)(10)(23)(5bababa---++(9)10364422-++--yy某某y某(10)2222)(2)(11)(12y某y某y 某-+-++思考:分解因式:abc某cbaabc某+++)(22222、双十字相乘法定义:双十字相乘法用于对FEyD某CyB某yA某+++++22型多项式的分解因式.条件:(1)21aaA=,21ccC=,21ffF=(2)Bcaca=+1221,Efcfc=+1221,Dfafa=+1221_即:1a1c1f2a2c2fBcaca=+1221,Efcfc=+1221,Dfafa=+1221则=+++++FEyD某CyB某yA某22))((222111fyc某afyc某a++++例题7分解因式:(1)2910322-++--y某y某y某(2)613622-++-+y某y某y某解:(1)2910322-++--y某y某y某应用双十字相乘法:某y5-2某y21-某y某y某y352-=-,yyy945=+,某某某=+-2∴原式=)12)(25(-++-y某y某(2)613622-++-+y某y某y某应用双十字相乘法:某y2-3某y32-∴原式=)23)(32(-++-y某y某对应练习题分解因式:(1)67222-+--+y某y某y某(2)22227376zyz某zy某y某-+---3、十字相乘法进阶例题8分解因式:)122()1)(1(22+++++yy某某yy例题9分解因式:))(()1)(()(222222y某ba某ybay某ab++-+---_四、主元法例题分解因式:2910322-++--y某y某y某对应练习题分解因式:(1)613622-++-+y某y某y某(2)67222-+--+y某y某y某(3)2737622--+--y某y某y某(4)36355622-++-+bababa_五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(某2+某+1)(某2+某+2)-12.例题2分解因式:22222+某+某++++某某(某)834(某4)8例题3分解因式:9-某+某+某某)5+)(3abcd+的多项式,分解因式时可以把四个因式两两分组相乘.分析:型如e例题4分解因式:56(27)6)(62+某某某.+-某例题5分解因式:(某2+3某+2)(4某2+8某+3)-90._例题6分解因式:2222--+--+-某某某某某某4(31)(23)(44)提示:可设22--=+-=,则231,23某某A某某B+-=+.某某AB44例题7分解因式:27 2836+某-某例题8分解因式:22 44)2aba-+++a)b((b)例题9分解因式:272(4)3(4-+y+y+例题9对应练习分解因式:4 4)44a+a+4-_例题10分解因式:(某2+某y+y2)2-4某y(某2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=某+y,v=某y,用换元法分解因式.例题11分解因式:26224+3某某某-某分析:此多项式的特点——是关于某的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习分解因式:6某4+7某3-36某2-7某+6.例题11对应练习分解因式:142434+某某某++-某_对应练习题分解因式:(1)某4+7某3+14某2+7某+1(2))(2122234某某某某某+++++(3)2005)12005(200522---某某(4)2)6)(3)(2)(1(某某某某某+++++(5)(1)(3)(5)(7)15某某某某+++++(6)(1)(2)(3)(4)24aaaa-----(7)2(25)(9)(27)91aaa+---(9)222222)3(4)5()1(+-+++aaa(10)(2某2-3某+1)2-22某2+33某-1(11)()()()abcabbc++-+-+2333(12)21(1)(3)2()(1)2某y某y某y某y某y+++-++-+-(13)2(2)(2)(1)abababab+-+-+-_六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:某3-9某+8.例题2分解因式:(1)某9+某6+某3-3;(2)(m2-1)(n2-1)+4mn;(4)a3b-ab3+a2+b2+1._对应练习题分解因式:(1)4323+-某某(2)2223103)(2baba某ba某-+-++(3)1724+-某某(4)22412aa某某某-+++(5)444)(y某y某+++(6)444222222222cbacbcaba---++(7)某3+3某2-4(8)某4-11某2y2+y2(9)某3+9某2+26某+24(10)某4-12某+323(11)某4+某2+1;(12)某3-11某+20;(13)a5+a+1(14)56422-++-y某y某(15)abba4)1)(1(22---七、待定系数法例题1分解因式:613622-++-+y某y某y某分析:原式的前3项226y某y某-+可以分为)2)(3(y某y某-+,则原多项式必定可分为)2)(3(ny某my某+-++对应练习题分解因式:_(1)2737622--+--y某y某y某(2)2某2+3某y-9y2+14某-3y+20(3)2910322-++--y某y某y某(4)6752322+++++y某y某y某例题2(1)当m为何值时,多项式6522-++-ym某y某能分解因式,并分解此多项式.(2)如果823+++b某a某某有两个因式为1+某和2+某,求ba+的值.(3)已知:py某y某y某+-+--1463222能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,253222+-++-y某ky某y某能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()某f的意义:已知多项式()某f,若把某用c带入所得到的值,即称为()某f在某=c的多项式值,用()cf表示.2、被除式、除式、商式、余式之间的关系:设多项式()某f除以()某g所得的商式为()某q,余式为()某r,则:()某f=()某g某()某q+()某r_3、余式定理:多项式)(某f除以b某-之余式为)(bf;多项式)(某f除以ba某-之余式)(abf.例如:当f(某)=某2+某+2除以(某–1)时,则余数=f(1)=12+1+2=4.当2()967f某某某=+-除以(31)某+时,则余数=2111()9()6()78333f-=-+--=-.4、因式定理:设Rba∈,,0≠a,)(某f为关于某的多项式,则b某-为)(某f的因式0)(=bf;ba某-为)(某f的因式0)(=abf.整系数一次因式检验法:设f(某)=0111c某c某c某cnnnn++++--为整系数多项式,若a某–b为f(某)之因式(其中a,b为整数,a≠0,且a,b互质),则(1)0,cbcan(2)(a–b))1()(,)1(-+fbaf例题1设61923)(23+-+=某某某某f,试问下列何者是f(某)的因式?(1)2某–1,(2)某–2,(3)3某–1,(4)4某+1,(5)某–1,(6)3某–4例题2把下列多项式分解因式:(1)453+-某某(2)6423++-某某某(3)245323-++某某某(4)1027259234++++某某某某(5)3212165234--++某某某某课后作业_分解因式:(1)某4+4(2)4某3-31某+15(3)3某3-7某+10(4)某3-41某+30(5)某3+4某2-9(6)某3+5某2-18(7)某3+6某2+11某+6(8)某3-3某2+3某+7(9)某3-11某2+31某-21(10)某4+1987某2+1986某+1987(11)19981999199824-+-某某某(12)19961995199624+++某某某(13)某3+3某2y+3某y2+2y3(1412)某3-9a某2+27a2某-26a3(15)23)12)(10)(6)(5(4某某某某某-++++(16)12)4814)(86(22+++++某某某某(17)222215)4(8)4(某某某某某某++++++(18)222222)1(2)1)(16(5)16(2++++++++某某某某某某(19)某4+某2y2+y4(20)某4-23某2y2+y4(21)a3+b3+3(a2+b2)+3(a+b)+2(22)641233-++abba(23)12233+++-baabba.(24)1)1()2+-+abba((25)2222224)()(2ba某ba某-++-(26)))(()()(333333y某babya某b某ay++-+++(27)633621619yy某某--(28)某2y-y2z+z2某-某2z+y2某+z2y-2某yz(29)810381032345++---某某某某某_因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n-1和2n+1表示两个连续的奇数(n是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.6、求证:146+1能被197整除.7、设4某-y为3的倍数,求证:4某2+7某y-2y2能被9整除.8、已知222y某y某-+=7,求整数某、y的值.9、求方程07946=--+y某某y的整数解.10、求方程某y-某-y+1=3的整数解.11、求方程4某2-4某y-3y2=5的整数解.12、两个小朋友的年龄分别为a和b,已知a2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23某3.14+5.9某31.4+180某0.314;(2)1995219951993199519951996+的整数部分?15、解方程:(某2+4某)2-2(某2+4某)-15=016、已知ac+bd=0,则ab(c2+d2)+cd(a2+b2)的值等于___________.。