必修3 第三章概率
人教版高中数学必修三3.随机事件的概率PPT课件(共30)
八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币
必修3第三章-概率-知识点总结和强化练习:
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
人教a版必修3数学教学课件第3章概率第1节随机事件的概率
反思判断随机事件、必然事件、不可能事件时要注意看清条件,
在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机
事件),还是一定不发生(不可能事件).
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
反思利用频率估计概率的步骤:
(1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率
的估计值,有时也可用各个频率的中位数来作为概率的估计值.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做1】 下列事件中,是随机事件的有(
)
①在一条公路上,交警记录某一小时通过的汽车超过300辆;
②若a为整数,则a+1为整数;
③买一张彩票中奖;
④检查流水线上一件产品是合格品还是次品.
A.1个 B.2个 C.3个 D.4个
题型三
反思1.把握住随机试验的实质,要明确一次试验就是将试验的条
件实现一次.
2.准确理解随机试验的条件、结果等有关定义,并能使用它们判
断一些事件,指出试验结果,这是求概率的基础.在写试验结果时,一
般采用列举法.根据日常生活经验,按一定次序列举,才能保证所列
结果没有重复,也没有遗漏.
目标导航
高中数学必修三 第三章 概率 第1节 事件与概率
练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.
象
在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D
必修3 第三章 第一节 随机事件的概率(学生版)
教学辅导教案1.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.①科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.①高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,①系统抽样,①分层抽样B.①简单随机抽样,①分层抽样,①系统抽样C.①系统抽样,①简单随机抽样,①分层抽样D.①分层抽样,①系统抽样,①简单随机抽样2.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为() A.11 B.12 C.13 D.143.已知样本数据x1,x2,…,x n的均值x=5,则样本数据2x1+1,2x2+1,…,2x n +1的均值为________.4.已知x与y之间的一组数据:x0123y m3 5.57已求得关于y与x的线性回归方程$ 2.10.85y x=+,则m的值为.5.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率成为受人尊敬的百年育人集团第1页共13 页分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数及平均数.1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”;(2)“在标准大气压下且温度低于0①时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.2.某射手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率nm(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?3.从装有黑球和白球各2个的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个黑球,至少有1个白球B .恰有一个黑球,恰有2个白球C .至少有一个黑球,都是黑球D .至少有1个黑球,都是白球4.在一次随机试验中,三个事件A 1,A 2,A 3的概率分别为0.2,0.3,0.5,则下列说法正确的个数是( )①A 1+A 2与A 3是互斥事件,也是对立事件; ①A 1+A 2+A 3是必然事件; ①P (A 2+A 3)=0.8; ①P (A 1+A 2)≤0.5. A .0B .1C .2D .35.猎人在相距100 m 处射击一野兔,命中的概率为12,如果第一次未击中,则猎人进行第二次射击,但距离已是150 m ,如果又未击中,则猎人进行第三次射击,但距离已是200 m ,已知此猎人命中的概率与距离的平方成反比,求射击不超过三次击中野兔的概率.验次数足够多时,频率会稳定在某个常数附近,这个常数就是概率.概率是频率的稳定值,而频率是概率的近似值. 题型二 频率与概率的意义【例2】下列说法正确的是( ) A .甲、乙二人比赛,甲胜的概率为53,则比赛5场,甲胜3场 B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【变式2-1】已知某种彩票发行1000000张,中奖率为0.001,则下列说法正确的是( )A .买1张肯定不中奖B .买1000张一定能中奖C .买1000张也不一定能中奖D .买1000张一定恰有1张能中奖 【变式2-2】下列说法正确的是( ) A .任何事件的概率总是在(0,1]之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,事件发生的频率一般会稳定于概率D .概率是随机的,在试验前不能确定知识点三 事件的关系 1.事件的关系 事件的关系 定义与集合类比记忆包含关系若事件A 发生时,事件B 一定发生,则事件B 包含事件A ,记作B A ⊆相等事件若B A ⊆,且A B ⊆,则事件A 与事件B 相等,记作A =B并(和)事件 若某事件C 发生当且仅当事件A 发生或事件B 发生,则称事件为事件A 与事件B 的并事件(或和事件),记作B A C Y =(或B A +)交(积)事件 若某事件C 发生当且仅当事件A 发生且事件B 发生,则称事件为事件A 与事件B 的交事件(或积事件),记作B A C I =(或AB )互斥事件若B A I 为不可能事件,则事件A 与事件B 互斥对立事件若B A I 为不可能事件,B A Y 为必然事件,则事件A 与事件B 互为对立事件2.互斥事件与对立事件的区别(1)互斥事件和对立事件都不可能同时发生的事件,对立事件是互斥事件的特殊情况,对立事件必是互斥事件,但互斥事件不一定是对立事件;对立事件有且只有一个发生,而互斥事件有可能都不发生.(2)互斥事件和对立事件的交集都是空集,但对立事件的并集是全集,而互斥事件的并集并不一定是全集. 题型三 判断事件的关系【例3】从一批产品中取出三件产品,设A ={三件产品全是正品},B ={三件产品全是次品},C ={三件产品不全是次品},则下列结论不正确的是( ) A .A 与B 互斥且为对立事件B .B 与C 为对立事件C .A 与C 存在着包含关系D .A 与C 不是互斥事件 【变式3-1】下列各组事件中,不是互斥事件的是( ) A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C .播种菜籽100粒,发芽90粒与发芽80粒D .检查某种产品,合格率高于70%与合格率为70%1.(对应题型一)下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;①某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;①异性电荷,相互吸引;①某人购买体育彩票中一等奖.A.①①B.①①①C.①①①①D.①①①2.(对应题型一)在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均不正确3.(对应题型二)下列叙述随机事件的频率与概率的关系中正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会稳定在一个常数附近D.概率是随机的,在试验前不能确定4.(对应题型三)抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与B B.B与C C.A与D D.C与D5.(对应题型四)在一次随机试验中,事件A1,A2,A3发生的概率分别为0.2,0.3,0.5,则下列说法正确的是()A.A1①A2与A3是互斥事件,也是对立事件B.A1①A2①A3是必然事件C.P(A2①A3)=0.8 D.事件A1,A2,A3的关系不确定6.(对应题型四)P(A)=0.1,P(B)=0.2,则P(A①B)等于()A.0.3 B.0.2 C.0.1D.不确定7.(对应题型五)根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为()A.0.65 B.0.55 C.0.35 D.0.758.(对应题型五)经统计某储蓄所一个窗口等候的人数及相应的概率如下:排队人数012345人及5人以上概率t0.30.160.30.10.04(1)t=________;(2)至少3人排队等候的概率是________.【查漏补缺】1.在8件同类产品中,有5件正品,3件次品,从中任意抽取4件,下列事件中的必然事件是()A.4件都是正品B.至少有一件次品C.4件都是次品D.至少有一件正品2.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个D.恰有一个白球;一个白球一个黑球3.某人练习射击,他脱靶的概率为0.20,命中6环,7环,8环,9环,10环的概率依次0.10,0.20,0.30,0.15,0.05,则该人射击命中的概率为()A.0.50B.0.60C.0.70D.0.804.某射手平时射击成绩统计如表:环数7环以下78910概率0.13a b0.250.24已知他射中7环及7环以下的概率为0.29.(1)求a和b的值;(2)求命中10环或9环的概率;(3)求命中环数不足9环的概率.1.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是( )A .3个都是正品B .至少有一个是次品C .3个都是次品D .至少有一个是正品2.在n 次重复进行的试验中,事件A 发生的频率n m ,当n 很大时,那么)(A P 与n m 的关系是( )A .n m A P ≈)(B .n m A P <)(C .n m A P >)(D .n m A P =)( 3.把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对4.已知100件产品中有5件次品,从这100件产品任意取出3件,设A 表示事件“3件产品全不是次品”,B 表示事件“3件产品全是次品”,C 表示事件“3件产品中至少有1件次品”,则下列结论正确的是( )A .B 与C 互斥 B .A 与C 互斥C .A 、B 、C 任意两个事件均互斥D .A 、B 、C 任意两个事件均不互斥5.如果事件A 与B 是互斥事件且事件A +B 的概率是0.8,事件A 的概率是事件B 的概率的3倍,则事件A 的概率是( )A .0.4B .0.6C .0.8D .0.26.抛掷一枚骰子,观察掷出骰子的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知P (A )=12,P (B )=16,出现奇数点或2点的概率之和为( ) A .12 B .56 C .16 D .237.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( ) A .17 B .1235 C .1735D .1【第1天】1.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与B B .B 与C C .A 与D D .C 与D2.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A ={点落在x 轴上}与事件B ={点落在y 轴上}的概率关系为( )A .P (A )>PB . (B )P (A )<P (B )C .P (A )=P (B )D .P (A ),P (B )大小不确定3.甲射击一次,中靶概率是P 1,乙射击一次,中靶概率是P 2,已知1P 1,1P 2是方程x 2-5x +6=0的根,且P 1满足方程x 2-x +14=0.则甲射击一次,不中靶概率为________;乙射击一次,不中靶概率为________.4.一盒中装有各色球12只,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:取出的1球是红球或黑球的概率为________.【第2天】1.下列叙述正确的是( )A .互斥事件一定不是对立事件,但是对立事件一定是互斥事件B .若随机事件A 发生的概率为P (A ),则0<P (A )<1C .频率是稳定的,概率是随机的D .5张奖券中有一张有奖,甲先抽,乙后抽,那么乙比甲抽到有奖奖券的可能性小2.口袋中装有一些大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是( )A .0.43B .0.27C .0.3D .0.73.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释。
人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生
3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。
高二数学古典概率
少?
36;6;1/6.
典例讲评
例4 某种饮料每箱装6听,如果其中有2 听不合格,质检人员依次不放回从某箱 中随机抽出2听,求检测出不合格产品的 概率.
P(A)=8/30+8/30+2/30=0.6
典例讲评
例5 甲、乙两人参加法律知识竟答,共 有10道不同的题目,其中选择题6道,判断 题4道,甲、乙依次各抽一道. (1)甲抽到选择题、乙抽到判断题的概率
高中数学必修3第三章《概率》
3.2 古典概率
温故知新
1、如果事件A与事件B互斥,
则P(A∪B)= P(A)+P(B)
.
2、如果事件A与事件B互为对立事件,
则 P(A)与P(B)关系是P(A)+P(B)=1.
3、若P(A∪B)= P(A)+P(B)=1,则事
件A与事件B的关系是( C ) (A)互斥不对立 (B)对立不互斥
典例讲评
例2 单选题是标准化考试中常用的 题型,一般是从A,B,C,D四个选项中 选择一个正确答案.如果考生掌握了考 查的内容,他可以选择唯一正确的答案, 假设考生不会做,他随机地选择
一个答案,问他答对的概率是多少?
0.25
典例讲评
例3 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是7的结果有
(C)互斥且对立 (D)以上答案都不对
4、由经验可知,在某建设银行营业窗 口排队等候存取款的人数及其概率如下:
排队
41人
人数 0~10人 11~20人 21~30人 31~40人 以上
概率 0.12 0.27 0.30 0.23 0.08
计算:(1)至多20人排队的概率?
人教版高中数学必修三第三章 概率全章教案
第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系.教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:…… ⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A 出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题. 教学重点: 概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?②练习:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
苏教版高中数学必修三-第三章-概率知识讲解(全套及答案)
第3章概率§3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率(教师用书独具)●三维目标1.知识与技能:①了解随机事件、必然事件、不可能事件的概念;②正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系;2.过程与方法:通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力.通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性;做到在探索中学习,在探索中提高.3.情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系.●重点难点重点:理解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义;难点:理解随机事件发生的随机性,以及随机性中表现出的规律性.难点突破:给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知.按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程。
从而强化重点.(教师用书独具)●教学建议在本节课的教学中建议教师主要渗透以下几个方面的学法指导.(1)让学生亲自经历运用科学方法探索的过程。
主要是创设“掷硬币时‘正面向上’出现的比例是多少”的问题情境,让学生在探索中体会科学知识.(2)培养学生学会通过自学、观察、试验等方法获取相关知识,使学生在探索研究过程中提高分析、归纳、推理能力.(3)让学生通过试验,相互交流试验数据,体会相互合作提升办事效率.结合本节课的教学内容以及学生的认知情况,本节课主要突出运用了“探究式”教学方法,在试验探究的过程中,培养学生探究问题的能力、语言表达能力.●教学流程创设问题情境,引出问题1日常生活中的实例和问题2掷骰子实验.⇒引导学生结合前面学习过的频率的知识,观察、比较、分析,得出概率的概念.⇒通过引导学生回答所提问题理解频率与概率的关系.⇒通过例1及其变式训练,使学生掌握随机事件,必然事件及不可能事件的概念.⇒通过例2及其变式训练,使学生掌握概率与频率的关系问题的解题策略.⇒通过例3及其变式训练阐明概率的意义,使学生明确与概率有关的问题的解决方法.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识考察下列现象:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)常温常压下石墨能变成金刚石;(4)三角形的内角和大于360°;(5)明天下雨以上现象中哪几个是必然会发生的?哪几个是肯定不会发生的?【提示】(1)(2)必然发生;(3)(4)肯定不会发生;(5)可能发生也可能不发生.1.(1)定义:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件.(2)分类【问题导思】做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数.在本实验中出现了几种结果,还有其它实验结果吗?【提示】一共出现了1点,2点,3点,4点,5点,6点六种结果,没有其它结果出现.若做大量地重复实验,你认为出现每种结果的次数有何关系?【提示】大致相等一般地,对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).(1)有界性:对任意事件A,有0≤P(A)≤1.(2)规范性:若Ω、Ø分别代表必然事件和不可能事件,则P(Ω)=1,P(Ø)=0.指出下列事件中哪些是必然事件、不可能事件、随机事件:(1)巴西足球队在下届世界杯足球赛中夺得冠军;(2)x2-3x+2=0有两个不相等的实数根;(3)李四走到十字路口遇到张三;(4)某人购买福利彩票5注,均未中奖;(5)在标准大气压下,温度低于0 ℃时,冰融化.【思路探究】本题可以根据事件的定义去判断,解决此类问题的关键是根据题意明确条件,判断在此条件下,事先能否断定出现某种结果.【自主解答】巴西足球队在下届世界杯足球赛中是否夺得冠军不确定,故(1)为随机事件;(2)∵Δ=(-3)2-8=1>0,∴(2)是必然事件;(3)(4)是随机事件;(5)是不可能事件.准确掌握随机事件、必然事件、不可能事件的概念是解题的关键,应用时要特别注意看清条件,在给定的条件下判断是一定发生,还是不一定发生,还是一定不发生,来确定属于哪一类事件.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少15次传呼;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥同性电荷,相互排斥.【解】由实数运算性质知①恒成立是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽,标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4也可能取不到4,电话总机在60秒可传呼15次也可不传呼15次.②④是随机事件.某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统计结果如下表所示:(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率. 【思路探究】 (1)频率=频数÷总数.(2)先求出灯管使用寿命在[0,1 500)的频数,再应用公式f n (A )=n An 求解.【自主解答】 (1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中使用寿命不足1 500小时的频数是48+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6,即估计灯管使用寿命不足1500小时的概率为0.6.1.频率是事件A 发生的次数m 与试验总次数n 的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n 很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.2.解此类题目的步骤是:先利用频率的计算公式依次计算频率,然后用频率估计概率.下表中列出了10次抛掷一枚硬币的试验结果,n 为每次试验抛掷硬币的次数,m 为硬币正面向上的次数.计算每次试验中“正面向上”这一事件的频率,并考查它的概率.【解】 由事件发生的频率=mn ,可分别得出这10次试验中“正面向上”这一事件出现的频率依次为0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数字都在0.5附近摆动,由概率的统计定义可得,“正面向上”的概率为0.5.张明同学抛一枚硬币10次,共有8次反面向上,于是他指出:“抛掷一枚硬币,出现反面向上的概率应为0.8”.你认为他的结论正确吗?为什么?【思路探究】 正确理解频率定义及概率的统计性定义是解答本题的关键.他的结论显然是错误的.【自主解答】 从概率的统计定义可看出:事件A 发生的频率m n 叫做事件A 发生的概率的近似值.但要正确理解概率的定义必须明确大前提:试验次数n 应当足够多.也就是说,只有“在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定”时,才用这个常数来刻画该随机事件发生的可能性大小,即称为这一事件发生的概率的近似值.张明同学抛掷一枚硬币10次,有8次正面向上,就得出“正面向上”的概率为0.8,显然是对概率统计性定义曲解的结果.1.随机事件的概率,本质上是刻画该事件在一次试验中发生的可能性大小的数量,不能由此断定某次试验中一定发生某种结果或一定不发生某种结果.2.在理解概率的定义时,一定要将频率与概率区分开,频率与试验的次数有关,概率不随试验次数而变化,是个客观值.某同学认为:“一个骰子掷一次得到6点的概率是16,这说明一个骰子掷6次一定会出现一次6点.”这种说法正确吗?说说你的理由.【解】 这种说法是错误的.因为掷骰子一次得到6点是一个随机事件,在一次试验中,它可能发生,也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现6点,也可能不出现6点,所以6次试验中有可能一次6点也不出现,也可能出现1次,2次,…,6次.混淆随机事件的概念致误先后抛两枚质地均匀的硬币.(1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种? (3)出现“一枚正面,一枚反面”的概率是多少?【错解】 (1)一共可能出现“两枚正面”“两枚反面”“一枚正面,一枚反面”3种不同的结果.(2)出现“一枚正面,一枚反面”的结果有1种. (3)出现“一枚正面,一枚反面”的概率是13.【错因分析】 忽略了“一枚反面,一枚正面”与“一枚正面,一枚反面”是两种不同的结果,从而导致得出错误的结果.【防范措施】 1.明确事件的构成,分清事件间的区别与联系. 2.试验的所有结果要逐一写出,不能遗漏.【正解】 (1)一共可能出现“正、正”“正、反”“反、正”“反、反”4种不同的结果.(2)出现“一枚正面,一枚反面”的结果,是“正、反”“反、正”两种. (3)出现“一枚正面,一枚反面”的概率是12.1.随机事件可以重复地进行大量的试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现出一定的规律性.2.随机事件频率与概率的区别与联系①2013年清明节下雨②打开电视,正在播放电视剧《西游记》③半径为R的圆,面积为πR2④某次数学考试二班的及格率为70%【解析】③为必然事件,其余为随机事件.【答案】①②④2.下面给出了四种现象:①若x∈R,则x2<0;②没有水分,种子发芽;③某地明年8月8日天晴;④若平面α∩平面β=m,n∥α,n∥β,则m∥n.其中是确定性现象的是________.【解析】根据确定性现象的定义知①②④为确定性现象.【答案】①②④3.已知随机事件A发生的频率为0.02,事件A出现了1 000次,由此可推知共进行了________次试验.【解析】1 0000.02=50 000.【答案】50 0004.对某电视机厂生产的电视机进行抽样检测的数据如表所示:(1)(2)估计该厂生产的电视机是优等品的概率是多少?【解】(1)结合公式f n(A)=mn及题意可计算出优等品的各个频率依次为:0.8,0.92,0.96,0.95,0.956,0.954.(2)由(1)知计算出的优等品的频率虽然各不相同,但却都在常数0.95左右摆动,且随着抽取台数n的增加,频率稳定于0.95,因此,估计该厂生产的电视机是优等品的概率是0.95.一、填空题1.下列事件:①物体在重力作用下会自由下落;②函数f(x)=x2-2x+3=0有两个零点;③下周日会下雨;④某寻呼台某一时段内收到传呼的次数少于10次.其中随机事件的个数为________.【解析】根据定义知①为必然事件,②为不可能事件,③④为随机事件.【答案】 22.某地气象局预报说,明天本地降雨概率为80%,则下列解释正确的是________.①明天本地有80%的区域降雨,20%的区域不降雨;②明天本地有80%的时间降雨,20%的时间不降雨;③明天本地降雨的机率是80%; ④以上说法均不正确.【解析】 本题主要考查对概率的意义的理解.选项①,②显然不正确,因为80%的概率是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的可能性是80%.【答案】 ③3.某班共49人,在必修1的学分考试中,有7人没通过,若用A 表示参加补考这一事件,则下列关于事件A 的说法正确的是________(填序号).(1)概率为17;(2)频率为17;(3)频率为7;(4)概率接近17.【解析】 频率是概率的近似值,当试验次数很大时,频率在概率附近摆动,本题中试验次数是49,不是很大,所以只能求出频率为17,而不能求出概率.【答案】 (2)4.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.【解析】 16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.【答案】 0.35 5.给出下列4个说法:①现有一批产品,次品率为0.05,则从中选取200件,必有10件是次品;②做100次抛掷一枚硬币的试验,结果有51次出现正面向上,因此,出现正面向上的概率是51100;③抛掷一颗骰子100次,有18次出现1点,则出现1点的频率是950;④随机事件的概率一定等于这个事件发生的频率. 其中正确的说法是________(填序号).【解析】 次品率为0.05,即出现次品的概率(可能性)是0.05,所以200件产品中可能有10件是次品,并非“必有”,故①错;在1次具体的试验中,正面向上的次数与试验的总次数之比是频率,而不是概率,故②错;③显然正确;由概率的定义知,概率是频率的稳定值,频率在概率附近摆动,故随机事件的概率不一定等于该事件发生的频率,故④错.故填③.【答案】 ③6.某人忘记了自己的存折密码的最后一位数字,但只记得最后一位数字是偶数,他随意按了一个数字,则他按对密码的概率为________.【解析】 最后一位是偶数有0,2,4,6,8共5种情况,按任一数字都是随机的,因此他按对密码的概率P =15.【答案】 157.任意抛掷一颗质地不均匀的骰子,向上的各点数的概率情况如下表所示:【解析】 概率大的点数易出现,由上表知点数为6的最易出现. 【答案】 68.样本容量为200的频率分布直方图如图3-1-1所示,根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.图3-1-1【解析】 落在[6,10)内的概率为0.08×4=0.32,所以频数为0.32×200=64.落在[2,10)内的频率为(0.02+0.08)×4=0.4.【答案】 64 0.4 二、解答题9.我国西部某地区的年降水量在下列范围内的概率如下表所示:(1)年降水量在[180,280)范围内的概率; (2)年降水量小于230 mm 的概率.【解】 (1)[180,280)分成两个范围,第一范围是在[180,230);第二范围是[230,280). 由于在第一个范围的概率为0.31,第二个范围的概率为0.21,因此,年降水量在[180,280)范围内的概率为P =0.31+0.21=0.52.(2)由于小于230 mm 有三个范围,其一是低于130 mm 的;其二是[130,180)的;其三是[180,230)的;而这三个范围的概率分别是0.15、0.28、0.31,因此,年降水量小于230 mm 时的概率为P =0.15+0.28+0.31=0.74.10.如果掷一枚质地均匀的硬币10次,前5次都是正面向上,那么后5次一定都是反面向上,这种说法正确吗?为什么?【解】 不正确.如果把掷一枚质地均匀的硬币1次作为一次试验,正面向上的概率是12,指随着试验次数的增加,即掷硬币次数的增加,大约有一半正面向上.但对于一次试验来说,其结果是随机的,因此即使前5次都是正面向上,但对后5次来说,其结果仍是随机的,每次掷硬币试验正面向上的概率仍然是12,即每次可能是反面向上,也可能是正面向上,可能性相等.11.已知f (x )=x 2+2x ,x ∈[-2,1],给出事件A :f (x )≥a (1)当A 为必然事件时,求a 的取值范围; (2)当A 为不可能事件时,求a 的取值范围. 【解】 f (x )=x 2+2x ,x ∈[-2,1], ∴f (x )min =-1, 此时x =-1.又f (-2)=0<f (1)=3, ∴f (x )max =3. ∴f (x )∈[-1,3](1)当A 为必然事件时,即f (x )≥a 恒成立,故有a ≤f (x )min =-1,即a 的取值范围是(-∞,-1].(2)当A 为不可能事件时, 即f (x )≥a 一定不成立, 故有a >f (x )max =3, 则a的取值范围为(3,+∞).(教师用书独具)2011年6月4日,中国选手李娜在法国网球公开赛女单决赛中战胜意大利老将斯齐亚沃尼,顺利在罗兰·加洛斯红土球场夺得了个人第一座大满贯冠军,这是中国的第一个单打大满贯冠军,也创下了亚洲女选手首次登顶大满贯的纪录.决赛前,有人对两人参赛训练中一发成功次数统计如下表(1)分别计算出两位运动员一发成功的频率,完成表格;(2)根据(1)中计算的结果估计两位运动员一发成功的概率.【思路点拨】先计算两位运动员一发成功的频率,然后根据频率估计概率.【规范解答】(1)中在0.9的附近,所以估计两人一发成功的概率均为0.9.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)(2)估计这一地区男婴出生的概率约是多少. 【解】 (1)计算mn 即得到男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.(2)由于这些频率非常接近0.5173,因此估计这一地区男婴出生的概率约为0.5173.§3.2古典概型(教师用书独具)●三维目标 1.知识与技能(1)理解基本事件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率. 2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
人教版高中数学必修三第三章概率§1.4古典概型(ClassicalProbability)
人教版高中数学必修三第三章概率§1.4古典概型(ClassicalProbability)§1.4 古典概型(Classical Probability)一、排列与组合公式的复习1. 两大计数原理:乘法原理,加法原理(简单介绍)。
2. 排列、组合的定义及计算公式(1)排列:())( ),1()2)(1(!! n r r n n n n r n n A r n ≤+---=-= ,特例,全排列!n A n n =。
(2)组合: )( ,!)1()2)(1(!n r r r n n n n r A r n C r n r n≤+---==???? ??= 特例,1,0==-n r n n r n C C C 。
3. 从n 个不同的球中摸取r 个球,(1)有放回计序(重复排列):rn 种取法;(2)无放回种取法;不计序(组合):种取法;计序(排列):r n r n C A 二、古典概型(等可能概型)(Classical probability)1. 古典概型“概型”是指某种概率模型。
“古典概型”是一种最简单、最直观的概率模型。
它具有下述特征:(1)样本空间的元素(基本事件)只有有限个,不妨设为n 个,记为{}n e e e S ,,,21 =;(2)每个基本事件出现的可能性是相等的,即有{}{}{})()()(21n e P e P e P === 。
称这种数学模型为古典概型(Classical probability)或等可能概型。
它在概率论中具有非常重要的地位,一方面它比较简单,既直观,又容易理解,另一方面它概括了许多实际内容,有很广泛的应用。
2. 等可能概型中事件概率的计算:设在古典概型中,试验E 共有n 个基本事件,事件A 包含了k 个基本事件,则事件A 的概率为基本事件总数的有利事件数中的基本事件总数中所含的基本事件数A S A n k A P ===)(. (A 中所含的基本事件数,习惯上常常称为是A 的有利事件数),不难验证,上述的概率)(?P 的确具有非负性、规范性和有限可加性.)(【注】讲课时可以简单证明这个公式)求解古典概率问题,一般要做好三方面的工作:一是判明问题性质,分辨所解的问题,是不是古典概率问题.如果问题所及的试验,具有以下两个基本特征:(1)试验的样本空间的元素只有有限个;(2)试验中每个样本点出现的可能性相同.那么,我们就可断定它是一个古典概率问题.二是掌握古典概率的计算公式.如果样本空间包含的样本点的总数为n ,事件A 包含的样本点数(即A 的有利场合的数目)为k ,那么事件A 的概率是 P(A)=n k =样本点总数包含的样本点数事件A =样本点总数的有利场合数A . 三是根据公式要求,确定n 和k 的数值. 这是解题的关键性一步,计算方法灵活多变,没有一个固定的模式. 古典概率一种解法大体都是围绕n 和k 的计算而展开的.三、几类基本问题:抛硬币、掷骰(t óu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义. 一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律. 另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型. 因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力.本部分主要讨论古典概率中的五类基本问题(摸球问题、分球入盒问题、随机取数问题、抽签问题和分组问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用.例1(摸球问题)一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。
高中数学必修3课件:3.2.1 古典概型
第三章 概率
想一想 “在区间[0,10]上任取一个数,这个数恰为2的概率是多少”?这 个概率模型属于古典概型吗? 提示:不是.因为在区间[0,10]上任取一个数,其试验结果有 无限个,故其基本事件有无限个,所以不是古典概型.
栏目 导引
第三章 概率
做一做 2.投掷一枚骰子,恰好数字6正面向上的概率是________. 解析:由于骰子每一个面向上的可能性相等,故数字 6 正面向 上的概率是16. 答案:16
栏目 导引
第三章 概率
【解】 从 7 人中选出数学、物理、化学成绩优秀者各 1 名, 其一切可能的结果组成的 12 个基本事件为: (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2), (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2), (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2). C1 恰被选中有 6 个基本事件: (A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1), (A3,B1,C1),(A3,B2,C1), 因而 P(M)=162=12.
第三章 概率
1.基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能 再分的最简单的___随__机____事件称为该次试验的基本事件. (2)特点:一是任何两个基本事件是_互__斥___的;二是任何事 件(除不可能事件)都可以表示成基本事件的__和___.
栏目 导引
第三章 概率
做一做 1.袋中有红、白色球各一个,每次任取一个,有放回地抽三 次,所有的基本事件数是________. 解析:所有的基本事件有(红红红)(红红白)(红白红)(白红红)( 红白白)(白红白)(白白红)(白白白),共8个. 答案:8
高中数学 第三章概率教案 新人教版必修3
第三章概率一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。
2、正确理解事件A出现的频率的意义。
3、正确理解概率的概率和意义,明确事件A发生的频率f n〔A〕与事件A发生的概率P〔A〕的区别与联系。
4、利用概率知识,正确理解现实生活中的实际问题。
过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。
情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
2、培养辩证唯物主义观点,增强科学意识。
二、课前预习导学请同学们阅读P108—112,完成以下问题1、事件的有关概念〔1〕必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;〔2〕不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;〔3〕确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;〔4〕随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。
〔5〕_________事件与________事件统称为事件,一般用________表示。
2、概率与频率〔1〕频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn〔A〕=nAn为事件A出现的__________,显然频率的取值X围是____________。
〔2〕概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P〔A〕表示,显示概率的取值X围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
高中数学人教A版必修3第三章“概率”教学论文
高中数学人教A版必修3第三章“概率”教学的体会一、对“概率”一章的总体理解概率是近几年来高中数学新增内容之一,也是近几年高考中热点之一。
因为概率的内容更能容易体现数学的实用性,鲜活的有关概率的例题、练习题充分体现了数学知识来源于生活实践,又反过来指导生活。
同时也极易通过学生熟知的现实例子,更好激发学生的学习数学的兴趣也是进一步培养学生学习数学用数学来解决实际问题的能力和创新意识的很好素材。
二、教材分析课标明确要求:概率教学的核心问题是让学生了解随机现象与概率的意义;鼓励学生动手实验;学会把一些实际问题化为古典概型;教学中不要把重点放在“如何计数”上;还要求鼓励学生尽可能的使用计算器、计算机来处理数据,更好的体会统计思想和概率的意义。
教材中,概率作为模块3的一章内容出现,分三大节内容:3.1随机事件的概率;3.2古典概型;3.3几何概型。
教材中较完整系统地对统计概率,古典概率和几何概率三个方面的编写,学生更容易全面了解和把握,开阔了对概率概念理解的视野,新教材中涉及到的例子比旧教材更典型、鲜活、更具有时代性,除了典型的纸硬币正反面试验、掷骰子试验、彩票摸奖等例子,还增添了降雨概率、遗传基因、密码破译等更接近生活实践的概率应用实例。
新教材是在没有学习排列组合有关内容背景下,安排概率内容,所以内容编排上尽可能避开过多运用排列组合数公式的题目,重点放在对概率概念整体上的理解《新课标》注重知识与现实的联系,力图把死板的课本知识转化为生动的实践知识。
三、多媒体将概率知识形象化传统教学中,学生较难真正理解概率的有关概念,因为他们对这种“不确定”型数学思维缺乏真切体验,而传统中粉笔加黑板的教学手段,无法进行大量计算和演示,已显落后,而多媒体课件及其他软件应用,科学计算器的应用,更能直观形象易操作的让学生理解有关概率知识,发挥出了很大优势。
四、教学中应注意的几个问题及建议通过本章的教学,对教学成绩和学生测试以及学生接受情况分析,充分理解课改精神,提高教学水平,革新教学手段,应对自己树立终生学习的思想,要较深入钻研教学软件、计算器使用,有关课件制作的学习,充分利用好多媒体教学这一先进武器。
高中数学必修3第三章:概率3.2古典概型
验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2
个
基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
高中数学必修3 第三章概率教案 苏教版 教案
某某大学附属中学高中数学必修3 第三章概率教案3.1随机事件及其概率教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率与事件A发生的概率的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.教学重点:事件的分类;概率的定义以及和频率的区别与联系教学难点:用概率的知识解释现实生活中的具体问题.教学过程:一、问题情境1.足球比赛用抛掷硬币的方式决定场地,这是否公平?2.某班的50名学生中,有两名学生的生日相同的可能性有多大?3.路口有一红绿灯,东西方向的红灯时间为45s,绿灯时间为60s.从东向西行驶的一辆汽车通过该路口,遇到红灯的可能性有多大?日常生活中,与此相关的问题还有很多。
例如:(1)在标准大气压下水加热到100℃,沸腾;(2)导体通电,发热;(3)同性电荷,互相吸引;(4)实心铁块丢入水中,铁块浮起;(5)买一X福利彩票,中奖;(6)掷一枚硬币,正面向上.二、建构数学在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验.而试验的每一种可能的结果,都是一个事件.在一定的条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件.在一定条件下,可能发生也可能不发生的事件叫做随机事件.必然事件与不可能事件反映的就是在一定条件下的确定性现象,而随机事件反映的则是随机现象.以后我们用A,B,C等大写英文字母表示随机事件,简称为事件.我们已经学习了用概率表示一个事件在一次试验或观测中发生的可能性的大小,它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.1.奥地利遗传学家孟德尔用豌豆进行杂交试验,通过进一步研究,他发现了生物遗传的基本规律;2.抛掷硬币的模拟试验;3. 的前n位小数中数字6出现的频率统计;4.鞋厂某种成品鞋质量检验结果优等品频率的统计.从以上几个实例可以看出:在相同条件下,随着试验的次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画该随机事件发生的可能性大小,而将频率作为其近似值.一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率mn作为事件A发生的概率的近似值,即:()mP An.三、数学运用1.例题例1 试判断下列事件是随机事件、必然事件还是不可能事件:(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;(2)若a为实数,则|a|≥0;(3)某人开车通过10个路口都将遇到绿灯;(4)抛一石块,下落;(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.例2 某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(1)试计算男婴各年出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?例3 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?2.练习课本第88页练习 1,2,3课本第91页练习 1,2,3课本第92页习题 1,2备用:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件 B.随机事件C.不可能事件 D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1 D.以上均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
苏教版高中数学必修三-第三章-概率第3章-3.4ppt课件
判断下列每对事件是否为互斥事件,是否为对立事件. 从一副扑克牌(52 张,不含大、小王)中,任取 1 张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为 3 的倍数”与“抽出的牌点数小于 10”.
【解】
(1)是互斥事件,但不是对立事件;(因为从 52
1.判断两个事件是否为互斥事件,主要看它们能否同时 发生.若不能同时发生,则这两个事件是互斥事件;若能同 时发生,则这两个事件不是互斥事件. 2.判断两个事件是否为对立事件,主要看是否同时满足 两个条件:一是不能同时发生;二是必有一个发生.如果这 两个条件同时成立,那么这两个事件就是对立事件.只要有 一个条件不成立,那么这两个事件就不是对立事件.
(2)事件“至少有 1 个奇数”与事件“2 个都是奇数”不 是互斥事件, 更不是对立事件, 因为事件“至少有 1 个奇数” 包含事件“2 个都是奇数”与事件“1 个奇数与 1 个偶数”, 所以这两个事件有可能同时发生; (3)事件“至少有 1 个奇数”与事件“2 个都是偶数”既 是互斥事件又是对立事件,因为取出的 2 个数可能“2 个都 是奇数”、“1 个奇数与 1 个偶数”、“2 个都是偶数”,所 以这两个事件不可能同时发生,且一定有一个发生;
【提示】 正面向上,反面向上两种结果,这两种结果
不可能同时发生.
互斥事件
不能同时 发生的两个事件称为互斥事件.
互斥事件的概率加法公式
【问题导思】 在掷骰子试验中,出现 1 点或两点的概率怎样求?
【提示】
1 1 P(出现 1 点)= ,P(出现 2 点)= 6 6
1 1 1 ∴P(出现 1 点或 2 点)= + = . 6 6 3
.
对立事件及概率公式
高中数学必修三第三章概率知识要点
一、随机事件的概率1.事件与随机事件在一定条件下必然发生的事件叫;在一定条件下不可能发生的事件叫;在一定条件下可能发生也可能不发生的事件叫。
2.事件的频率与概率⑴若在n次试验中事件A发生了m次, 则称为事件A的频率。
记做。
二、⑵若随着试验次数n的增大, 事件A的频率总接近某个常数p, 在它的附近作微小摆动, 则称为事件A的概率, 记做, 显然。
三、 3.概率从数量上反映了一个事件的大小。
四、概率的基本性质1.事件的关系与运算:(1)互斥事件:若为, 则称事件与事件互斥。
(2)对立事件:若为, 为, 则称事件与事件互为对立事件。
2.概率的几个基本性质:(1)概率的取值范围是: 。
(2)的概率为1;的概率为0。
五、(3)如果事件与事件互斥, 那么。
六、(4)如果事件与事件对立, 那么;;。
七、古典概型1.古典概型的特征:(1):一次试验中, 基本事件只有有限个;八、(2): 每个基本事件发生的可能性都相等。
九、2、求古典概率的常用方法: 列举法与列表法。
十、几何概型1.几何概型的特征:(1)几何概型的基本事件有无穷多个;(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。
2.求几何概率用到的一个方法: 线性规划。
练习题:1.甲盒中有红, 黑, 白三种颜色的球各3个, 乙盒子中有黄, 黑, 白, 三种颜色的球各2个, 从两个盒子中各取1个球, 求取出的两个球是不同颜色的概率.2.设关于的一元二次方程, 若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.3.将一颗质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次, 将得到的点数分别记为.将的值分别作为三条线段的长, 求这三条线段能围成等腰三角形的概率.1 / 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着18、19世纪科学的发展,人们注意到在某些生物、物理和 社会现象与机会游戏之间有某种相似性,从而由机会游戏起源 的概率论被应用到这些领域中;同时这也大大推动了概率论本 身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学 家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数 定律,阐明了事件的频率稳定于它的概率。现在,概率与统计 的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、 医学、金融保险甚至人文科学中。
从A、B、C、D四名学生中选出2人参加竞赛, ⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数; ⑶写出事件“A没被选中”所包含的基本事 件 疑问:这个事件选择时是否需要顺序呢?例 如:AB和BA一样吗?
1个盒子中装有4个完全相同的小球,分别标有 号码1、2、3、5,有放回的任取两球。 ⑴写出这个试验基本事件空间; ⑵求这个基本事件总数; ⑶写出“取出的两球上的数字之和是6”这一事 件包含的基本事件。 疑问:这个事件选择时是否需要顺序呢?例如: 12和21一样吗?
投掷两颗骰子,观察它们面朝上的点数,试 写出这个试验的基本事件和基本事件空间。 疑问1:基本事件空间中的基本事件有顺序关 系吗?例如(1,4)和(4,1)一样吗? 疑问2:基本事件空间中的基本事件个数一定 是有限个吗,如果不是请举例说明! 疑问3:能否找出点数之和为7的基本事件; 至少出现一个6点的呢?
从含有两件正品A、B和一件次品B的3件产 品中每次任取1件,每次取出后不放回,连 续取两次。 ⑴写出这个试验的基本事件空间; ⑵下列随机事件由哪些基本事件构成; 事件A:取出的两件产品都是正品; 事件B:取出的两件产品恰有1件次品。
频率与概率区别与联系?
0 P A 1
概率的加法公式
事件与概率
随机现象
必然现象
不可能事件 随机事件 必然事件 基本事件 基本事件空间
做试验“从0,1,2这3个数字中,不放回 地取两次,每次取一个,构成有序数对 (x,y),x为第1次取到的数字,y为第2 次取到的数字”: (1)写出这个试验的基本事件空间; (2)求这个试验基本事件的总数;
(3)写出“第1次取出的数字是2”这一事 件。
互斥事件
对立事件
古典趣的概率问题 生日悖论
在一个足球场上有23个人(2×11个运动 员和1个裁判员),不可思议的是,在这 23人当中至少有两个人的生日是在同一天 的机率要大于50%。
几个有趣的概率问题
我的书桌有8个抽屉,分别用数字1到8编号。每次我拿到一份文 件后,我都会把这份文件随机地(概率均等地)放在某一个抽屉 中。但我非常粗心,有1/5的概率我会忘了把文件放在抽屉里, 最终把这个文件搞丢了。 现在,我要找一份非常重要的文件。我将按顺序打开每一个抽 屉,直到找到这份文件为止,或者令人同情地,翻遍了所有抽屉 都还没找到这份文件。考虑下面三个问题: 1. 假如我打开了第一个抽屉,发现里面没有我要的文件。这份文 件在其余7个抽屉里的概率是多少? 2. 假如我翻遍了前4个抽屉,里面都没有我要的文件。这份文件 在剩下的4个抽屉里的概率是多少? 3. 假如我翻遍了前7个抽屉,里面都没有我要的文件。这份文件 在最后一个抽屉里的概率是多少? 你猜一猜这三个概率值是越来越大还是越来越小?你能算出准确 的值来吗?
什么是概率?
概率,又称或然率、机会率或机率、可能性, 是数学概率论的基本概念,是一个在0到1之间 的实数,是对随机事件发生的可能性的度量。 表示一个事件发生的可能性大小的数,叫做该 事件的概率。它是随机事件出现的可能性的量 度,同时也是概率论最基本的概念之一。人们 常说某人有百分之多少的把握能通过这次考试, 某件事发生的可能性是多少,这都是概率的实 例。但如果一件事情发生的概率是1/n,不是指n 次事件里必有一次发生该事件,而是指此事件 发生的频率接近于1/n这个数值。
必修3 第三章概率
概率论的前世今生
概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉 莫· 卡尔达诺开始研究掷骰子等赌博中的一些简单问题。17世纪中 叶,有人对博弈中的一些问题发生争论,其中的一个问题是“赌 金分配问题”,他们决定请教法国数学家帕斯卡和费马基于排列 组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问 题、赌徒输光问题。他们对这个问题进行了认真的讨论,花费了3 年的思考,并最终解决了这个问题,这个问题的解决直接推动了 概率论的产生。