二次函数综合之分段函数与动态交点问题
中考数学专题二次函数图像与坐标轴的交点问题(含解析)
2019备战中考数学专题-二次函数图像与坐标轴的交点问题〔含解析〕一、单项选择题1.二次函数y=kx2-6x+3的图象与x轴有两个交点,那么k的取值范围是〔〕A.k<3B.k<0且k≠0C.k≤3D.k≤3且k≠02.如图图形中阴影部分的面积相等的是〔〕A.①②B.②③C.①③D.①②③3.在如下图的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a<0,b>0,c>0;②b2﹣4ac=0;③ <c;④关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有〔〕A.1条B.2条C.3条D.4条4.假设函数的图象与坐标轴有三个交点,那么的取值范围是〔〕A. B. C.D.5.二次函数y=〔x﹣1〕〔x﹣2〕﹣1与x轴的交点x1,x2,x1<x2,那么以下结论正确的选项是〔〕A.x1<1<x2<2B.x1<1<2<x2C.x2<x1<1D.2<x1<x26.对某个函数给定如下定义:假设存在实数M>0,对于任意的函数值y,都满足|y|≤M,那么称这个函数是有界函数.在所有满足条件的M中,其中最小值称为这个函数的边界值.现将有界函数〔0 x m,1≤m≤2〕的图象向下平移m个单位,得到的函数边界值是t,且≤t≤2,那么m的取值范围是〔〕A.1≤m≤B.≤m≤C.≤m≤D.≤m≤27.二次函数y=x2-〔m-1〕x+4的图像与x轴有且只有一个交点,那么m的值为〔〕A.1或-3B.5或-3C.-5或3D.以上都不对8.如图,在平面直角坐标系中,抛物线y=α〔x﹣1〕2+k与x轴交于A.B两点,与y轴交于C点.CD∥x轴与抛物线交于D点且A〔﹣1,0〕那么OB+CD=〔〕A.4B.5C.6D.79.“一般的,假如二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版?数学?九年级〔下册〕P21〞参考上述教材中的话,判断方程x2﹣2x= ﹣2实数根的情况是〔〕A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根10.二次函数y=kx2-7x-7的图象与x轴有两个交点,那么k的取值范围为〔〕A.k>-B.k>-且k≠0C.k≥-D.k≥-且k≠011.抛物线y=ax2+bx+c〔a>0〕的对称轴为x=1,它与x轴的一个交点的坐标为〔﹣3,0〕,那么它与x轴另一个交点的坐标为〔〕A.〔﹣2,0〕B.〔﹣1,0〕C.〔2,0〕D.〔5,0〕二、填空题12.抛物线y=ax2+bx+c与x轴的公共点是〔﹣1,0〕,〔3,0〕,那么关于x的方程ax2+bx+c=0的两个根是________.13.二次函数y=kx2﹣8x+8的图象与x轴有交点,那么k的取值范围是________.14.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为________.15.y=﹣x2+2与x轴交于A,B两点,与y轴交于C点,那么∥ABC的面积为________.16.二次函数y=ax2+bx+c 〔a≠0〕〔a≠0,a,b,C为常数〕的图象,假设关于x的一元二次方程ax2+bx+c=m有实数根,那么m的取值范围是________.17.正整数a满足不等式组〔x为未知数〕无解,那么a的值为________;函数y=〔3﹣a〕x2﹣x﹣3图象与x轴的交点坐标为________18.抛物线y=ax2+bx+c〔a≠0〕与x轴的两个交点的坐标分别是〔-3,0〕,〔2,0〕,那么方程ax2+bx+c=0〔a≠0〕的解是________.三、解答题19.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.函数y=x2﹣2mx﹣2〔m+3〕〔m为常数〕〔1〕当m=0时,求该函数的零点.〔2〕证明:无论m取何值,该函数总有两个零点.20.在平面直角坐标系xOy中,抛物线与x轴分别交于点A〔2,0〕、点B〔点B在点A的右侧〕,与轴交于点C,tan∥CBA=.〔1〕求该抛物线的表达式;〔2〕设该抛物线的顶点为D,求四边形ACBD的面积;〔3〕设抛物线上的点E在第一象限,∥BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.四、综合题21.二次函数为y=x2﹣2x+m〔1〕写出它的图象的开口方向,对称轴;〔2〕m为何值时,其图象顶点在x轴上方?22.在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为〔3,0〕,与y轴相交于点C;〔1〕求抛物线的表达式;〔2〕求∥ABC的面积.23.二次函数y=x2﹣2x﹣3与x轴交于A、B两点〔A在B的左边〕,与y轴交于点C.〔1〕求出点A、B、C的坐标.〔2〕求S∥ABC〔3〕在抛物线上〔除点C外〕,是否存在点N,使得S∥NAB=S∥ABC,假设存在,求出点N 的坐标,假设不存在,请说明理由.答案解析部分一、单项选择题1.【答案】D【考点】抛物线与x轴的交点【解析】【分析】利用kx2-6x+3=0有实数根,根据判别式可求出k取值范围。
二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
二次函数动态综合问题
如图,已知A,B两点坐标分别为(28,0)和(0,28),动点P从A开始在线段AO上以每秒3个单位长度的速度向原点O运动.动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E,F,连接FP,设动点P 与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积.(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?例3、动点与动线相结合如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.例4、动形问题如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线l上,当C、Q两点重合时,等腰△PQR以1cm/秒的速度沿直线l按箭头所示方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒≤t≤8秒时,求S与t的函数关系式,并求出S的最大值.提示:四种运动状态三、例题精讲例1、如图,抛物线与y轴交于点A,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上,从原点O出发以每钞一个单位的速度向C移动,过点P作⊥x轴,交直线AB于点M,抛物线于点N,设点P移动的时间为t秒,MN的长为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t的值,平行四边形BCMN是否为菱形?说明理由.分析:第(1)根据A、B两点坐标,用待定系数法易得。
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线(a ≠0)与轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;32++=bx ax y x(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。
二次函数 交点式
二次函数交点式
摘要:
1.二次函数的基本概念
2.交点式的定义和应用
3.求解二次函数交点式的方法
4.例题解析
正文:
二次函数是中学数学中的一种重要函数类型,其图像通常是一个抛物线。
在二次函数中,交点式是一个非常实用的概念。
交点式表示为:y = a(x - x1)(x - x2),其中a、x1和x2分别是抛物线的参数。
首先,我们来了解一下交点式的定义。
交点式是指仅限于与x轴有交点A (x1,0)和B(x2,0)的抛物线的表达式。
这个式子可以帮助我们快速找到抛物线与x轴的交点,从而简化问题。
接下来,我们学习一下如何求解二次函数的交点式。
假设抛物线的顶点坐标为(1, 5),与x轴的两个交点分别为(-3, 0)和(5, 0)。
我们可以设抛物线的解析式为y = a(x - 5)(x - 1)。
将顶点坐标代入该式,得到5a(1 - 5)(1 - 5)。
现在我们通过一个例题来巩固一下求解二次函数交点式的方法。
题目:已知抛物线与x轴两个交点间的距离为8,且顶点坐标为(1, 5),求函数解析式。
解:由题意可知抛物线与x轴交点为(-3, 0)和(5, 0)。
设函数解析式为y = a(x - 5)(x - 1),把顶点坐标(1, 5)代入函数,得到5a(1 - 5)(1 - 5)。
通过计算,我们可以得到a = 1,因此抛物线的解析式为y = (x - 5)(x - 1)。
通过本文,我们了解了二次函数的基本概念,学会了如何使用交点式求解问题。
在实际应用中,交点式可以帮助我们快速找到抛物线与x轴的交点,从而简化问题。
二次函数综合之分段函数与动态交点问题
二次函数专题复习之分段函数与动态交点问题目标:1.进一步巩固二次函数的图像性质2.了解分段函数及图像的画法3.会运用二次函数的知识解决动态交点问题4.培养综合分析问题的能力、动态观察分析能力、画图能力及分类讨论的意识重点:运用二次函数的知识解决动态交点问题难点:动态图形的观察与分析活动一:热身练习例1:如图,已知抛物线2y ax bx =+经过点A (3,0),B (4,4)两点,将直线OB 向下平移m 个单位长度得到直线l.(1)若直线l 与抛物线只有一个公共点D ,求m 的值及点D 的坐标。
(2)若直线l 与抛物线至少有一个公共点,直接写出m 的取值范围.活动二:小试牛刀例2: 已知抛物线C 1:y =-x 2+4x -3,把抛物线C 1先向右平移3个单位长度,再向上平移3个单位长度,得到抛物线C 2,将抛物线C 1和抛物线C 2这两个图象在x 轴及其上方的部分记作图象M .若直线21+=kx y 与图象M 至少有2个不同的交点,则k 的取值范围是__________活动三:学以致用练习1.将函数22y x x =--的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的图形是函数22y x x =--的图象.已知经过点D (0, 4)的直线4y kx =+恰好与22y x x =--的图象只有三个交点,则k 的值是活动四:勇攀高峰例3:我们把b a ,两个数中较大的数记作{}b a D ,,直线 12y kx =+ 与函数{}21,1y D x x =-+的图像有且只有两个交点,则k 的取值范围是 。
活动五:超越自我练习2.我们把 a ,b ,c 三个数的中位数记作 Z {},,a b c ,直线 y =kx +12(k >0)与函数 y =Z {}21,1,1x x x -+-+的图象有且只有2个交点,则k 的取值为__________.作业:认真完成学案,要求写出解析过程。
二次函数几何变换
注意问题:
1.是否可取等号问题 2.解析式是否发生变化 3.是否考虑全面
练1.二次函数 y = x2 + bx + c 的顶点坐标为M(1,-4).
(1)求二次函数的解析式 (2)将二次函数的图象在X轴下方的部分沿X轴翻折,图象的 其余部分保持不变,得到一个新的图象,请你结合新图象回答: 当直线y=x+n与这个新图象有两个公共点时,求n的取值范围
△△△ >0 =0 <0 21无 个个交 交交点 点点
3 与非平行于坐标轴的直线交点
y
y=kx+b
x
基础练习
(1)判断直线y x 1
y 与x抛2 物3x线 1
交点情况?
如果有交点,请求y 出交x 点1 坐标。 解:联立 y x2 3x 1
x2 2x 0
得
△ =4 >0
所以有两个交点,交点坐标为(0,1)和(2,-1)
平移后的抛物线与 直线联立,根据判 别式来进行确定。
n=0
解题思路:
1 列出平移后的函数 解析式。 y=4x+6+n B(-1-n,0) C(3-n,0)
二次函数 几何变换与交点问题
新东方初中数学组 张志安
平移 旋转 翻折
一 平移
抛物线平移问题
例1.将抛物线 y = 2x2 + 4x - 3 向右平移3个单位, 再向上平移5个单位,求平移后所得抛物线的解析式。
方法一:顶点平移
y = 2x2 + 4x - 3 = 2(x +1)2 - 5
顶点坐标为(-1,-5)
y 2x2 - 4x - 2
练1:
中考数学复习考点知识归类讲解23 二次函数中的交点问题
中考数学复习考点知识归类讲解 专题23 二次函数中的交点问题知识对接考点一、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121专项训练 一、单选题1.如图,已知抛物线()20y axbx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()1,0-,其部分图象如图所示.下列结论:①方程20ax bx c ++=的两个根是11x =-,23x =;②0a b c -+=;③80a c +<;④当0y >时,x 的取值范围是13x .其中结论正确的个数是()A .1B .2C .3D .42.将抛物线y =x 2+2mx +m 2﹣1向左平移8个单位,平移后的抛物线对称轴为直线x =1,则平移后的抛物线与y轴的交点坐标为()A.(0,0) B.(0,4) C.(0,15) D.(0,16)3.二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点横坐标为﹣2,x0,且满足(a+b+c)(4a+2b+c)<0,与y轴的负半轴相交,抛物线经过点A(﹣1,y1),B(﹣2,y2),C (1,y3),正确结论是()A.y3>y2>y1B.y3>y1>y2C.y1>y2>y3D.y1>y3>y24.直线y=x+a不经过第二象限,则关于x的函数y=ax2+2x+1与坐标轴的交点个数是()A.1个B.2个C.3个D.2个或3个5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包含这两点),对称轴为直线x=1.在下列结论中:①abc>0;②16a+4b+c<0;③4ac﹣b2<8a;④13<a<23;⑤b<c.正结论的个数为()A.1 B.2 C.3 D.46.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),有下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=2有两个不相等的实数根;④当y<0时,﹣2<x<4,⑤b2+12a=4ac.其中正确的个是()A .2B .3C .4D .57.如图为某二次函数的部分图像,有如下四个结论:①此二次函数表达式为y =14x 2﹣x +9:②若点B (﹣1,n )在这个二次函数图像上,则n >m ;③该二次函数图像与x 轴的另一个交点为(﹣4,0);④当0<x <5.5时,m <y <8.所有正确结论的序号是()A .①③B .①④C .②③D .②④8.已知抛物线()2y a x h k =-+与x 轴有两个交点()1,0A -,()3,0B ,抛物线()2y a x h m k =--+与x 轴的一个交点是()4,0,则m 的值是() A .5B .1-C .5或1D .5-或1-9.若抛物线2y x bx c =++与x 轴两个交点间的距离为4.对称轴为2x =,P 为这条抛物线的顶点,则点P 关于x 轴的对称点的坐标是() A .()2,4B .()2,4-C .()2,4--D .()2,4-10.如图,抛物线21(6)22y x =--与x 轴交于点A B 、,把抛物线在x 轴及其下方的部分记作1C ,将1C 向左平移得到22,C C 与x 轴交于点B O 、,若直线12y x m =+与12C C 、共有3个不同的交点,则m 的取值范围是()A .32m -≤<-B .4128m -<<- C .52m -≤<- D .2528m -<<- 二、填空题11.定义:若抛物线与x 轴有两个交点,且这两个交点与它的顶点所构成的三角形是直角三角形,则把这种抛物线称作“和美抛物线”.如图,一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),… B n (n ,y n )(n 为正整数)依次是直线y 1134x =+上的点,这组抛物线与x 轴正半轴的交点依次是A 1(a 1,0),A 2(a 2,0),A 3(a 3,0),…A n +1(a n +1,0)(0<a 1<1,n 为正整数).若这组抛物线中存在和美抛物线,则a 1=___.12.已知二次函数245y x x =-++,它的图象与x 轴的交点坐标为________. 13.已知抛物线()20y axbx c a =++≠与x 轴的一个交点坐标为(3,0),对称轴为直线1x =,则关于x 的一元二次方程()200++=≠ax bx c a 的根是_______.14.我们把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,A 、B 、C 、D 分别是某蛋圆和坐标轴的交点其中抛物线的解析式为y =x 2﹣2x ﹣3,则“蛋圆”的弦CD 的长为____.15.关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________. 三、解答题16.已知关于x 的二次函数()22410y kx kx k k =-++>,(1)若二次函数的图象与x 轴没有交点,求k 的取值范围;(2)若(),P m n 和()3,q q -是抛物线上两点,且n q <,求实数m 的取值范围; (3)若()1,B c b +和(),C c s 是抛物线上两点,试比较b 和s 的大小.17.定义:若一次函数y ax b =+(0a ≠)与反比例函数c y x=(0c ≠)满足2a c b +=,则我们把函数2y ax bx c =++称为一次函数与反比例函数的“附中函数”.(1)一次函数36y x =+与反比例函数9y x=是否存在“附中函数”?如果存在,写出其“附中函数”,如果不存在,请说明理由.(2)若一次函数y x b =+与反比例函数c y x=(0c ≠)存在“附中函数”,且该“附中函数”的图象与直线27y x =+有唯一交点,求b ,c 的值.(3)若一次函数y ax b =+(0a >)与反比例函数c y x=-(0c ≠)的“附中函数”的图象与x 轴有两个交点分别是A (1x ,0),B (2x ,0),其中3a c a ≤≤,点C (3,4),求△ABC 的面积S △ABC 的变化范围. 18.已知抛物线2122y x x =-.(1)求这个函数的最大值或最小值,并写出函数y 取得最大值或最小值时相应的自变量x 的值.(2)求该抛物线与x 轴的交点坐标,并直接写出当0y >时相应的x 的取值范围. 19.已知抛物线2(21)46y x m x m =--+-.(1)试说明:不论m 取任何实数,该抛物线都经过x 轴上的定点A ;(2)设该抛物线与x 轴的另一个交点为B (A 与B 不重合),顶点为C ,当ABC 为直角三角形时,求m 的值;(3)在(2)的条件下,若点B 在A 的右侧,点(0,3)D ,点E 是抛物线上的一点.问:在x 轴上是否存在一点F ,使得以D ,E ,F 为顶点的三角形是等腰直角三角形,且90EDF ∠=︒,若存在,求F 点的坐标;若不存在,请说明理由.20.已知二次函数24y ax ax b =++与x 轴交于A ,B 两点(其中A 在B 的左侧),且2AB =.(1)抛物线的对称轴是______. (2)求点A 和点B 坐标.(3)点C 坐标为()2.5,4--,()0,4D -.若抛物线24y ax ax b =++与线段CD 恰有一个交点,求a 的取值21.已知抛物线y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)(1)若抛物线的对称轴为x =3,若抛物线与x 轴的两个交点的横坐标比为1:2,求这两个交点的坐标;(2)抛物线的顶点为点C ,抛物线与x 轴交点分别为A 、B ,若△ABC 为等边三角形,求证:b 2—4ac =12;(3)若当x >—1时,y 随x 的增大而增大,且抛物线与直线y =ax —1a +c 相切于点D ,若ODc 的取值范围.22.如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式;(2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m,求m 的值. 23.现有牌面编码为﹣1,1,2的三张卡片,背面向上,从中随机抽取一张卡片,记其数字为k ,将抽到的卡片背面朝上,放回打乱后,再抽一张记其数字为m ,则事件“关于a 、b的方程组2122a b ka b+=+⎧⎨+=⎩的解满足0≤a﹣b≤1,且二次函数y=x2﹣2x+m的图象与x轴恰有2个交点”成立的概率为__.。
分段函数的零点与交点
分段函数的零点与交点随着数学的不断发展,分段函数越来越成为了数学学科中的热门话题。
而其中一个比较基础的问题就是分段函数的零点与交点。
本文将从零点和交点两个方面进行探讨。
一、零点首先来看零点。
零点是指函数在某一个自变量取值下所对应的因变量值为0的情况。
在分段函数中,因为函数的定义域被分成了多段,因此可能会存在函数值为0的点,这些点就被称为分段函数的零点。
在求分段函数的零点时,需要将其拆分成若干个单调区间,并判断每个单调区间中是否存在零点。
如果存在,则将其加入零点的集合中。
需要注意的是,分段函数的零点可能不只有一个,因此需要将所有的零点都找出来。
例如,对于一个分段函数f(x) = {x - 2 (x < 2); 0(x \geq 2)} 来说,它的零点集合为{2},因为只有在x=2时它的函数值才为0。
二、交点接下来是交点。
交点是指分段函数在两条不同的线段相交的点。
如果将分段函数看成是由若干条线段拼接而成的,那么这些线段相交的点就是交点。
求分段函数的交点时,需要将其拆分成若干个单调区间,并判断每个单调区间中是否存在交点。
如果存在,则将其加入交点的集合中。
需要注意的是,分段函数也可能存在多个交点。
例如,对于一个分段函数f(x) = {\frac{1}{2}x - 1 (x \leq 1); -\frac{1}{2}x + 2(x > 1)}来说,它在x=1处存在交点,该交点的坐标为(1, -\frac{1}{2})。
因为在x \leq 1时,f(x) = \frac{1}{2}x - 1与y轴相交,而在x > 1时,f(x) = -\frac{1}{2}x + 2与y轴相交。
三、总结综上所述,分段函数的零点与交点是我们在求解函数图像的过程中需要特别关注的问题。
在求解零点与交点时,需要将分段函数拆分成若干个单调区间,然后分别判断每个单调区间是否存在零点或交点。
在实际应用中,我们可以利用计算机等工具来快速求解分段函数的零点和交点,这样能够大大提高我们的效率。
二次函数与线段交点问题
(2)点C(0,2)和点D(3,m)为平面直角坐标系内两点,连接CD,若抛
物线y=x2-x-2与线段CD只有一个公共点,求m的取值范围;
分析:知道点D(3,m)的横坐标为3,可推得点D在直线x=3上运动,把
x=3带入二次函数表达式求出对应的函数值为4,得此时点坐标(3,4),
①点D在点(3,4)上方时,抛物线y=x2-x-2与线段CD没有公共点;
可得x2-2x-2-b=0,
∴Δ=(-2)2-4×(-2-b)=12+4b=0,解得b=-3 ;
变式2:若抛物线y=x2-x-2与一次函数y=x+b没有交点,求b的
取值范围;
解:∵抛物线y=x2-x-2与一次函数y=x+b没有交点,
∴将抛物线解析式y=x2-x-2与一次函数解析式y=x+b联立,
可得x2-2x-2-b=0,
物线y=-x2+3x+4 与线段 AB 有公共点,结合函数图象,求k的取值范围.
解:设抛物线交x轴与C、D两点(点C在点D的左侧),
令-x2+3x+4=0,
解得x1=-1,x2=4,
∴C(-1,0),D(4,0).
∵ 直线 y=kx+2 与x轴、y轴分别交于点 A、点B,
2
∴点A( − ,0),点B(0,2).
线y=x2-x-2与线段EF只有一个公共点,求t的取值范围;
分析:知道点F(t,4)的纵坐标为4,可推得点F在直线y=4上运动,把y=4
带入二次函数表达式求出对应的x为x=3或x=-2,得此时点坐标
(3,4)或(-2,4),
点F在点M右侧或点N左侧时,抛物线y=x2-x-2与线段EF没有公共
点;
点F在线段MN之间(可与点M重合,但不与点N重合)时,抛物线
(完整版)二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
初中数学专题复习(二次函数图像与坐标轴交点问题)
初中数学专题复习(二次函数图像与坐标轴交点问题)1.二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,a取满足条件的最小整数,将图象在x 轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,当直线y=kx﹣2与新图象恰有三个公共点时,则k的值不可能是()A.﹣1B.﹣2C.1D.2解:∵二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,当△=(﹣2a+3)2﹣4(a﹣1)(a﹣4)=8a﹣7>0时,解得a>,∵a取满足条件的最小整数,而a≠1,故a=2,当a=2时,y=(a﹣1)x2﹣(2a﹣3)x+a﹣4=x2﹣x﹣2,设原抛物线交x轴于点A、B,交y轴于点C,将图象在x轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,如下图所示,对于y=x2﹣x﹣2,令y=0,则y=x2﹣x﹣2=0,解得x=﹣1或2,令x=0,则y=﹣2,故点A、B、C的坐标分别为(﹣1,0)、(2,0)、(0,﹣2),由直线y=kx﹣2知,该直线过点C,①当k>0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过点B、C,将点B的坐标代入y=kx﹣2得:0=2k﹣2,解得k=1;②当k<0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过A、C点或直线与y=x2﹣x﹣2只有一个交点,当直线过点A、C时,将点A的坐标代入直线表达式得:0=﹣k﹣2,解得k=﹣2,当直线与y=x2﹣x﹣2只有一个交点时,联立直线和抛物线的表达式得:x2﹣x﹣2=kx﹣2,即x2﹣(k+1)x=0,则△=(﹣k﹣1)2﹣4×1×0=0,解得k=﹣1,综上,k=1或﹣2或﹣1,答案:D.2.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),答案:B.3.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④解:依照题意,画出图形如下:∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.∴a<0,c>0,对称轴为x=﹣=﹣1,∴b=2a<0,∴abc>0,故①正确,∵对称轴为x=﹣1,∴x=1与x=﹣3的函数值是相等的,故②错误;∵顶点为(﹣1,n),∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,联立方程组可得:,可得ax2+(2a﹣k)x+a+n﹣1=0,∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,∵无法判断△是否大于0,∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;当﹣3≤x≤3时,当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,答案:C.4.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点解:A、将二次函数向上平移10个单位,再向左平移2个单位后,表达式为:,若过点(4,5),则,解得:a=﹣5,故选项正确;B、∵,开口向上,∴当x=12时,y有最小值a﹣9,故选项正确;C、当x=2时,y=a+16,最小值为a﹣9,a+16﹣(a﹣9)=25,即x=2对应的函数值比最小值大25,故选项错误;D、△=,当a<0时,9﹣a>0,即方程有两个不同的实数根,即二次函数图象与x轴有两个不同的交点,故选项正确,答案:C.5.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<<1B.>1C.0<<1D.>1解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=﹣=﹣5,∴x3<x1<﹣5,由图象可知:0<<1一定成立,答案:A.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,答案:B.7.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴这两个整数根是﹣4或2,答案:B.8.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0解:A、错误.由M1=2,M2=2,可得a2﹣4>0,b2﹣8>0,取a=3,b2=12,则c==4,此时c2﹣16=0.故A错误.B、正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b4﹣16=(b4﹣64)=(b2+8)(b2﹣8)<0,∴M3=0,∴选项B正确,C、错误.由M1=0,M2=2,可得a2﹣4<0,b2﹣8>0,取a=1,b2=18,则c==18,此时c2﹣16>0.故C错误.D、由M1=0,M2=0,可得a2﹣4<0,b2﹣8<0,取a=1,b2=4,则c==4,此时c2﹣16=0.故D错误.答案:B.二.填空题(共7小题)9.我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为(1,0)、(2,0)和(0,2).解:根据题意,令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,△=(﹣m﹣2)2﹣4×2m=(m﹣2)2>0,∴mx2+(﹣m﹣2)x+2=0有两个根,且m≠2,由求根公式可得x=,x=,x1==1,x2===,当m=1时符合题意;此时x2=2;所以这个函数图象上整交点的坐标为(2,0),(1,0);令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).综上所述,这个函数图象上整交点的坐标为(2,0),(1,0)和(0,2);故答案为:(2,0),(1,0)和(0,2).10.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是2.解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.11.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是k>﹣1.解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是﹣3<x<1.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为4.解:∵点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,∴,解得,b=﹣4,∴抛物线解析式为y=x2﹣4x+1=(x﹣2)2﹣3,∵将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,∴n的最小值是4,故答案为:4.14.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc <0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2;④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为①④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,符合题意;②△ABC的面积=AB•y C=AB×2=2,解得:AB=2,则点A(0,0),即c=0与图象不符,故②错误,不符合题意;③函数的对称轴为x=1,若x1+x2>2,则(x1+x2)>1,则点N离函数对称轴远,故y1>y2,故③错误,不符合题意;④抛物线经过点(3,﹣1),则y′=ax2+bx+c+1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax2+bx+c+1=0的两根为﹣1,3,故④正确,符合题意;故答案为:①④.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.三.解答题(共5小题)16.如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).17.如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.解:(1)∵A(﹣1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x﹣2),将C代入得:4=﹣2a,解得:a=﹣2,∴该抛物线的解析式为:y=﹣2(x+1)(x﹣2)=﹣2x2+2x+4;(2)连接OP,设点P坐标为(m,﹣2m2+2m+4),m>0,∵A(﹣1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=×1×4+×4m+×2×(﹣2m2+2m+4)=﹣2m2+4m+6=﹣2(m﹣1)2+8,当m=1时,S最大,最大值为8.18.如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.解:(1)直线与抛物线的对称轴交于点D(2,﹣3),故抛物线的对称轴为x=2,即﹣b=2,解得:b=﹣4,(2)∵b=﹣4∴抛物线的表达式为:y=x2﹣4x;把y=﹣3代入y=x2﹣4x并解得x=1或3,故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,∵四边形PBCQ为平行四边形,∴PQ=BC=2,故x2﹣x1=2,又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,故|(x12﹣4x1)﹣(x22﹣4x2)|=2,|x1+x2﹣4|=1.∴x1+x2=5或x1+x2=3,由,解得;由,解得.19.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴为直线x=2,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移到点A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.。
九年级数学二次函数交点问题专题
九年级二次函数交点问题专题【知识解读】二次函数与坐标轴交点问题笔记二次函数图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根当△>0时,抛物线与x轴有2个交点当△=0时,抛物线y=ax2+bx+c与x轴有1个交点当△<0时,抛物线y=ax2+bx+c与x轴没有交点【实战演练】二次函数与坐标轴交点问题例题1、二次函数y=kx2−6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3B. k<3且k≠0C. k≤3D. k≤3且k≠0练习1、已知二次函数y=x2−2mx+m2+3(m是常数),该函数的图象与x轴的交点个数为。
练习2、抛物线y=mx2+(2m−1)x+m−1与x轴的交点个数是()A.0个B.1个C.2个D.无法确定【知识解读】二次函数与一次函数交点问题笔记二次函数图象与一次函数图象的交点个数:解决二次函数y=ax2+bx+c与一次函数y=kx+m的交点个数问题,我们可以把两个函数解析式联立,即ax2+bx+c=kx+m,求这个一元二次方程的判别式即可。
若△>0,则二次函数与一次函数的图象有两个交点;若△=0,则二次函数与一次函数的图象有一个交点;若△<0,则二次函数与一次函数的图象没有交点次;函数图象与一次函数图象的交点坐标求解二次函数y=ax2+bx+c与一次函数y=kx+m的交点坐标问题,我们可以把两个函数解析式联立,即ax2+bx+c=kx+m,,求这个一元二次方程的解即可,解就是交点的横坐标,代入任意一个解析式中,求出的y值为纵坐标。
【实战演练】二次函数与一次函数交点问题例题5(1)判断直线y=−x+1与抛物线y=x2−3x+1是否有交点,如果有交点,求出交点坐标。
(2)当b为何值时,直线y=3x+b与抛物线y=x2+2x−1只有一个交点例题6、在平面直角坐标系中,抛物线y=ax2与直线y=2x+3相交于A、B两点,已知点A的坐标(-1,1),求点B的坐标。
人教版九年级上册二次函数和动点题型整理(解析版)
授课类型C专题( 二次函数动点问题)授课日期及时段教学内容C专题——二次函数动点问题专题导入1.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积的最小值为(D)A.19cm2 B.16cm2 C.12cm2 D.15cm22. 如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为(D )3.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为(C).A.B.C.D.4.如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm,点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△PAQ的最大面积是(B)A.8cm2 B.9cm2 C.16cm2 D.18cm25.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A 出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是(B)A.B.C.D.6.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为( A )A.B.C.D.B.7.如图,已知等腰直角的直角边长与正方形的边长均为厘米,与在同一直线上,开始时点与点重合,让以每秒厘米的速度向左运动,最终点与点重合,则重叠部分面积(厘米)与时间(秒)之间的函数关系式为________.8.二次函数的函数图象如图,点位于坐标原点,点在y轴的正半轴上,点在二次函数位于第一象限的图象上,,, 都是直角顶点在抛物线上的等腰直角三角形,则的斜边长为_____20(自己做的)_______.9.如图,已知 A 、B 是线段MN 上的两点,MN4,MA1,MB1.以A 为中心顺 时针旋转点M ,以B 为中心逆时针旋转点N ,使MN 两点重合成一点C ,构成△ABC ,设AB x.(1)则x 的取值范围是____1<x<2_____;(2)△ABC 的最大面积是__22_______. C10.如图,将二次函数2714y x ⎛⎫=-- ⎪⎝⎭的图像向上平移m 个单位得到二次函数2y 的图像,且与二次函数()2124y x =+-的图像相交于A ,过A 作x 轴的平行线分别交1y ,2y 于点B , C ,当12AC BA =时, m 的值是______1643____.11.如图(1),在平面直角坐标系中,点A(0,-6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=44直角边CD在y 如图1,在平面直角坐标系中,点A(0,-6),点B(6,0).RT△CDE,∠CDE=90°,CD=4,DE=3轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.12.如图1,等腰Rt△ABC和等腰Rt△DEF中,∠BCA=∠FDE=90°,AB=4,EF=8.点A、C、D、E在一条直线上,等腰Rt△DEF静止不动,初始时刻,C与D重合,之后等腰Rt△ABC从C出发,沿射线CE方向以每秒1个单位长度的速度匀速运动,当A点与E点重合时,停止运动.设运动时间为t秒(t≥0).(1)直接写出线段AC、DE的长度;(2)在等腰Rt△ABC的运动过程中,设等腰Rt△ABC和等腰Rt△DEF重叠部分的面积为S,请直接写出S与t的函数关系式和相应的自变量t的取值范围;(3)在整个运动过程中,当线段AB与线段EF相交时,设交点为点M,点O为线段CE的中点;是否存在这样的t,使点E、O、M三点构成的三角形是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.(课堂精粹)在直角坐标系中,已知三角形三个顶点的坐标,如果三角形的三条边中有一条边与坐标轴平行,可以直接运用三角形面积公式求解三角形面积.如果三角形的三条边与坐标轴都不平行,则通常有以下方法:ED CBAF ED A BC D FEDCBAh45︒D CBA1.如图,过三角形的某个顶点作与x 轴或y 轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A B S S S AD y y S S CE x x ∆∆∆∆∆=+=⋅-=+=⋅-其中D ,E 两点坐标可以通过BC 或AB 的直线方程以及A 或C 点坐标得到.2.如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBF S S S S S ∆∆∆∆=---.所涉及的各块面积都可以通过已知点之间的坐标差直接求得. 3.如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()111222ABC ADEB CFEB ADFC A B A B B C B c C A C A S S S S x x y y x x y y x x y y ∆=-++=-++-++-+4. 如图,作三角形的高,运用三角形的面积公式求解四边形的面积.该方法不常用,如果三角形的一条边与0x y ±=平行,则可以快速求解.专题导入(画竹必先成竹于胸!)1.已知二次函数)0(2≠++=acbxaxy的图像过点E(2,3),对称轴为x=1,它的图像与x轴交于两点A10,)0(),0,(22212121=+xxxxxBx<且。
二次函数解析式与交点题型总结
抛物线解析式1、已知二次函数图象的顶点是(-1,2),且过点(0,23),(1)求二次函数的表达式,并画出图象;(2)求证:对任意实数m ,点M (2,m m -)都不在这个二次函数的图象上。
)都不在这个二次函数的图象上。
2、已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 3、已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式;(2)求该抛物线的顶点坐标. 4、如图,在平面直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是,则这条抛物线的函数解析式是 .5、对称轴平行于y 轴的抛物线与y 轴交于点(轴交于点(00,-2-2)),且x=1时,时,y=3y=3y=3;;x=-1时y=1y=1,求此,求此抛物线的关系式抛物线的关系式. .6、已知抛物线c bx ax y ++=2与抛物线732+--=x x y 的形状相同,顶点在直线1=x 上,且顶点到x 轴的距离为5,则此抛物线的解析式为,则此抛物线的解析式为 。
7、形状与抛物线22--=x y 相同,对称轴是2-=x ,且过点(0,3)的抛物线是()的抛物线是( )A 、342++=x x yB 、342+--=x x yC 、342++-=x x y D 、342++=x x y 或342+--=x x y8、已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为,则该二次函数的解析式为9、对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 .10、已抛物线过点A (-1,0)和B (3,0),与y 轴交于点C ,且BC =23,则这条抛物线的解析式为物线的解析式为。
二次函数线段及交点问题
二次函数线段及交点问题专题八:二次函数之线段及交点问题求线段长度例题1 :在平面直角坐标系中,抛物线y=?12x2+52x?2与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
(1)如图1,连接AC、BC,求△ABC的面积。
(2)如图2:①过点C作CR∥x轴交抛物线于点R,求点R的坐标;②点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P坐标。
(3)如图3,在(2)的条件下,点F在AP上,过点P 作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF= ?4√2a,连接KB并延长交抛物线于点Q,求PQ的长。
练习1 . 如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x 轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d 与t之间的函数关系式;(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.x2+bx+c与x轴交于A(﹣练习2 . 如图,在平面直角坐标系中,已知抛物线y= 321,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD 是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为5.求点H到OM'的距离d的值.3求线段之间关系例题1 :已知直线y=k x+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,说明线段DE和CO的数量关系。
二次函数为背景的动态问题
(6,0)
(2)点E从点A出发,沿x轴向点B运动
(点E与点A,B不重合),过点E作直线
l平行于BC,交AC于点D.设AE的长为
m,△CDE的面积为S,求S关于m的
(0,-9)
函数表达式,并写出△CDE面积的最
大值.
(备用)探究2 二次函数与几何图形综0,2), B(-2,0),过点B和线段OA的中点C作直线BC,以线 段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为__(__-1_,_-_3)_,点E的坐标为_(_-_3_,_2_)__;
(2)若抛物线y=ax2+bx+c(a≠0)经过A,D,E三点,
求该抛物线的函数表达式;
y
1 2
x2
-
3 2
x
2
(3)若正方形和抛物线均以每秒 5 个单位长度的速度沿射线
BC同时向上平移,直至正方形的顶点E落在y轴上时, 正方形和抛物线均停止运动.
解题方法点析
解此类问题关键在于通过三角形相似、三角形面积公 式以及面积转化等方法求出所求图形的面积表达式, 然后根据函数性质求最值.
练一练:
例1 如图抛物线y= 1 x2- 3 x-9 与x轴交于A,B两 22
点,与y轴交于点C,连结BC,AC.
(1)求AB和OC的长;AB=9,
OC=9
(-3,0) m
二次函数为背景的动态问题
以函数为背景的动态问题是近年来中考的 一个热点问题,动态包括点动和线动两大 类,解这类题目要“以静制动”,即把动 态问题变为静态问题来解.
探究1 动态下的面积最值问题
例题1 如图,在平面直角坐标系中,抛物线 y=ax2+bx-3(a≠0)与x轴交于A(-2,0), B(4,0)两点,与y轴交于点C. (1)求抛物线的函数表达式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{ { 解:依题意得 9a+ 3b= 0 解得 16a+ 4b= 4
a= 1 b= -3
∴抛物线的解析式为 y = x2 -3x
∵B(4,4) ∴直线OB的解析式为 y = x
设直线l的解析式为 y = x -m 由 x2 - 3x = x -m 得 x2 - 4x+m = 0
若直线l与抛物线只有一个公共点D,则有
重点:运用二次函数的知识解决动态交点问题 难点:动态图形的观察与分析
二次函数综合之
五岭中学 卫勇勤
第一关
例1:如图,已知抛物线 y = ax2 + bx 经过点A(3,0),B(4,4)
两点,将直线OB向下平移m个单位长度得到直线l. (1)若直线l与抛物线只有一个公共点D,求m的值及点D的坐标。
课件说明
分段函数与动态交点问题,是二次函数的几何应用的 一个难点。本课件利用ppt动画的展示和几何画板的动态 演示,让学生直观感受图形的运动变化,从而很好的理解 了动态交点数综合之分段函数与动态交点问题
目标:1.进一步巩固二次函数的图像性质 2.了解分段函数及图像的画法 3.会运用二次函数的知识解决动态交点问题 4.培养综合分析问题的能力、动态观察分析能力、 画图能力及分类讨论的意识
第四关
第五关
D=(-4)2-4m = 0
∴m=4, ∴y=x
∴ D(2,-2)
例1:如图,已知抛物线 y = ax2 + b 经过点A(3,0),B(4,4)
两点,将直线OB向下平移m个单位长度得到直线l. (2)若直线l与抛物线有且只有两个公共点,直 接写出m的取值范围.
解: 0≤m<4
第二关
第三关