2019年安徽省合肥市中考模拟数学试卷及答案

合集下载

安徽省合肥市2019-2020学年中考数学一模试卷含解析

安徽省合肥市2019-2020学年中考数学一模试卷含解析

安徽省合肥市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=45,反比例函数y=48x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.30 B.40 C.60 D.802.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.53.31 的值是()A.1 B.﹣1 C.3 D.﹣34.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( ) A.3.61×106B.3.61×107C.3.61×108D.3.61×1095.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间6.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C .D .7.已知常数k <0,b >0,则函数y=kx+b ,ky x=的图象大致是下图中的( ) A . B .C .D .8.实数4的倒数是( ) A .4B .14C .﹣4D .﹣149.如图,在5×5的方格纸中将图①中的图形N 平移到如图②所示的位置,那么下列平移正确的是( )A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格10.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q12.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1 或x>4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.14.因式分解:(a+1)(a﹣1)﹣2a+2=_____.15.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.16.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.17.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).18.已知一组数据3 ,x,﹣2,3,1,6的中位数为1,则其方差为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=32,求四边形ABCD的面积.20.(6分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB 交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN 与△ABC重合部分图形的周长为y.(1)AB=.(2)当点N在边BC上时,x=.(1)求y与x之间的函数关系式.(4)在点N 位于BC 上方的条件下,直接写出过点N 与△ABC 一个顶点的直线平分△ABC 面积时x 的值.21.(6分)如图所示,直线y=﹣2x+b 与反比例函数y=kx 交于点A 、B ,与x 轴交于点C . (1)若A (﹣3,m )、B (1,n ).直接写出不等式﹣2x+b >kx的解.(2)求sin ∠OCB 的值.(3)若CB ﹣CA=5,求直线AB 的解析式.22.(8分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,b=2cos45°. 23.(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m 下降到12月份的11340元/2m .求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m ?请说明理由24.(10分)计算:033.14 3.1412cos45π⎛⎫-+÷+- ⎪ ⎪⎝⎭o ()()12009211-+-+-.25.(10分)如图,在⊙O 中,AB 是直径,点C 是圆上一点,点D 是弧BC 中点,过点D 作⊙O 切线DF ,连接AC 并延长交DF 于点E . (1)求证:AE ⊥EF ;(2)若圆的半径为5,BD =6 求AE 的长度.26.(12分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.27.(12分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=12S菱形OBCA,结合菱形的面积公式即可得出结论.【详解】过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45,∴AM=O A•sin∠AOB=45a,22OA AM35a,∴点A的坐标为(35a,45a).∵点A在反比例函数y=48x的图象上,∴35a•45a=1225a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=12S菱形OBCA=12OB•AM=2.故选B.【点睛】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA.2.A【解析】【分析】根据众数和中位数的概念求解.【详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,4.C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×1.5.D 【解析】 【分析】的范围,进而可得的范围. 【详解】解:a=12×(,∵2<3,∴6<<7, ∴a 的值在6和7之间, 故选D . 【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值. 6.C 【解析】 【分析】根据一次函数与二次函数的图象的性质,求出k 的取值范围,再逐项判断即可. 【详解】解:A 、由一次函数图象可知,k >0,∴﹣k <0,∴二次函数的图象开口应该向下,故A 选项不合题意; B 、由一次函数图象可知,k >0,∴﹣k <0,-22k -=1k>0,∴二次函数的图象开口向下,且对称轴在x 轴的正半轴,故B 选项不合题意; C 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故C 选项符合题意; D 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故D 选项不合题意; 故选:C . 【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等. 7.D 【解析】当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.8.B【解析】【分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14.故选:B.【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.9.C【解析】【分析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.10.D【解析】【分析】根据真假命题的定义及有关性质逐项判断即可.A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.11.C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P 点,故选C.考点:有理数大小比较.12.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣1【解析】【分析】根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x 的一元二次方程x 1+mx +1n =0的一个根,∴4+1m +1n =0,∴n +m =−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(a ﹣1)1.【解析】【分析】提取公因式(a−1),进而分解因式得出答案.【详解】解:(a+1)(a ﹣1)﹣1a+1=(a+1)(a ﹣1)﹣1(a ﹣1)=(a ﹣1)(a+1﹣1)=(a ﹣1)1.故答案为:(a ﹣1)1.【点睛】此题主要考查了提取公因式法分解因式,找出公因式是解题关键.15.3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.16..【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.17.(50-3a).【解析】试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50-3a)元.考点:列代数式.18.3【解析】试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴112x+=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.考点:3.方差;3.中位数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)S平行四边形ABCD3.【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;(2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD 的面积.试题解析:(1)∵AB ∥CD ,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC ,∴∠ADC+∠BCD=180°,∴AD ∥BC ,∵AB ∥CD ,∴四边形ABCD 是平行四边形;(2)∵sin ∠ACD=3,∴∠ACD=60°, ∵四边形ABCD 是平行四边形,∴AB ∥CD ,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE 是等边三角形,∴AE=AB=2,∵DE ⊥AC ,∴∠CDE=90°﹣60°=30°,∴CE=12 CD=1,∴DE=3CE=3,AC=AE+CE=3, ∴S 平行四边形ABCD =2S △ACD =AC•DE=33.20.(1)2;(2)4534;(1)详见解析;(4)满足条件的x 的值为45455943或. 【解析】【分析】(1)根据勾股定理可以直接求出(2)先证明四边形PAMN 是平行四边形,再根据三角函数值求解(1)分情况根据t 的大小求出不同的函数关系式(4)不同条件下:当点G 是AC 中点时和当点D 是AB 中点时,根据相似三角形的性质求解.【详解】解:(1)在Rt ABC V 中,2222AB AC BC 345=+=+=,故答案为2.(2)如图1中,PA MN PN AM Q P P ,,∴四边形PAMN 是平行四边形, 5,cos 3PA MN PA x AM PN x A ∴=====当点N 在BC 上时,PN 3sin PB 5A ==,53355xx=-4534x∴=.(1)①当4534t剟时,如图1,45|PM x,AM x33==45|433y PN MN PM x x x x∴=++=++=.②当459345t<<时,如图2,45444x EN EN EN4x EN,3335334x(5x)x3351544y x445y x EN NF EFEN PN PE=--+=--+=-=-=--=-∴=+y③当955t剟时,如图1,3412PM PM PM PM,5553PM(5x)49y x95y PM PE EM=++=++==-∴=+(4)如图4中,当点G是AC中点时,满足条件//5533524559PN AG PN BP AG BAx x x ∴=-∴=∴=Q . 如图2中,当点D 是AB 中点时,满足条件.//5333454352MN ADMN CM AD CAx x x ∴=-∴=∴=Q . 综上所述,满足条件的x 的值为4559或4543. 【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.21.(1) x <﹣3或0<x <1;(225;(3)y=﹣2x ﹣5 【解析】【分析】(1)不等式的解即为函数y=﹣2x+b 的图象在函数y=k x上方的x 的取值范围.可由图象直接得到. (2)用b 表示出OC 和OF 的长度,求出CF 的长,进而求出sin ∠OCB .(3)求直线AB 的解析式关键是求出b 的值.【详解】解:(1)如图:由图象得:不等式﹣2x+b >k x的解是x <﹣3或0<x <1; (2)设直线AB 和y 轴的交点为F .当y=0时,x=2b ,即OC=﹣2b ; 当x=0时,y=b ,即OF=﹣b ,∴2222()()2b OC OF b +=-+-52b -,∴sin ∠OCB=sin ∠OCF=5OF CF b =-5255. (3)过A 作AD ⊥x 轴,过B 作BE ⊥x 轴,则AC=52AD=52A y ,BC=5522B BE y =-,∴AC ﹣BC=52(y A +y B )=5x A +x B )5b =﹣5,又﹣2x+b=k x ,所以﹣2x 2+bx ﹣k=0,∴2A B b x x +=,∴5×52b﹣5,∴b=25-y=﹣2x ﹣5【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性.22.1a b -,3【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值.解:原式=,当,原式=.“点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.23.(1)10%;(1)会跌破10000元/m1.【解析】【分析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.24.【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()22121-⨯++-- 213.14 3.1421π+=-+-+- 2211π=-++-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.(1)详见解析;(2)AE =6.1.【解析】【分析】(1)连接OD ,利用切线的性质和三角形的内角和证明OD ∥EA ,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD ,∵EF 是⊙O 的切线,∴OD ⊥EF ,∵OD=OA ,∴∠ODA=∠OAD ,∵点D 是弧BC 中点,∴∠EAD=∠OAD ,∴∠EAD=∠ODA ,∴OD ∥EA ,∴AE ⊥EF ;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,8AD==,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴AD AE AB AD=,即8108AE=,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.26.(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.27.(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中OA BCAOC DBCOC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.。

合肥市包河区2019年中考数学一模试卷附答案解析

合肥市包河区2019年中考数学一模试卷附答案解析

合肥市包河区2019年中考一模数学试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|=()A.0B.﹣2C.2D.12.计算(﹣p)8•(﹣p2)3•[(﹣p)3]2的结果是()A.﹣p20B.p20C.﹣p18D.p183.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3B.3,2C.2,1D.1,07.如图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有学生人数是()A.8B.10C.12D.408.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°10.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<﹣2B.x<﹣2或0<x<1C.x<1D.﹣2<x<0或x>1二.填空题(共4小题,满分20分,每小题5分)11.已知a为实数,那么等于.12.化简:=.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是.三.解答题(共2小题,满分16分,每小题8分)15.计算:(x﹣2)2﹣(x+3)(x﹣3)16.桑植县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?四.解答题(共2小题,满分16分,每小题8分)17.在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD.18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)五.解答题(共2小题,满分20分,每小题10分)19.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?20.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(6,8),D是OA的中点,点E在AB上,当△CDE的周长最小时,求点E的坐标.六.解答题(共1小题,满分12分,每小题12分)21.钦州市某中学为了解本校学生阅读教育、科技、体育、艺术四类课外书的喜爱情况,随机抽取了部分学生进行问卷调查,在此次调查中,甲、乙两班分别有2人特别喜爱阅读科技书报,若从这4人中随机抽取2人去参加科普比赛活动,请用列表法或画树状图的方法,求所抽取的2人来自不同班级的概率.七.解答题(共1小题,满分12分,每小题12分)22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…198194188180…日销售量(m件)②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.八.解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:(﹣p)8•(﹣p2)3•[(﹣p)3]2=p8•(﹣p6)•p6=﹣p20.故选:A.【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.7.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数.【解答】解:该班的学生总人数为20÷50%=40(人),故选:D.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.8.【分析】根据三角形的面积公式以及切线长定理即可求出答案.【解答】解:连接PE 、PF 、PG ,AP , 由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .【点评】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.9.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论. 【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:A.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.【分析】当y1<y2时,存在不等式ax+b<,不等式的解集即为一次函数图象在反比例函数图象下方时,所对应的自变量x的取值范围.【解答】解:∵A(1,2),B(﹣2,﹣1),∴由图可得,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.【点评】本题主要考查了反比例函数与一次函数交点问题,从函数的角度看,就是寻求使一次函数值大于(或小于)反比例函数值的自变量x的取值范围;从函数图象的角度看,就是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据非负数的性质,只有a=0时,有意义,可求根式的值.【解答】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故填:0.【点评】本题考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.12.【分析】先计算括号内的加法、将除法转化为乘法,继而约分即可得.【解答】解:原式=(﹣)•=•=•=x﹣1,故答案为:x﹣1.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.14.【分析】由等腰三角形的性质得到AD⊥BC,然后根据“两角法”证得△CDE∽△CAD,所以由该相似三角形的对应边成比例求得答案.【解答】解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.故答案是:9.【点评】考查了相似三角形的判定与性质,等腰三角形性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.三.解答题(共2小题,满分16分,每小题8分)15.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.16.【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:﹣=5,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:原计划每天植树80棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用相似三角形的性质得出答案;(2)利用相似三角形的性质得出D点位置.【解答】解:(1)如图所示:(2)如图所示:△ACD∽△DCB.【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键.18.【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案.【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若要PQ=CD,分为两种情况:①当四边形PQCD为平行四边形时,即PD=CQ24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4解得:t=7,即当t=6或t=7时,PQ=CD.【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.20.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(3,0),A(6,0),∴H(9,0),∴直线CH解析式为y=﹣x+8,∴x=6时,y=,∴点E坐标(6,).【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:由树状图知共有12种等可能结果,其中抽取的2人来自不同班级的有8种结果,所以抽取的2人来自不同班级的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数.【解答】解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意根据销售问题中总利润的相等关系,结合x的取值范围列出分段函数解析式及二次函数和一次函数的性质.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,=2+5=7,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN 的面积最大.。

精品解析:【校级联考】2019年安徽省合肥市十校联考中考一模数学试题(解析版)

精品解析:【校级联考】2019年安徽省合肥市十校联考中考一模数学试题(解析版)

2019年安徽省合肥市十校联考中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A. ﹣b<﹣a<a<bB. ﹣a<﹣b<a<bC. ﹣b<a<﹣a<bD. ﹣b<b<﹣a<a【答案】C【解析】【分析】利用有理数大小的比较方法可得﹣a<b,﹣b<a,b>0>a进而求解.【详解】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.【点睛】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A. 55×105B. 5.5×104C. 0.55×105D. 5.5×105【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度5500000用科学记数法表示为5.5×106.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A. 6x3﹣5x2=xB. (﹣2a)2=﹣2a2C. (a﹣b)2=a2﹣b2D. ﹣2(a﹣1)=﹣2a+2【答案】D【解析】【分析】A、原式合并同类项得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式去括号得到结果,即可做出判断.【详解】解:A、原式不能合并,错误;B、原式=4a2,错误;C、原式=a2+b2-2ab,错误;D、原式=-2a+2,正确,故选:D.【点睛】本题考查完全平方公式,合并同类项,去括号与添括号,幂的乘方与积的乘方,熟练掌握运算法则是解题关键.4.如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A. 25°B. 45°C. 35°D. 30°【答案】C【解析】试题分析:根据两直线平行,内错角相等求出∠1,再根据等边三角形的性质求出∠2,然后根据两直线平行,同位角相等可得∠α=∠2.解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.点评:本题考查了平行线的性质,等边三角形的性质,熟记性质是解题的关键,利用阿拉伯数字加弧线表示角更形象直观.5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.【答案】A【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.6.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A. 4.65、4.70B. 4.65、4.75C. 4.70、4.75D. 4.70、4.70【答案】C【解析】解:4.75出现的次数最多,为4次,故众数是4.一共有15名运动员,中位数是第8个位置的数,是4.70.故选C.7.如图是二次函数y=ax2+bx+c(a≠0)的图象,根据图象信息,下列结论错误的是()A. abc<0B. 2a+b=0C. 4a﹣2b+c>0D. 9a+3b+c=0【答案】C【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a<0,c>0,对称轴x0,∴b>0,∴abc<0,故A正确;B.由对称轴可知:1,∴2a+b=0,故B正确;C.当x=﹣2时,y<0,∴4a﹣2b+c<0,故C错误;D.(﹣1,0)与(3,0)关于直线x=1对称,∴9a+3b+c=0,故D正确.故选C.【点睛】本题考查了二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.8.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB的值是()A. B. C. D.【答案】B【解析】解:设圆O与小正方形网格的另一个切点为F,连接BF、BE.∵弧EB=弧EB,∴∠EDB=∠EFB,由题意知:EB=BF,∴∠EFB=45°,∴sin∠EDB=sin∠EFB=.故选B.点睛:本题考查了圆周角定理的应用,如若条件出现的角是圆周角,可考虑圆周角定理将其转移到适合的位置进行求解.9.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),……直线l n⊥x 轴于点(n,0).函数y=x的图象与直线l1、l2、l3、…、l n分别交于点A1、A2、A3、…、A n;函数y=2x 的图象与直线l1、l2、l3、…、l n分别交于点B1、B2、B3、…、B n.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2018=()A. 2017.5B. 2018C. 2018.5D. 2019【答案】A【解析】【分析】根据直线解析式求出A n﹣1B n﹣1,A n B n的值,再根据直线l n﹣1与直线l n互相平行并判断出四边形A n﹣1A n B n B n﹣1是梯形,然后根据梯形的面积公式求出S n的表达式,然后把n=2013代入表达式进行计算即可得解.【详解】解:根据题意,A n﹣1B n﹣1=2(n﹣1)﹣(n﹣1)=2n﹣2﹣n+1=n﹣1,A nB n=2n﹣n=n,∵直线l n﹣1⊥x轴于点(n﹣1,0),直线l n⊥x轴于点(n,0),∴A n﹣1B n﹣1∥A n B n,且l n﹣1与l n间的距离为1,∴四边形A n﹣1A n B n B n﹣1是梯形,S n=(n﹣1+n)×1=(2n﹣1),当n=2018时,S2018=(2×2018﹣1)=2017.5.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,读懂题意,根据直线解析式求出A n﹣1B n﹣1,A n B n的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方.10.如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A. 112.5°B. 105°C. 90°D. 82.5°【答案】B【解析】【分析】如图,作辅助线,构建全等三角形,证明△AEC≌△CFH,得CE=FH,将CE转化为FH,与BF在同一个三角形中,根据两点之间线段最短,确定点F的位置,即F为AC与BH的交点时,BF+CE的值最小,求出此时∠AFB=105°.【详解】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.【点睛】此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.二.填空题(共4小题,满分20分,每小题5分)11.把多项式3mx﹣6my分解因式的结果是_____.【答案】3m(x﹣2y)【解析】【分析】直接提取公因式,进而分解因式即可.【详解】.故答案为:.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.不等式组的所有整数解的积为_____.【答案】0.【解析】【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【详解】解:解不等式①得:解不等式②得:x≤50,∴不等式组的解集为≤x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1•k2的值为_____.【答案】﹣2.【解析】【分析】设一次函数的解析式为y=k1x+3,反比例函数解析式y=,都经过B点,得等式k1x+3﹣=0,再由AB=BC,得到点C的横坐标是点B横坐标的2倍,不防设x2=2x1,列出x1,x2关系等式,据此可以求出k1·k2的值.【详解】k1•k2=﹣2,是定值.理由如下:∵一次函数y=k1x+b的图象过点A(0,3),∴设一次函数的解析式为y=k1x+3,反比例函数解析式y=,∴k1x+3=,整理得k1x2+3x﹣k2=0,∴x1+x2=﹣,x1x2=﹣,∵AB=BC,∴点C的横坐标是点B横坐标的2倍,不防设x2=2x1,∴x1+x2=3x1=﹣,x1x2=2x12=﹣,∴﹣,整理得,k1k2=﹣2,是定值.故答案为﹣2.【点睛】本题主要考查反比例函数与一次函数的综合,一元二次方程根于系数的关系,解答本题的关键是运用好AB=BC这一条件,此题有一定的难度,需要同学们细心领会.14.如图,在△ABC中,DE∥BC,,则=_____.【答案】【解析】【分析】由DE∥BC可得出∠ADE=∠B,∠AED=∠C,进而可得出△ADE∽△ABC,利用相似三角形的性质可得出=,进而可得出=,此题得解.【详解】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∴===.故答案为:.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.三.解答题(共2小题,满分16分,每小题8分)15.用适当的方法解方程:(1)(x+1)(x﹣2)=x+1;(2)(2x﹣5)2﹣(x﹣2)2=0.【答案】(1)x1=﹣1,x2=3;(2)x1=,x2=3.【解析】【分析】(1)先移项,再直接提取公因式进而分解因式解方程即可.(2)利用平方差公式进行因式分解从而求解.【详解】解:(1)∵(x+1)(x﹣2)﹣(x+1)=0,则(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)∵[(2x﹣5)+(x﹣2)][(2x﹣5)﹣(x﹣2)]=0,∴(3x﹣7)(x﹣3)=0,则3x﹣7=0或x﹣3=0,解得:x1=,x2=3.【点睛】本题考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:元千克元千克他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?【答案】(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】【分析】设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论.【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:.答:购进猕猴桃20千克,购进芒果30千克.元.答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.四.解答题(共2小题,满分16分,每小题8分)17.有这样一个题目:按照给定的计算程序,确定使代数式n(n+2)大于2000的n的最小正整数值.想一想,怎样迅速找到这个n值,请与同学们交流你的体会.小亮尝试计算了几组n和n(n+2)的对应值如下表:(1)请你继续小亮的尝试,再算几组填在上表中(几组随意,自己画格),并写出满足题目要求的n的值;(2)结合上述过程,对于“怎样迅速找到n值”这个问题,说说你的想法.【答案】见详解【解析】【分析】(1)表格见图,(2)利用二分法即可解题.【详解】解:(1)见下表:∴n=44,(2)可以利用二分法,先确定两侧的值,再找中点值判断与结果的大小,连续求值,直到找到n的值.【点睛】本题考查了程序框图和二分法的应用,属于简单题,熟悉概念是解题关键.18.如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.【答案】(1)画图正确即可(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)【解析】试题分析:(1)(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)考点:图形收缩与坐标的关系点评:该题较为简单,学生并须理解题意,掌握图形的变化与坐标的关系,再进行解答。

2019届安徽省中考第一次模试考数学试卷【含答案及解析】

2019届安徽省中考第一次模试考数学试卷【含答案及解析】

2019届安徽省中考第一次模试考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下面的数中,比0小的是()A. B. C. D. -20162. 如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为()A. B. C. D.3. 计算的结果是()A. B. C. - D.4. 下图中的几何体的左视图是()A. B. C. D.5. 不等式组的解集是()A. B. C. D. 无解6. 寒假结束了,开学后小明对本校七年级部分同学寒假阅读总时间(结果保留整10小时)进行了抽样调查,所得数据整理后制作成如图所示的频数分布直方图。

观察这个频数分布直方图,给出如下结论,正确的是()A. 小明调查了100名同学B. 所得数据的众数是40小时C. 所得数据的中位数是30小时D. 全区有七年级学生6000名,寒假阅读总时间在20小时(含20小时)以上的约有5000名7. 如图,在△ABC中,从A点向∠ACB的角平分线作垂线,垂足为D,E是AB的中点,已知AC=4,BC=6,则DE的长为()A. 1B.C.D. 28. 已知⊙O的半径为,弦AB=2,以AB为底边,在圆内画⊙O的内接等腰△ABC,则底边AB边上的高CD长为()A. B. C. 或 D. 或9. 某企业积极相应政府号召,今年提出如下目标,和去年相比,在产品的出厂价增加10%的前提下,将产品成本降低20%,使产品利润率(利润率=×100%)较去年翻一番.则今年该企业产品利润率为()A. 40%B. 80%C. 120%D. 160%10. 如图,菱形ABCD的边长为4,∠A=30°,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为,△ADP的面积为,则关于的函数图象是()A. B. C. D.二、填空题11. __________。

安徽省合肥市2019年中考数学模拟试卷(附答案)

 安徽省合肥市2019年中考数学模拟试卷(附答案)

安徽省合肥市2019年中考数学模拟试卷(含答案)一.选择题(满分40分,每小题4分)1.二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC 是()A.3:2 B.2:3 C.D..4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.若点A(x1,2)、B(x2,5)都在反比例函数y=的图象上,则一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°7.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则∠C的度数为()A.24°B.56°C.66°D.76°8.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m9.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x ≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4 B.5 C.6 D.7二.填空题(满分20分,每小题5分)11.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.12.一个不透明布袋里共有5个球(只有颜色不同),其中3个是黑球,2个是白球,从中随机摸出一个球,记下颜色后放回、搅匀,再随机摸出一个球,则两次摸出的球是一黑一白的概率是.13.已知点P在反比例函数y=图象的第二象限上,PM⊥x轴,PN⊥y轴,M、N为垂足,矩形PMON的面积为2,则k=.14.如图,⊙O是△ABC的外接圆,∠BAC=60°,OD⊥BC于点D,若BC=2,则劣弧BC 的长为(结果保留π)三.解答题(满分16分,每小题8分)15.(8分)计算:﹣(﹣2)0+|1﹣|+2cos30°.16.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB长为28cm,灯罩BC长为15cm,底座AD厚度为3cm,根据使用习惯,灯臂AB 的倾斜角∠DAB固定为60°.(1)当BC转动到与桌面平行时,求点C到桌面的距离;(2)在使用过程中发现,当BC转到至∠ABC=145°时,光线效果最好,求此时灯罩顶端C到桌面的高度(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,结果精确到个位).四.解答题(满分16分,每小题8分)17.(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A,B,C在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°,得到△A1BC1,画出△A1BC1;(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的三角形面积之比为1:4,请你在网格内画出△AB2C2.18.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.五.解答题(满分20分,每小题10分)19.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象=4.限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD(1)求反比例函数解析式;(2)求点C的坐标.20.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.六.解答题21.(12分)某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?七.解答题22.(12分)在平面直角坐标系xOy中,若抛物线y=x2+bx+c顶点A的横坐标是﹣1,且与y轴交于点B(0,﹣1),点P为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线y=x2+bx+c向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.八.解答题23.(14分)在△ABC中,∠ABC=120°,线段AC绕点C顺时针旋转60°得到线段CD,连接BD.(1)如图1,若AB=BC,求证:BD平分∠ABC;(2)如图2,若AB=2BC,①求的值;=时,直接写出四边形ABCD的面积为.②连接AD,当S△ABC参考答案一.选择题1.解:∵二次函数y =x 2+2x +3中a =1>0,∴二次函数y =x 2+2x +3的图象的开口向上,故选:A .2.解:根据勾股定理得,BC ===13, 所以,cos C ==. 故选:A .3.解:∵∠ACB =90°,CD 是AB 边上的高,∴∠ADC =∠CDB =∠ACB =90°,∵∠A +∠B =90°,∠A +∠ACD =90°, ∴∠ACD =∠B ,∴△ACD ∽△CBD , ∴=== ∴=,故选:B .4.解:A 、是轴对称图形,也是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故正确;D 、是轴对称图形,也是中心对称图形.故错误.故选:C .5.解:根据反比例函数图象性质,k =﹣4<0,函数在二、四象限,函数y 随x 的增大而增大,即y 越大,x 越大,所以x 1<x 2,由于函数在二、四象限,而A 、B 两点y 值都大于0,所以A 、B 两点在第二象限, 所以x 1、x 2都小于0,故选:A .6.解:∵∠A +∠C =180°,∠A :∠C =5:7,∴∠C =180°×=105°.故选:C . 7.解:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B =90°﹣∠BAD =90°﹣24°=66°,∴∠C =∠B =66°.故选:C .8.解:根据题意,得OA =12,OC =4.所以抛物线的顶点横坐标为6, 即﹣==6,∴b =2,∵C (0,4),∴c =4,所以抛物线解析式为:y =﹣x 2+2x +4 =﹣(x ﹣6)2+10当y =8时,8=﹣(x ﹣6)2+10,解得x 1=6+2,x 2=6﹣2. 则x 1﹣x 2=4. 所以两排灯的水平距离最小是4. 故选:D .9.解:过点H 作HE ⊥BC ,垂足为E .∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.10.证明:如图,∵BF∥CD,∴△CEO∽△BEF,∴,且BF=1,CE=2BE,∴CO=2,∵BF∥CD,∴,且AD=BD,∴OD=BF=,∴CD=CO+OD=,∵∠C=90°,AD=BD,∴AB=2CD=5,故选:B.二.填空题11.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或12.解:设黑球为A、B、C;白球为1,2,列树状图为:所有可能情况有25种,其中两次摸出的球是一黑一白的结果有12,两次摸出的球是一黑一白的概率为=,故答案为:.13.解:由题意k<0,|k|=2,∴k=﹣2,故答案为﹣214.解:如图,连接OB,OC∵∠BOC=2∠BAC,且∠BAC=60°,∴∠BOC=120°∵O D⊥BC,OB=OC∴BD=CD=BC=,∠BOD=∠BOC=60°∴OB=2∴劣弧BC的长==故答案为:三.解答题15.解:原式=3﹣1+﹣1+2×,=3﹣1+﹣1+,=5﹣2.16.解:(1)当BC转动到与桌面平行时,如图2所示:作CM⊥EF于M,BP⊥AD于P,交EF于N,则CM=BN,PN=3,∵∠DAB=60°,∴∠ABP=30°,∴AP=AB=14,BP=AP=14,∴CM=BN=BP+PN=14+3≈14×1.7+3≈27(cm),即点C到桌面的距离为27cm;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,如图3所示:则∠QBN=90°,CM=BN,PN=3,由(1)得:QM=BN=26.8,∵∠DAB=60°,∴∠ABP=30°,∵∠ABC=145°,∴∠CBQ=145°﹣90°﹣30°=25°,在Rt△BCQ中,sin∠CBQ=,∴CQ=BC×sin25°≈15×0.4=6,∴CM=CQ+QM≈6+27=33(cm),即此时灯罩顶端C到桌面的高度约为33cm.四.解答题17.解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△AB2C2即为所求.18.解:(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.五.解答题=4,19.解:(1)∵∠ABO=90°,S△BOD∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).20.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.六.解答21.解:(1)根据题意得y=w(x﹣10)=(﹣2x+100)(x﹣10)=﹣2x2+120x﹣1000;(2)∵y=﹣2x2+120x﹣1000=﹣2(x﹣30)2+800,∴当x=30时,y取得最大值,最大值为800,答:当售价定为30元时,每天的销售利润最大,最大利润是800元.七.解答22.解:(1)∵抛物线y=x2+bx+c顶点A的横坐标是﹣1,∴x=﹣=﹣1,即=﹣1,解得b=2.∴y=x2+2x+c.将B(0,﹣1)代入得:c=﹣1,∴抛物线的解析式为y=x2+2x﹣1.(2)∵抛物线向下平移了4个单位.∴平移后抛物线的解析式为y=x2+2x﹣5,PQ=4.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣2.将y=﹣2代入y=x2+2x﹣5得:x2+2x﹣5=﹣2,解得:x=﹣3或x=1.∴点Q的坐标为(﹣3,﹣2)或(1,﹣2).八.解答23.(1)证明:连接AD,由题意知,∠ACD=60°,CA=CD,∴△ACD是等边三角形,∴CD=AD,又∵AB=CB,BD=BD,∴△ABD≌△CBD(SSS),∴∠CBD=∠ABD,∴BD平分∠ABC;(2)解:①连接AD,作等边三角形ACD的外接圆⊙O,∵∠ADC=60°,∠ABC=120°,∴∠ADC+∠ABC=180°,∴点B在⊙O上,∵AD=CD,∴,∴∠CBD=∠CAD=60°,在BD上截取BM,使BM=BC,则△BCM为等边三角形,∴∠CMB=60°,∴∠CMD=120°=∠CBA,又∵CB=CM,∠BAC=∠BDC,∴△CBA≌△CMD(AAS),∴MD=AB,设BC=BM=1,则AB=MD=2,∴BD=3,过点C作CN⊥BD于N,在Rt△BCN中,∠CBN=60°,∴∠BCN=30°,∴BN=BC=,CN=BC=,∴ND=BD﹣BN=,在Rt△CN D中,CD===,∴AC=,∴==;②如图3,分别过点B,D作AC的垂线,垂足分别为H,Q,设CB=1,AB=2,CH=x,则由①知,AC=,AH=﹣x,在Rt△BCH与Rt△BAH中,BC2﹣CH2=AB2﹣AH2,即1﹣x2=22﹣(﹣x)2,解得,x=,∴BH==,在Rt△ADQ中,DQ=AD=×=,∴==,∵AC为△ABC与△ACD的公共底,∴==,∵S=,△ABC=,∴S△ACD∴S=+=,四边形ABCD故答案为:.。

<合集试卷3套>2019届合肥市中考数学一模数学试题及答案

<合集试卷3套>2019届合肥市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【答案】D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.2.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D 恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°【答案】C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键. 3.函数y =ax 2与y =﹣ax+b 的图象可能是( )A .B .C .D .【答案】B【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误; B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.4.如图,在Rt △ABC 中,∠C=90°, BE 平分∠ABC ,ED 垂直平分AB 于D ,若AC=9,则AE 的值是 ( )A .3B .3C .6D .4【答案】C【解析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.5.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B【解析】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD 是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.6.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.7.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm2【答案】B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.8.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图9.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)【答案】B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.10.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y=2x(x >0)的图象上,则△OAB 的面积等于( )A .2B .3C . 4D .6【答案】B【解析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE , ∴CE AE ACBD AD AB ==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C 的横坐标为2x,B 的横坐标为1x ,∴OD=1x ,OE=2x,∴DE=OE-OD=2x ﹣1x =1x ,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S △OAB =12OA•BD=12×32x x⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本题包括8个小题)11.如图,以AB 为直径的半圆沿弦BC 折叠后,AB 与BC 相交于点D .若13CD BD =,则∠B =________°.【答案】18°【解析】由折叠的性质可得∠ABC=∠CBD ,根据在同圆和等圆中,相等的圆周角所对的弧相等可得=AC CD ,再由13CD BD =和半圆的弧度为180°可得 AC 的度数×5=180°,即可求得AC 的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°. 【详解】解:由折叠的性质可得∠ABC=∠CBD , ∴=AC CD , ∵13CD BD =, ∴AC 的度数+ CD 的度数+ BD 的度数=180°, 即AC 的度数×5=180°, ∴AC 的度数为36°, ∴∠B=18°. 故答案为:18. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系. 12.请写出一个比2大且比4小的无理数:________. 【答案】π57)【解析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可 x 4x 16<<x 的取值在4~165【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键 1312+3.【答案】33【解析】先把12化成23,然后再合并同类二次根式即可得解. 【详解】原式=23+3=33. 故答案为33【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式. 14.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.【答案】(673,0)【解析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0,∵2019÷3=673, ∴P 2019 (673,0)则点P 2019的坐标是 (673,0). 故答案为 (673,0). 【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 15.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)【答案】3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.16.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB 约是45 m,根据以上观测数据可求观光塔的高CD是______m.【答案】135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=453m,所以在Rt△ACD中,34533=135m.考点:解直角三角形的应用.17.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.【答案】60%【解析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x =0.4y ,∴该地区空闲时段民用电的单价比高峰时段的用电单价低y xy-×100%=60%. 故答案为60%. 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.18.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .【答案】3【解析】首先证明PB =BC ,推出∠C =30°,可得PC =2PA ,求出PA 即可解决问题. 【详解】解:在Rt △PAB 中,∵∠APB =30°, ∴PB =2AB , 由题意BC =2AB , ∴PB =BC , ∴∠C =∠CPB ,∵∠ABP =∠C+∠CPB =60°, ∴∠C =30°, ∴PC =2PA , ∵PA =AB•tan60°,∴PC =33km ), 故答案为3. 【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB =BC ,推出∠C =30°. 三、解答题(本题包括8个小题) 19.已知AB 是O 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长;如图②,P 为AB 上一点,CP 延长线与O 交于点Q ,若AQ CQ =,求APC ∠的大小及PA 的长.【答案】(Ⅰ)30P ∠=︒,PA =4;(Ⅱ)45APC ∠=︒,223PA +=【解析】(Ⅰ)易得△OAC 是等边三角形即∠AOC=60°,又由PC 是○O 的切线故PC ⊥OC ,即∠OCP=90°可得∠P 的度数,由OC=4可得PA 的长度(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,易得∠APC=45°;过点C 作CD ⊥AB 于点D ,易得AD=12AO=12CO ,在Rt △DOC 中易得CD 的长,即可求解【详解】解:(Ⅰ)∵AB 是○O 的直径,∴OA 是○O 的半径.∵∠OAC=60°,OA=OC ,∴△OAC 是等边三角形.∴∠AOC=60°.∵PC 是○O 的切线,OC 为○O 的半径,∴PC ⊥OC ,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如图②,过点C 作CD ⊥AB 于点D.∵△OAC 是等边三角形,CD ⊥AB 于点D ,∴∠DCO=30°,AD=12AO=12CO=2. ∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt △DOC 中,OC=4,∠DCO=30°,∴OD=2,∴3∴3∴3【点睛】此题主要考查圆的综合应用20.如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=520m ,∠D=30°.那么另一边开挖点E 离D 多远正好使A ,C ,E 三点在一直线上(3取1.732,结果取整数)?【答案】450m.【解析】若要使A 、C 、E 三点共线,则三角形BDE 是以∠E 为直角的三角形,利用三角函数即可解得DE 的长.【详解】解:ABD 120∠=︒,D 30∠=︒,AED 1203090∠∴=︒-︒=︒,在Rt ΔBDE 中,BD 520m =,D 30∠=︒,1BE BD 260m 2∴==, ()22DE BD BE 2603450m ∴=-=≈.答:另一边开挖点E 离D450m ,正好使A ,C ,E 三点在一直线上.【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.21.已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__【答案】10【解析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为 10 .【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 . 22.如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE ⊥直线L 且25AE cm =,手臂60AB BC cm ==,末端操作器35CD cm =,AF 直线L .当机器人运作时,45,75,60BAF ABC BCD ∠=︒∠=︒∠=︒,求末端操作器节点D 到地面直线L 的距离.(结果保留根号)【答案】(30220+)cm.【解析】作BG ⊥CD ,垂足为G ,BH ⊥AF ,垂足为H ,解Rt CBG ∆和Rt ABH ∆,分别求出CG 和BH 的长,根据D 到L 的距离()BH AE CD CG =+--求解即可.【详解】如图,作BG ⊥CD ,垂足为G ,BH ⊥AF ,垂足为H ,在Rt CBG ∆中,∠BCD=60°,BC=60cm ,∴cos6030CG BC =⋅︒=,在Rt ABH ∆中,∠BAF=45°,AB=60cm ,∴sin45302BH AB =⋅︒=∴D 到L 的距离()302255(30220)BH AE CD CG cm =+--=-=.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段. 23.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.【解析】试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.24.一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.【答案】(1)23;(2)49【解析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是2 3 .(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:k b 1 -1 2 1 1,1 1,-1 1,2-1 -1,1 -1,-1 -1.2 2 2,1 2,-1 2,2 共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.25.计算:2112(1)6tan303π-︒⎛⎫+--+-⎪⎝⎭解方程:544101236x xx x-++=--【答案】(1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=323169+-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.【答案】(1)矩形的周长为4m;(2)矩形的面积为1.【解析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.80【答案】C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴2222AE BE++=6810∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168⨯⨯2=100-24=76.故选C.考点:勾股定理.2.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣16【答案】B【解析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.3.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【答案】C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x-;故D选项错误.故选C.考点:动点问题的函数图象.4.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【答案】B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.5.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.6 【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sin ACBAB=,∴935AB=,解得AB=1.故选A6.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.【答案】A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x40 30x-≥⎧⎨-⎩①>②由①,得x≥2,由②,得x<1,所以不等式组的解集是:2≤x<1.不等式组的解集在数轴上表示为:.故选A.【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A .6B .12C .18D .24【答案】B 【解析】∵四边形ABCD 是平行四边形,∴DC=AB ,AD=BC ,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD 的周长=2×6=12,故选B .8.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的【答案】C 【解析】试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .9.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =( )A .141°B .144°C .147°D .150°【答案】B 【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG 的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG =(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B .【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n ﹣2)•180 (n≥3)且n 为整数).10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x轴( ).x… 1- 01 2 … y… 1- 74- 2- 74- …A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点【答案】B 【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.二、填空题(本题包括8个小题)11.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC=2∠CAD ,则∠BAE=__________度.【答案】22.5° 【解析】四边形ABCD 是矩形,∴AC=BD ,OA=OC ,OB=OD ,∴OA=OB ═OC ,∴∠OAD=∠ODA ,∠OAB=∠OBA ,∴∠AOE=∠OAD+∠ODA=2∠OAD ,∠EAC=2∠CAD ,∴∠EAO=∠AOE ,AE ⊥BD ,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.12.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 【答案】1.【解析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a=. 13.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .【答案】()240024008.120%x x -=+. 【解析】试题解析:∵原计划用的时间为:2400x, 实际用的时间为:()2400120%x+, ∴可列方程为:()240024008.120%x x -=+ 故答案为()240024008.120%x x-=+ 14.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.【答案】4cm【解析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论.【详解】解:∵CD 是ABC ∆的高线,∴90BDC ∠=︒,∵30B ∠=︒,2CD =,∴24BC CD cm ==.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.15.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.【答案】165【解析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y 甲=4t (0≤t≤5);y 乙=()()2112916(24)t t t t <⎧-≤≤⎨-≤⎩; 由方程组4916y t y t ⎧⎨-⎩==,解得t=165. 故答案为165. 【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____. 【答案】m>-1【解析】首先解关于x 和y 的方程组,利用m 表示出x+y ,代入x+y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, ①+②得1x+1y =1m+4,则x+y =m+1,根据题意得m+1>0,解得m >﹣1.故答案是:m >﹣1.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.17.因式分解:3222x x y xy +=﹣__________.【答案】()2x x y -【解析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy yx x y =-+=-,故答案为:()2x x y -【点睛】 本题考查提公因式,熟练掌握运算法则是解题关键.18.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .【答案】5【解析】试题分析:中心角的度数=360n ︒36072n︒︒=,5n = 考点:正多边形中心角的概念.三、解答题(本题包括8个小题)19.鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m ,月销量比(1)中最低月销量800盒增加了%m ,结果该月水果店销售该水果礼盒的利润达到了4000元,求m 的值. 【答案】(1)若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元;(2)m 的值为25.【解析】(1)设每盒售价应为x 元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润×销售数量,即可得出关于m 的一元二次方程,解之取其正值即可得出结论.【详解】解:()1设每盒售价x 元.依题意得:()9803014800x --≥解得:20x ≤答:若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元()2依题意:()1201%12125%5m ⎡⎤⎛⎫--⨯+ ⎪⎢⎥⎝⎭⎣⎦()8001+m%4000⨯= 令:%m t =化简:240t t -=解得:10t =(舍)214t = 25m ∴=,答:m 的值为25.【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.20.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【答案】(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.21.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?。

2019年安徽省合肥市包河区中考数学一模试卷含参考答案

2019年安徽省合肥市包河区中考数学一模试卷含参考答案

时间(第 x 天)
1
3
6
10

日销售量(m
198
194
188
180

件)
②该产品 90 天内每天的销售价格与时间(第 x 天)的关系如下表:
时间(第 x 天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求 m 关于 x 的一次函数表达式; (2)设销售该产品每天利润为 y 元,请写出 y 关于 x 的函数表达式,并求出在 90 天内该产品哪 天的销售利润最大?最大利润是多少?
值从 54 万亿元增长 80 万亿元,稳居世界第二,其中 80 万亿用科学记数法表示为( )
A.8×1012
B.8×1013
C.8×1014
D.0.8×1013
4.从图 1 的正方体上截去一个三棱锥,得到一个几何体,如图 2.从正面看图 2 的几何体,得到
的平面图形是( )
A.
B.
C.
D.
5.下列因式分解正确的是( )
【解答】解:原式=(
﹣ )•




=x﹣1,
故答案为:x﹣1.
【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法
则. 13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出
∠BOC=120°,根据弧长公式计算即可. 【解答】解:连接 OB, ∵AB 与⊙O 相切于点 B, ∴∠OBA=90°, ∴∠OBC=∠ABC﹣∠ABO=30°, ∵OB=OC, ∴∠C=∠B=30°, ∴∠BOC=120°,
【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解 题的关键,本题易出现的错误是只是求出 60°一种情况,把三角形简单的认为是锐角三角 形.因此此题属于易错题. 10.【分析】当 y1<y2 时,存在不等式 ax+b< ,不等式的解集即为一次函数图象在反比例函数 图象下方时,所对应的自变量 x 的取值范围. 【解答】解:∵A(1,2),B(﹣2,﹣1),

2019年安徽省合肥市包河区中考数学一模试卷(解析版)

2019年安徽省合肥市包河区中考数学一模试卷(解析版)

2019年安徽省合肥市包河区中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|=()A.0B.﹣2C.2D.12.计算(﹣p)8•(﹣p2)3•[(﹣p)3]2的结果是()A.﹣p20B.p20C.﹣p18D.p183.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3B.3,2C.2,1D.1,07.如图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有学生人数是()A.8B.10C.12D.408.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°10.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<﹣2B.x<﹣2或0<x<1C.x<1D.﹣2<x<0或x>1二.填空题(共4小题,满分20分,每小题5分)11.已知a为实数,那么等于.12.化简:=.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是.三.解答题(共2小题,满分16分,每小题8分)15.计算:(x﹣2)2﹣(x+3)(x﹣3)16.桑植县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?四.解答题(共2小题,满分16分,每小题8分)17.在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD.18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)五.解答题(共2小题,满分20分,每小题10分)19.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P 从点A出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?20.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(6,8),D是OA的中点,点E在AB上,当△CDE的周长最小时,求点E的坐标.六.解答题(共1小题,满分12分,每小题12分)21.钦州市某中学为了解本校学生阅读教育、科技、体育、艺术四类课外书的喜爱情况,随机抽取了部分学生进行问卷调查,在此次调查中,甲、乙两班分别有2人特别喜爱阅读科技书报,若从这4人中随机抽取2人去参加科普比赛活动,请用列表法或画树状图的方法,求所抽取的2人来自不同班级的概率.七.解答题(共1小题,满分12分,每小题12分)22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…日销售量(m件)198194188180…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.八.解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.2019年安徽省合肥市包河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:(﹣p)8•(﹣p2)3•[(﹣p)3]2=p8•(﹣p6)•p6=﹣p20.故选:A.【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C 、x 2﹣2x +4=(x ﹣1)2+3,不是因式分解,故此选项错误;D 、ax 2﹣9,无法分解因式,故此选项错误; 故选:B .【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 6.【分析】先求出方程的解,再求出的范围,最后即可得出答案. 【解答】解:解方程2x 2﹣2x ﹣1=0得:x =,设a 是方程2x 2﹣2x ﹣1=0较大的根, ∴a =, ∵1<<2,∴2<1+<3,即1<a <.故选:C .【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.7.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数. 【解答】解:该班的学生总人数为20÷50%=40(人), 故选:D .【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.8.【分析】根据三角形的面积公式以及切线长定理即可求出答案. 【解答】解:连接PE 、PF 、PG ,AP , 由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选:C.【点评】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.9.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:A.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.【分析】当y1<y2时,存在不等式ax+b<,不等式的解集即为一次函数图象在反比例函数图象下方时,所对应的自变量x的取值范围.【解答】解:∵A(1,2),B(﹣2,﹣1),∴由图可得,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.【点评】本题主要考查了反比例函数与一次函数交点问题,从函数的角度看,就是寻求使一次函数值大于(或小于)反比例函数值的自变量x的取值范围;从函数图象的角度看,就是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据非负数的性质,只有a=0时,有意义,可求根式的值.【解答】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故填:0.【点评】本题考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.12.【分析】先计算括号内的加法、将除法转化为乘法,继而约分即可得.【解答】解:原式=(﹣)•=•=•=x﹣1,故答案为:x﹣1.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC =120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.14.【分析】由等腰三角形的性质得到AD⊥BC,然后根据“两角法”证得△CDE∽△CAD,所以由该相似三角形的对应边成比例求得答案.【解答】解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.故答案是:9.【点评】考查了相似三角形的判定与性质,等腰三角形性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.三.解答题(共2小题,满分16分,每小题8分)15.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.16.【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:﹣=5,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:原计划每天植树80棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用相似三角形的性质得出答案;(2)利用相似三角形的性质得出D点位置.【解答】解:(1)如图所示:(2)如图所示:△ACD∽△DCB.【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键.18.【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案.【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若要PQ=CD,分为两种情况:①当四边形PQCD为平行四边形时,即PD=CQ24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4解得:t=7,即当t=6或t=7时,PQ=CD.【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.20.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小.∵D(3,0),A(6,0),∴H(9,0),∴直线CH解析式为y=﹣x+8,∴x=6时,y=,∴点E坐标(6,).【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:由树状图知共有12种等可能结果,其中抽取的2人来自不同班级的有8种结果,所以抽取的2人来自不同班级的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数.【解答】解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意根据销售问题中总利润的相等关系,结合x的取值范围列出分段函数解析式及二次函数和一次函数的性质.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.。

2019届安徽合肥包河区中考一模数学试卷【含答案及解析】

2019届安徽合肥包河区中考一模数学试卷【含答案及解析】

2019届安徽合肥包河区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下面四个算式的计算结果为负数的是()A.(﹣1)﹣(﹣2) B.(﹣1)×(﹣2)C.(﹣1)+(﹣2) D.(﹣1)÷(﹣2)2. 大树的价值很多,可以产生有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A.1.6×105 B.1.6×106 C.1.6×107 D.1.6×1083. 以下各式计算结果等于a5的是()A.a2+a3 B.(a2)3 C.a10÷a2 D.a2•a34. 如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图 B.左视图C.俯视图 D.主视图和俯视图5. 已知:<x<2-1,在数轴上用点P表示x,可能正确的是()A.B.C.D.6. 九(1)、九(2)两班各有2人寒假平均每天的课外阅读时间都在2小时以上,学校决定从这4人中任选2人参加全区中学生课外阅读交流活动,则选出的2人正好一个来自九(1)班,一个来自九(2)班的概率是()A. B. C. D.7. 暑假开展中学生“一对一”对外交流活动,海川中学交流团的同学计划给国外同学每人买一件同样的纪念品,他们共筹集了60元钱,并看中了一种礼物,如果每人买一件,则正好缺一件礼物的钱,他们与商家商议,最后商家同意以八折优惠卖给同学们,这样不仅每人有了一件礼物,还剩余4元钱,设礼物原价为x元/件,则下列方程正确的是()A. B.C. D.8. 计算724次方的结果的个位数字是()A.7 B.9 C.3 D.19. 如图,在矩形ABCD中,AB=a,AD=b,分别延长AB至E,AD至F,使得AF=AE=c(b<a <c).连结EF,交BC于M,交CD于N,则△AMN的面积为()A.c(a+b﹣c) B.c(b+c﹣a)C.c(a+c﹣b) D.a(b+c﹣a)10. 如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED 与AC交于点F,则的值为()A. B. C. D.二、填空题11. 分解因式:2x3﹣8xy2= .12. 如图,AB、CD是⊙O的直径,DE为⊙O的一条弦,已知∠AOC=45°,∠CDE=30°,则∠BDE的度数为.13. 如图,在Rt△ABC中,∠C=90°,AC=BC,将∠A沿直线MN折叠,使点A落在BC边上的点D处,若∠MDC=45°,则的值是.14. 已知关于x的两个二次函数y1=a1x2+b1x+c1和y2=a2x2+b2x+c2的图象关于原点O成中心对称,给出以下结论:①a1c1=a2c2②b1c1+b2c2=0;③函数y3=y1﹣y2的图象关于y轴对称;④函数y4=y1+y2的图象是抛物线则以上结论一定成立的是(把所有正确结论的序号都填在横线上)三、解答题15. 先化简,再求值:a(a+2b)﹣(a﹣2b)2,其中a=,b=﹣2.16. 解方程:x2+1=2(x+1)17. 如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.18. 如图,小明在河的南岸A点测得北岸上的M点在正北方向,N点在北偏西30°方向,他向西行6千米到达B点,测得M点在北偏东45°方向,已知南北两岸互相平行,求MN 的距离(结果保留根号)19. (2016•包河区一模)某区教育局对本区教师个人的每学期绩效工资进行抽样问卷调查,并将调查结果整理后制作了如下不完整的统计图表:某区教师个人绩效工资统计表20. 分组个人学期绩效工资x(元)频数(人)频率A x≤200018 0.15 B 2000<x≤4000a b C4000<x≤6000 D6000<x≤8000 24 0.20 E x>8000 12 0.10 合计c1.00 <td><td><td><td>td21. (2016•包河区一模)已知:Rt△ABC的直角顶点C,另一顶点A及斜边AB的中点D 都在⊙O上,BC交⊙O于E.(1)如图1,若AC=CE,求∠B的度数;(2)如图2,若AC=6,BC=8,求⊙O的半径.22. (2016•包河区一模)某汽车专卖店计划购进甲、乙两种新型汽车共140辆,这两种汽车的进价、售价如下表:23. 进价(万元/辆)售价(万元/辆)甲 58 乙 913 td24. (2016•包河区一模)如图1,在▱ABCD中,E、F两点分别从A、D两点出发,以相同的速度在AD、DC边上匀速运动(E、F两点不与▱ABCD的顶点重合),连结BE、BF、EF.(1)如图2,当▱ABCD是矩形,AB=6,AD=8,∠BEF=90°时,求AE的长.(2)如图2,当▱ABCD是菱形,且∠DAB=60°时,试判断△BEF的形状,并说明理由;(3)如图3,在第(2)题的条件下,设菱形ABCD的边长为a,AE的长为x,试求△BEF 面积y与x的函数关系式,并求出y的最小值.25. (2016•包河区一模)如图,直线y=k1x+b1与反比例函数y=的图象及坐标轴依次相交于A、B、C、D四点,且点A坐标为(﹣3,),点B坐标为(1,n).(1)求反比例函数及一次函数的解析式;(2)求证:AC=BD;(3)若将一次函数的图象上下平移若干个单位后得到y=k1x+n,其与反比例函数图象及两坐标轴的交点仍然依次为A、B、C、D.(2)中的结论还成立吗?请写出理由,对于任意k<0的直线y=kx+b.(2)中的结论还成立吗?(请直接写出结论)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。

安徽省2019年数学中考模拟试题(含详细答案)

安徽省2019年数学中考模拟试题(含详细答案)

安徽省2019年数学中考模拟试题(含详细答案)45°30°1CABD安徽省2019年九年级中考数学模拟试卷一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 四个选项,其中只有一个是正确的. 1. 2a =,则实数a 的值是A . -2B . 12- C . ±2 D . 22. 如图是由五个相同的小正方块搭成几何体,其俯视图是3. 下列运算正确的是A.235a b ab +=B. 23626()a a -=-C.236a a a ⋅= D.21224()a a --= 4. 一副三角板如图放置,若AB ∥CD ,则∠1的度数为 A. 75° B. 70° C. 65° D. 60° 5. 一元二次方程2232=+x x 的根的情况是 A. 无实数根 B. 有两个不相等的实数根 C. 有唯一实数根 D. 有两个相等的实数根6. 不等式组⎩⎪⎨⎪⎧2x -1≥1,x -2<0的解集在数轴上表示为( )7. 用总长10m 的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为 3.52m 2(材料的厚度忽略不计).若设小正方形的边长为x m ,下列方程符合题意的是 A .2(107) 3.52x x -= B . 1072 3.522xx -⋅= C . 1072() 3.522xx x -+= D .222(109) 3.52x x x +-= 8. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则CD 的长是A. 2B. 2.5C. 2 2D.3229. 二次函数2y ax bx c =++的图象如图所示,则一次函数y bx a =+与反比例函数a b cy x++=在同一坐标系内的图象大致为第4题图第8题图第7题图NM10. 已知,平面直角坐标系中,直线13y x =+与抛物线22122y x x =-+的图象如图,点P 是2y 上的一个动点,则点P 到直线1y 的最短距离为A.32 B. 52C. 2 32二、填空题(本大题共4小题,每小题5分,满分20分) 11.64的立方根是 ;12.若37x =264x x -+的值是 ;13.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点CDA =27°,则∠B 的大小是 ;14.如图,点M 是正方形ABCD 内一点,△MBC 是等边三角形,连接AM 、MD ,对角线BD 交CM 于点N ,现有以下结论: ①∠AMD =150° ;②2MA MN MC =⋅;③∆∆-=23ADM BMC S S 3DN BN =其中正确的结论有 (填写序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:13123tan 308sin 602-︒-︒.16.先化简,再求值:21142()111aa a a +-÷-+-,其中22a =-四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长均为1正方形网格中有一个△ABC ,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC 向上平移4个单位,得到△A 1B 1C 1(不写作法,但要标出字母); (2)将△ABC 绕点O 旋转180°,得到△A 2B 2C 2(不写作法,但要标出字母); (3)求点A 绕着点O 旋转到点A 2所经过路径长l .18.如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN 是晾衣架的一个滑槽,点P 在滑槽MN 上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm ,且AB =CD =CP =DM =20cm ,当点P 向下滑至点N 处时,测得∠DCE =60°时,求滑槽xyy 1=x+3y 2=-12x 2+2x–1–2–3–41234–1–2–3–41234OP第13题图第14题图第17题图MN 的长度和此时点A 到直线DP 的距离(精确到0.1cm 23 1.732).五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n =n (n +1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是 ; (3)求图④中所有圆圈中各数之和(写出计算过程).20. 如图,已知⊙O 中,AC 为直径,MA 、MB 分别切⊙O 于点A 、B . (1)如图①,若∠BAC =23º,求∠AMB 的大小; (2)如图②,过点B 作BD ∥MA ,交AC 于点E ,交⊙O 于点D ,若BD =MA ,求∠AMB 的大小.六、(本题满分12分) 21.张老师为了解本校九年级学生完成数学作业的具体情况,随机选择部分学生进行了跟踪调查,并将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C 类中女生有______名,D 类中男生有______名,将下面条形统计图补充完整;第18题图第20题图(2)若该校九年级共有女生180名,则九年级女生完成数学作业达到很好和较好的共约多少人?(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好性别相同的概率.七、(本题满分12分)22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.小李从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x地铁站 A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x(2)若小李骑单车的时间y2(单位:分钟)与x满足关系式2278=++y ax bx,且此函数图象对称轴为直线x=11,当小李选择在C站出地铁时,还需骑单车18分钟才能到家.试求y2与x的函数关系式;(3)试求小李应选择在哪一站出地铁,才能使他从文化宫回到家所需总时间最短?并求出最短时间(其它环节时间忽略不计).八、(本题满分14分)23.如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过E作EF∥BC,且EF=BC,连接AE、AF.(1)求证:AE=BC;(2)如图2,若∠ADB=90°,求∠F AE的度数;(3)在(2)的条件下,若AB=2,AD∶CD=1∶2,S△AEF=3S△CDE,求AF的长.安徽省2018年数学中考模拟试卷参考答案和评分标准题号 1 2 3 4 5 6 7 8 9 10图1 图2第23题图第21题图答案 C D D A B C B C D B二、 11、4; 12、2; 13、36°;14、①②④(只写出一个正确结论得1分,两个得3分,填了错误的序号不得分)三、15.解:原式=1331+3222⨯-+-……………………………4分=31-……………………………8分16. 解:原式=11(1)(1)()112(2)a a a a a +--⋅-++………………4分 =112(2)2(2)a a a a +--++=212(2)2a a =++ 当x =-2+2时,原式=1-2+2+2=22.…………8分四、17.解:(1)△A 1B 1C 1如图所示. ……3分(2)△A 2B 2C 2如图所示.……6分(3)l =180π×4180=4π. …………8分18.解:当点P 向下滑至点N 处时,如图中,作CH ⊥DN 于H . ∵∠DDD =60∘,∴∠DDD =180∘−∠DDD =120∘, ∵DD =DD =20DD ,即DD =DD =20DD , ∴∠DDD =12(180∘−∠DDD )=30∘,∴DD =12DD =10DD ;DD =DD =√202−102=10√3(DD ), ∴DD =DD −DD =2DD −DD =20√3−20≈14.6DD .∴滑槽MN 的长度为14.6DD .…………5分(说明:未按要求取近似值一律扣1分).. 根据题意,此时点A 到直线DP 的距离是3DD =3×20=60DD .…………8分五、19.解:(1)79…………3分(2)67…………6分(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+…+23)+(1+2+3+…+67)=-23×242+67×682=2002. …………10分说明:方法不唯一,正确即得分.20、解:(1)∵DD 、MB 分别切⊙D 于A 、B ,∴DD =DD ,∠DDD =90∘ ∵∠DDD =23∘,∴∠DDD=∠DDD=67∘,∴∠DDD=180∘−134∘=46∘.…………4分(2)连接DD,DD,∵DD//DD,DD=DD,∴四边形BMAD是平行四边形,∴DD=DD,∵DD切⊙D于A,∴DD⊥DD,∵DD//DD,∴DD⊥DD,∵DD过O,∴DD=DD,∴DD=DD=DD,∵DD、MB分别切⊙D于A、B,∴DD=DD,∴DD=DD=DD,∴△DDD是等边三角形,∴∠DDD=60∘.…………10分21、解:(1)D类中女生有:20×25%−2=3(名),D类中男生有20−3−10−5−1=1(人),条形统计图补充完整如图所示;…………4分(每项1分)(2)根据题意得:618010810⨯=(名)答:九年级女生完成数学作业达到很好和较好共约108人;…………7分(3)据题意画图如下:由树状图可得共有6种可能的结果,其中两名同学性别相同的结果有3种,所以所选两位同学恰好性别相同的概率是3162=…………12分七、22、解:(1)设y1=kx+b,将(8,18),(9,20)代入得⎩⎪⎨⎪⎧8k+b=18,9k+b=20,解得⎩⎪⎨⎪⎧k=2,b=2.故y1关于x的函数解析式为y1=2x+2. …………………………4分(2)由题意得:112100107818baa b⎧-=⎪⎨⎪++=⎩,解得,1211ab⎧=⎪⎨⎪=-⎩,∴22111782y x x=-+…………………………8分(3)设小李从文化宫回到家所需时间为y分钟,则y=y1+y2=2x+2+12x2-11x+78=12x2-9x+80=12(x-9)2+39.5,∵12a >0,∴当x=9时,y有最小值,y最小=39.5,故小李应选择在B站出地铁,才能使他从文化宫回到家所需时间最短,最短时间为39.5分钟.…………………………12分八、23、(1)证明:∵∠ADB=∠CDE,∴∠ADB+∠BDE=∠CDE+∠BDE,即∠ADE=∠BDC,∵AD=BD,CD=DE,∴△ADE≌△BDC,∴AE=BC;………………4分(2)解:设AE交BC于点G,DE交BC于点H,由(1)得△ADE≌△BDC,∴∠AED=∠BCD,AE=BC,∴AE=EF,∵∠DHC=∠GHE,∴∠HGE=∠HDC,∵EF∥BC,∴∠GEF=∠EGH,∴∠AEF=∠EDC=∠ADB=90°,∴△AEF是等腰直角三角形,∠FAE=45°;………………9分(3)由(2)知∠AEF=∠ADB=∠CDE=90°,在△ABD和△CED中,AD=BD,CD=DE,∠ADB=∠CDE,∴△ABD∽△CED,∴ABCE=ADCD=12,∵AB=2,∴CE=4,在△AEF和△CDE中,∵∠AEF=∠CDE,AECD=EFDE,∴△AEF∽△CDE,∴S△AEFS△CDE=(AFCE)2,即(AF4)2=3,解得AF=4 3.………………14分说明:方法不唯一,正确即得分.。

2019年安徽省合肥市名校中考模拟数学试卷和参考答案

2019年安徽省合肥市名校中考模拟数学试卷和参考答案

2019年中考模拟试题数学试卷 第1页. .(共6页)2019年中考模拟试题数学试卷 第2页. .(共6页)2019年中考模拟试题数学试卷题号一二三四五六七八总分得分1.数学试卷6页,八大题,共23小题,满分150分,考试时间120分钟.2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟,请合理分配时间.一、选择题(本大题共10小题,每小题4分,满分40分)1.2-的相反数是:A. 12B. 12-C. 2D. -22.据初步统计,2017年春节期间,安徽省累计接待游客2681.52万人次,实现旅游总收入142亿 元,其中142亿用科学记数法表示为:A.1.42×108B.1.42×109C.1.42×1010D.1.42×10113.如图是一个水平放置的由圆柱体和正方体组成的几何体,它的俯视图是: A.B. C. D.4.下列计算的结果是a 6的为:A. a 12÷a 2B.a 7-aC. a 2·a 4D.(- a 2) 35.下列四张扑克牌图案,属于中心对称图形的是: A.B.C.D.6.“保护水资源,节约用水”应成为每个公民的义务.下表是某个小区随机抽查到的10户家庭的 月用水量(吨) 4 5 6 9 户数(户) 3 4 2 15.3吨7.已知△ABC (AB <AC <BC ),用尺规作图的方法在BC 上取一点P ,使P A +PC =BC ,下列选项 正确的是: A.B.C.D.8.若m 、n (n <m )是关于x 的一元二次方程1-(x -a )(x -b )=0的两个根,且b <a ,则m ,n , b ,a 的大小关系是:A.m <a <b <nB.a <m <n <bC.b <n <m <aD.n <b <a <m9.如图,在矩形ABCD 中,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为 点F ,将△BEF 绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,若点M 恰好是边CD 的中点,那么ADAB的值是: 23 43 53 5310.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是: A.62 B.10 C.26D.29题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题4小题,每小题5分,满分20分)11.函数2y x =-x 的取值范围是 . 12.如图,AB 是O 的直径,CD 是弦,如果AC AD =,C ∠比D ∠大40︒,则A ∠为 度.第12题图 第13题图 第14题图13.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的函数关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 . 14.如图,已知平行四边形ABCD 中,AD =6,AB =3245A ∠=︒.过点B 、D 分别做BE ⊥AD , DF ⊥BC ,交AD 、BC 与点E 、F .点Q 为DF 边上一点,30DEQ ∠=︒,点P 为EQ 的中点, AD 、BC 相交于点M 、N .若MN =EQ ,则EM 的长等于 .三、(本大题共1小题,共12分)15.计算:02315(21)()273---+-+-.得 分 评卷人得分 评卷人 得 分 评卷人四、(本大题共8小题,共78分)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?17.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目;(2)请将条形统计图补充完整;(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学。

2019年最新安徽省合肥市中考数学一模试卷及答案解析A

2019年最新安徽省合肥市中考数学一模试卷及答案解析A

安徽省合肥市中考数学一模试卷一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.02.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010 C.40.570×1011D.4.0570×1012 3.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C. D.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B. C. D.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.7.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数 B.一次函数C.反比例函数 D.二次函数9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A. B. C. D.二、填空题(每小题5分,共20分)11.分解因式:m3n﹣4mn= .12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.13.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G 处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;③EC平分∠DCH;④当点H与点A重合时,EF=2以上结论中,你认为正确的有.(填序号)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣22﹣+2cos45°+|1﹣|16.如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求的值.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.18.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.五、解答题(本大题共2小题,每小题10分,共20分)19.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)六、解答题(本题满分12分)21.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.七、解答题(本题满分12分)22.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x 件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?八、解答题(本题满分14分)23.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F 分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).参考答案与试题解析一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.0【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣5<﹣2<0<5,∴在﹣2,﹣5,5,0这四个数中,最小的数是﹣5.故选:B.2.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010 C.40.570×1011D.4.0570×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.【解答】解:40570亿=4057000000000=4.057×1012,故选D.3.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【考点】平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B. C. D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.7.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数 B.一次函数C.反比例函数 D.二次函数【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】求出一次函数和反比例函数的解析式,根据其性质进行判断.【解答】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%【考点】列代数式.【分析】直接利用已知表示出三月份的产值,进而表示出增长率,即可得出答案.【解答】解:设一月份的产值为a,则二月份的产值为:a(1+x%),故三月份的产值为:a(1+x%)2,则三月份的产值比一月份的产值增长了﹣1=(2+x%)x%.故选:D.10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A. B. C. D.【考点】相似三角形的判定与性质;等腰三角形的判定与性质.【分析】依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.【解答】解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.二、填空题(每小题5分,共20分)11.分解因式:m3n﹣4mn= mn(m﹣2)(m+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式mn,再利用平方差公式分解因式得出即可.【解答】解:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).故答案为:mn(m﹣2)(m+2).12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为﹣2 .【考点】反比例函数与一次函数的交点问题.【分析】根据函数解析式,可得b=,b=a﹣2,进而得出ab=1,b﹣a=﹣2,即可求得﹣===﹣2.【解答】解:∵函数y=与y=x﹣2图象的一个交点坐标(a,b),∴b=,b=a﹣2,∴ab=1,b﹣a=﹣2,∴﹣===﹣2故答案为﹣2.13.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9 .【考点】规律型:数字的变化类.【分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G 处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;③EC平分∠DCH;④当点H与点A重合时,EF=2以上结论中,你认为正确的有①②④.(填序号)【考点】翻折变换(折叠问题);菱形的判定;矩形的性质.【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出②正确;③根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出③错误;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;②点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故②正确;③∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故③错误;过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,故④正确.综上所述,结论正确的有①②④.故答案为:①②④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣22﹣+2cos45°+|1﹣|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用乘方的意义,二次根式性质,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣4﹣2+2×+﹣1=﹣5.16.如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求的值.【考点】一次函数图象上点的坐标特征.【分析】先根据题意得出一次函数的解析式,求出k、b的值,再代入代数式进行计算即可.【解答】解:∵一次函数的图象经过(2,0)和(0,﹣4),∴,解得.∵k2﹣2kb+b2=(k﹣b)2=(2+4)2=36,∴==6.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).18.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.【考点】列表法与树状图法;勾股定理的逆定理.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这三条线段能组成三角形的情况,再利用概率公式求解即可求得答案;(2)首先由树状图求得这三条线段能组成直角三角形的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有12种等可能的结果,这三条线段能组成三角形的有7种情况,∴这三条线段能组成三角形的概率为:;(2)∵这三条线段能组成直角三角形的只有:3cm,4cm,5cm;∴这三条线段能组成直角三角形的概率为:.五、解答题(本大题共2小题,每小题10分,共20分)19.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.【解答】(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.六、解答题(本题满分12分)21.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.【考点】二次函数综合题.【分析】(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;(2)与(1)的证明思路相同;(3)利用待定系数法求出二次函数解析式,根据抛物线解析式求出点P的坐标,再过点P作PC⊥x轴于C,设AQ与y轴相交于D,然后求出PC、AC的长,再根据(2)的结论求出OD的长,从而得到点D的坐标,利用待定系数法求出直线AD 的解析式,与抛物线解析式联立求解即可得到点Q的坐标.【解答】(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(3)设抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),∴,解得,所以,y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4),过点P作PC⊥x轴于C,设AQ与y轴相交于D,则AO=1,AC=1+1=2,PC=4,根据(2)的结论,AO•AC=OD•PC,∴1×2=OD•4,解得OD=,∴点D的坐标为(0,),设直线AD的解析式为y=kx+b(k≠0),则,解得,所以,y=x+,联立,解得,(为点A坐标,舍去),所以,点Q的坐标为(,).七、解答题(本题满分12分)22.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x 件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【考点】二次函数的应用.【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=;(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣2x2+120x,当x=30时,y取得最大值=1400,∴顾客一次购买30件时,该网站从中获利最多.八、解答题(本题满分14分)23.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F 分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠O AE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.4月18日。

2019年安徽省合肥市名校中考模拟数学试卷和参考答案(word版)

2019年安徽省合肥市名校中考模拟数学试卷和参考答案(word版)

2019年中考模拟试题数学试卷题号 一 二 三 四 五 六 七 八 总分 得分1.数学试卷6页,八大题,共23小题,满分150分,考试时间120分钟.2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟,请合理分配时间.3.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题4分,满分40分)1.12-的相反数是:A.12B. 12-C. 2D. -22.据初步统计,2017年春节期间,安徽省累计接待游客2681.52万人次,实现旅游总收入142亿 元,其中142亿用科学记数法表示为:A.1.42×108B.1.42×109C.1.42×1010D.1.42×10113.如图是一个水平放置的由圆柱体和正方体组成的几何体,它的俯视图是: A.B. C. D.4.下列计算的结果是a 6的为:A. a 12÷a 2B.a 7-aC. a 2·a 4D.(- a 2) 35.下列四张扑克牌图案,属于中心对称图形的是: A.B.C.D.6.“保护水资源,节约用水”应成为每个公民的义务.下表是某个小区随机抽查到的10户家庭的 月用水量(吨) 4 5 6 9 户数(户) 3 4 2 15.3吨7.已知△ABC (AB <AC <BC ),用尺规作图的方法在BC 上取一点P ,使P A +PC =BC ,下列选项 正确的是: A.B.C.D.8.若m 、n (n <m )是关于x 的一元二次方程1-(x -a )(x -b )=0的两个根,且b <a ,则m ,n , b ,a 的大小关系是:A.m <a <b <nB.a <m <n <bC.b <n <m <aD.n <b <a <m 9.如图,在矩形ABCD 中,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为 点F ,将△BEF 绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,若点M 恰好是边CD 的中点,那么ADAB的值是: A.233 B.34 C.534 D.3610.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是: A.62 B.10 C.26D.29题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题4小题,每小题5分,满分20分)11.函数2y x =-x 的取值范围是 . 12.如图,AB 是O 的直径,CD 是弦,如果AC AD =,C ∠比D ∠大40︒,则A ∠为 度.第12题图 第13题图 第14题图13.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的函数关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 . 14.如图,已知平行四边形ABCD 中,AD =6,AB =3245A ∠=︒.过点B 、D 分别做BE ⊥AD , DF ⊥BC ,交AD 、BC 与点E 、F .点Q 为DF 边上一点,30DEQ ∠=︒,点P 为EQ 的中点, AD 、BC 相交于点M 、N .若MN =EQ ,则EM 的长等于 .三、(本大题共1小题,共12分)15.计算:02315(21)()273---+-+-.得 分 评卷人得分 评卷人 得 分 评卷人四、(本大题共8小题,共78分)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?17.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目;(2)请将条形统计图补充完整;(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省合肥市2019年中考模拟数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每一个小题都给出代号A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中。

每一小题:选对得4分,不选、选错或选出的代号超过一个的一律得0分。

.2.在十二届全国人大二次会议上,李克强总理在政府工作报告中表示,2019年中央预算内4.为了备战2019年体育中考,某中学举行了第一次中考体育模拟测试,如表是该校九(4)这组数据中,众数和中位数分别是()5.如图,己知AB∥CD,BE平分∠ABC,∠CBD=30°,则∠CDE的度数是())7.如图是某正六棱柱形的三视图及相关数据,则判断正确的是()8.市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x 天,根据题意列出了方程:,则方案③程的9.把抛物线y=﹣x 2+x 沿x 轴向右平移1个单位后,再沿x 轴翻折得到抛物线C 1称为第一次操作,把抛物线C 1沿x 轴向右平移1个单位后,再沿x 轴翻折得到抛物线C 2称为第二次操作,…,以此类推,则抛物线y=﹣x 2+x 经过第2019此操作后得到的抛物线C 2019的解析 ﹣+10.如图,AB 为⊙O 直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD ,若点D 与圆心O 不重合,∠BAC=20°,则∠DCA 的度数是( )二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:3x2﹣6x+3= _________.12.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为_________.13.设函数y=与y=x﹣2的图象的交点坐标为(a,b),则的值为_________.14.如图,△ABC中,AB>AC,AD是中线,AE是角平分线,CF⊥AE于F,连接DF,给出以下结论:①DF∥AB;②∠DAE=(∠ACB﹣∠ABC);③DF=(AB﹣AC);④(AB﹣AC)<AD<(AB+AC).其中正确的是_________(把所有正确判断的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:.16.观察下列等式,探究其中的规律:①+﹣1=,②+﹣=,③+﹣=,④+﹣=,….(1)按以上规律写出第⑧个等式:_________;(2)猜想并写出第n个等式:_________;(3)请证明猜想的正确性.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的顶点坐标是A(﹣5,﹣5),B(﹣1,﹣3),C(﹣3,﹣1).(1)按要求画出变换后的图形:①画出△ABC关于y轴对称的△A1B1C1;②以原点O为旋转中心,把△A1B1C1逆时针旋转90°,得到△A2B2C2;(2)若将△ABC向右平移m个单位,向上平移n个单位,使点C落在△A2B2C2内部,指出m、n的取值范围.18.某房地产公司在全国一、二、三线城市都有房屋开发项目,在去年的房屋销售中,一线城市的销售金额占总销售金额的40%.由于两会召开国家对房价实施分类调控,今年二线、三线城市的销售金额都将比去年减少15%,因而房地产商决定加大一线城市的销售力度.若要使今年的总销售金额比去年增长5%,求今年一线城市销售金额比去年增加的百分率.五、(本大题共2小题,每小题10分,满分20分)19.某单位为治理乱停车现象,出台了规范使用停车位的管理办法.如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.6m,∠DCF=30°,请你计算车位所占的宽度EF为多少m?(结果保留根号)20.如图,已知反比例函数y1=的图象与正比例函数y2=ax(a≠0)的图象相交于点A(2,2)和点B.(1)写出点B的坐标,并求k,a的值;(2)根据图象,比较y1和y2的大小;(3)将直线AB向右平移n(n>0)个单位长度,得到的图象记为l,若点M(3,﹣2)关于直线l的对称点M′落在坐标轴上,请直接写出n的值.六、(本题满分12分)21.2019年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.(1)填空:m= _________,n= _________.扇形统计图中E组所占的百分比为_________%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?七、(本题满分12分)22.某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)已知每生产1千件合格的元件可以盈利1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?八、(本题满分14分)23.如图,正方形ABCD的边长为2,P是△BCD内一动点,过点P作PM⊥AB于M,PN⊥AD 于N,分别于对角线BD相交于点E,F.记PM=a,PN=b,当点P运动时,ab=2.(1)求证:EF2=BE2+DF2;(2)求证:△ABF∽△EDA,并求∠EAF的度数;(3)设△AEF的面积为S,试探究S是否存在最小值?若存在,请求出S的最小值;若不存在,请说明理由.参考答案1-10、DDBCD ACDDC11、3(x﹣1)212、9:413、﹣14、①③④.15、﹣416、17、解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)由图可知,4<m<7,2<n<5.18、解:设今年一线城市销售金额比去年增加x,根据题意得40%x﹣(1﹣40%)×15%=5%,解得:x=35%.答:今年一线城市销售金额比去年增加35%.19、解:在Rt△DCF中,∵CD=5.6m,∠DCF=30°,∴sin∠DCF===,∴DF=2.8,∵∠CDF+∠DCF=90°∠ADE+∠CDF=90°,∴∠ADE=∠DCF,∵AD=BC=2,∴cos∠ADE===,∴DE=,∴EF=ED+DF=2.8+(米),答:车位所占的宽度EF为(2.8+)m.y,得C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C组话题的概率是=.故答案为40,100,15.22、解:(1)根据表格中的数据可以得出:p与x是二次函数关系,且图象经过的顶点坐标为(6,0.6),设函数解析式为p=a(x﹣6)2+0.6,把(8,1)代入,的4a+0.6=1解得a=0.1,所以函数解析式为p=0.1(x﹣6)2+0.6=0.1x2﹣1.2x+4.2;(2)y=10[1.6(x﹣p)﹣0.4p]=16x﹣20p=16x﹣20(0.1x2﹣1.2x+4.2)=﹣2x2+40x﹣84(4≤x≤12)y=﹣2x2+40x﹣84=﹣2(x﹣10)2+116,∵4≤x≤12∴当x=10时,y取得最大值,最大利润为116千元答:当每台机器的日产量为10千件时,所获得的利润最大,最大利润为116千元.23、(1)证明:∵四边形ABCD是边长为2的正方形,∴AB=AD=2,∠ABF=∠ADE=45°,∵PM⊥AB,PN⊥AD,∴四边形AMPN是矩形,∴△BME、△DNF、△PEF均为等腰直角三角形,∵PM=a,PN=b,∴BM=EM=2﹣b,DN=FN=2﹣a,PE=PF=a+b﹣2,∴DF2=2(2﹣a)2=2a2﹣8a+8,BE2=2(2﹣b)2=2b2﹣8b+8,EF2=2(a+b﹣2)2=2a2+4ab+2b2﹣8a﹣8b+8,∵ab=2,∴EF2=2a2+2b2﹣8a﹣8b+16,∴EF2=BE2+DF2;(2)证明:∵四边形ABCD是边长为2的正方形,∴AB=AD=2,∠ABF=∠ADE=45°,∵PM⊥AB,PN⊥AD,∴四边形AMPN是矩形,∴PM∥AN,NP∥AM,∴==,==,∴DE=AM,BF=AN,∴DE•BF=AM•AN=2ab,∵ab=2,∴DE•BF=4,∴DE•BF=AB•AD,即=,又∵∠ABF=∠EDA=45°,∴△ABF∽△EDA,∴∠BAF=∠AED,∵∠BAF=∠EAF+∠BAE,∠AED=∠ABF+∠BAE,∴∠EAF=∠ABF=45°;(3)解:S=S△ABD﹣S△ABE﹣S△ADF=AB2﹣AB•ME﹣AD•FN=×22﹣×2×(2﹣b)+×2×(2﹣a)=a+b﹣2=()2+()2﹣2+2﹣2=(﹣)2+2﹣2∵ab=2,∴S=(﹣)2+2﹣2,∵(﹣)2≥0,∴当﹣=0,即a=b=时,S有最小值,且S最小=2﹣2.。

相关文档
最新文档