一次函数 待定系数法
19.2.2一次函数(3)待定系数法

自学指导
1.看课本P93例4,回答:求一次函数的解析 式,关键是求什么?怎么求? 2.看课本P94,什么是待定系数法?由例4的 解题过程总结:用待定系数法解题一般分为 几步?哪几步?
3.看课本P94框图,思考例3、例4从两方面 说明了什么? 6分钟时间内看哪些同学能快速完成
6
-4
0
x
要求:1.请在6分钟内完成 2.格式规范,书写工整
当堂训练
必做题:
1、已知一次函数y=kx+2,当x=5时y的值为4, 求k的值. 2、课本99页第7题
选做题:
3、生物学家研究表明:某种蛇的长度y(cm) 是其尾长x(cm)的一次函数;当蛇的尾长为 6cm时, 蛇的长为45.5cm; 当蛇的尾长为 14cm时, 蛇的长为105.5cm;当蛇的尾长为 10cm时,这条蛇的长度是多少?
也可以小声的讨论或举手询问老师
学以致用
1.已知一次函数y=3x-b的图象经过P(1,1), 则该函数的图象必经过点( D ) A.(-1,1) B.(2,2) C.(-2,2) D.(2,4) 2.写出两个一次函数,使它们的图象都经过 点(-2,3)
课堂检测
1、课本95页的练习题1
2、已知一次函数的图象在坐标系中如下 图所示,求它的解析式. y
知识卡片-待定系数法求一次函数解析式

待定系数法求一次函数解析式能量储备●确定一次函数的表达式y=k x+b(k≠0),只需要求出k,b的值即可,它需要两个独立的条件:这两个条件通常是两个点,或两对x,y的值.●用待定系数法确定一次函数的表达式:先设出一次函数的表达式,如y=k x+b(k≠0),再将两个已知点(通常情况下,其中一个点是与y轴的交点)的横、纵坐标或两对x,y的值分别代入y=kx+b中,建立关于k,b的两个方程,通过解这两个方程求出k和b的值,从而确定其表达式,这种方法即为待定系数法.通关宝典★基础方法点方法点1:用待定系数法确定一次函数的表达式例1在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长9 cm;当所挂物体的质量为3 kg时,弹簧长12 cm.写出y与x之间的关系式,并求出所挂物体的质量为6 kg时弹簧的长度.分析:因为弹簧的长度y是所挂物体质量x的一次函数,所以可设函数关系式为y=k x+b(k≠0).解:设y=k x+b(k≠0),根据题意,得9=b,①12=3k+b.②所以k=1.所以y=x+9.当x=6时,y=6+9=15,即所挂物体的质量为6 kg时,弹簧的长度为15cm.★★易混易误点易混易误点1: 将正比例函数与一次函数表达式混淆例2已知y是x的一次函数,并且当x=0时,y=1;当x=2时,y=3,求它的表达式.解:设它的表达式为y=k x+b(k≠0),因为当x=0时,y=1,所以b=1.又因为当x=2时,y=3,所以2k+b=3.所以k=1.所以y=x+1.,分析:在利用待定系数法求一次函数表达式时,首先应设一次函数表达式为y=k x+b(k≠0).本题易把一次函数表达式设为y=k x,导致错误.蓄势待发考前攻略考查根据实际问题中的条件或图象确定一次函数(或正比例函数)的表达式.多以选择题或填空题的形式出现,难度较小.完胜关卡。
待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。
这种方法在求解函数解析式时被广泛应用。
2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。
在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。
3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。
根据已知条件,先假设函数的形式为y=ax+b。
(2)列出方程组。
根据题目所给的条件,列出关于a 和b 的方程组。
(3)解方程组。
通过求解方程组,得到a 和b 的值。
(4)写出解析式。
将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。
4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。
(1)假设函数形式为y=ax+b。
(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。
(4)写出解析式:y = 2x。
5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。
一次函数待定系数法

一次函数待定系数法一次函数待定系数法是解决一元一次方程组的一种常用方法,通过设定待定系数,将方程转化为未知数为常数的形式,从而求出未知数的值。
一次函数待定系数法也被广泛用于物理学、经济学等领域的实际问题求解。
设一元一次方程为ax+b=0,其中a、b为常数,为求解方程,设未知数为x,待定系数为k,即:x=k将x=k代入原方程,得:ak+b=0此时方程的未知数为常数k,将a、b看作已知量,可以直接求解出k的值,从而得到方程的解。
值得注意的是,待定系数的设定需要根据具体情况来确定,一般应该设定为能够使计算简便、公式简单的值。
例题一:已知一元一次方程2x+3=7,试用待定系数法求解该方程。
2k+3=7将方程移项并合并同类项,得到:2k=4于是得到待求的未知数k为:方程的解为:3k-5=16一次函数待定系数法的优点是计算简便、易于掌握,适用于一些简单的问题求解。
该方法不仅可以用于未知数为常数的一元一次方程,还可以推广到一些更高阶的方程组求解,例如二元一次方程组、二元二次方程组等。
一次函数待定系数法的缺点是其需要设定待定系数,而待定系数的选择对结果有决定性影响。
如果待定系数选择不合适,有可能会导致答案错误。
在一些复杂的问题求解中,一次函数待定系数法可能不太适用,对于这些问题,需要采用其他更加复杂的方法进行求解。
结束语一次函数待定系数法是解决一元一次方程组常用的方法之一。
本文主要介绍了一次函数待定系数法的原理、优点和缺点,并通过例子进行了实际练习。
希望本文对读者掌握一次函数待定系数法有所帮助。
一次函数待定系数法是学习数学时必须掌握的基础内容,适用范围广泛,应用于物理学、经济学等领域的实际问题求解。
在应用中,一次函数待定系数法具有数值计算快捷和解法简单等优点,但同时存在着较为明显的一些不足之处。
一次函数待定系数法的优点之一是计算速度快,能够在较短时间内求得答案。
这是由于该方法以待定系数为中心,旨在通过设定合适的待定系数,将方程转换为未知数为常数的形式,从而使得计算更为简便。
关于一次函数表达式的几种求法

关于一次函数表达式的几种求法用待定系数法求一次函数的解析式:待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式。
扩展资料一次函数应用常用公式:1、求函数图像的k值:(y1-y2)/(x1-x2)2、求与x轴平行线段的中点:(x1+x2)/23、求与y轴平行线段的中点:(y1+y2)/24、求任意线段的长:√[(x1-x2)2+(y1-y2)2]5、求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1;y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1;y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标。
6、求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]6、求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2)(x,y)为+,+(正,正)时该点在第一象限(x,y)为-,+(负,正)时该点在第二象限(x,y)为-,-(负,负)时该点在第三象限(x,y)为+,-(正,负)时该点在第四象限8、若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b29、如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-110、y=k(x-n)+b就是直线向右平移n个单位y=k(x+n)+b就是直线向左平移n个单位y=kx+b+n就是向上平移n个单位y=kx+b-n就是向下平移n个单位口决:左加右减相对于x,上加下减相对于b。
11、直线y=kx+b与x轴的交点:(-b/k,0)与y轴的交点:(0,b)。
一次函数解析式23招经典解法

一次函数表达式的方法解法(23招)求一次函数的表达式基本解法1、待定系数法(1)图象过原点:函数为正比例函数,可设表达式为y=kx ,再找图象上除原点外的一个点的坐标代入表达式,即可求出k.(2)图象不过原点:函数为一般的一次函数,可设表达式为y=kx+b ,再找图象上的两个点的坐标代入表达式,即可求出k ,b 。
例:已知一次函数y=kx+b (k ,b 为常数且0≠k )的图象经过点A (0,-2)和点B (1,0),则k=______,b=______.答案:k=2,b=-2例:已知正比例函数)0(≠=k kx y 的图象经过点(1,-2),则这个正比例函数的表达式为______.答案:y=-2x常见解法:1、定义式例:已知函数3)3(82+-=-mx m y 是一次函数,求其解析式。
解析:该函数是一次函数, ∴182=-m解得m=±3,又m≠3∴m=-3故解析式为y=-6x+32、点斜式要点:如何求k ?(1)公式:1212x x y y k --=,(2)图象(比值):|k |=BCAB (两直角边的比) (3)增量:V (速度)、P (电功率)(4)平移变换:k 值相等(5)垂直变换:121-=k k(6)对称变换:|k|、|b|不变(7)相似比:(略)(8)正切值:tanα(斜率)(9)旋转变换:(略)例:已知一次函数y=kx-3的图象过点(2,-1),求这个函数解析式。
解析:方法一:(代入法)将点(2,-1)代入y=kx-3得,-1=2k-3,解得k=1.故解析式为y=x-3方法二:(一点式)解析:一次函数y=kx-3的图象过点(2,-1),∴可令y=k(x-2)-1=kx-2k-1,∴-2k-1=-3,解得k=1,∴这个函数解析式为y=x-3.3、两点式例:一次函数经过(-2,0)、(0,4),求此函数的解析式。
解析:方法一:(构建方程组)令解析式为y=kx+b,过(-2,0)、(0,4),则⎩⎨⎧=+-=b b k 420 解得k=2,b=4 故解析式为y=2x+4. 方法二:由点斜式,得)2(0041212---=--=x x y y k =2 再一点式,得y=2(x+2)+0=2x+4方法三:由斜截式,得y=2x+4方法四:由数形结合,得y=2x+4(k=直角边的比)方法五:(纯一点式)y=k(x+2)=k(x+0)+4⇒k=24、一点式:例:过(2,5)的一次函数解析式为_____。
待定系数法求一次函数表达式

例4:在弹性限度内,弹簧长度y(cm)是所挂物体质量x(g)的一次函 数.已知一根弹簧挂10g物体时的长度为10cm,挂30g物体时的长度 为15cm,试求y与x的函数表达式
Hale Waihona Puke 拓展探究1.已知: y与x成正比例,且当 x=3时 y=7,求y与x的函数解析式.
变式1 : y与x-1成正比例,且当 x=3时 y=7,求y与x的函数解析式. 变式2 : y+3与x-1成正比例,且当 x=3时 y=7,求y与x的函数解析式.
(1)求这个函数的解析式 (2)求当x=3时,y的值。
例3:(1)已知y是 x的一次函数,当 x=-1时 y=3,当 x =2 时 y=-3, 求y关于 x 的函数解析式.
(2)已知y是 x的正比例函数,当x=2时,y=-4, 求这个函数的解析式.
练:已知y是x的一次函数,又表给出了部分对应值,则m的值是_______.
练:已知:y-1与x成正比例,当x=1时,y=3. 写出y与x之间的函数关系式
拓展探究:
2.已知y=y1+y2 ,y1与x成正比例,y2与x-1成正比例,且 x=3时 y=4; x=1时 y=2. 求y与x的函数解析式.
练:已知y=y1+y2 ,y1与x成正比例,y2与x-2成正比例,且 x=-1时 y=2; x=3时 y=-2. 求y与x的函数解析式.
例1:已知一次函数y=kx+b。当x=3时,y= 0;当x=0时,y=-4。 (1)求k,b的值 (2)求当x=2时,y的值
例2:已知正比例函数y=kx,当x=3时,y=4. 求当x=2时,y的值
练1:在一次函数y=kx-3中,当x=3时,y=6。则k= 练2:已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。
待定系数法求一次函数解析式说课

待定系数法求一次函数解析式说课
待定系数法是一种求一次函数解析式的方法,它基于一次函数的线性性质,即一次函数的系数和截距都是常数,可以用待定系数法求解。
具体步骤如下:
1. 观察一次函数的特征,如是否存在常数项、一次项、常数因子等。
2. 列出一次函数的形式,包括系数和截距。
3. 选择一个未知常数,并根据一次函数的特征确定该常数的值。
4. 代入已知一次函数的形式中,计算出对应的 y 值。
5. 根据已知的 x 值和计算出的 y 值,验证所求得的一次函数解析式是否与已知一次函数的形式相符。
例如,假设要求一次函数 y = 2x + 1 的解析式,可以按照以下步骤进行: 1. 观察一次函数的特征,发现其存在一次项和常数项,因此可以列出形式为 y = 2x + b。
2. 确定未知常数 b 的值,可以通过计算一次函数的 y 值来求解。
例如,当 x = 0 时,y = 2(0) + 1 = 1。
3. 将确定的 b 值代入形式为 y = 2x + b 的函数中,计算出对应的 y 值。
例如,当 x = 3 时,y = 2(3) + 1 = 7。
4. 验证所求得的一次函数解析式是否符合已知一次函数的形式。
根据已知一次函数 y = 2x + 1,可以得出当 x = 0 时,y = 2(0) + 1 = 1;当 x = 3 时,y = 2(3) + 1 = 7,这些值与计算出的 y 值相符,因此可以确认所求得的一次函数解析式为 y = 2x + 1。
待定系数法是一种简单有效的求一次函数解析式的方法,可以用于解决各种
实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.用待定系数法求函数解析式的一般步骤. 2.数形结合解决问题的一般思路.
确定正比例函数的解析式需要一个条件,确定 一次函数的解析式需要两个条件.
1.必做题:
教材第95页练习第1题,第99页 习题19.2第6、7题.
∴y=2x.
例 已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析式.
解:设y=kx+b.
经过点(3,5)、(-4,-9),
3k+b=5, -4k+b=-9.
解得 k=2, b=-1.
∴y=2x-1 不画图,你能说出一次函数y=3x-函数值y=-1,当x=3时,y=-3.能否写出
这个一次函数的解析式呢?
例3、若一次函数y=mx-(m-2)过点(0,3),求m的值.
像这样先设出函数解析式,再根据条件确定解析 式中未知的系数,从而得出函数解析式的方法,叫 做待定系数法.
在前面的学习过程中我们发现数与形之间是怎 样结合互化的?
函数解析 式 y=kx+b
选取 解出
满足条件 的两定点 (x1,y1) (x2,y2)
解出 选取
一次函数的 图象直线l
1、已知一次函数y=kx+b的图象经过点(-1,1)和 点(1,-5),求当x=5时,函数y的值.
2、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒 )的关系如图所示.
3、 已知弹簧的长度y(厘米)在一定的限度内是所挂 物质量x(千克)的一次函数.现已测得不挂重物时
第十九章 一次函数
19.2 一次函数
19.2.2 一次函数 第3课时
1.画出函数y= 1 x与y=3x-1的图象.
2
2.你在画这两个函数图象时,分别描了几个 点?你为何选取这几个点?可以有不同取法吗?
求下图中直线的函数解析式.
y
解:设y=kx.
∵经过点(1,2),
2
1
∴ k=2.
-2 -1 O 1 2 x