中考数学专题目实际应用问题目

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

初三数学中考专题:实际应用题压轴题大全

初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。

浙教版中考实际应用性问题(含知识要点,例题及练习参考答案)

浙教版中考实际应用性问题(含知识要点,例题及练习参考答案)

专题一 实际应用性问题实际应用性问题是指有实际背景或实际意义的数学问题.这些问题充分表达了贴近学生生活、关注社会热点、形式多样等特点,注重考查学生思维的灵活性和深刻性,要求解题者具有较丰富的生活常识和较强的阅读水平以及数学建模水平.实际应用性问题涉及的背景有商品买卖、存款和贷款,最优方案、行程问题、交通运输、图案设计、农业生产和生物繁殖等.实际应用性问题在各地的试卷中成为必考内容,表达了素质教育的要求和新课程标准的理念,由于它们来自生活和生产实践,所以参考条件较多,思维也有一定的深度,解答方法灵活多样.【典型例题】例1. 某饮料厂为了开发新的产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、〔1〕假设甲种饮料需配制x 千克.请你写出满足题意的不等式组,并求出其解.〔2〕设甲种饮料每千克本钱为4元,乙种饮料每千克本钱为3元.这两种饮料的本钱总额为y 元,请写出y 与x 的函数表达式.并根据〔1〕的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种的本钱总额最低.分析:根据表格的信息和其他条件知甲种原料用量不大于19千克,乙种原料用量不大于17.2千克,可得出〔1〕的不等式组.〔2〕由“本钱总额=甲种饮料本钱+乙种饮料本钱〞这个关系式,可列出函数表达式.再运用函数的性质,可确定最低总本钱.解:〔1〕由条件得05025019030450172..()..().x x x x +-≤+-≤⎧⎨⎩ 解得2830≤≤x 〔2〕依题意得y x x x x =+-=+≤≤43501502830()()由一次函数性质知:k =1>0,y 随x 的增大而增大.∴当x =28时,甲、乙两种饮料的本钱总额最少.即y =28+150=178〔元〕.例2. 高为12.6米的教学楼ED 前有一棵大树AB 〔如图甲〕.〔1〕某一时刻测得大树AB,教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.〔2〕用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案.要求:a. 在图乙上画出你设计的测量方案示意图,并将应测数据标记在图上.〔长度用字母m、n…表示,角度用希腊字母α、β…表示〕b. 根据你所画的示意图和标注的数据,计算大树AB高度.〔用字母表示〕分析:〔1〕可用同一时刻物高与影长成正比获得大树高度.〔2〕中的设计方案,要求同学们能根据平时的学习体验及解直角三角形的有关知识获得测量大树的方案.注意的是不要无视了测角仪的高度.解:〔1〕连AC、EF∵太阳光线是平行线,∴AC∥EF∴∠ACB=∠EFD∵∠ABC=∠EDF=90°∴△ABC∽△EDF∴ABEDBCDF=∴AB1262472 ...=∴AB=4.2答:大树AB的高是4.2米.〔2〕如图测角仪高度为h米,用皮尺可测得测角仪离树距离为m米,用测角仪测得树顶仰角为α, 即BN=GM=m在Rt△AMG中,AG=m·tanα∴AB=〔m·tanα+h〕米例3. 甲、乙两同学开展“投球进筐〞比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束.②假设一次未进可再投第二次,以此类推,但每局最多只能投8次,假设8次投球都未进,该局也结束;③计分规那么如下:a. 得分为正数或0;b. 假设8次都未投进,该局得分为0;c. 投球:次数越多,得分越低;d. 6局比赛的总分高者获胜.〔1〕设某局比赛第n 〔n =1,2,3,4,5,6,7,8〕次将球投进,请你按上述约定,用公式、表格或语言表达等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案.〔2〕假设两人6局比赛的投球情况如下.〔其中的数字表示该局比赛进球时的投球次数,“×〞表示该局比赛8次投球都未进〕.第一局 第二局 第三局 第四局 第五局 第六局 甲 5 × 4 8 1 3 乙 8 2 4 2 6 × 根据上述计分规那么和你制定的计分方案,确定两人谁在这次比赛中获胜.分析:将实际问题中的计分与投球次数之间进行量化的设计方案,只要满足计分规那么的要求即可.因而可获得不同方案.解:〔1〕方案一,如下表:n 〔次〕 1 2 3 4 5 6 7 8 M 〔分〕 8 7 6 5 4 3 2 1 〔未进球计0分〕,显然上述方案符合计分规那么要求.方案二:将球投进筐的次数n 〔次〕与得分M 〔分〕之间用关系式表示为:次未进时计分为M n12080() 显然这一计分方案也符合计分规那么的要求.〔2〕由方案一:可算得甲的得分为:4+0+5+1+8+6=24〔分〕乙的得分为:1+7+5+7+3=23〔分〕由此可知,在这次比赛中甲获胜.由方案二:甲的每局得分分别为:24分、0分、30分、15分、120分、40分;乙的每局得分分别为:15分、60分、30分、60分、20分、0分.∴甲的总得分为229分;乙的总得分为185分.由此知:甲在这次比赛中获胜.例4. 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦;其中30台派往A 地区,20台派往B 地区. 两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金 每台乙型收割机的租金 A 地区 1800元 1600元B 地区 1600元 1200元〔1〕设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 〔元〕,求y 与x 间的函数关系式.并写出x 的取值范围.〔2〕假设使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来.〔3〕如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理的建议.分析:在〔1〕中,由派往A 地乙型收割机为x 台.能够正确地用代数式表示往A 地的甲型收割机,派往B 地的甲、乙型收割机是问题的关键.根据条件可得相应的租赁费用和调运方案.解:〔1〕假设派往A地区的乙型收割机为x台.那么派往A地区的甲型收割机为〔30-x〕台派往B地区的乙型收割机为〔30-x〕台派往B地区的甲型收割机为[20-〔30-x〕]=〔x-10〕台∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10) =200x+74000.由实际问题情境,必有xxx≥-≥-≥⎧⎨⎪⎩⎪0 300100∴1030≤≤x即x的取值范围是:10≤x≤30〔x是正整数〕〔2〕由题意得:200x+74000≥79600解得:x≥28由于10≤x≤30∴x取28、29、30这三个值.∴有3种不同分配方案.①当x=28时,即派往A地区甲型收割机2台,乙型收割机28台,派往B地区甲型收割机18台,乙型收割机2台.②当x=29时,即派往A地区甲型收割机1台,乙型收割机29台,派往B地区甲型收割机19台,乙型收割机1台.③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区.〔3〕由于一次函数y=200x+74000的性质知:y随着x的增大而增大.∴当x=30时,y取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.例5. 如图〔1〕,一个无盖的正方体盒子的棱长为10cm,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙,〔盒壁厚度忽略不计〕〔1〕假设昆虫甲在顶点C1处静止不动,如图〔1〕,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1,昆虫乙如果沿路径A→E→C1爬行,那么可以在最短的时间内捕捉到昆虫甲,仔细体会其中的道理,并在图〔1〕中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.〔请简要说明画法〕.〔2〕如图〔2〕假设昆虫甲从顶点C1以1cm/s的速度在盒子的内部沿棱C1C向下爬行.同时昆虫乙从顶点A以2cm/s的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?〔精确到1s〕.分析:此题难点是两个点是动点,且昆虫乙的路径不惟一,因而确定昆虫乙的几种可能路径是关键;这就必须了解正方体的平面展开图.在〔1〕中,类似地在DD 1、CD 、A 1B 1、A 1D 1或BC 的中点与A,C 1连结的线段上找到由A →C 1的最短路径;在〔2〕中可利用直角三角形的知识获得结论.解:〔1〕略.〔2〕由〔1〕知:当昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙可以沿以下四种路径中的任意一种爬行.可以看出,图〔3〕、〔4〕的路径相等,图〔5〕、〔6〕的路径相等.①设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E →F 爬行捕捉到昆虫甲需x 秒钟.由图〔3〕在Rt △ACF 中()()21020222x x =-+解得x =10设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E 3→F 爬行捕捉昆虫甲需y 秒钟.由图〔5〕,在Rt △ADF 中()()22010222y y =-+解得y ≈8∴昆虫乙从顶点A 爬行捕捉昆虫甲至少需8s.数学应用与实践包含实际问题中的方案设计问题以及依据数学特征进行的活动,操作和用数学知识解决实际问题等,解这类问题时应注重于对生活中的实际问题进行恰当的分析,从中能够找出与之相关的数学模型,并借助数学知识予以解决,其中所涉及的分类讨论思想、实际问题模型化的思想以及转化的思想方法十分重要,是解决这类问题的关键.【模拟试题】〔做题时间:45分钟〕一、填空.1. 一商店把某件商品按九折出售仍可获得20%的利润率,假设该商品的进价是每价30元,那么该件商品的标价是_____________.2. 小明家粉刷房间,雇了5个工人,干了10天完成,用去涂料费为4800元,粉刷的面积为150m2,最后结算工钱时,有以下三种方案:〔1〕按工算,每人每天工资30元;〔2〕按涂料费用算,涂料费用的30%作为工钱.〔3〕按粉面积算,每平方米付工钱12元.请你帮小明家出主意,选择方案_____________付钱最合算.3. 某公司今年5月份的纯利是a万元,如果每个月纯利润的增长率都是x,那么预计7月份的纯利润将到达_____________万元.4. 有一旅客携带了30kg行李从南京国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20kg行李,超过局部每公斤按飞机票价的1.5%购置行李票,现该旅客购置了120元的行李票,那么他的飞机票价格应是_____________.5. 某兴趣小组决定去市场购置A、B、C三种仪器,其单价分别为3元,5元,7元,购置这批仪器需花费62元,后经过讨价还价,最后以每种各下降1元成交,结果只花了50元就买下了这批仪器,那么A种仪器最多可买_____________件.6. 某市近年来经济开展迅速,据统计,该市国内生产总值1990年为8.6亿元,1995年为10.4亿元,2000年为12.9亿元,经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2022年该市国内生产总值将到达_____________亿元.7. 如图1,某公园入口原有三级台阶,每级台阶高为20cm,宽为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起点为C,现在斜坡的坡度∠BCA设计为12°,求AC的长度为_____________.图18. 居民楼的采光是人们关心的一个重要问题,冬至是一年中太阳光与地面所成夹角最小的时期,此时只要太阳光在如图2,两楼之间不互相挡住阳光,那么一年四季均不为互相挡住阳光了,设此时太阳光与地面的夹角为30°,两楼高均为30米,问两楼之间的水平距离L至少为_____________米时两楼之间才能不互相挡住阳光照射.图2二、选择题.9. 某商品价格为a 元,降价10%后,又降价10%,销售猛增,商店决定再提价20%,提价后这种商品的价格为〔 〕A. a 元B. 1.08a 元C. 0.972a 元D. 0.96a 元10. 小李买了20本练习本,店主给他八折优惠,结果廉价了32元,那么每本练习本的标价是〔 〕A. 2元B. 4元C. 8元D. 6元11. 小王在一次野外活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块石头的体积,如果他量出玻璃杯的内直径d,把矿石完全浸在水中,测出杯中水面上升了的高度为h,那么小王的这块石头的体积是〔 〕A. π42d h B. π22d h C. πd h 2 D. 42πd h 12. 如图3,边长为12m 的正方形塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB =BC =CD =3m,现在用长为4m 的绳子将一头羊拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在〔 〕图3A. A 处B. B 处C. C 处D. D 处13. 如图4,在正方形铁片上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,设圆的半径为r,扇形的半径为R,那么圆形的半径与扇形半径之间的关系是〔 〕图4A. R r =2B. R r =94C. R r =3D. R r =414. 如图5在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a m,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距离地面的距离NB 为b m,梯子的倾斜为45°,这间房间的宽AB 一定是〔 〕A. a b m +2B. a b m -2C. b mD. a m图5三、15. 某下岗工人在再就业中央的扶持下,创办了“润扬〞报刊零售点,对经营的某种晚报,该工人提供了如下信息:①买进每份0.2元,卖出每份0.3元;②一个月内〔以30天计〕,有20天每天可以卖出200份,其中10天每天只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.〔〔2〕设每天从报社买进该晚报x 份〔120200≤≤x 〕时,月利润为y 元,试求出y 与x 的函数关系式,并求月利润的最大值.16. 足球比赛的记分规那么为:胜一场得3分,平一场得1分,输一场得0分,一支球队在某个赛季中共需比赛14场中,现已比赛了8场,输了1场,得17分.请问:〔1〕前8场球比赛中,这支球队共胜了多少场?〔2〕这支球队打满14场赛,最高能得多少分?〔3〕通过比赛情况的分析,这支球队打满14场比赛得分不低于29分,就可以到达预期目标,请你分析一下,在后面的六场赛中这支球队至少要胜几场,才能到达预期目标.17. 某农场为防风沙在一山坡上种植一片树苗,并安装了自动喷灌设备,一瞬间,喷出的水流呈抛物线.如图6所示,建立直角坐标系,喷水头B 高出地面1.5米,喷水管与山坡所成的夹角∠BOA 约为63°,水流最高点C 的坐标为〔2,3.5〕.图6〔1〕求此水流抛物线的解析式;〔2〕求山坡所在的直线OA 的解析式〔解析式中的系数精确到0.1〕;〔3〕计算水喷出后落在山坡上的最远距离OA 〔精确到0.1米〕18. 某生活小区的居民筹集资金1600元,方案一块上、下两底分别为10m 、20m 的梯形空地上种植花木〔如图7〕.图7〔1〕他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后,〔图7中阴影局部〕共花了160元,请计算种满△BMC 地带所需的费用.〔2〕假设其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?19. 我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元那么六折优惠,且甲乙两厂都规定:一次印刷的数量至少是500份.〔1〕分别求两个印刷厂的收费y〔元〕与印刷数量x〔份〕的函数关系,并指出自变量x的取值范围.〔2〕如何根据印刷的数量选择比拟合算的方案?如果这个中学要印制2000份录取通知书,那么应中选择哪一个厂?需要多少费用?请做完之后,再看答案【试题答案】一、填空:1. 402. 应选方案〔2〕3. a x ()12+4. 8005. 56. 16.11亿元7. 约222cm8. 303米≈52米二、选择:9. C 10. C 11. A12. B 13. D 14. D三、解做题:15. 〔1〕300 390〔2〕y x x =+≤≤240120200() 当x =200时,y 最大值为440元16. 〔1〕答:前8场比赛中,这个球队共胜了5场〔2〕最高能得17+〔14-8〕×3=35分〔3〕由题意得:以后的6场比赛中,只要得分不低于12分即可,故胜不少于4场一定能到达目标,而胜3场平3场,正好到达预期目标,所以在以后的比赛中这个球队至少要胜3场17. 〔1〕设y a x n k =-+()2, 由题意得:y a x =-+().2352将B 〔0,1.5〕代入得a =-12∴抛物线的解析式为y x =--+122722() 或y x x =-++122322 〔2〕∠AOX =27°,设坡面所在直线上一点坐标为〔x,y 〕那么tan tan 2727°,°==y xy x 即坡面OA 所在直线方程为y x =12〔3〕由y x y x x ==-++⎧⎨⎪⎪⎩⎪⎪12122322 解得x y ==⎧⎨⎩3819..,∴OA =+381922..≈4.2米 答:略.18. 解:〔1〕∵四边形ABCD 是梯形,∴AD ∥BC,∴△AMD ∽△CMB∴S S AD BC AMDCMB △△==()214∵种植△AMD 地带花费160元,∴1608202=()m ∴S cm CMB △=802, △BMC 地带的花费为80×8=640〔元〕 〔2〕解设△AMD,△BMC 的高分别为h 1,h 2,梯形ABCD 的高为h, ∵S h AMD △==1210201,∴h 14=, 又h h h 122128==,∴ ∴S AD BC h ABCD 梯形××=+==12123012180() ∴S S AMB DMC △△°-+=-=180208080 ∴160+640+80×12=1760〔元〕 160+640+80×10=1600〔元〕∴应种植茉莉花刚好用完所筹资金.19. 解:〔1〕y x 甲×=+1580%900. =+≥12900500.()x x 且为自然数y x 乙×=+1590060%. =+15540.x〔2〕由〔1〕得:y y x 甲乙-=-36003. 当360030-=.x即x =1200时,费用相同当x >1200时,甲廉价,当x <1200时,乙廉价. 那么当x =2000时,应选甲要:1220009003300.×+=〔元〕。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题1.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是21.560=-+.飞机着陆后到停下来滑行的距离是()ms t t2A.小球距O点水平距离超过4米呈下降趋势B.当小球水平运动2米时,小球距离坡面的高度为6米C.小球落地点距O点水平距离为7米D.当小球拋出高度达到8m时,小球距O点水平距离为4m的水平距离,则小康此次掷球的成绩(即OA的长度)是()A.8m B.7m C.6m D.5m4.如图,要修建一个圆形喷水池,在池中心O点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O点的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心O点3m,则水管OA的高是()A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图①位置时,洗手液从喷口B流出,路线近似呈抛物线状,且喷口B 为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗GH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三手液瓶子的底面直径12cm点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2h t t=-,那么水流从喷出至回305落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地303848508.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN 的长度为( )A .6米B .5米C .4.5米D .4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB 长10米,一位身高1.8米的同学站在门下离门角B 点1米的D 处,其头顶刚好顶在抛物线形门上C 处.则该大门的最高处离地面高h 为 米.10.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度减少 m .11.从地面竖直向上抛出一小球,小球的高度h (米)与小球的运动时间(秒)之间的关系式是()230506h t t t =-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出 秒时,两个小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230206h t t t =-≤≤,小球运动到 s 时,达到最大高度 .13.如图,以40m/s 的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系2520h t t =-+,小球飞行过程中能达到的最大高度为 m .14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,h x x560则足球从离地到落地的水平距离为米.三、解答题17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线AA的距离为8m.的最高点C离地面1(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.参考答案:。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。

中考数学题型四 实际应用题

中考数学题型四 实际应用题
只鸡和兔.根据以上译文,回答以下问题:
(1)笼中鸡、兔各有多少只?
(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.
鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元,最少值多少元.
题型
类型1 方程(组)与不等式的实际应用(5年4考)
解:(1)设笼中鸡有x只,兔有y只,
大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售单价
题型
类型3 二次函数的实际应用(5年1考)
为44元时,每天可以售出20个,每降价1元,每天将多售出5个.问:超市将
每个B型水杯降价多少元时,每天售出B型水杯获得的利润达到最大?
最大利润是多少?
(3)第三次进货用10 000元购进这两种水杯,已知每售出一个A型水杯
因为-5<0,所以当x=5时,y取最大值,最大值为405.
答:超市将每个B型水杯降价5元时,每天售出B型水杯获得的利润达到
最大,最大利润是405元.
题型
类型3 二次函数的实际应用(5年1考)
(3)设分别购进A,B两种型号的水杯m个、n个,
则20m+30n=10
1 000−2
000,所以n=
.
3
设捐款后所得的总利润为w元,
题型
类型2 一次函数的实际应用(5年2考)
(2)①w=132x+80(10-x)+60×50=52x+3 800.
②由题意可得,52x+3 800≤4 000,
11
解得x≤3 .
13
∵x为正整数,
∴x的最大值为3.
答:若购买一、二等座票的全部费用不超过4 000元,则提早前往的
教师最多有3人.

中考数学实际应用问题及答案

中考数学实际应用问题及答案

中考实际应用题1. 为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m-3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过164万元,问最多购买A型污水处理器多少台?并求购买A型最多时每月处理污水量的吨数.2. 某厂家生产甲、乙两种零部件,已知甲种零部件每件的成本比乙种零部件每件的成本多1500元,且投入40000元生产甲种零部件的件数和投入28000元生产乙种的件数相同.(1)求甲、乙两种零部件每件成本各是多少元?(2)如果两种零部件共生产70件,该集团至少要投入290000元,那么,甲种零部件至少生产多少件?3. 某家电商场今年1月份开始销售一批某品牌液晶电视,1月份每台按所标价格销售,售出40台,2月份商场搞降价促销活动,每台降价400元销售,这样2月份比1月份多售出10台,销售款比1月份多40000元.(1)求这批电视1月份每台标价是多少元?(2)进入3月份,公司又按1月份所标价格的九折销售,将这批电视全部售出,销售款总量超过568600元,求这批电视最少有多少台?4. 为了解决农民工子女入学难的问题,哈市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”。

据统计,2013年秋季有5000名农民工子女进入主城区中小学学习,预测2014年秋季进入主城区中小学学习的农民工子女将比2013年有所增加,其中小学增加20%,中学增加30%,这样,2014年秋季将新增1160名农民工子女在主城区中小学学习。

(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2014年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2014年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?5. 冰雪大世界决定在寒假期间举办学生专场游园会,入场券分为团体票和零售票,其中团体票占总票数的23,已知一张团体票比一张零售票少20元,买20张团体票和买15张零售票所花的钱是相同的.(1)求每张团体票和零售票各为多少元钱?(2)在第一周内,共售出团体票的35,售出零售票的一半;如果在第二周内,团体票按每张80元出售,并计划在该周内售出全部余票,那么零售票应按每张多少元定价才能使第二周的票款与第一周的票款收入持平?(3)在(2)的条件下,若该专场的入场卷共发行了1500张,主办方准备拿出全部票款的10%进行“为贫困山区的孩子购买学习用具”的慈善公益活动.已知每套A型图书50元,每套B型图书40元.该地区需要两种图书共260套.则最多可以购买多少套A型图书?6. 丑小鸭电器超市购进A、B两种型号的电风扇进行销售,若一台A种型号的进价比一台B 种型号的进价多30元,用2000元购进A种型号的数量是用3400元购进B种型号的数量的一半.(1)求每台A种型号和B种型号的电风扇进价分别是多少元?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价l90元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?7.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?8. 电动自行车已成为市民日常出行的首选工具。

2022年中考数学专题复习:一次函数的实际应用(分配方案问题)

2022年中考数学专题复习:一次函数的实际应用(分配方案问题)

2022年中考数学专题复习:一次函数的实际应用(分配方案问题)1.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?2.神舟十三号飞船即将荣耀归来,为激发同学们对航天事业的兴趣,学校组织进行了一场以“飞天”为主题的文艺晚会,学校打算购买一些“飞天”装饰挂件与专属航天印章送给学生留作纪念.已知每盒挂件有30个,每盒印章有20个,且都只能整盒购买,每盒挂件的价钱比每盒印章的价钱多10元;用200元购买挂件的盒数与用150元购买印章的盒数相同.(1)求每盒挂件和每盒印章的价格分别为多少元?(2)如果给每位学生分发2个挂件与2个印章.设购买挂件a盒,购买印章b盒恰好能配套分发,请用含α的代数式表示b;(3)累计购买超过850元后,超出850元的部分有6折的优惠.学校以(2)中的配套方式购买,共需要花费w元,求w关于a的函数关系式.该校有750名学生,需要购买挂件与印章各多少盒?共需要多少费用?3.某快递公司在我市新设了一处中转站,预计每周将运送快递308吨.为确保完成任务,该中转站计划向汽车厂家购买电动、燃油两种类型的货车.根据测算,每辆电动货车每周能运送快递48吨,每辆燃油货车每周能运送快递36吨.已知汽车厂家售出1辆电动货车、2辆燃油货车的总价为39万元;售出3辆电动货车、1辆燃油货车的总价为57万元.(1)分别求出每辆电动、燃油货车的价格;(2)考虑到环保因素,电动货车最少购买4辆,为确保完成每周的快递运送任务,求该中转站最低的购车成本.4.某学校要印制招生宣传材料,如图,1l,2l分别表示甲、乙印刷厂的收费y(元)与印制数量x(份)之间的关系,根据图象回答下列问题:(1)印制800份宜传材料时,选择哪家印刷厂比较合算?(2)该学校拟拿出5000元用于印制宣传材料,选择哪家印刷厂印制的份数较多,并说明能多印制多少份?5.某商场准备购进A ,B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40000元购进A 型号电脑的数量与用30000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2500元,每台A 型号电脑售价为1800元,商场决定用不超过35000元同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式并求此时的最大利润.(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,问有多少种捐赠方案?最多捐赠多少台电脑?6.某公司分别在A 、B 两城生产同种产品,共100件.A 城生产产品的总成本y (万元)与产品数量x (件)之间具有函数关系230y x x =+,B 城生产产品的每件成本为70万.若A ,B 两城生产这批产品的总成本的和最小.(1)求A 、B 两城各生产多少件?(2)从A 城把该产品运往C ,D 两地的费用分别为5万元/件和3万元/件:从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元件,C 地需要90件,D 地需要10件,求两城总运费之和W 的最小值.7.某农副产品经销商以30元/千克的价格收购农户们的一批农副产品进行销售,经过市场调查发现一部分数据如下:其中,月销售量是关于销售价格的一次函数.(1)请直接写出p与x之间的一次函数关系(2)该农副产品经销商应如何确定这批农副产品的销售价格,才能使得月销售利润最大?(3)在(2)的条件下,该农副产品经销商打算把这一批农副产品运往A,B两个销售网点进行销售,根据市场要求,A销售网点的销量应不低于B销售网点的一半且不高于总销量的一半,运使往A、B两个销售网点的运费分别为a元/千克(其中0a ),3元/千克,请直接写出最优的调运方案.8.学校需购买测温枪与消毒液,若购买5个测温枪与1瓶消毒液需440元,若购买1个测温枪与3瓶消毒液需200元.(1)求测温枪和消毒液的单价;(2)学校计划购买两种物资共60件,并要求测温枪的数量不少于消毒液数量的14,设计最省钱的购买方案,并说明理由.9.崂山茶是青岛的特产之一,某崂山茶企业为了扩大生产规模,计划投入一笔资金购进甲、乙两种设备.已知购进2件甲设备和1件乙设备共需3.5万元;购进1件甲设备和3件乙设备共需3万元.(1)求购进1件甲设备和1件乙设备分别需要多少万元;(2)如果扩大规模后,在一个季度内,每件甲设备能为企业增加0.5万元利润,每件乙设备能为企业增加0.2万元利润.该企业计划购进甲、乙两种设备共10件,且投入资金不超过12万元,求应该如何采购甲、乙两种设备,才能使企业这个季度的利润最大?。

中考数学复习讲义课件 专题6 实际应用问题

中考数学复习讲义课件 专题6 实际应用问题

(1)若制作三种产品共计需要 25 小时,所获利润为 450 元,求制作展板、宣 传册和横幅的数量; [分析] 设制作展板数量为 x 件,横幅数量为 y 件,则宣传册数量为 5x 件, 根据题意列出二元一次方程组求解即可;
解:设制作展板的数量为 x 件,横幅的数量为 y 件,则制作宣传册的数量为
根据题意,得12x00=2×2x9-0030.解得 x=60.
经检验,x=60 是原方程的解,且符合题意.∴2x-30=90. 答:足球的单价是 60 元,篮球的单价是 90 元.
(2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球和 篮球的总费用不超过 15500 元,学校最多可以购买多少个篮球? [分析] 设学校可以购买 m 个篮球,则可以购买(200-m)个足球,利用总价 =单价×数量,结合购买足球和篮球的总费用不超过 15500 元,即可得出 关于 m 的一元一次不等式,解之取其中的最大整数值即可得出结论.
由题意,得 60m+60m+50(90+m)+70(90+m)≤32000. 解得 m≤8813. ∵m 为正整数, ∴m 可以取的最大值为 88. 答:这次最多购买《西游记》88 本.
2.(2021·佳木斯)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大 粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,
[分析] 先由 DE 的坡度计算 DC 的长度,根据矩形性质得 AB 长度,再由 AF 的坡度得出 BF 的长度,根据勾股定理计算出 AF 的长度. 解:∵DE=10m,其坡度为 i1=1∶ 3, ∴在 Rt△DCE 中,DE= DC2+CE2=2DC=10, ∴DC=5. ∵四边形 ABCD 为矩形,∴AB=CD=5. ∵斜坡 AF 的坡度为 i2=1∶4,∴ABBF=14.

中考数学专题06 方程与不等式的实际运用【考点巩固】(解析版)

中考数学专题06  方程与不等式的实际运用【考点巩固】(解析版)

专题06 方程与不等式的实际运用题型1:工程问题1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别承包了杨家坪地区的A 工程、B 工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了 天.【分析】根据题意找出两个等量关系:①甲工程队晴天所做的工程量+雨天所做的工程量=总工程量;②乙工程队晴天所做的工程量+雨天所做的工程量=总工程量.设工程总量为1,则甲工程队晴天工作效率为114,雨天工作效率为1−30%14;乙工程队晴天工作效率为115,雨天工作效率为1−20%15,根据等量关系列出方程组求解即可. 【详解】解:设两工程队各工作了x 天,在施工期间有y 天有雨,(x−y)+1−30%14y =1(x−y)+1−20%15y =1, 解得:x =17y =10.即两工程队各工作了17天.故答案为:17.2.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的. (1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)千米.13300.85【分析】(1)设开通后的长益高铁的平均速度为千米/分钟,从而可得某次长益城际列车的平均速度为千米/分钟,再根据“路程速度时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得. 【详解】解:(1)设开通后的长益高铁的平均速度为千米/分钟,则某次长益城际列车的平均速度为千米/分钟, 由题意得:, 解得, 则(千米),(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为(千米), 乙工程队每天对其施工的长度(千米), 设甲工程队后期每天施工千米,则, 解得, 即,答:甲工程队后期每天至少施工千米.题型2:行程问题3.某体育场的环形跑道长400m ,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次.则甲的速度是 m /s .【分析】设甲的速度为xm /s ,乙的速度为ym /s ,根据“某体育场的环形跑道长400m ,如果反向而行,他们每隔30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.x 1330x =⨯y x 1330x 1360164030x x ⨯-=4x =16464⨯=1313606041043030x ⨯=⨯⨯=7647794010⨯=+9649794010⨯=+y 979(4053)(64(5101010y --+≥-+⨯1720y ≥0.85y ≥0.85【解答】解:设甲的速度为xm/s,乙的速度为ym/s,依题意,得:30x+30y=400 80y−80x=400,解得:x=256y=556.故答案为:256.4.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟【分析】设走路线一到达太原机场需要x分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可.【详解】解:设走路线一到达太原机场需要x分钟.根据题意,得5253037x x⨯=-.解得:25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.5.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】妈妈开车的平均速度是48km/h .【分析】设妈妈开车的平均速度为x km/h ,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论.【详解】解:设妈妈开车的平均速度为x km/h ,则小明的速度为4x km/h ,根据题意得, 161614x x -=解得,48x =经检验,48x =是原方程的根,答:妈妈开车的平均速度是48km/h .题型3:历史文献问题6.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A .3(2)29y x y x -=⎧⎨-=⎩B .3(2)29y x y x +=⎧⎨+=⎩C .3(2)29y x y x -=⎧⎨+=⎩D .3(2)29y x y x -=⎧⎨+=⎩【答案】C【分析】 设共有x 人,y 辆车,由每3人坐一辆车,有2辆空车,可得()32,y x -= 由每2人坐一辆车,有9人需要步行,可得:29,y x += 从而可得答案.【详解】解:设共有x 人,y 辆车,则3(2)29y x y x -=⎧⎨+=⎩故选:.C7.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)【答案】46【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解.【详解】解:设有x 人一起分银子,根据题意建立等式得,7498x x +=-,解得:6x =,∴银子共有:67446⨯+=(两)故答案是:46.8.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.【答案】53【分析】设人数为x ,再根据两种付费的总钱数一样即可求解.【详解】解:设一共有x 人由题意得:8374x x -=+解得:7x =所以价值为:78353⨯-=(钱)故答案是:53.题型4:数字问题9.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为,则最大数为,结合已知,利用最大数与最小数的乘积为65列出方程求解即可.【详解】解:设这个最小数为.根据题意,得.解得,(不符合题意,舍去).答:这个最小数为5.题型5:增长率问题10.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为() A .B .C .D . 【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:=亿件,2020年我国快递业务量为:+,x +8x x ()865x x +=15=x 213x =-()50712833.6x +=()50721833.6x ⨯+=()25071833.6x +=()()250750715071833.6x x ++++=507507x +507(1)x +507(1)x +2507(1)=507(1)x x x ++根据题意,得:故选C .11.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】【分析】根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值,按照数量关系列方程即可得解.【详解】解:根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值列方程得:,故答案为:.题型6:几何图形问题12.在一幅长50cm ,宽40cm 的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm 2,设边框的宽为x cm ,那么x 满足的方程是( )A .(50﹣2x )(40﹣2x )=3000B .(50+2x )(40+2x )=3000C .(50﹣x )(40﹣x )=3000D .(50+x )(40+x )=3000【答案】B【详解】解:设边框的宽为x cm , 所以整个挂画的长为(50+2x )cm ,宽为(40+2x )cm ,根据题意,得:(50+2x )(40+2x )=3000,故选:B .()25071833.6x +=()26521960x +=(1⨯+2)=(1⨯+2)=()26521960x +=()26521960x +=13.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【答案】(1)养鸡场的宽是10m,长为15m;(2)围成养鸡场的面积不能达到200m2,见解析【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.题型7:方案问题14.(2021·江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?【答案】(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【分析】(1)设一、二等奖奖品的单价分别是4x ,3x ,根据等量关系,列出分式方程,即可求解; (2)设购买一等奖品的数量为m 件,则购买二等奖品的数量为件,根据4≤m ≤10,且为整数,m 为整数,即可得到答案. 【详解】 解:(1)设一、二等奖奖品的单价分别是4x ,3x ,由题意得:,解得:x =15, 经检验:x =15是方程的解,且符合题意,∴15×4=60(元),15×3=45(元),答:一、二等奖奖品的单价分别是60元,45元;(2)设购买一等奖品的数量为m 件,则购买二等奖品的数量为件, ∵4≤m ≤10,且为整数,m 为整数, ∴m =4,7,10,答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.15.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m 件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,8543m -8543m -60012756002543x x-+=127560854453m m --=8543m -最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m 的一元一次不等式组,求解即可得到m 的范围,从而根据实际意义确定出m 的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元.根据题意,得, 解得:, 答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)根据题意,得, 解得:,∵m 为整数,∴m 可取5、6、7,∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件.设总资金为W 万元,则,∵,∴W 随m 的增大而增大,∴当时,(万元),∴方案一需要资金最少,最少资金是10万元.(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为(万元), 2 3.533x y x y +=⎧⎨+=⎩1.50.5x y =⎧⎨=⎩1.50.5(10)9.81.50.5(10)12m m m m +-≥⎧⎨+-≤⎩4.87m ≤≤()1.50.5105W m m m =+-=+10k =>5m =5510W =+=最小50.750.2 4.5⨯+⨯=降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a 台甲种,b 台乙种,则:,由题意,a ,b 均为非负整数,∴满足条件的解为:或, ∴节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.16.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于万元又不超过12万元,设购进甲种农机具件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,然后根据题意可得,进而求解即可; (2)由(1)及题意可得购进乙种农机具为(10-m )件,则可列不等式组为,然后求解即可;(3)设购买农机具所需资金为w 万元,则由(2)可得,然后结合一次函数的性质及(2)可直接进行求解.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,由题意得: , 0.80.3 4.5a b +=015a b =⎧⎨=⎩37a b =⎧⎨=⎩3.59.8m 2 3.533x y x y +=⎧⎨+=⎩()9.8 1.50.51012m m ≤+-≤5w m =+2 3.533x y x y +=⎧⎨+=⎩解得:, 答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)由题意得:购进乙种农机具为(10-m )件,∴,解得:,∵m 为正整数,∴m 的值为5、6、7,∴共有三种购买方案:购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.(3)设购买农机具所需资金为w 万元,则由(2)可得,∵1>0,∴w 随m 的增大而增大,∴当m =5时,w 的值最小,最小值为w=5+5=10,答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.题型8:利润问题17.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,1.50.5x y =⎧⎨=⎩()9.8 1.50.51012m m ≤+-≤4.87m ≤≤5w m =+x x∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.18.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示: 购票方式甲 乙 丙 可游玩景点A B A 和B 门票价格 100元/人 80元/人 160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案; (2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x +=()210104000x --+()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问; ()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-< ,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元. 题型9:一般问题19.(2021·辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元. (1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本.【分析】(1)设每本手绘纪念册x 元,每本图片纪念册y 元,根据题意列出二元一次方程组,求解即可;(2)设购买手绘纪念册a 本,则购买图片纪念册本,根据题意列出不等式,求解不等式即可.【详解】解:(1)设每本手绘纪念册x 元,每本图片纪念册y 元,()40a -根据题意可得:, 解得, 答:每本手绘纪念册35元,每本图片纪念册25元;(2)设购买手绘纪念册a 本,则购买图片纪念册本,根据题意可得: ,解得,∴最多能购买手绘纪念册10本.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨, 由题意得:,解得:x =2, 经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润.(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?【答案】(1)1050元;(2)50元【详解】解:(1)(4530)[80(4540)2]1050-⨯--⨯=(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x 元,则每天的销售量是[802(40)]x --件,依题意,得(30)[802(40)]1200x x ---=,413552225x y x y +=⎧⎨+=⎩3525x y =⎧⎨=⎩()40a -()3525401100a a +-≤10a ≤202052x x-=整理,得2x 110x 30000-+=,解得1250,60x x ==(不合题意,舍去).答:每件工艺品售价应为50元.题型10:分段收费22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?【分析】(1)设第一档的电价为x 元/度,第二档的电价为y 元/度,根据“小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用小军家4月份的电费=第一档电价×4月份的用电量和小军家5月份的电费=第一档电价×180+第二档电价×(5月份的用电量﹣180),即可求出结论.【解答】解:(1)设第一档的电价为x 元/度,第二档的电价为y 元/度, 依题意,得:180x +(200−180)y =119180x +(210−180)y =125.4, 解得:x =0.59y =0.64.答:第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)0.59×160=94.4(元),0.59×180+0.64×(230﹣180)=138.2(元).答:小军家4月份的电费为94.4元,5月份的电费为138.2元.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格每户每月用水量单位:元/吨 15吨及以下a 超过15吨但不超过25吨的部分 b超过25吨的部分 5(1)小王家今年3月份用水20吨,要交水费 元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.【分析】(1)根据题意列出代数式即可;(2)根据题意列方程组,即可得到结论;(3)根据题意列出二元一次方程,求出符合条件的所有可能情况即可.【解答】解:(1)∵小王家今年3月份用水20吨,要交水费为15a+5b,故答案为:(15a+5b);(2)根据题意得,15a+6b=4815a+10b+5×2=70,解得:a=2 b=3;(3)设a上调了x元,b的值上调了y元,根据题意得,15x+6y=9.6,∴5x+2y=3.2,∵x,y为整数角钱(没超过1元),∴当x=0.6元时,y=0.1元,当x=0.4元时,y=0.6元,∴a的值上调了0.6元或0.4元,b的值上调了0.1元或0.6元。

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。

中考数学 精讲篇 专题突破十一 不定方程实际应用题

中考数学 精讲篇 专题突破十一 不定方程实际应用题
32 过 15 小时车库恰好停满.
【解析】设 1 个进口 1 小时开进 x 辆车,1 个出口 1 小时开出 y 辆,车位
8(2x-3y)=75%a, x=136a, 总数为 a,由题意得2(3x-2y)=75%a,解得y=332a,则
3 3 32
32
60%a÷2×16-32a=15(小时),∴从早晨 6 点开始经过15小时车库恰好
4 两个年级接种总人数之和的19,则这三个年级第一批接种总人数与第二 批接种总人数之比为 336∶6∶1133.
【解析】设增加前七年级参加疫苗接种的教师为 3x 人,则增加前九年级
参加疫苗接种的教师为 4x 人,设增加前八年级参加疫苗接种的教师为 y
人,新增七年级参加疫苗接种的教师为 5z 人,新增八年级参加疫苗接种
4p=4(5a+p),∴每盒乙的售价为:(1+20%)×4(5a+p)=4.8(5a+p),
∴每盒甲的售价为:4.8(5a+p)÷(1+20%)=4(5a+p),∴
x[4(5a+p)-3(5a+p)]+y[4.8(5a+p)-4(5a+p)]
x·3(5a+p)+y·4(5a+p)
=25%,化
简,得x3+x+0.48yy=14,∴xy=45,∴甲、乙两种礼盒的销售量之比为 4∶5.
2 摊增加的营业额占总增加的营业额的5,则摆摊的营业额将达到 7 月份总 营业额的270,为使堂食、外卖 7 月份的营业额之1比为 8 ∶5,则 7 月份外 卖还需增加的营业额与 7 月份总营业额之比是_ 8 __.
【解析】设 6 月份堂食营业额为 3x,外卖营业额为 5x,摆摊营业额为 2x, 则 6 月份总营业额为 10x.设 7 月份增加的营业额为 y,则 7 月份总营业 额为 10x+y,依题意得 2x+25y=270(10x+y),解得 y=30x.∵7 月份堂

中考数学复习实践应用性问题第37课代数应用性问题(1)省名师优质课赛课获奖课件市赛课一等奖课件

中考数学复习实践应用性问题第37课代数应用性问题(1)省名师优质课赛课获奖课件市赛课一等奖课件
解析:如图,设小正方形旳边长 为单位1,又设EF=5x,EH=3x, 则2(5x+3x)+4×1=148,x=9, 所以AD=5×9+2=47, AB=3×9+2=29, AD∶AB=47∶29.
题型分类 深度剖析
题型一 列代数式解应用题 【例 1】 据国家税务总局告知,从2023年1月1日起,个人年所
知能迁移1 出租车司机小李某天下午旳营运全是在东西走向旳人 民大道上进行旳.假如要求向东为正,向西为负,他这天下午旳 行程是(单位:km): +15,-3,+14,-11,+10, -12,+4,-15,+16,-18. (1)将最终一名乘客送到目旳地时,小李距下午出车点旳距离是多 少? (2)若汽车旳耗油量为a公升/km,那么这天下午汽车共耗油多少?
解:(1)设AC距离为x千米,则BC距离为(x-10)千米,
由题意得

-10,x2-8x-180=0,
解之得,x1=18,x2=-10. 经检验:x1=18, x2=-10是原方程旳根,但距离不能为负数, 所以取x=18. 所以AC两地间旳距离是18千米.
(2)10km≤d≤26km.
题型四 列一元二次方程解应用题 【例 4】 机械加工需要用油进行润滑以降低摩擦,某企业加工
解:(1)70×(1-60%)=28(公斤). (2)设乙车间加工一台大型机械设备润滑油用量是x公斤, 则有:x[1-60%-(90-x)×1.6%]=12, 整顿,得x2-65x-750=0,(x+10)(x-75)=0, ∴x1=-10,x2=75(舍去x1=-10), 用油旳反复利用率是60%+(90-75)×1.6%=84%. 答:乙车间技术革新后,加工一台大型机械设备润滑用油量 是75公斤,用油旳反复利用率是84%.
3.给出实际问题旳图象或图表等数学模型,利用数学知识 求解.

中考数学专项练习一元一次方程的实际应用计费问题(含解析)

中考数学专项练习一元一次方程的实际应用计费问题(含解析)

中考数学专项练习一元一次方程的实际应用计费问题(含解析)【一】单项选择题1.某城市按以下规定收取每月煤气费:每月所用煤气按整立方米数计算;假设每月用煤气不超过60立方米,按每立方米0.8元收费;假设超过60立方米,超过部分按每立方米1.2元收费.某户人家某月的煤气费平均每立方米0.88元,那么这户人家需要交煤气费〔〕A.60元B.66元C.75元D.78元2.某商场在〝五一〞期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,那么不予优惠;②如果超过500元,但不超过800元,那么按购物总额给予8折优惠;③如果超过800元,那么其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,假设各自单独付款,那么应分别付款480元和520元;假设合并付款,那么她们总共只需付款多少元〔〕A.838B.924C.924或838D.838或9103.某市为提倡节约用水,采取分段收费.假设每户每月用水不超过20 m3 ,每立方米收费2元;假设用水超过20m3 ,超过部分每立方米加收1元.小明家5月份交水费64元,那么他家该月用水〔〕m3 .A.38B.34C.28D.444.某超市推出如下优惠方案:〔1〕购物款不超过200元不享受优惠;〔2〕购物款超过200元但不超过600元一律享受九折优惠;〔3〕购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,那么小明的妈妈应付款〔〕元.A.522.8B.560.4C.510.4D.472.805.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km 加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm,那么x的最大值是()A.11B.8C.7D.56.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,那么超过部分按每立方米2.4元收费。

中考数学复习讲义课件 专题4 数与代数实际应用

中考数学复习讲义课件 专题4 数与代数实际应用

(2)若该公司购进 A 商品 200 件,B 商品 300 件,准备把这些商品全部运往 甲、乙两地销售.已知每件 A 商品运往甲、乙两地的运费分别为 20 元和 25 元;每件 B 商品运往甲、乙两地的运费分别为 15 元和 24 元.若运往甲地 的商品共 240 件,运往乙地的商品共 260 件. ①设运往甲地的 A 商品为 x(件),投资总运费为 y(元),请写出 y 与 x 的函数 关系式; ②怎样调运 A,B 两种商品可使投资总费用最少?最少费用是多少元?(投 资总费用=购进商品的费用+运费)
考法示例
方程(组)应用型 ☞示例 1 (2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、小 两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大 垃圾桶和 8 个小垃圾桶共需 1560 元. (1)求大、小两种垃圾桶的单价; [解答] 解:设大垃圾桶的单价为 x 元/个,小垃圾桶的单价为 y 元/个. 依题意,得62xx++84yy==1650600,. 解得xy==6108.0, 答:大垃圾桶的单价为 180 元/个,小垃圾桶的单价为 60 元/个.
1.(2021·西藏)列方程(组)解应用题 为振兴农村经济,某县决定购买 A,B 两种药材幼苗发给农民栽种,已知购 买 2 棵 A 种药材幼苗和 3 棵 B 种药材幼苗共需 41 元;购买 8 棵 A 种药材 幼苗和 9 棵 B 种药材幼苗共需 137 元.问每棵 A 种药材幼苗和每棵 B 种药 材幼苗的价格分别是多少元?
解:设乙工程队每天能完成 x 平方米的绿化改造面积,则甲工程队每天能 完成(x+200)平方米的绿化改造面积.依题意,得 x+200+x=800.解得 x=300. ∴x+200=300+200=500.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程解读一、学习目标:了解实际应用问题的常见类型,掌握其分析方法和解题思路,能把实际应用问题转化成数学问题。

二、考点分析:实际应用问题是中考的必考内容、重点内容,题型包括选择题、填空题和解答题,综合程度较高。

实际应用问题主要考查学生收集和处理信息的能力以及探究分析问题和解决问题的创新实践能力。

此类问题在中考中所占比例较大,分值一般在20分以上,题目中等偏难。

知识梳理1、实际应用问题按知识内容可分为:代数应用题、几何应用题、函数应用题、概率统计应用题等。

按现实生产和生活中的应用进行分类,则有成本、价格、利润、存款与贷款、运输、航行、管理与决策、农业生产、生物繁殖等。

2、实际应用问题的特点是贴近日常生活,反映市场经济规律,涉及的背景材料十分广泛,这就要求学生学会运用数学知识去观察、分析、概括题目所给的实际问题,将其转化为数学模型来解答。

典型例题知识点一:方程型实际应用问题例1:快乐公司决定按如图所示给出的比例,从甲、乙、丙三个工厂共购买200件同种产品A,已知这三个工厂生产的产品A的优品率如下表所示:(1)快乐公司从甲厂应购买多少件产品A;(2)求快乐公司所购买200件产品A的优品率;(3)你认为快乐公司能否通过调整从三个工厂所购买的产品A的比例,使所购买的200件产品A的优品率上升3%。

若能,请问应从甲厂购买多少件产品A;若不能,请说明理由。

工厂优品率甲80%乙85%丙90%别忘了优等品数也是整数哦!甲25%乙40%丙35%思路分析:1)题意分析:左面表格给出的是各厂的优品率,右面扇形图给出的是从各厂购买产品A的比例。

2)解题思路:难点在第(3)问,先假设优品率能上升3%,再设未知数列方程求解。

但应注意前提条件,即200件产品A中包含甲、乙、丙三个厂的产品。

解答过程:(1)甲厂:200×25%=50。

(2)乙厂:200×40%=80;丙厂:200×35%=70。

优品率:(50×80%+80×85%+70×90%)÷200=0.855=85.5%。

(3)设从甲厂购买x件,从乙厂购买y件,从丙厂购买(200-x-y)件。

则80%x+85%y+90%(200-x-y)=200×(85.5%+3%)。

即2x+y=60,又80%x和85%y均为整数。

当y=0时,x=30;当y=20时,x=20;当y=40时,x=10;当y=60时,x=0。

所以从甲厂购买产品20件或10件时,可满足条件。

解题后的思考:本题以图文形式提供了部分信息,主要考查学生运用二元一次方程解决实际问题的能力。

例2:新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?思路分析:1)题意分析:要理清进价、销售价、利润之间的关系:利润=销售价-进价。

解这个方程得x1=x2=2750。

所以,每台冰箱应定价2750元。

解题后的思考:用方程解答实际应用问题的关键是理清数量关系,找到相等关系。

这道题的等量关系是:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元。

例3:有一种用特殊材料制成的质量为30克的“泥块”,现把它切为大、小两块,将较大的“泥块”放在一架不等臂天平的左盘中,称得质量为27克;又将较小的“泥块”放在该天平的右盘中,称得质量为8克。

若只考虑该天平的臂长不等,其他因素忽略不计,请你依据杠杆的平衡原理,求出较大“泥块”和较小“泥块”的质量。

思路分析:1)题意分析:由杠杆原理F1L1=F2L2可知这架不等臂天平的两臂长分别是杠杆中的动力臂和阻力臂,2)解题思路:我们可设左臂长为L1,右臂长为L2,它们可看作是本题的辅助元,再设较大泥块的质量为x克,较小泥块的质量为y克,由题意可列出三个方程:①x+y=30;②x L1=27L2;③8L1=y L2。

解答过程:设天平左臂长为L1,右臂长为L2,再设较大泥块的质量为x克,较小泥块的质量为y克,由题意可列出方程:x+y=30…①;x L1=27L2…②;8L1=y L2…③。

答:较大泥块的质量为18克,较小泥块的质量为12克。

解题后的思考:本题是一道与物理知识紧密相连的实际应用问题,解答这类问题时注意正确运用物理学中的一些公式,如力学、电学、天平平衡公式等。

小结:方程是描述现实世界数量关系的最重要的数学语言,也是中考命题所要考查的重点、热点之一。

同学们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识,并学会用数学中方程的思想去分析和解决一些实际问题。

解答此类问题的方法是:(1)审题,明确未知量和已知量;(2)设未知数,务必写明意义和单位;(3)依题意,找出等量关系,列出方程;(4)解方程,必要时验根。

知识点二:不等式型实际应用问题例4:康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台。

从A、B两地运往甲、乙两地的费用如下表:甲地(元/台)乙地(元/台)A地600 500B地400 800(1)如果从A 地运往甲地x 台,求完成以上调运所需总费用y (元)与x (台)的函数关系式; (2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少费用?为什么?思路分析:本题考查函数和不等式这两个知识点 解答过程:(1)y =600x +500(17-x )+400(18-x )+800[15-(18-x )]=500x +13300;又在y =500x +13300中,随x 的增大,y 也增大, ∴当x =3时,y 最小=500×3+13300=14800(元),该公司完成以上调运方案至少需要14800元运费,最佳方案是:由A 地调3台到甲地,调14台到乙地,由B 地调15台到甲地。

解题后的思考:关于不等式的应用往往和函数、方程综合在一起,通过方案设计型问题进行考查,解答这类问题时虽然主要运用不等式的知识,但关键还是要正确地建立方程和函数模型。

小结:现实世界中的不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值。

但可以求出或确定这一问题中某个量的变化范围(趋势),从而对所研究问题的概况有一个比较清楚的认识。

本讲中我们要讨论的问题是求某个量的取值范围或极端可能性,列不等式时要从题意出发,设好未知量后,用心体会题目所规定的实际情境,从中找出不等关系。

知识点三:函数型实际应用问题他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( ) A. 20分钟 B. 22分钟C. 24分钟D. 26分钟O112141012路程时间(分钟)思路分析:1)题意分析:从图中可以看出,图象分两部分,是由两个一次函数图象组合在一起的分段函数。

2)解题思路:先求出该考生一直步行所用时间和先步行后改乘出租车所用时间,再求差。

所以,先步行后乘出租车赶往考场共用时间为10+6=16(分钟),他到达考场所花的时间比一直步行提前了40-16=24(分钟),故选C 。

解题后的思考:在这里未知数的系数的意义是表示不同的行使速度。

例6:甲车在弯路进行刹车试验,收集到的数据如下表所示:(1)请用上表中的各对数据(x ,y )作为点的坐标,在如图所示的坐标系中画出甲车刹车距离y (米)与速度x(千米/时)的函数图象,并求函数的解析式。

(2)在一限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了。

事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车xyO思路分析:1)题意分析:解答本题的关键是确定甲车刹车距离y (米)与速度x (千米/时)的函数关系式。

2)解题思路:利用收集的数据,通过描点可以看出y 与x 的关系图象近似于二次函数图象,因此取三点求出二次函数的解析式,再利用解析式解决实际问题。

解答过程:(1)函数图象如图所示。

设函数的解析式为y =ax 2+bx +c 。

xyO∵图象经过点(0,0)、(10,2)、(20,6),因为乙车速度为42千米/时,大于40千米/时,而甲车速度为30千米/时,小于40千米/时。

所以,就速度因素而言,由于乙车超速,导致两车相撞。

解题后的思考:(1)本题利用实际生活背景考查了利用待定系数法求过三点的二次函数解析式及利用函数值求自变量取值的应用问题。

(2)对于这类开放性综合问题,要求学生能透过现象看本质,将其转化并抽象为数学问题,也就是构建数学模型。

小结:函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带,它与代数、几何、三角函数等知识有着密切联系。

中考命题中,既重点考查函数及其图象的有关基础知识,同时以函数知识为背景的应用性问题也是命题热点之一。

解答这类题的关键是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,从而建立两个变量间的等量关系,同时还要从题中确定自变量的取值范围。

知识点四:几何型实际应用问题例7:兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB (如图所示),已知距电线杆AB 水平距离14米处是河岸,即BD =14米,该河岸的坡面CD 的坡角∠CDF 的正切值为2,岸高CF 为2米,在坡顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB 时,为确保安全,是否将此人行道封上?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域)。

ABG E D FC思路分析:1)题意分析:这是一道有关锐角三角函数的实际应用问题。

2)解题思路:是否需要封闭人行道关键是看电线杆AB 向河岸放倒后点A 能不能到达点E ,也就是AB 是否大于BE 。

∴AB =8.66+2=10.66(米),BE =BD -ED =12米。

∵BE >AB ,∴不需要封闭人行道。

解题后的思考:锐角三角函数的实际应用问题一般通过构造直角三角形,综合运用直角三角形、勾股定理等知识来解答。

例8:台球是一项高雅的体育运动。

其中包含了许多物理学、几何学知识。

图①是一个台球桌,目标球F 与本球E 之间有一个G 球阻挡。

(忽略球的大小)(1)击球者想通过击打E 球先撞击球台的AB 边,经过一次反弹后再撞击F 球。

他应将E 球打到AB 边上的哪一点?请在图①中用尺规作出这一点H 。

并作出E 球的运行路线;(不写画法,保留作图痕迹)(2)如图②以D 为原点,建立直角坐标系,记A (0,4)、C (8,0)、E (4,3)、F (7,1),求E 球按刚才方式运行到F 球的路线长度。

相关文档
最新文档