2019春考数学答案

合集下载

2019山东省春季高考数学试题与答案word版

2019山东省春季高考数学试题与答案word版

. . . .山东省 2019 年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01 。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合M={0,1} , N={1,2} ,则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 满足 ab>0,a+b>0,则下列选项正确的是()A. a>0 , b>0B. a>0 , b<0C. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log bx 的图像如图所示,则下列关系式正确的是()yyA. 0<a<b<1B. 0<a<1<by=a xy=log b C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3+x,若 f(a)=2 ,则 f(-a) 的值是()O xA. -2B. 2C. -10D. 105. 若等差数列{a} 的前 7 项和为 70,则 a +a 等于()n17A. 5B. 10C. 15D. 20 第 3 题图6. 如图所示,已知菱形ABCD的边长是2,且∠ DAB=60°,则 AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA C7. 对于任意角α,β,“α=β”是“ sin α=sin β”的()A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件B8. 如图所示,直线l ⊥ OP,则直线 l 的方程是()A. 3x - 2y=0B. 3x+2y第 6 题图y - 12=0C. 2x -3y+5=0 D. 2x+3y- 13=0在( 1+x)n的二项展开式中,若所有项的系数之64,则第 3 项是10.在 Rt ABC中,∠ ABC=90°, AB=3, BC=4, M是线段 AC上的动点 . 设点 M到 BC的距离为x,MBC的面积为 y,则 y 关于 x 的函数是()O 2 xA. y=4x ,x∈(0,4] B. y=2x ,x∈(0,3] C. y=4x ,x∈ (0,)第8题图D.y=2x ,x∈ (0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是()A. 360B. 336C. 312D. 24012. 设集合 M={-2 ,0, 2, 4} ,则下列命题为真命题的是()专业资料. . .. A.a M , a 是正数 B.b M , b 是自然数 C.c M , c 是奇数 D.d M , d 是有理数13. 已知 sin α=1,则 cos2α 的值是( )2A. 8B.8 C. 7 D. 7 999 9 14.已知 y=f(x) 在 R 上是减函数,若 f(| a|+1)<f(2) ,则实数 a 的取值范围是( )A. (-∞, 1)B. (-∞, 1)∪( 1,+∞)C. (- 1, 1)D. (-∞,- 1)∪( 1,+∞)15. 已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x 2+y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是( ) A. 2 B. 2 C. 2 2D. 416. 如图所示,点 E 、 F 、 G 、H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系是()A. 平行 B. 相交 C. 异面 D.重合F GH17.如图所示,若 E 第16题图件x , y 满足线性约束条x y 2 ≥0x ≤0,y ≥1则线性目标函数 z=2x-y 取得最小值时的最优解是( )A. ( 0,1)B. (0,2)C. ( -1 ,1)D .(-1 ,2)18. 箱子中放有 6 张黑色卡片和 4 张白色卡片, 从中任取 一张,恰好取得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的顶点在坐标原点, 对称轴为坐标轴, 若该抛物线经过点 M ( -2 ,4),则其标准方程是 ( ) A.y 2=-8x B. y 2=- 8x 或 x 2=yC. x 2=y D. y 2=8x 或 x 2=- y20. 已知 ABC 的内角 A , B , C 的对边分别是 a , b , c ,若 a=6,sinA=2cosBsinC ,向量 m = (a, 3b) ,向量 n=( - cosA , sinB) ,且 m ∥n ,则 ABC 的面积是()A.18 3B. 9 3C. 33D.3二、填空题(本大题 5 个小题,每小题4 分,共 20 分。

2019年上海市春季高考数学试卷-含答案详解

2019年上海市春季高考数学试卷-含答案详解

第1页,共16页绝密★启用前2019年上海市春季高考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列函数中,值域为[0,+∞)的是( ) A. y =2xB. y =x 12C. y =tanxD. y =cosx2. 已知a 、b ∈R ,则“a 2>b 2”是“|a|>|b|”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件D. 既非充分又非必要条件3. 已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a ⊂α,b ⊂β,c ⊂γ,则直线a 、b 、c 不可能满足以下哪种关系( )A. 两两垂直B. 两两平行C. 两两相交D. 两两异面4. 以(a 1,0),(a 2,0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于(0,y 1),(0,y 2),且满足lny 1+lny 2=0,则动点(1a 1,1a 2)的轨迹是( )A. 直线的一部分B. 圆C. 椭圆D. 双曲线第II 卷(非选择题)二、填空题(本大题共12小题,共60.0分)5. 已知集合A ={1,2,3,4,5},B ={3,5,6},则A ∩B = .6. 计算limn→∞2n 2−3n+1n 2−4n+1=______.第2页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………7. 不等式|x +1|<5的解集为 . 8. 函数f(x)=x 2(x >0)的反函数为______.9. 设i 为虚数单位,3z −−i =6+5i ,则|z|的值为 . 10. 已知{2x +2y =−14x +a 2y =a,当方程有无穷多解时,a 的值为______.11. 在(x +1√x )6的展开式中,常数项等于 .12. 在△ABC 中,AC =3,3sinA =2sinB ,且cosC =14,则AB = . 13. 首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)14. 如图,已知正方形OABC ,其中OA =a(a >1),函数y =3x 2交BC 于点P ,函数y =x −12交AB 于点Q ,当|AQ|+|CP|最小时,则a 的值为 .15. 在椭圆x 24+y 22=1上任意一点P ,Q 与P 关于x 轴对称,若有F 1P ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2P ⃗⃗⃗⃗⃗⃗⃗ ≤1,则F 1P⃗⃗⃗⃗⃗⃗⃗ 与F 2Q ⃗⃗⃗⃗⃗⃗⃗ 的夹角范围为______.16. 已知集合A =[t,t +1]∪[t +4,t +9],0∉A ,存在正数λ,使得对任意a ∈A ,都有λa∈A ,则t 的值是______.三、解答题(本大题共5小题,共60.0分。

山东省2019年普通高校招生(春季)考试 数学试题-答案

山东省2019年普通高校招生(春季)考试 数学试题-答案

山东省2019年普通高校招生(春季)考试数学试题答案及评分标准卷一(选择题 共60分)一㊁选择题(本大题20个小题,每小题3分,共60分)1.C2.A3.B4.A5.D6.C7.A8.D9.C 10.B 11.B 12.D 13.C 14.D15.A 16.B 17.C 18.D 19.B 20.C 卷二(非选择题 共60分)二㊁填空题(本大题5个小题,每小题4分,共20分)21.36ʎ 22.-4 23.54 24.2ʌ填1.41亦可ɔ 25.y =ʃ62x 三㊁解答题(本大题5个小题,共40分)26.(本小题7分)解:因为f (1)=-1,f (3)=-1,所以二次函数f (x )的对称轴为x =1+32=2,2分 又因为函数f (x )图像的顶点在直线y =2x -1上,则联立方程组x =2,y =2x -1,{解得x =2,y =3,{1分 故函数f (x )图像的顶点坐标为(2,3).1分 可设二次函数的解析式为f (x )=a (x -2)2+3,1分因为f (1)=-1,则a (1-2)2+3=-1,解得a =-4,1分 所以f (x )=-4(x -2)2+3,即f (x )=-4x 2+16x -13.1分 (第27题图)27.(本小题8分)解:(1)由图像可知,函数f (x )的最大值是2,最小值是-2,A >0,所以A =2.1分因为5π12-π6=π4,π4是最小正周期的14,所以函数f (x )的最小正周期T =π4ˑ4=π,故2πω=π,解得ω=2,1分 东博文化传媒可得函数f (x )=2s i n (2x +φ),又因为函数f (x )图像经过点π6,0æèçöø÷,所以2s i n 2ˑπ6+φæèçöø÷=0,即s i n π3+φæèçöø÷=0,1分 因此π3+φ=2k π,k ɪZ ,解得φ=2k π-π3,k ɪZ ,又因为|φ|<π2,所以φ=-π3,1分 所以该函数的解析式为f (x )=2s i n 2x -π3æèçöø÷.1分 (2)因为f (x )ȡ1,所以2s i n 2x -π3æèçöø÷ȡ1,即s i n 2x -π3æèçöø÷ȡ12,1分 所以π6+2k πɤ2x -π3ɤ5π6+2k π,k ɪZ ,1分 即π4+k πɤx ɤ7π12+k π,k ɪZ ,故当f (x )ȡ1时,实数x 的取值范围是x π4+k πɤx ɤ7π12+k π,k ɪZ {}.1分 注:x 的取值范围写为 π4+k π,7π12+k πéëêêùûúú,k ɪZ ,亦可.(第28题图)28.(本小题8分)(1)证明:因为平面S A C ʅ平面A B C ,平面S A C ɘ平面A B C =A C ,且S A ʅA C ,所以S A ʅ平面A B C ,2分又因为B C ⊂平面A B C ,所以S A ʅB C ,1分又因为A B ʅB C ,S A ɘA B =A ,所以B C ʅ平面S A B .1分 (2)解:由(1)知,S A ʅ平面A B C ,所以点S 到平面A B C 的距离即为线段S A 的长度.1分 并且可知,S B 在平面A B C 内的射影为A B ,1分所以øS B A 即为S B 与平面A B C 所成角,即øS B A =30ʎ,1分 在R t әS A B 中,øS A B =90ʎ,øS B A =30ʎ,S B =2,所以S A =12S B =1,所以点S 到平面A B C 的距离是1.1分东博文化传媒(第29题图)29.(本小题8分)解:(1)因为四边形F 1B 2F 2B 1为正方形,所以|F 1F 2|=|B 1B 2|.因为|F 1F 2|=2c ,|B 1B 2|=2b ,所以c =b ,1分 因为a 2=b 2+c 2,所以a =2b ,1分因此椭圆的方程可化为x 22b 2+y 2b2=1,因为椭圆经过点P 1,22æèçöø÷,所以12b 2+22æèçöø÷2b 2=1,解得b =1,故a =2b =2,1分所以椭圆的标准方程是x 22+y 2=1.1分 (2)由(1)可知c =1,1分 设双曲线的实半轴长为a ',因为e =322,且双曲线与椭圆有公共的焦点,故c a '=322,即1a '=322,解得a '=23.1分 由椭圆和双曲线的定义可知|M F 1|+|M F 2|=2a ,|M F 1|-|M F 2|=2a ',{即|M F 1|+|M F 2|=22,|M F 1|-|M F 2|=223,ìîíïïïï1分 解得|M F 1|=423,|M F 2|=223,ìîíïïïïï所以线段M F 1,M F 2的长度分别是423,223.1分 注:线段M F 1,M F 2的长度分别写为 1.89,0.94,亦可.30.(本小题9分)解:(1)由题意知,自2018年起,每年的人口总数构成等差数列{a n },其中首项a 1=50,公差d =1.5,1分通项公式为a n =a 1+(n -1)d =50+(n -1)ˑ1.5,2分 设第n 项a n =60,即50+(n -1)ˑ1.5=60,解得n =7.7,1分 因为n ɪN +,所以n =8,2018+8-1=2025.答:到2025年年底,该城市人口总数达到60万.1分 (2)由题意知,自2018年起,每年的绿化面积数构成数列{b 1},其中b 1是2018年年底的绿化面积数,b 1=35,b 2是2019年年底的绿化面积数,b 2=35ˑ(1+5%)-0.1=35ˑ1.05-0.1,东博文化传媒b 3是2020年年底的绿化面积数,b 3=(35ˑ1.05-0.1)ˑ1.05-0.1=35ˑ1.052-0.1ˑ1.05-0.1, b k 是(2018+k -1)年年底的绿化面积数,b k =35ˑ1.05k -1-0.1ˑ1.05k -2-0.1ˑ1.05k -3- -0.1ˑ1.05-0.1,1分 =35ˑ1.05k -1-0.1ˑ(1-1.05k -1)1-1.05.1分 设b k =60ˑ0.9,即35ˑ1.05k -1-0.1ˑ(1-1.05k -1)1-1.05=60ˑ0.9,解得k ʈ10.3,1分 因为k ɪN +,所以k =11,2018+11-1=2028.答:到2028年年底,该城市人均绿化面积达到0.9平方米.1分 东博文化传媒。

2019年普通高等学校春季招生考试数学试题及答案

2019年普通高等学校春季招生考试数学试题及答案

2019年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的(1) 集合M ={1,2,3,4,5}的子集个数是 ( )(A) 32(B) 31(C) 16(D) 15(2) 函数f (x ) = a x (a > 0且a ≠ 1)对于任意的实数x ,y 都有 ( )(A) f (xy ) = f (x ) f (y ) (B) f (xy ) = f (x ) + f (y ) (C) f (x + y ) = f (x ) f (y ) (D) f (x + y ) = f (x ) + f (y )(3) =++∞→1222limn n n n n C C( )(A) 0 (B) 2 (C)21(D)41 (4) 函数)1(1≤--=x x y 的反函数是 ( )(A) y = x 2-1 (-1≤x ≤0) (B) y = x 2-1 (0≤x ≤1) (C) y = 1-x 2 (x ≤0)(D) y = 1-x 2 (0≤x ≤1)(5) 极坐标系中,圆θθρsin 3cos 4+=的圆心的坐标是 ( )(A) ),(53arcsin 25(B) ),(54arcsin5 (C) ),(53arcsin 5 (D) ),(54arcsin 25(6) 设动点P 在直线x = 1上,O 为坐标原点. 以OP 为直角边、点O 为直角顶点作等腰Rt △OPQ ,则动点Q 的轨迹是( )(A) 圆(B) 两条平行直线(C) 抛物线(D) 双曲线(7) 已知f (x 6) = log 2x ,那么f (8)等于( )(A)34 (B) 8 (C) 18 (D)21 (8) 若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在 ( ) (A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限(9) 如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是( )(A) 30°(B) 45°(C) 60°(D) 90°(10) 若实数a ,b 满足a + b = 2,则3a + 3b 的最小值是 ( )(A) 18(B) 6(C) 32(D) 432(11) 右图是正方体的平面展开图.在这个正方体...中, ① BM 与ED 平行 ② CN 与BE 是异面直线 ③ CN 与BM 成60º角 ④ DM 与BN 垂直以上四个命题中,正确命题的序号是 ( ) (A) ①②③(B) ②④(C) ③④(D) ②③④(12) 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足)521(902--=n n nS n (n =1,2,……,12). 按此预测,在本年度内,需求量超过1.5万件的月份是 ( )(A) 5月、6月 (B) 6月、7月(C) 7月、8月(D) 8月、9月第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13) 已知球内接正方体的表面积为S ,那么球体积等于___________(14) 椭圆x 2 + 4y 2 = 4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是______________(15) 已知1sin sin sin 222=++γβα(α、β、γ均为锐角),那么cos αcos βcos γ的最大值等于______________(16) 已知m 、n 是直线,α、β、γ是平面,给出下列命题: ① 若α⊥β,α∩β= m ,n ⊥m ,则n ⊥α或n ⊥β; ② 若α∥β,α∩γ= m ,β∩γ= n ,则m ∥n ;③ 若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④ 若α∩β= m ,n ∥m ;且α⊄n ,β⊄n ,则n ∥α且n ∥β.其中正确的命题的序号是______________ (注:把你认为正确的命题的序号都填上)三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分) 设函数)0()(>>++=b a bx ax x f ,求f ( x )的单调区间,并证明f ( x )在其单调区间上的单 调性.(18) (本小题满分12分) 已知z 7=1(z ∈C 且z ≠1).(Ⅰ)证明 1 + z + z 2 + z 3 + z 4 + z 5 + z 6 = 0;(Ⅱ)设z 的辐角为α,求cos α+cos2α+cos4α的值. (19) (本小题满分12分)已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在△ABC 的高CD 上.AB = a ,VC 与AB 之间的距离为h ,点M ∈VC .(Ⅰ)证明∠MDC 是二面角M -AB -C 的平面角; (Ⅱ)当∠MDC = ∠CVN 时,证明VC ⊥平面AMB ; (Ⅲ)若∠MDC =∠CVN =θ(20πθ<<),求四面体MABC 的体积. (20)(本小题满分12分)在1与2之间插入n 个正数a 1,a 2,a 3,…,a n ,使这n +2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3,…,b n ,使这n +2个数成等差数列.记A n = a 1 a 2 a 3…a n ,B n = b 1 + b 2 + b 3 + … + b n .(Ⅰ)求数列{A n}和{B n}的通项;(Ⅱ)当n≥7时,比较A n和B n的大小,并证明你的结论.(21)(本小题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0 < x < 1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润= (出厂价-投入成本)×年销售量.(Ⅰ)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?(22)(本小题满分14分)已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,| AB | ≤2p.(Ⅰ)求a的取值范围;(Ⅱ)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)A (2)C (3)D (4)C (5)A (6)B(7)D (8)B (9)C (10)B (11)C (12)C二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13) π242SS (`14)2516 (15)692 (16) ② ④三.解答题(17)本小题主要考查函数的单调性及不等式的基础知识,考查数学推理判断能力.满分12分. 解:函数bx ax x f ++=)(的定义域为(-∞,-b )∪(-b ,+∞). f ( x )在(-∞,-b )内是减函数,f ( x )在(-b ,+∞)内也是减函数. ……4分 证明f ( x )在(-b ,+∞)内是减函数. 取x 1,x 2∈(-b ,+∞),且x 1 < x 2,那么 bx ax b x a x x f x f ++-++=-221121)()( ))(())((2112b x b x x x b a ++--=, ……6分∵ a -b > 0,x 2-x 1>0,(x 1+b )(x 2+b ) > 0, ∴ f (x 1)-f (x 2) > 0,即f (x )在(-b ,+∞)内是减函数. ……9分 同理可证f (x )在(-∞,-b )内是减函数. ……12分 (18)本小题主要考查复数的基本概念和基本运算,考查综合运用复数的知识解决问题的能力,满分12分.解:(Ⅰ)由 z (1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= z + z 2 + z 3 + z 4 + z 5 + z 6+ z 7 =1 + z + z 2 + z 3 + z 4 + z 5 + z 6,得 (z -1)(1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= 0. …… 4分 因为 z ≠1,z -1≠0,所以 1 + z + z 2 + z 3 + z 4 + z 5 + z 6= 0. …… 6分 (Ⅱ)因为z 7= 1.可知 | z | = 1,所以 1=⋅z z ,而z 7= 1,所以z ·z 6 = 1,z z =6,同理52z z =,34z z =, 65342z z z z z z ++=++由(Ⅰ)知 z + z 2 + z 4 + z 3 + z 5 + z 6= -1, 即 14242-=+++++z z z z z z , 所以42z z z ++的实部为21-, …… 8分 而z 的辐角为α时,复数42z z z ++的实部为ααα4cos 2cos cos ++,所以214cos 2cos cos -=++ααα. …… 12分 (19)本小题主要考查线面关系的基本概念,考查运用直线与直线、直线与平面的基本性质进行计算和证明的能力.满分12分. (Ⅰ)证明:由已知,CD ⊥AB ,VN ⊥平面ABC ,N ∈CD ,⊂AB 平面ABC , ∴VN ⊥AB .∴AB ⊥平面VNC . ……2分 又 V 、M 、N 、D 都在VNC 所在的平面内, 所以,DM 与VN 必相交,且AB ⊥DM ,AB ⊥CD , ∴∠MDC为二面角M -AB -C的平面角. ……4分 (Ⅱ)证明:由已知,∠MDC = ∠CVN ,在△VNC 与△DMC 中, ∠NCV = ∠MCD , 又∵∠VNC = 90º,∴ ∠DMC =∠VNC = 90º, 故有DM ⊥VC ,又AB ⊥VC , ……6分 ∴ VC ⊥平面AMB . ……8分 (Ⅲ)解:由(Ⅰ)、(Ⅱ),MD ⊥AB ,MD ⊥VC ,且D ∈AB ,M ∈VC , ∴ MD = h . 又 ∵ ∠MDC =θ. 在Rt △MDC 中,CM = h ·tg θ. ……10分 V 四面体MABC = V 三棱锥C -ABMABM S CM ∆⋅=31ah tg h 2131⋅⋅=θ θtg 612ah =. ……12分 (20)本小题主要考查等差数列、等比数列的基础知识,考查观察、猜想并进行证明的数学思想方法.满分12分.解:(Ⅰ)∵ 1,a 1,a 2,a 3,……,a n ,2成等比数列,∴ a 1a n = a 2 a n -1 = a 3 a n -2 = … = a k a n -k +1 = … = 1×2 = 2 ,∴ n n n n n n n na a a a a a a a a a A 2)21()()()()()(121231212=⨯==--- , ∴ 22n n A =. ……4分∵ 1,b 1,b 2,b 3,……,b n ,2成等差数列,∴ b 1 + b 2 = 1 + 2 = 3, ∴ n n b b B n n 2321=⋅+=. 所以,数列{A n }的通项22nn A =,数列{B n }的通项n B n 23=. ……6分 (Ⅱ)∵ 22n n A =,n B n 23=, ∴ n n A 22=,2249n B n =, 要比较A n 和B n 的大小,只需比较2n A 与2n B 的大小,也即比较当n ≥ 7时,2n 与249n 的大小.当n = 7时,2n = 128,4949492⨯=n ,得知2492n n >, 经验证n = 8,n = 9时,均有命题2492n n >成立.猜想当n ≥ 7时有2492n n >. 用数学归纳法证明. ……9分 (ⅰ)当n = 7时,已验证2492n n >,命题成立.(ⅱ)假设n = k (k ≥ 7)时,命题成立,即2492k k >, 那么 214922k k ⨯>+, 又当k ≥ 7时,有k 2 > 2k + 1, ∴ )1249221++⨯>+k k k ( 2149)(+⨯=k . 这就是说,当n = k + 1时,命题2492n n >成立. 根据(ⅰ)、(ⅱ),可知命题对于n ≥ 7都成立.故当n ≥ 7时,A n > B n . ……12分。

2019年山东春季高考数学真题(含答案)

2019年山东春季高考数学真题(含答案)

机密★启用前山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题共50分)卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合M={0,1},N={1,2},则M ∪N 等于( )A. {1}B. {0,2}C. {0,1,2}D. ∅ 2. 若实数a ,b 满足ab>0,a+b>0,则下列选项正确的是( )A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<0 3. 已知指数函数y=a x,对数函数y=log b x 的图像如图所示,( )A. 0<a<b<1B. 0<a<1<bC. 0<b<1<aD. a<0<1<b4. 已知函数f(x)=x 3+x ,若f(a)=2,则f(-a)的值是( )5. 若等差数列{a n }的前7项和为70,则a1+a 7等于( )A. 5B. 10C. 15D. 20 6. 如图所示,已知菱形ABCD 的边长是2,且∠DAB =60°,则AB AC ⋅ 的值是( )A. 4B. 4+-7. 对于任意角α,β,“α=β”是“sinα=sin β”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件件 8. 如图所示,直线l ⊥OP ,则直线l 的方程是( ) A. 3x -2y=0 B. 3x+2y -12=0C. 2x -3y+5=0D. 2x+3y -13=09. 在(1+x )n的二项展开式中,若所有项的系数之和为64,则第3A. 15x 3 B. 20x 3 C. 15x 2 D. 20x 210. 在RtABC 中,∠ABC =90°,AB=3,BC=4,M 是线段AC 上的动点. 设点M 到BC 的距离为x ,MBC 的面积为y ,则y 关于x 的函数是( )A. y=4x ,x∈(0,4]B. y=2x ,x∈(0,3]C. y=4x ,x∈(0,)+∞D. y=2x ,x∈(0,)+∞11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是( )A. 360B. 336C. 312D. 240 12. 设集合M={-2,0,2,4},则下列命题为真命题的是( ) A. ,a M ∀∈ a 是正数 B. ,b M ∀∈ b 是自然数 C. ,c M ∃∈ c 是奇数 D. ,d M ∃∈ d 是有理数13. 已知sinα=12,则cos2α的值是( ) 89 B. 89- C.79 D. 79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值范围是( )A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞)15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是( )D. 416. 如图所示,点E 、F 、G 、H 分别是正方体四条棱的中点,则直线EF 与GH 的位置关系是( ) A. 平行 B. 相交 C. 异面 D. 重合y第3题 图B第6题 图EFGH17. 如图所示,若x ,y 满足线性约束条件 2 0 0 1x y x y -+⎧⎪⎨⎪⎩≥≤≥ , 则线性目标函数z=2x-y 取得最小值时的最优解是( ) A. (0,1) B. (0,2) C. (-1,1) D . (-1,2)18. 箱子中放有6张黑色卡片和4张白色卡片,从中任取一张,恰好取得黑色卡片的概率是( )A. 16B. 13C. 25D. 3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M (-2,4),则其标准方程是( ) A. y 2=-8x B. y 2=-8x 或x 2=y C. x 2=y D. y 2=8x 或x 2=-y 20. 已知ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a =6,sinA=2cosBsinC ,向量m=()a ,向量n =(-cosA ,sinB),且m ∥n ,则ABC 的面积是( )卷二(非选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分。

19年春考数学试题及答案

19年春考数学试题及答案

19年春考数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为:A. 14B. 17C. 20D. 233. 若复数z=1+i,则|z|的值为:A. 1C. 2D. √34. 已知函数f(x)=x^3-3x^2+2,求f'(x)的值为:A. 3x^2-6xB. x^2-3xC. 3x-6D. x^3-3x^25. 若直线l的方程为y=2x+1,且与x轴交于点A,求A的坐标为:A. (0,1)B. (1,0)C. (-1/2,0)D. (1/2,0)6. 已知向量a=(3,-2),b=(2,1),则a·b的值为:A. 4C. -2D. -47. 若函数f(x)=x^2-6x+8,求f(x)的最小值:A. -4B. 2C. 8D. 108. 已知双曲线C的方程为x^2/9-y^2/16=1,求其渐近线方程为:A. y=±4/3xB. y=±2/3xC. y=±4/3xD. y=±2/3x9. 已知圆C的方程为(x-1)^2+(y+2)^2=9,求圆心C的坐标为:A. (1,-2)B. (-1,2)C. (1,2)D. (-1,-2)10. 若函数f(x)=sin(x)+cos(x),则f(π/4)的值为:A. √2B. 1C. 2D. 0二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=1,公比q=2,则b3的值为______。

12. 若函数f(x)=x^2-4x+3,则f(-1)的值为______。

13. 已知向量a=(1,2),b=(-3,2),则|a+b|的值为______。

14. 若直线l的方程为x-2y+3=0,则l与y轴交于点B,求B的坐标为______。

15. 已知圆C的方程为x^2+y^2-6x+8y-24=0,求圆C的半径r为______。

(完整版)2019年山东省春季高考数学试题及答案

(完整版)2019年山东省春季高考数学试题及答案

山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合M={0,1},N={1,2},则M ∪N 等于( )A. {1}B. {0,2}C. {0,1,2}D. ∅ 2. 若实数a ,b 满足ab>0,a+b>0,则下列选项正确的是( )A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<03. 已知指数函数y=a x ,对数函数y=log b x 的图像如图所示,则下列关系式正确的是(A. 0<a<b<1B.0<a<1<b C. 0<b<1<a D. a<0<1<b4. 已知函数f(x)=x 3+x ,若f(a)=2,则f(-a)的值是( )A. -2B. 2C. -10D. 10 5. 若等差数列{a n }的前7项和为70,则a 1+a 7等于( )A. 5B. 10C. 15D. 206. 如图所示,已知菱形ABCD 的边长是2,且∠DAB =60°,则AB AC ⋅ 的值是( ) A. 4 B. 4+ C. 6 D. 4-y第3题 图B第6题 图7. 对于任意角α,β,“α=β”是“sin α=sin β”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 8. 如图所示,直线l ⊥OP ,则直线l 的方程是( ) A. 3x -2y=0 B. 3x+2y -12=0 C. 2x -3y+5=0 D. 2x+3y -13=0 9.在(1+x )n 的二项展开式中,若所有项的系数之和为64,则第3项是( )A. 15x 3B. 20x 3C. 15x 2D. 20x 2 10. 在RtABC 中,∠ABC =90°,AB=3,BC=4,M 是线段AC 上的动点. 设点M 到BC 的距离为x ,MBC 的面积为y ,则y 关于x 的函数是( )A. y=4x ,x∈(0,4]B. y=2x ,x∈(0,3]C. y=4x ,x∈(0,)+∞D. y=2x ,x∈(0,)+∞ 11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是( )A. 360B. 336C. 312D. 240 12. 设集合M={-2,0,2,4},则下列命题为真命题的是( ) A. ,a M ∀∈ a 是正数 B. ,b M ∀∈ b 是自然数 C. ,c M ∃∈ c 是奇数 D. ,d M ∃∈ d 是有理数 13. 已知sinα=12,则cos2α的值是( ) A.89 B. 89- C. 79 D. 79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值范围是( )A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞) 15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是( ) A. 2B.C.D. 416. 如图所示,点E 、F 、G 、H 分别是正方体四条棱的中点,则直线EF 与GH 的位置关系是( ) A. 平行 B. 相交 C. 异面 D. 重合17. 如图所示,若x ,y 满足线性约束条件 2 01x y x y -+⎧⎪⎨⎪⎩≥≤≥ , 则线性目标函数z=2x-y 取得最小值时的最优解是( ) A. (0,1) B. (0,2) C. (-1,1) D . (-1,2)18. 箱子中放有6张黑色卡片和4张白色卡片,从中任取一张,恰好取得黑色卡片的概率是( ) A.16 B. 13 C. 25 D. 3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M (-2,4),则其标准方程是( ) A. y 2=-8x B. y 2=-8x 或x 2=y C. x 2=y D. y 2=8x 或x 2=-y 20. 已知ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a =6,sinA=2cosBsinC ,向量m =(,3)a b ,向量n =(-cosA ,sinB),且m ∥n ,则ABC 的面积是( )A. 183B. 93C. 33D. 3卷二(非选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分。

(完整版)2019年山东省春季高考数学试题及答案.doc

(完整版)2019年山东省春季高考数学试题及答案.doc

山东省 2019 年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到 0.01。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 满足 ab>0 , a+b>0 ,则下列选项正确的是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如图所示,则下列关系式正确的是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如图所示,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于任意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. l⊥ OP ,则直线 l 的方程是(y如图所示,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项展开式中,若所有项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y关于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是()A. 360B. 336C. 312D. 24012. 设集合 M={-2 , 0 , 2 , 4} ,则下列命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416. 如图所示,点 E 、F 、 G 、 H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系是()A. 平行B. 相交C.异面D. 重合FGHE第 16 题 图x y 2 ≥017. 如图所示,若 x ,y 满足线性约束条件x ≤0,y ≥1则线性目标函数 z=2x-y 取得最小值时的最优解是 ( )A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰好取得黑色卡片的概率是()A.1 B.1 C.2D.3635519. 已知抛物线的顶点在坐标原点, 对称轴为坐标轴, 若该抛物线经过点 M ( -2 ,4 ),则其标准方程是 ( ) A. y 2=-8x B. y 2= - 8x 或 x 2=yC. x 2=yD. y 2=8x 或 x 2 = - y20. 已知V ABC 的内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a=6 ,sinA=2cosBsinC ,向量 m = ( a, 3b),向量 n =( - cosA , sinB) ,且 m ∥ n ,则 V ABC 的面积是()A. 18 3B. 93C. 3 3D.3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每小题 4 分,共 20 分。

山东省2019年春季高考数学试题附答案

山东省2019年春季高考数学试题附答案

山东省2019年春季高考数学试题1. 已知集合M={0,1},N={1,2},则M ∪N 等于( )A. {1}B. {0,2}C. {0,1,2}D.2. 若实数a ,b 满足ab>0,a+b>0,则下列选项正确的是( )A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<03. 已知指数函数y=a x ,对数函数y=log b x 的图像如图所示,则下列关系式正确的是()A. 0<a<b<1B. 0<a<1<bC. 0<b<1<aD. a<0<1<b4. 已知函数f(x)=x 3+x ,若f(a)=2,则f(-a)的值是( )A. -2B. 2C. -10D. 105. 若等差数列{a n }的前7项和为70,则a 1+a 7等于( )A. 5B. 10C. 15D. 20 y第3题 图6. 如图所示,已知菱形ABCD的边长是2,且∠DAB=60°,则AB AC⋅的值是()A. 4B.4+ C. 6D. 4-7. 对于任意角α,β,“α=β”是“sinα=sinβ”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件必要条件8. 如图所示,直线l⊥OP,则直线l的方程是()A. 3x-2y=0B. 3x+2y-12=0C. 2x-3y+5=0D. 2x+3y-13=09. 在(1+x)n的二项展开式中,若所有项的系数之和为64,则第3项是()A. 15x3B. 20x3C. 15x2D. 20x210. 在Rt ABC中,∠ABC=90°,AB=3,BC=4,M是线段AC上的动点. 设点M到BC 的距离为x,第6题图MBC 的面积为y ,则y 关于x 的函数是( )A. y=4x ,x ∈(0,4]B. y=2x ,x ∈(0,3]C. y=4x ,x ∈(0,)+∞D. y=2x ,x ∈(0,)+∞11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是( )A. 360B. 336C. 312D. 24012. 设集合M={-2,0,2,4},则下列命题为真命题的是( )A. ,a M ∀∈ a 是正数B. ,b M ∀∈ b 是自然数C. ,c M ∃∈ c 是奇数D. ,d M ∃∈ d 是有理数13. 已知sin α=12,则cos2α的值是( ) A. 89 B. 89- C. 79 D. 79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值范围是( )A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞)15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是( )A. 2B. C.D. 416. 如图所示,点E 、F 、G 、H 分别是正方体四条棱的中点,则直线EF 与GH 的位置关系是( )A. 平行B. 相交C. 异面D. 重合17. 如图所示,若x ,y 满足线性约束条件 2 0 01x y x y -+⎧⎪⎨⎪⎩≥≤≥ , 则线性目标函数z=2x-y 取得最小值时的最优解是( )A. (0,1)B. (0,2)C. (-1,1) D . (-1,2)18. 箱子中放有6张黑色卡片和4张白色卡片,从中任取一张,恰好取得黑色卡片的概率E FG H 第16题 图是()A. 16B. 13C. 25D. 3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M(-2,4),则其标准方程是()A. y2=-8xB. y2=-8x 或x2=yC. x2=yD. y2=8x 或x2=-y20. 已知ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC,向量m =()a,向量n=(-cosA,sinB),且m∥n,则ABC的面积是()D.21. 弧度制与角度制的换算:5rad= .22. 若向量a =(2,m),b =(m,8),且<a,b> =180°,则实数m的值是 .23. 某公司A,B,C三种不同型号产品的库存数量之比为2:3:1,为检验产品的质量,现采用分层抽样的方法从库存产品中抽取一个样本,若在抽取的产品中,恰有A型号产品18件,则该样本容量是__ __.24.已知圆锥的高与底面圆半径相等,若底面圆的面积为1,则该圆锥的侧面积是.25. 已知O为坐标原点,双曲线22221(0,0)x ya ba b-=>>的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=8|OF|,则该双曲线的渐近线方程是 .26.(本小题7分)已知二次函数f(x)图像的顶点在直线y=2x-l上,且f(1)=-l,f(3)= -l,求该函数的解析式.27.(本小题8分)已知函数f(x) =Asin(ωx+ψ),其中A>O,|ψ|<2π,此函数的部分图像如图所示,求:(1)函数f(x)的解析式;(2)当f(x)≥1时,求实数x的取值范围.28.(本小题8分)已知三棱锥S-ABC ,平面SAC ⊥ABC ,且SA ⊥AC ,AB ⊥BC .(1)求证:BC ⊥平面SAB;(2)若SB=2,SB 与平面ABC 所成角是30°的角,求点S 到平面ABC 的距离.29.(本小题8分)如图所示,已知椭圆22221(0)x y a b a b+=>> 的两个焦点分别是F 1,F 2,短轴的两个端点分别是B 1、B 2,四边形F 1B 1F 2B 2为正方形,且椭圆经过点P (1,2. (l)求椭圆的标准方程;(2)与椭圆有公共焦点的双曲线,其离心率e =,且与椭圆在第一象限交于点M , 求线段MF 1、MF 2的长度.30.(本小题9分)某城市2018年底人口总数为50万,绿化面积为35万平方米. 假定今后每年人口总数比上—年增加1.5万,每年新增绿化面积是上一年年底绿化面积的5%,并第27题 图且每年均损失0.1万平方米的绿化面积(不考虑其他因素).(l)到哪—年年底,该城市人口总数达到60万(精确到1年)?(2)假如在人口总数达到60万并保持平稳、不增不减的情况下,到哪—年年底,该城市人均绿化面积达到0.9平方米(精确到1年)?。

2019山东省春季高考数学试题与答案word版

2019山东省春季高考数学试题与答案word版
2+y2=2相切于点A,且|AO|=|AM|,则点
M的横坐标是()
A.2B.2C.22D. 4
16.如图所示,点E、F、G、H分别是正方体四条棱的中点,则直线EF与GH的位置关系是()
A.平行B.相交C.异面D.重合
FG
H
E
第16题图
17.如图所示,若x,y满足线性约束条件
xy20


x0

y1

则线性目标函数z=2x-y取得最小值时的最优解是()
A.a>0,b>0B.a>0,b<0C.a<0,b>0D. a<0,b<0
3.已知指数函数y=ax,对数函数y=log
x,对数函数y=log
bx的图像如图所示,则下列关系式正确的是()
y
y
A.0<a<b<1B.0<a<1<b
C.0<b<1<aD. a<0<1<b
y=axy=log
b
4.已知函数f(x)=x
27.(本小题8分)已知三棱锥S-ABC,平面SAC⊥ABC,且SA⊥AC,AB⊥BC.
(1)求证:BC⊥平面SAB;
(2)若SB=2,SB与平面ABC所成角是30°的角,求点S到平面ABC的距离.
y
B2
M
29.(本小题8分)如图所示,已知椭圆
22
xy
221(ab0)
ab
的两个焦点
O
F1F2
x
分别是F1,F2,短轴的两个端点分别是B1、B2,四边形F1B1F2B2为正方形,且椭圆经过
....
山东省2019年普通高校招生(春季)考试

(完整)2019年山东省春季高考数学试题及答案版,推荐文档

(完整)2019年山东省春季高考数学试题及答案版,推荐文档

D. 既不充分也不必要条件 y
A. 3x-2y=0
B. 3x+2y-12=0
3P
C. 2x-3y+5=0 D. 2x+3y-13=0
O2
x
9. 在(1+x)n 的二项展开式中,若所有项的系数之和为 64,则第 3 项是( )第 8 题 图
A. 15x3
B. 20x3
C. 15x2
D. 20x2
10. 在 Rt ABC 中,∠ABC=90°,AB=3,BC=4,M 是线段 AC 上的动点. 设点 M 到 BC 的距离为
卷一(选择题共 60 分) 一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。在每小题列出的四个选项中,只有 一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)
1. 已知集合 M={0,1},N={1,2},则 M∪N 等于( )
A. {1}
B. {0,2}
C. {0,1,2}
A. 8
B. 8
C. 7
9
9
9
D. 7 9
14. 已知 y=f(x)在 R 上是减函数,若 f(|a|+1)<f(2),则实数 a 的取值范围是( )
A. (-∞,1) B. (-∞,1)∪(1,+∞) C. (-1,1) D.(-∞,-1)∪(1,+∞)
15.
已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2+y2=2 相切于点 A,且
|AO|=|AM|,则点 M 的横坐标是( )
A. 2
B. 2
C. 2 2
D. 4
16. 如图所示,点 E、F、G、H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系是( )

2019春考数学答案

2019春考数学答案

机密★启用前山东省2019年普通高校招生(春季)考试数学试题答案及评分标准 卷一(选择题共60分)题号 1 2 3 4 5 6 7 8 9 10 答案 C A B A D C A D C B 题号 11 12 13 14 15 16 17 18 19 20 答案 B D C D A B C D B C卷二(非选择题共60分)二、填空题(本大题5个小题,每小题4分,共20分) 21.36° 22.-4 23.5424.2[填1.41 亦可]25. y= ±26X 三、解答题(本大题5个小题,共40分) 26.(本小题7分)解:因为f(1)=-1, f(3)=-1, 所以二次函数f(x)的对称轴为x=231+=2,(2分) 又因为函数f(x)图像的顶点在直线y=2x -1上,则联立方程组⎩⎨⎧-==1x 2y 2x ,解得⎩⎨⎧==32y x ,(1分)故函数f(x)图像的顶点坐标为(2, 3)1分可设二次函数的解析式为f(x)=a(x -2)2+3,(1分) 因为f(1)=-1, 则a(1-2)2+3=-1,解得a=-4,(1分) 所以f(x)= -4(x -2)2+3,即f(x)=-4x2+16x -13 (1分 27. (本小题8分)解: (1)由图像可知,函数f(x)的最大值是2, 最小值是-2 ,A>0. 所以A=2 ,(1分)因为125π-6π=4π,4π最小正周期的41, 所以函数f(x) 的最小正周期T=4πX4=π,故ωπ2=π,解得ω=2,(1分)可得函数f(x)=2 sin(2x+φ),又因为函数f(x)图像经过点(6π,0), 所以2sin(2x 6π+φ)=0 ,即sin( 3π+φ)=0,(1分)因此3π+φ=2K π ,k ∈Z ,解得φ=2k π-3π,k ∈Z ,又因为|φ|<2π,所以φ=-3π(1分)所以该函数的解析式为f(x)=2 sin(2x -3π)(1分)(2)因为f(x)≥l ,所以2sin(2x -3π)≥l ,即sin(2x -3π)≥21,(1分) 所以6π+2k π≤2x -3π≤65π+2k π,k ∈Z ,(1分)即4π+k π≤x ≤127π+k π,k ∈Z , 故当f(x)≥1时,实数x 的取值范围是{x| 4π+k π≤x ≤127π+k π,k ∈Z}.(1分)注: x 的取值范围写为“[ 4π+k π,127π+k π],k ∈Z",亦可。

2019年山东省春季高考数学试题及答案版

2019年山东省春季高考数学试题及答案版

山东省2019年普通高校招生(春季)考试数学试题1. 本试卷分卷一(选择趣)和卷二(非选释题)两部分,满分120分,考试时间120分鉀。

考生清在答翹卡上答翹,考试结東后,请將本试卷和答體卡一并交回。

2. 本次考试允许使用函数塑廿算器,凡使用廿算器的题目,除题目有具体要求外,最后结果 精晞到0.01 o卷一(选择题共60分)一、选择題(本大題20个小題,每小題3分,共60分。

在毎小题列出的四个选顶中,只有 一顶符合題目要求,请将符合题目要求的选项字母代号选出.并填涂在答題卡上)1.已知集 & M={0.1l, N={1,2}, 1MU N 等于() A.⑴ B. {0,2} C. {0,1,2} D.02•若实数a, b 满足ab>0, a+b>0,则下列选项正晞的是()A. a>0, b>0B. a>0, b<0C. a<0, b>0D. a<0, b<03. 已知指数函数片X,对裁函8 y=log 6x 的图像如图妬示,則下列关系氏正彌的是(A. 0<a<b<1B. 0<a<1<bC. 0<b<1<aD.a<0<1<b 4. 已知因数f (x )=x 3+x,若f (a )=2, H f (・a )的值是() A. -2 B.2 C. -10 D. 10 5. 若等差数列{a4的前7项和为70, R a l+a 7等于()A. 5B. 10C ・ 15D.206. 如图所示,已知菱形ABCD 的血长是2,目乙DAB=60。

,團而•疋的值是() D. 4-2石C.充要条件D 戕不充分也不必要条件3x - 2y=0B. 3x+2y-12=0 2x - 3y+5=0 D.2x+3y - 13=0y=a xy=logb第3题图A . A. 4B. 4 + 2 吳C.6A.充分不必要条件B.必要不再少6鋭片冈 &如图所示,I S/1OP,则頁找加齐擬'()ZABC=9O°, AB=3, BC=4, M 是SB AC 上的动点.设点M 到BC 的距离为x,15.已知0为坐标原点,自M 在x 轴的正半轴上,若童裁MA 与g ^+/=2相切于点A, fl|AO|=|AM|f 则点 M 的横坐标是()D.416•如图所示,点E 、F 、G 、H 分别是正方体四条校的中点,iSSEF^G H 的位置关系是() C. (-1,1)D . ( -1, 2 )18. 箱子中故有6张黑色卡片相4张白色卡片,从中任用 尿得黒色卡片的枫率是()19. 已知牠物找的顶点在坐标原点,对祢轴为坐标轴,若孩抛物线经过点M (・2, 4),崛其标准方样是()A. y 2=-8xB. /=-8x 或 x 2二yC. x 2=yD. y 2=8x 或 x 2=-y20. Bffl A ABC 的内角A, B, C 的对边分别是乩b, c,若去6, sinA=2cosBsinC,向量m = (a ®)10.在 RtA ABC 中, AMBC 的面枳为y,则y 关于x 的函数是A.y=4x, XG (0,4]B.y=2x, xe (0,3] C ・ y=4x, xe (0,+oc) D.y=2x, XG (0,+OC )11•现把甲、乙等6位间学诽成一 fib 若甲同学不能丼在前两位, 不相邻均可),则不间排法Wttffl 是()冃乙同学必须择在甲间学前面(《!邻或 A. 360 B.336 C. 312 12.设集合MM-2, 0, 2, 4},则下列命題为真命JS 的是() D.240 A. PciwMd 是正数 B. PbwM 、b 是自然数 C.是奇数13.已知沁专,Mcos2amO ()14. Bfly=f (x )在R 上是績函数,若f (l 刼)<f ⑵, 则实数£的取值范围是() A. (-8,1) B. ( - co, 1 ) U ( 1, +oo )C. ( - 1 , 1 )D. ( - 8, - 1 ) U ( 1 , +OO )一张,恰好A.平行B.相交C.异面D.垂合 (第 17JKM)63 5 5向量n=(-cosA, sinB), fl m/Zn F M A ABC 的面枳是()A. 18巧B.9JJ G.3羽 D.也卷二(非选择题共60分)二、填空題(本大題5个小題,毎小題4分,共20分。

2019年上海市春季高考数学试卷及答案

2019年上海市春季高考数学试卷及答案

2019年上海市普通高校春季招生统一文化考试数学试卷一、填空题(本大题共12题,满分54分,第1—6题每题4分,第7-12题每题5分)1.已知集合{}{}1,2,3,4,5,3,5,6A B ==,则A B ⋂=________.2.计算:22231lim 41n n n n -+=-+_________. 3.不等式15x +<的解集为________.4.函数()()20f x x x =>的反函数为__________.5.设i 为虚数单位,365z i i --=+,则z 的值为______.6.已知二元线性方程组22214x y x a y a +=-⎧⎨+=⎩有无穷多解,则实数a =_________. 7.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项的值为________. 8.在ABC ∆中,3,3sin 2sin AC A B ==,且1cos 4C =,则AB =______. 9.首届中国国际进口博览会在上海举行,某高校拟派4人参与连续5天的志愿者活动,其中甲连续参加2天,其余每人各参加1天,则所有不同的安排种数为__________.(结果用数值表示)10.如图,正方形OABC 的边长为()1a a >,函数23y x =的图像交AB 于点Q ,函数12y x -=的图像交BC 交于点P ,当AQ CP +最小时,a 的值为_______.11.已知P 为椭圆22142x y +=上任意一点,Q 与P 与关于x 轴对称,12F F 、为椭圆的左右焦点,若有121F P F P ⋅≤,则1F P与2F Q 的夹角范围为________.12.已知t R ∈,集合[][],14,9,0A t t t t A =+⋃++∉,若存在正数λ,对任意a A ∈,都有A a λ∈,则t 的值为______.二、选择题(本大题共有4题,满分20分,每题5分)13.下列函数中,值域为[)0,+∞的是( )【A 】2xy =【B 】12y x =【C 】tan y x =【D 】cos y x =14.已知,a b R ∈,则“22a b >”是“a b >”的( )【A 】充分非必要条件【B 】必要非充分条件【C 】充要条件【D 】既非充分又非必要条件15.已知平面αβγ、、两两垂直,直线a 、b 、c 满足:,,a b c αβγ⊆⊆⊆,则直线a 、b 、c 不可能是( )【A 】两两垂直【B 】两两平行【C 】两两相交【D 】两两异面16.平面直角坐标系中,两动圆12O O 、的圆心分别为()()12,0,0a a 、,且两圆均过定点()1,0,两圆与y 轴正半轴分别交于点()()120,0,y y 、,若12ln ln 0y y +=,点1211,a a ⎛⎫ ⎪⎝⎭的轨迹为Γ,则Γ所在的曲线可能是( )【A 】直线【B 】圆【C 】椭圆【D 】双曲线三、解答题(本大题满分76分)17. (本题满分14分,第1小题满分6分,第2小题满分8分)如图,正三棱锥P ABC -中,侧棱长为2,底面边长为3,M N 、分别是PB 和BC 的中点.(1)求异面直线MN 和AC 所成角的大小;(2)求三棱锥P ABC -的体积.18. (本题满分14分,第1小题满分6分,第2小题满分8分)已知数列{}n a 中,13a =,前n 项和为n S .(1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.19. (本题满分14分,第1小题满分6分,第2小题满分8分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍,卫生总费用包括个人现金支出、社会支出、政府支出,下表为2012年~2015年我国卫生费用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(1)计算A B 、的数据,并指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势;(2)设1t =表示1978年,第n 年卫生总费用与年份t 之间拟合函数() 6.44200.1136357876.60531tf t e -=+,研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.已知抛物线24y x =,F 为焦点,P 为抛物线准线l 上一动点,线段PF 与抛物线交于点Q ,定义()PFd P FQ=. (1)若点P 的坐标为81,3⎛⎫-- ⎪⎝⎭,求()d P ;(2)求证:存在常数a ,使得()2d P PF a =+成立;(3)设123,,P P P 为抛物线准线l 上三点,且1223PP P P =,试比较()()13d P d P +与()22d P 的大小.若{}n a 是等差数列,公差(]0,d π∈,数列{}n b 满足:()*sin ,n n b a n N =∈,记{}*|,n S x x b n N ==∈.(1)设120,3a d π==,求集合S ; (2)设12a π=,试求d 的值,使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,且n T n b b +=,其中T 为不超过7的正整数,求T 的所有可能值.。

2019年山东省春季高考数学试卷(解析版)

2019年山东省春季高考数学试卷(解析版)

2019年山东省春季高考数学试卷一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}2.函数的定义域是()A.[﹣2,2] B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+35.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣326.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.69.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=0 11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.28812.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bcC.a2<b2 D.13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k 的值是()A.1 B.2 C.﹣1 D.﹣214.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.1815.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y ﹣5)2=418.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣1519.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96968585标准差s 4 2 4 2A.甲 B.乙 C.丙 D.丁20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为,则该双曲线的离心率是()A.B.C.D.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是.三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.参考答案与试题解析一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}【考点】1F:补集及其运算.【分析】根据补集的定义求出M补集即可.【解答】解:全集U={1,2},集合M={1},则∁U M={2}.故选:C.2.函数的定义域是()A.[﹣2,2] B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数,∴|x|﹣2>0,即|x|>2,解得x<﹣2或x>2,∴函数y的定义域是(﹣∞,﹣2)∪(2,+∞).故选:D.3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A,函数y=x,在区间(﹣∞,0)上是增函数,满足题意;对于B,函数y=1,在区间(﹣∞,0)上不是单调函数,不满足题意;对于C,函数y=,在区间(﹣∞,0)上是减函数,不满足题意;对于C,函数y=|x|,在区间(﹣∞,0)上是减函数,不满足题意.故选:A.4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+3【考点】3W:二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x ﹣1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,可设f(x)=a(x﹣1)2+5,于是3=a+5,解得a=﹣2,故f(x)=﹣2(x﹣1)2+5=﹣2x2+4x+3,故选:D.5.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣32【考点】8F:等差数列的性质;84:等差数列的通项公式.【分析】根据题意,由等比数列的性质可得(a3)2=4×49,结合解a3<0可得a3的值,进而由等差数列的性质a5=2a3﹣a1,计算即可得答案.【解答】解:根据题意,a3是4与49的等比中项,则(a3)2=4×49,解可得a3=±14,又由a3<0,则a3=﹣14,又由a1=﹣5,则a5=2a3﹣a1=﹣23,故选:B.6.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.【考点】95:单位向量.【分析】先求出=(﹣1,1),由此能求出向量的单位向量的坐标.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“p∨q为真命题”则p或q为真命题,故由充要条件定义知p∨q为真”是“p为真”必要不充分条件【解答】解:“p∨q为真命题”则p或q为真命题,所以“p∨q为真”推不出“p为真”,但“p为真”一定能推出“p∨q为真”,故“p∨q为真”是“p为真”的必要不充分条件,故选:B.8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.6【考点】HW:三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y的最小值.【解答】解:∵函数y=cos2x﹣4cosx+1=(cox﹣2)2﹣3,且cosx∈[﹣1,1],故当cosx=1时,函数y取得最小值为﹣2,故选:B.9.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直【考点】LJ:平面的基本性质及推论.【分析】在A中,经过共线的三点有无数个平面;在B中,两条异面直线不能确定一个平面;在C中,经过平面外一点无数个平面与已知平面垂直;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直.【解答】在A中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故A错误;在B中,两条相交线能确定一个平面,两条平行线能确定一个平面,两条异面直线不能确定一个平面,故B错误;在C中,经过平面外一点无数个平面与已知平面垂直,故C错误;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直,故D正确.故选:D.10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=0 【考点】IB:直线的点斜式方程.【分析】求出交点坐标,代入点斜式方程整理即可.【解答】解:由,解得:,由方向向量得:直线的斜率k=﹣3,故直线方程是:y+2=﹣3(x﹣1),整理得:3x+y﹣1=0,故选:A.11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.288【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21C43=8种取法,将4个节目全排列,有A44=24种可能,则以排出8×24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,此时有6×2×6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bcC.a2<b2 D.【考点】R3:不等式的基本性质.【分析】A,由a<b<0,可得a+c<b+c;B,c的符号不定,则ac,bc大小关系不定;C,由a<b<0,可得a2>b2;D,由a<b<0,可得﹣a>﹣b⇒;【解答】解:对于A,由a<b<0,可得a+c<b+c,故正确;对于B,c的符号不定,则ac,bc大小关系不定,故错;对于C,由a<b<0,可得a2>b2,故错;对于D,由a<b<0,可得﹣a>﹣b⇒,故错;故选:A13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k 的值是()A.1 B.2 C.﹣1 D.﹣2【考点】4H:对数的运算性质.【分析】由g(9)=log39=2=f(﹣1)=2﹣k,解得即可.【解答】解:g(9)=log39=2=f(﹣1)=2﹣k,解得k=﹣1,故选:C14.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.18【考点】9R:平面向量数量积的运算.【分析】由已知求出及与的夹角,代入数量积公式得答案.【解答】解:∵,,∴,且<>=π.则==3×6×(﹣1)=﹣18.故选:A.15.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由直线方程,设出直线上点的坐标,可求cosα,利用诱导公式,二倍角的余弦函数公式可求cos(π+2α)的值.【解答】解:若角α的终边落在直线y=﹣3x上,(1)当角α的终边在第二象限时,不妨取x=﹣1,则y=3,r==,所以cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=;(2)当角α的终边在第四象限时,不妨取x=1,则y=﹣3,r==,所以sinα=,cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=,故选:B.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.【考点】7B:二元一次不等式(组)与平面区域.【分析】利用二元一次不等式(组)与平面区域的关系,通过特殊点判断即可.【解答】解:因为(1,0)点满足2x﹣y>0,所以二元一次不等式2x﹣y>0表示的区域(阴影部分)是:C.故选:C.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y ﹣5)2=4【考点】J1:圆的标准方程.【分析】由已知圆的方程求出圆心坐标和半径,求出圆C1的圆心关于y=﹣x的对称点,再由圆的标准方程得答案.【解答】解:由圆C1的方程是(x+5)2+y2=4,得圆心坐标为(﹣5,0),半径为2,设点(﹣5,0)关于y=﹣x的对称点为(x0,y0),则,解得.∴圆C2的圆心坐标为(0,5),则圆C2的方程是x2+(y﹣5)2=4.故选:D.18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣15【考点】DB:二项式系数的性质.【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:∵二项式的展开式中只有第4项的二项式系数最大,∴n=6,则展开式中的通项公式为T r+1=C6r•(﹣1)r•x.令6﹣3r=0,求得r=2,故展开式中的常数项为C62•(﹣1)2=15,故选:C.19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96968585标准差s 4 2 4 2A.甲 B.乙 C.丙 D.丁【考点】BC:极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙,由此知乙同学成绩较高,且发挥稳定,应选乙参加.故选:B.20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN 的面积为,则该双曲线的离心率是()A.B.C.D.【考点】KC:双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A1(﹣a,0)到直线渐近线的距离d,根据三角形的面积公式,即可求得△A1MN的面积,即可求得a和b的关系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程y=±x,设以A1A2为直径的圆与双曲线的渐近线y=x交于M,N两点,则A1(﹣a,0)到直线y=x的距离d==,△A1MN的面积S=×2a×==,整理得:b=c,则a2=b2﹣c2=c2,即a=c,双曲线的离心率e==,故选B.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于3π.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】圆锥侧面展开图是一个扇形,半径为l,弧长为2π,则圆锥侧面积S=πrl,由此能求出结果.【解答】解:圆锥侧面展开图是一个扇形,半径为l,弧长为2πr∴圆锥侧面积:S==πrl=π×1×3=3π.故答案为:3π.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.【考点】HR:余弦定理.【分析】由二倍角的正弦函数公式,正弦定理即可计算得解.【解答】解:∵∠B=2∠A,∴sin∠B=2sin∠Acos∠A,又∵a=2,b=3,∴由正弦定理可得:,∵sin∠A≠0,∴cos∠A=.故答案为:.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于24.【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF2|=2a=12,|QF1|+|QF2|=2a=12即可求得△PQF2的周长.【解答】解:椭圆+=1的焦点在y轴上,则a=6,b=4,设△PQF2的周长为l,则l=|PF2|+|QF2|+|PQ|,=(|PF1|+|PF2|)+(|QF1|+|QF2|)=2a+2a,=4a=24.∴△PQF2的周长24,故答案为:24.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,∴其中甲、乙两名志愿者恰好同时被选中的概率是:p===.故答案为:.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是(﹣,2] .【考点】5B:分段函数的应用.【分析】求出f(x)的解析式,得出f(x)的单调性,根据单调性得出t﹣1和4t的大小关系,从而可得t的范围.【解答】解:∵0<a<1,∴当x≤1时,a x≥a,当x>1时,a>a x,∴f(x)=.∴f(x)在(﹣∞,1]上单调递减,在(1,+∞)上为常数函数,∵f(t﹣1)>f(4t),∴t﹣1<4t≤1或t﹣1≤1<4t,解得﹣<t≤或.∴﹣.故答案为:(﹣,2].三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.【考点】4N:对数函数的图象与性质.【分析】(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3即可,由f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),可判断函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.即sinα=1,可求得α.【解答】解:(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3,∴函数f(x)的定义域为(﹣3,3);∵f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),∴函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.∴sinα=1,∴α=2k,(k∈Z).27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:若按方案①缴费,需缴费50×0.9=45万元;若按方案②缴费,则每天的缴费额组成等比数列,其中a1=,q=2,n=20,∴共需缴费S20===219﹣=524288﹣≈52.4万元,∴方案①缴纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)取AC的中点F,连结EF,DF,则EF∥CC1,DF∥BC,故平面DEF∥平面BCC1B1,于是DE∥平面BCC1B1.(2)在Rt△DEF中求出tan∠EDF.【解答】(1)证明:取AC的中点F,连结EF,DF,∵D,E,F分别是AB,A1C1,AC的中点,∴EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,∴平面DEF∥平面BCC1B1,又DE⊂平面DEF,∴DE∥平面BCC1B1.(2)解:∵EF∥CC1,CC1⊥平面BCC1B1.∴EF⊥平面BCC1B1,∴∠EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,则DF=,EF=1,∴tan∠EDF=.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.【考点】HI:五点法作函数y=Asin(ωx+φ)的图象;H2:正弦函数的图象.【分析】(1)由已知利用两角差的正弦函数公式可得y=3sin (2x﹣),利用周期公式即可得解.(2)令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得函数的单调递减区间.(3)根据五点法作图的方法先取值,然后描点即可得到图象.【解答】解:(1)∵=3sin(2x﹣),∴函数的最小正周期T==π.(2)∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,∴函数的单调递减区间为:[kπ+,kπ+],k∈Z,(3)列表:x2x﹣0 π2πy 0 3 0 ﹣3 0描点、连线如图所示:30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据题意得F(1,0),即c=1,再通过e=及c2=a2﹣b2计算可得椭圆的方程;(2)将准线方程代入椭圆方程,求得A点坐标,求得抛物线的切线方程,由△=0,求得k的值,分别代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得线段AB的长.【解答】解:(1)根据题意,得F(1,0),∴c=1,又e=,∴a=2,∴b2=a2﹣c2=3,故椭圆的标准方程为:(2)抛物线的准线方程为x=﹣1由,解得,,由A位于第二象限,则A(﹣1,),过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,则△=0,∴(﹣4)2﹣4k(4k+6)=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=(x+1),则,整理得:(x+1)2=0,直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2(x+1),由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2=,则y1=,y2=﹣,由以上可知点A(﹣1,),B(,﹣),∴丨AB丨==,综上可知:线段AB长度为。

2019山东省春季高考数学试题与答案word版

2019山东省春季高考数学试题与答案word版

2
D. 4
16. 如图所示,点 E、 F、 G、H 分别是正方体四条棱的中点,则直线 EF 与 GH的位置关系是(

A. 平行
B.
相交
C.
异面
D.
重合
FG
H
17. 如图所示,若
E
x, y 满足线性约束条
第 16 题 图

x y 2 ≥0
x ≤0

y ≥1
则线性目标函数 z=2x-y 取得最小值时的最优解是(
5%,并且每年均损失 0.1 万平方米的绿
化面积(不考虑其他因素) .
(l) 到哪—年年底,该城市人口总数达到 60 万(精确到 1 年) ?
(2) 假如在人口总数达到 60 万并保持平稳、不增不减的情况下,到哪—年年底,该城市人均绿化面积达到
0.9 平方米(精确到 1 年) ?
专业资料
.
.
.
.
专业资料
(2)由题意知,自 2018 年起,每年的绿化面积构成数列 {b n} ,
其中 b1 是 2018 年底的绿化面积, b1=35,
b2 是 2019 年底的绿化面积 , b 2=35(1+5%)-0.1=35×1.05 - 0.1,
b3 是 2020 年底的绿化面积 , b3=(35 ×1.05 - 0.1)(1+5%) -0.1=35×1.05 2-0.1 ×1.05 - 0.1
………………………………………2 分
设第 n 项 an=60, 即 50+(n -1) ×1.5=60
解得 n≈7.7
……………………………………………………………………………1 分
因为 n∈ N,所以 n=8, 2018+8 -1=2025

2019年山东春季高考数学真题及答案

2019年山东春季高考数学真题及答案

23. 某公司 A,B,C 三种不同型号产品的库存数量之比为 2:3:1,为检验产品的质量,现采
用分层抽样的方法从库存产品中抽取一个样本,若在抽取的产品中,恰有 A 型号产品 18 件,
则该样本容量是__ __.
24.已知圆锥的高与底面圆半径相等,若底面圆的面积为 1,则该圆锥的侧面积是

25.
已知 O 为坐标原点,双曲线 x2 a2
A. -2
B. 2
C. -10
D. 10
5. 若等差数列{an}的前 7 项和为 70,则 a1+a7 等于( )
A. 5
B. 10
C. 15
D. 20
6. 如图所示,已知菱形 ABCD 的边长是 2,且∠DAB=60°,则 AB AC 的值是( )
A. 4
B. 4 2 3
C. 6
D. 4 2 3
A. 15x3
B. 20x3
C. 15x2
D. 20x2
10. 在 Rt ABC 中,∠ABC=90°,AB=3,BC=4,M 是线段 AC 上的动点. 设点 M 到 BC
的距离为 x,
MBC 的面积为 y,则 y 关于 x 的函数是( )
A. y=4x,x∈ (0, 4]
B. y=2x,x∈ (0,3] C. y=4x,x∈ (0, )
(1,+∞) 15. 已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2+y2=2 相切于点 A,
且|AO|=|AM|,则点 M 的横坐标是( )
A. 2
B. 2
C. 2 2
D. 4
16. 如图所示,点 E、F、G、H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系

2019年山东省春季高考数学试题及答案word版

2019年山东省春季高考数学试题及答案word版

山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合M={0,1},N={1,2},则M ∪N 等于( )A. {1}B. {0,2}C. {0,1,2}D. ∅ 2. 若实数a ,b 满足ab>0,a+b>0,则下列选项正确的是( )A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<03. 已知指数函数y=a x ,对数函数y=log b x 的图像如图所示,则下列关系式正确的是(A. 0<a<b<1B. 0<a<1<bC. 0<b<1<aD. a<0<1<b4. 已知函数f(x)=x 3+x ,若f(a)=2,则f(-a)的值是( )A. -2B. 2C. -10D. 10 5. 若等差数列{a n }的前7项和为70,则a 1+a 7等于( )A. 5B. 10C. 15D. 206. 如图所示,已知菱形ABCD 的边长是2,且∠DAB =60°,则AB AC ⋅ 的值是( ) A. 4 B. 4+ C. 6 D. 4-y第3题 图B第6题 图7. 对于任意角α,β,“α=β”是“sin α=sin β”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 8. 如图所示,直线l ⊥OP ,则直线l 的方程是( ) A. 3x -2y=0 B. 3x+2y -12=0 C. 2x -3y+5=0 D. 2x+3y -13=0 9.在(1+x )n 的二项展开式中,若所有项的系数之和为64,则第3项是( )A. 15x 3B. 20x 3C. 15x 2D. 20x 2 10. 在RtABC 中,∠ABC =90°,AB=3,BC=4,M 是线段AC 上的动点. 设点M 到BC 的距离为x ,MBC 的面积为y ,则y 关于x 的函数是( )A. y=4x ,x∈(0,4]B. y=2x ,x∈(0,3]C. y=4x ,x∈(0,)+∞D. y=2x ,x∈(0,)+∞ 11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是( )A. 360B. 336C. 312D. 240 12. 设集合M={-2,0,2,4},则下列命题为真命题的是( ) A. ,a M ∀∈ a 是正数 B. ,b M ∀∈ b 是自然数 C. ,c M ∃∈ c 是奇数 D. ,d M ∃∈ d 是有理数 13. 已知sin α=12,则cos2α的值是( ) A.89 B. 89- C. 79 D. 79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值范围是( )A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞) 15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是( ) A. 2B.C.D. 416. 如图所示,点E 、F 、G 、H 分别是正方体四条棱的中点,则直线EF 与GH 的位置关系是( ) A. 平行 B. 相交 C. 异面 D. 重合17. 如图所示,若x ,y 满足线性约束条件 2 01x y x y -+⎧⎪⎨⎪⎩≥≤≥ , 则线性目标函数z=2x-y 取得最小值时的最优解是( ) A. (0,1) B. (0,2) C. (-1,1) D . (-1,2)18. 箱子中放有6张黑色卡片和4张白色卡片,从中任取一张,恰好取得黑色卡片的概率是( ) A.16 B. 13 C. 25 D. 3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M (-2,4),则其标准方程是( ) A. y 2=-8x B. y 2=-8x 或x 2=y C. x 2=y D. y 2=8x 或x 2=-y 20. 已知ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a =6,sinA=2cosBsinC ,向量m=()a ,向量n =(-cosA ,sinB),且m ∥n ,则ABC 的面积是( )D.卷二(非选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分。

2019上海市数学春考试卷及答案解析

2019上海市数学春考试卷及答案解析

2019年上海市普通高校春季招生统一文化考试数学试卷2019.1一、填空题(本大题共12题,满分54分,第1—6题每题4分,第7-12题每题5分) 1.已知集合{}{}1,2,3,4,5,3,5,6A B ==,则A B ⋂=________. 【答案】{}3,5【考点】考察的集合内容,集合的交并补运算2.计算:22231lim 41n n n n -+=-+_________. 【答案】2【解析】2222223131lim 22231lim lim 24141411lim 1n n n n n n n n n n n n ⎛⎫-+-+ ⎪-+⎝⎭===-+⎛⎫-+-+ ⎪⎝⎭【考点】极限的知识点,此题属于数列的极限; 1)()()limn f n g n →∞类型,方法:分子、分母同时除以n 的最高次 2)可有理化类型;3)lim n n q →∞(q 为常数)类型,()()()011lim 1111nn q q q q q →∞⎧-<<⎪⎪==⎨⎪≤->⎪⎩不存在或3.不等式15x +<的解集为________. 【答案】()6,4- 【解析】15x +<515x ∴-<+<64x ∴-<<()6,4∴-【考点】绝对值不等式的解法1)()()f x x ϕ<的解是()()()x f x x ϕϕ-<<,()()f x x ϕ>的解是()()f x x ϕ<-或()()f x x ϕ> 2)解关于x 的不等式ax b cx d m +++>,或ax b cx d m +++<时,可以按零点b a -,dc-分段求解4.函数()()20f x x x =>的反函数为__________.【答案】())10f x x -=>【解析】由()20y x x =>,解得0y >,x =())10f x x -=>【考点】求反函数的一般步骤: (1)求原函数的值域;(2)反解,由()y f x =解出1()x fy -=;(3)写出反函数的解析式(互换,x y ),并注明反函数的定义域(即原函数的值域)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机密★启用前
山东省2019年普通高校招生(春季)考试
数学试题答案及评分标准 卷一(选择题共60分)
题号 1 2 3 4 5 6 7 8 9 10 答案 C A B A D C A D C B 题号 11 12 13 14 15 16 17 18 19 20 答案 B D C D A B C D B C
卷二(非选择题共60分)
二、填空题(本大题5个小题,每小题4分,共20分) 21.36° 22.-4 23.54
24.2[填1.41 亦可]
25. y= ±
2
6X 三、解答题(本大题5个小题,共40分) 26.(本小题7分)
解:因为f(1)=-1, f(3)=-1, 所以二次函数f(x)的对称轴为x=
2
3
1+=2,(2分) 又因为函数f(x)图像的顶点在直线y=2x -1上,则
联立方程组⎩⎨⎧-==1x 2y 2x ,解得⎩
⎨⎧==32
y x ,(1分)
故函数f(x)图像的顶点坐标为(2, 3)1分
可设二次函数的解析式为f(x)=a(x -2)2+3,(1分) 因为f(1)=-1, 则a(1-2)2+3=-1,解得a=-4,(1分) 所以f(x)= -4(x -2)2+3,
即f(x)=-4x2+16x -13 (1分 27. (本小题8分)
解: (1)由图像可知,函数f(x)的最大值是2, 最小值是-2 ,A>0. 所以A=2 ,(1分)
因为
125π-6π=4π,4π最小正周期的4
1
, 所以函数f(x) 的最小正周期T=4
π
X4=π,
故ω
π2=π,解得ω=2,(1分)
可得函数f(x)=2 sin(2x+φ),
又因为函数f(x)图像经过点(6
π
,0), 所以2sin(2x 6π+φ)=0 ,即sin( 3π
+φ)=0,(1分)
因此3
π
+φ=2K π ,k ∈Z ,
解得φ=2k π-3π
,k ∈Z ,
又因为|φ|<2π,所以φ=-3
π
(1分)
所以该函数的解析式为f(x)=2 sin(2x -3
π
)(1分)
(2)因为f(x)≥l ,
所以2sin(2x -3π)≥l ,即sin(2x -3π)≥2
1
,(1分) 所以6π+2k π≤2x -3π≤65π+2k π,k ∈Z ,(1分)
即4π+k π≤x ≤12
7π+k π,k ∈Z , 故当f(x)≥1时,实数x 的取值范围是{x| 4π+k π≤x ≤12

+k π,k ∈Z}.(1分)
注: x 的取值范围写为“[ 4π+k π,12

+k π],k ∈Z",亦可。

28, (本小题8分)
(1)证明:因为平面SAC ⊥平面ABC . 平面SAC ⋂平面ABC=AC ,且SA ⊥AC . 所以SA ⊥平面ABC .(2分) 又因为BC ⊂平面ABC . 所以 SA ⊥BC.(1分) 又因为AB ⊥BC , SA ⋂AB=A . 所以 BC ⊥平面SAB .(1分) (2)解:由(1)知, SA ⊥平面ABC .
所以点s 到平面ABC 的距离即为线段SA 的长度(1分)
并且可知, SB 在平面ABC 内的射影为AB .(1分)
所以∠SBA 即为SB 与平面ABC 所成角,即∠SBA =30°(1分) 在Rt ∆SAB 中, ∠SAB=90° ,∠SBA=30°, SB=2 .
所以SA=
2
1
SB=1 . 所以点S 到平面ABC 的距离是1 .(1分) 29.(本小题8分)
解: (1)因为四边形F 1B 2F 2B 1 为正方形,所以|F 1F 2|=|B 1B 2| , 因为|F 1F 2|=2c, |B 1B 2|=2b ,所以c=b ,(1分) 因为a 2=b 2+c 2, 所以a=2 b ,(1分)
因此椭圆的方程可化为222b X +22
b
y =1
因为椭圆经过点P(1,
22),所以221b
+2
2
)22(
b =1 解得b=1, 故a=2 b=2,(1分)
所以椭圆的标准方程是2
2x +2
y =1,(1分)
(2)由(1)可知c =1,(1分) 设双曲线的实半轴长为a', 因为e=
223,且双曲线与椭圆有公共的焦点,故'a C =2
2
3
30.(本小题9分)
解:(1)由题意知,自2018年起,每年的人口总数构成等差数列{a n}其中首项a1=50,公差d=1.5,
通项公式为a n=a1+(n-1)d=50+(n-1)×1.5,
设第n项a n=60,即50+(n-1)×1.5=60
解得n≈7.7
因为n∈N+,所以n=8,2018+8-1=2025
答:到2025年年底,该城市人口总数达到60万
(2)由题意知,自2018年起,每年的绿化面积数构成数列{b k},
其中b1是2018年年底的绿化面积数,
b1=35
b2是2019年年底的绿化面积数
b2=35×(1+5%)-0.1=35×1.05-0.1
b3是2020年年底的绿化面积数,
b3=(35×1.05-0.1)×1.05-0.1=35×1.052-0.1×1.05-0.1
b k是(2018+k-1)年年底的绿化面积数
b k=35×1.05k-1-0.1×1.05k-2-0.1×1.05k-3-…-0.1×1.05-0.1
=35×1.05k-1-
()
05
.1
1
05
.1
1
1.01
-
-
⨯-k
设b k=60×0.9
即35×1.05k-1-
()
05
.1
1
05
.1
1
1.01
-
-
⨯-k
解得k≈10.3
因为k∈N+,所以k=11,2018+11-1=2028
答:到2028年年底,该城市人均绿化面积达到0.9平方米。

相关文档
最新文档