山西省太原市2018_2019学年高一数学上学期期末考试试题
山西省太原市2018-2019学年九年级上学期数学期中考试试卷及参考答案
山西省太原市2018-2019学年九年级上学期数学期中考试试卷一、选择题 1. 若= =2(b+d≠0),则的值为( )A . 1B . 2C .D . 42. 将方程(x+1)(2x-3)=1化成“ax +bx+c=0”的形式,当a=2时,则b ,c 的值分别为( )A ., B ., C ., D . ,3. 矩形、菱形、正方形都具有的性质是( )A . 对角线相等B . 对角线互相平分C . 对角线互相垂直D . 对角线平分对角4. 如图,一组互相平行的直线a ,b ,c 分别与直线l , 1交于点A ,B ,C ,D ,E ,F ,直线1 , l 交于点O ,则下列各式不正确的是( )A .B .C .D .5. 一元二次方程x +6x+9=0的根的情况是( )A . 有两个相等的实数根B . 有两个不相等的实数偎C .只有一个实数根 D . 没有实数根6. 小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为( )A .B .C .D . 7. 用配方法解方程x -8x+5=0,将其化为(x+a )=b 的形式,正确的是( )A .B .C .D .8. 如图,△ABC 中,点P 是AB 边上的一点,过点P 作PD ∥BC ,PE ∥AC ,分别交AC ,BC于点D ,E ,连按CP .若四边形CDPE 是菱形,则线段CP 应满足的条件是( ) A . CP 平分 B . C . CP 是AB 边上的中线 D .9. 为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程( )A .B .C .D . 2121222210. 如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∠ABC 和∠BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:①EB ∥CF ,CE ∥BF ;②BE=CE ,BE=BF ;③BE ∥CF ,CE ⊥BE ;④BE=CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A . 1个B . 2个C . 3个D . 4个二、填空题11. 一元二次方程x +3x=0的解是________.12. 经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为________.13. 如图,正方形ABCD 中,点E 是对角线BD 上的一点,BE=BC ,过点E 作EF ⊥AB ,EG ⊥BC ,垂足分别为点F ,G ,则正方形FBGE 与正方形ABCD 的相似比为________.14. 如图,正方形ABCD 中,AB=2,对角线AC ,BD 相交于点O ,将△OBC 绕点B 逆时针旋转得到△O′BC′,当射线O′C′经过点D 时,线段DC′的长为________.15. 如图,在菱形ABCD 中,AB=4,AE ⊥BC 于点E ,点F ,G 分别是AB ,AD 的中点,连接EF ,FG ,若∠EFG=90°,则FG 的长为________.三、计算题16. 解下列方程:(1) x -6x+3=0;(2) 3x (x-2)=2(x-2).17. 如图,矩形ABCD 中,AB=4,点E ,F 分别在AD ,BC 边上,且EF ⊥BC ,若矩形ABFE ∽矩形DEFC,且相似比为1:2,求AD 的长.22景点介绍,求甲、乙两人中恰好有一人介绍,到2018年“早黑宝”的种植面积达到EFB的边长.22. 已知:如图,菱形ABCD8 .2. 3. 4. 5. 6. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
太原市2018-2019学年第一学期九年级期末考试数学试卷
太原市2018~2019学年第一学期九年级期末考试数 学 试 卷说明:本试卷为闭卷笔答,不允许携带计算器说明:本试卷为闭卷笔答,不允许携带计算器..答题时间90分钟,满分100分.一、选择题一、选择题(本大题共(本大题共10个小题,每小题3分,共30分)下列每个小题给出的四个选项中,只有一项符合题目要求,请选出并填入下表相应的位置中,只有一项符合题目要求,请选出并填入下表相应的位置. . 题号 1 2 3 4 5 6 7 8 9 10 答案1.1.一元二次方程一元二次方程240x -=的解为A.124,4x x ==-B.122,2x x ==-C.120,4x x ==D.120,4x x ==- 2.2.下列反比例函数中,图象位于第二、四象限的是下列反比例函数中,图象位于第二、四象限的是A.2y x =B.0.2y x =C.2y x =D.25y x-=3. 有两张印有太原市创建全国文明城市卡通形象有两张印有太原市创建全国文明城市卡通形象“双双”“双双”和“塔塔”的卡片(除图案外完全相同).现将两张卡片背面朝上放置,搅匀后甲先从中随机抽取一张,记下图案放回,搅匀后乙再从中随机抽取一张,则甲、乙二人抽到的卡片图案恰好相同的概率是A.12 B.13 C.14D.344.4.如图,正方形如图,正方形ABCD 中,点E 是对角线AC 上的一点,且AE=AB AE=AB,连接,连接BE BE,,DE DE,则∠,则∠CDE 的度数为题号 一 二 三总分 16 17 18 19 20 21 22 23 得分A.20A.20°°B.22.5B.22.5°°C.25C.25°°D.30D.30°° 5.5.应县木塔是中国现存最高最古的一座木构塔式建筑,应县木塔是中国现存最高最古的一座木构塔式建筑,应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,主要借助榫卯将木构件连接起来,主要借助榫卯将木构件连接起来,构构件的凸出部分叫榫头,凹进部分叫卯眼。
2019-2020学年山西省太原市第五中学高一上学期期末考试化学试题(解析版)
山西省太原市第五中学2019-2020学年高一上学期期末考试试题1. 山西人民从古代到现代,一直都在创造着辉煌。
下列山西生产或制造的物品中,其主要成分不属于合金的是( )A. 太钢手撕钢B. 西周青铜鸟尊C. 太钢圆珠笔头D. 西周玉鹿 『答案』D『解析』『详解』A .钢是铁的合金,主要成分是铁,含有碳等杂质,故A 不选;B .青铜是铜和锌的合金,故B 不选;C .太钢圆珠笔头为铁的合金,故C 不选;D .玉鹿为西周时期的玉器,主要成分是二氧化硅,其主要成分不属于合金,故D 选; 故选:D 。
2. 下列气体与酸雨的形成无关的是( )A. NOB. 2SOC. 2COD. 2NO 『答案』C『解析』『分析』正常雨水的pH 约为5.6,酸雨是指pH 小于5.6的雨水;酸雨主要由化石燃料燃烧产生的二氧化硫、氮氧化物等酸性气体,经过复杂的大气化学反应,被雨水吸收溶解而成形成酸雨,据此分析解答。
『详解』A .NO 在空气中极易被氧化为二氧化氮,能被雨水吸收溶解而形成硝酸型酸雨,故A 与酸雨的形成有关;B .2SO 是形成酸雨的主要气体之一,可形成硫酸型酸雨,故B 与酸雨的形成有关;C .2CO 是造成温室效应的主要气体,不能形成酸雨,故C 与酸雨的形成无关;D .2NO 是形成酸雨的主要气体之一,可形成硝酸型酸雨,故D 与酸雨的形成有关; 答案选C 。
3. 存放食品和药品的包装盒中常放有一袋半透明的球形颗粒,该颗粒的主要作用是保证食品和药品的干燥,其成分可能是( )A. 活性炭B. 氯化钠C. 硅胶D. 小苏打 『答案』C『解析』『详解』A. 活性炭不能做干燥剂,故A 错误;B. 氯化钠不是干燥剂,故B 错误;C. 硅胶是干燥剂,能吸水,且无毒,故C 正确;D. 小苏打不能做干燥剂,故D 错误;答案选C4. 下列气体中既能用NaOH 固体干燥,又能用浓硫酸干燥的是( )A. HClB. 2NC. SO 2D. 3NH『答案』B『解析』『详解』A .HCl 与NaOH 发生反应,不能用氢氧化钠固体干燥,故A 错误; B .N 2不与氢氧化钠和浓硫酸反应,既能用NaOH 固体干燥,又能用浓硫酸干燥,故B 正确;C .SO 2与氢氧化钠反应,不能用NaOH 固体干燥,故C 错误;D .NH 3与浓硫酸反应,不能用浓硫酸干燥,故D 错误;故选:B 。
山西省太原市2018-2019学年高二上学期期末考试数学(文)试题附答案解析
山西省太原市2018-2019学年高二上学期期末考试数学(文)试题一、选择题(本大题共12小题)1.双曲线的实轴长为()A. 2B. 4C.D.【答案】D【解析】【分析】根据题意,由双曲线的方程求出a的值,即可得双曲线与x轴的交点,由实轴的定义计算可得答案.【详解】根据题意,双曲线,其中,,其焦点在x轴上,则该双曲线与x轴的交点为与,则实轴长;故选:D.【点睛】本题考查双曲线的标准方程以及双曲线实轴的定义,属于基础题.2.命题:“,”的否定是()A. ,B. ,C. ,D. ,【答案】C【解析】因为的否定是所以命题:“”的否定是,选C3.曲线在处的切线的斜率等于()A. eB.C. 1D. 2【答案】D【解析】【分析】求函数的导数,结合函数导数的几何意义求出对应的导数即可.【详解】函数的导数为,则在处的导数,即切线斜率,故选:D.【点睛】本题主要考查导数的几何意义,求出函数的导数是解决本题的关键.4.设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:因为,所以“l<x<2”是“l<x<3”的充分而不必要条件,选A.考点:充要关系5.抛物线的焦点到准线的距离为()A. B. 1 C. 2 D. 4【答案】C【解析】试题分析:抛物线x2=4y中,焦点为,准线为,焦点到准线的距离为2考点:抛物线方程及性质6.对任意实数,则方程所表示的曲线不可能是()A. 椭圆B. 双曲线C. 抛物线D. 圆【答案】C【解析】思路分析:用Ax2+By2=c所表示的圆锥曲线,对于k=0,1及k>0且k≠1,或k<0,分别讨论可知:方程x2+ky2=1不可能表示抛物线7.函数的单调递减区间是()A. B.C. ,D.【答案】D【解析】【分析】求导,令导数小于零,解此不等式即可求得函数的单调递减区间.【详解】令解得,函数的单调递减区间是.故选:D.【点睛】此题是个基础题考查学生利用导数研究函数的单调性.8.已知命题“,”为真命题,则实数a的取值范围是()A. B. C. D.【答案】D【解析】【分析】命题“,”为真命题等价于在上有解,构造函数求最大值代入即可.【详解】命题“,”为真命题等价于在上有解,令,,则等价于,,故选:D.【点睛】本题考查了存在量词和特称命题,属中档题.9.函数的图象大致是()A. B.C. D.【答案】A【解析】【分析】求函数的导数,研究函数的单调性和极值,进行判断即可.【详解】函数的定义域为,函数的导数,由得得或舍,此时函数为增函数,由得得,此时,函数为减函数,即当时,函数取得极小值,且极小值为,则对应的图象为A,故选:A.【点睛】本题主要考查函数图象的识别和判断,利用函数单调性和导数之间的关系,研究函数的单调性是解决本题的关键.10.若函数在区间单调递增,则k的取值范围是()A. B. C. D.【答案】B【解析】由函数在区间单调递增可得:在区间恒成立,,故11.已知双曲线C与椭圆E:有共同的焦点,它们的离心率之和为,则双曲线C的标准方程为()A. B. C. D.【答案】C【解析】【分析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案.【详解】由椭圆,得,,则,双曲线与椭圆的焦点坐标为,,椭圆的离心率为,则双曲线的离心率为.设双曲线的实半轴长为m,则,得,则虚半轴长,双曲线的方程是.故选:C.【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题.12.函数的定义域为R,对任意,,则的解集为()A. B. C. D.【答案】B【解析】【分析】构造函数,利用导数研究函数的单调性即可得到结论.【详解】设,则,对任意,,对任意,,即函数单调递增,,,函数单调递增,即为:由得,即的解集为,故选:B.【点睛】本题主要考查不等式的求解,利用条件构造函数,利用导数研究函数的单调性是解决本题的关键.二、填空题(本大题共4小题)13.椭圆的焦距是______【答案】6【解析】【分析】根据题意,由椭圆的标准方程分析a、b的值,结合椭圆的几何性质求出c的值,由椭圆焦距的定义分析可得答案.【详解】根据题意,椭圆中,,,则,则该椭圆的焦距;故答案为:6.【点睛】本题考查椭圆的标准方程和简单几何性质,注意求出c的值,属于基础题.14.命题“如果,那么且”的逆否命题是______.【答案】如果或,则【解析】【分析】由四种命题之间的关系,即可写出结果.【详解】命题“如果,那么且”的逆否命题是“如果或,则”.故答案为:如果或,则【点睛】本题主要考查四种命题之间的关系,熟记概念即可,属于基础题型.15.曲线在点处的切线方程为__________.【答案】y=2x–2【解析】分析:求导,可得斜率,进而得出切线的点斜式方程.详解:由,得则曲线在点处的切线的斜率为,则所求切线方程为,即.点睛:求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.16.已知双曲线E:的右顶点为A,抛物线C:的焦点为若在E的渐近线上存在点P,使得,则双曲线E的离心率的取值范围是______.【答案】【解析】【分析】求出双曲线的右顶点和渐近线方程,抛物线的焦点坐标,可设,以及向量的垂直的条件:数量积为0,再由二次方程有实根的条件:判别式大于等于0,化简整理,结合离心率公式即可得到所求范围.【详解】双曲线E:的右顶点为,抛物线C:的焦点为,双曲线的渐近线方程为,可设,即有,,可得,即为,化为,由题意可得,即有,即,则.由,可得.故答案为:【点睛】对于双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).三、解答题(本大题共7小题)17.已知命题p:曲线与x轴相交于不同的两点;命题q:椭圆的焦点在y 轴上.判断命题p的否定的真假;若“p且q”是假命题,“p或q“是真命题,求实数m的取值范围.【答案】(1)为假;(2).【解析】【分析】(1)根据判别式显然成立,即可判断出结果;(2)先求出为真时,实数m的取值范围,再由“且”是假命题,“或“是真命题,判断出、的真假,进而可得出结果.【详解】(1)由可得显然成立,故命题为真,为假;(2)由已知得,为真时,,所以为假时,或因为“且”是假命题,“或“是真命题,由(1)知为真,所以真假,所以【点睛】本题主要考查复合命题,由命题的真假求参数,属于基础题型.18.已知抛物线C:经过点.求抛物线C的方程;若A,B为抛物线C上不同的两点,且AB的中点坐标为,求直线AB的方程.【答案】(1);(2).【解析】【分析】(1)将点代入,即可求出结果;先设点坐标分别为,结合抛物线方程,作差求出直线AB的斜率,进而可求出结果. 【详解】(1)由题知抛物线经过点代入,解得,故抛物线方程为;(2)设点坐标分别为,由为抛物线上的不同两点,故有,由得,整理得,又的中点坐标为,则,代入得,直线过点,直线的方程为,即. 【点睛】本题主要考查抛物线方程,以及中点弦的问题,求中点弦所在直线方程,常用点差法结合中点坐标求出斜率,进而可得出结果.19.若是函数的极值点.求a的值;若时,成立,求的最大值.【答案】(1)(2)4【解析】【分析】求解导函数,结合导函数与极值的关系求解实数a的值即可;由题意首先讨论函数的单调性,然后结合函数在关键点处的函数值确定实数a的取值范围即可.【详解】,由已知,得,经检验当时,满足题意,故.由可知,,当时,,递增;当时,,递减;当时,,递增;因此,极大值为,极小值为,又由得或,由得或,故的最大值为4.【点睛】这个题目考查了导数在研究函数的极值和单调性中的应用,极值点即导函数的零点,但是必须是变号零点,即在零点两侧正负相反;极值即将极值点代入原函数取得的函数值,注意分清楚这些概念,再者对函数求导后如果出现二次,则极值点就是导函数的两个根,可以结合韦达定理应用解答。
太原市 2018—2019 学年第一学期九年级期末考试数学
太原市2018~2019学年第一学期九年级期末考试数 学 试 卷说明:本试卷为闭卷笔答,不允许携带计算器.答题时间90分钟,满分100分.一、选择题(本大题共10个小题,每小题3分,共30分)下列每个小题给出的四个选项中,只有一项符合题目要求,请选出并填入下表相应的位置. 1.一元二次方程240x -=的解为A.124,4x x ==-B.122,2x x ==-C.120,4x x ==D.120,4x x ==- 【答案】B【考点】解一元二次方程【解析】240x -=,化简得24x =,解得122,2x x ==-2.下列反比例函数中,图象位于第二、四象限的是 A.2y x =B.0.2y x =C.y x =D.25y x-=【答案】D【考点】反比例函数图象的性质【解析】∵反比例函数的图象位于第二、四象限 ∴k<0,排除A 、B 、C ,选D3. 有两张印有太原市创建全国文明城市卡通形象“双双”和“塔塔”的卡片(除图案外完全相同).现将两张卡片背面朝上放置,搅匀后甲先从中随机抽取一张,记下图案放回,搅匀后乙再从中随机抽取一张,则甲、乙二人抽到的卡片图案恰好相同的概率是A.12 B.13 C.14 D.34【答案】A【考点】用表格或树状图法求概率 【解析】由题意得:同卡片的可能性为2种,故概率为12P4.如图,正方形ABCD 中,点E 是对角线AC 上的一点,且AE=AB ,连接BE ,DE ,则∠CDE 的度数为A.20°B.22.5°C.25°D.30° 【答案】B【考点】正方形的性质、等腰三角形的性质【解析】 ∵四边形ABCD 是正方形,∴AB=AD ,∠CAD=45°,又∵AE=AB ,∴AE=AD ,∴∠ADE=∠AED=67.5°,∴∠CDE=90°-67.5°=22.5°5.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
山西省太原市2018-2019学年高二上学期期中考试数学试卷(含精品解析)
2018-2019学年山西省太原市高二(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1. 在空间直角坐标系Oxyz 中,点A (1,2,3)关于yOz 平面对称的点的坐标为( )A. (−1,2,3)B. (1,−2,3)C. (1,2,−3)D. (−1,−2,−3) 2. 由下列主体建筑物抽象得出的空间几何体中为旋转体的是( )A.B.C.D.3. 已知A (0,1),B (0,-1),则直线AB 的倾斜角为( )A. 0∘B. 90∘C. 180∘D. 不存在 4. 下列四面体中,直线EF 与MN 可能平行的是( )A.B.C.D.5. 已知点A (2,3)在直线11:2x +ay -1=0上,若l 2∥l 1,则直线l 2的斜率为( )A. 2B. −2C. 12D. −126. 设a ,b ,c 为三条不同的直线,α,β,γ为三个不同的平面,则下列纳论成立的是( )A. 若a ⊥b 且b ⊥c ,则a//cB. 若α⊥β且β⊥γ,则α//γC. 若a ⊥α且a//b ,则b ⊥αD. 若α⊥β且a//α,则a ⊥β7. 已知圆C 的一条直径的端点坐标分别是(4,1)和(-2,3),则圆C 的方程是( )A. (x +1)2+(y +2)2=10B. (x −1)2+(y −2)2=40C. (x −1)2+(y −2)2=10D. (x +1)2+(y +2)2=408. 一个长方体由同一顶点出发的三条棱的长度分别为2,2,3,则其外接球的表面积为( )A. 68πB. 17πC. 28πD. 7π9. 已知x ,y 满足不等式组{x −y +1≥02x −y −1≤0x +y +1≥0,则z =5x +2y 的最大值为( )A. 12B. 16C. 18D. 2010. 直线ax +y +a =0与直线x +ay +a =0在同一坐标系中的图象可能是( )A. B.C. D.11.如图,在正方体ABCD-A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A. ①③B. ②④C. ①②④D. ①②③12.一条光线从点P(-2,4)射出,经直线x-y+2=0反射后与圆x2+y2+4x+3=0相切,则反射光线所在直线的方程是()A. x+√15y−2=0B. √15x+y−2=0C. x−√15y−2=0 D. √15x−y−2=0二、填空题(本大题共4小题,共16.0分)13.已知点A(3,-3),B(0,2),则线段AB的中点坐标是______.14.已知直线l1:x-2y=1,l2:mx+(3-m)y+1.若l1⊥l2,则实数m=______.15.某三棱锥的三视图如图所示,图中三个三角形均为直角三角形,则x2+y2=______.16.△ABC中,∠C=90°,∠A=60°,AB=2,M为AB中点,将△BMC沿CM折叠,当平面BMC⊥平面AMC时,A,B两点之间的距离为______.三、解答题(本大题共7小题,共68.0分)17.已知△ABC的三个顶点的坐标是A(1,1),B(2,3),C(3,-2).(1)求BC边所在直线的方程;(2)求△ABC的面积.18.已知正方体ABCD-A1B1C1D1.(1)求证:AD1∥平面C1BD;(2)求证:AD1⊥平面A1DC.19.已知圆C的方程为x2+y2-4tx-2ty+5t2-4=0(t>0).(1)设O为坐标原点求直线OC的方程;(2)设直线y=x+1与圆C交于A,B两点,若|AB|=2√2,求实数t的值.20.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,且AD=2AB=√3PA=2,AE⊥PD,垂足为E.(1)求PD与平面ABCD所成角的大小;(2)求三棱锥P-ABE的休积.21.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC,AD=DC,E为棱PC上不与点C重合的点.(1)求证:平面BED⊥平而PAC;(2)若PA=AC=2,BD=4√3,且二面角E-BD-C的平面角为45°,求三棱锥P-BED3的体积.22.已知圆C1:(x-1)2+(y+5)2=50,圆C2:(x+1)2+(y+1)2=10.(1)证明圆C1与圆C2相交;(2)若圆C3经过圆C1与圆C2的交点以及坐标原点,求圆C3的方程.23.已知圆C1:x2+y2+2x-4y+1=0,圆C2:x2+y2-4x-5=0.(1)试判断圆C1与圆C2是否相交,若相交,求两圆公共弦所在直线的方程,若不相交,说明理由;(2)若直线y=kx+1与圆C1交于A,B两点,且OA⊥OB,求实数k的值.答案和解析1.【答案】A【解析】解:在空间直角坐标系Oxyz中,点A(1,2,3)关于yOz平面对称的点的坐标为(-1,2,3).故选:A.根据关于yOz平面对称,x值变为相反数,其它不变这一结论直接写结论即可.本题考查空间向量的坐标的概念,考查空间点的对称点的坐标的求法,属于基础题.2.【答案】B【解析】解:在A中,主体建筑物抽象得出的空间几何体不为旋转体,故A错误;在B中,主体建筑物抽象得出的空间几何体为旋转体,故B正确;在C中,主体建筑物抽象得出的空间几何体不为旋转体,故C错误;在D中,主体建筑物抽象得出的空间几何体不为旋转体,故D错误.故选:B.利用旋转体的定义、性质直接求解.本题考查旋转体的判断,考查旋转体的定义及性质等基础知识,考查运算求解能力,是基础题.3.【答案】B【解析】解:∵直线经过A(0,1),B(0,-1)两点,∴直线AB的斜率不存在,∴直线AB的倾斜角90°.故选:B.由直线经过A(0,1),B(0,-1)两点,直线AB的斜率不存在,从而能求出直线AB的倾斜角.本题考查直线的倾斜角的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.【答案】C【解析】解:根据过平面内一点和平面外一点的直线,与平面内不过该点的直线异面,可判定A,B中EF,MN异面;D中,若EF∥MN,则过EF的平面与底面相交,EF就跟交线平行,则过点N有两条直线与EF 平行,不可能;故选:C.利用异面直线判定定理可确定A,B错误;利用线面平行的性质定理和过直线外一点有且仅有一条直线与已知直线平行,可判定D错误.此题考查了异面直线的判定方法,线面平行的性质等,难度不大.5.【答案】A【解析】解:∵点A(2,3)在直线11:2x+ay-1=0上,∴2×2+3a-1=0,解得a=-1,∴直线l1:2x-y-1=0,∵l2∥l1,∴直线l2的斜率k=2.故选:A.由点A(2,3)在直线11:2x+ay-1=0上,求出直线l1:2x-y-1=0,再由l2∥l1,能示出直线l2的斜率.本题考查直线的斜率的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.【答案】C【解析】解:由a,b,c为三条不同的直线,α,β,γ为三个不同的平面,知:在A中,若a⊥b且b⊥c,则a与c相交、平行或异面,故A错误;在B中,若α⊥β且β⊥γ,则α与γ相交或平行,故B错误;在C中,若a⊥α且a∥b,则由线面垂直的判定定理得b⊥α,故C正确;在D中,若α⊥β且a∥α,则a与β相交、平行或a⊂β,故D错误.故选:C.在A中,a与c相交、平行或异面;在B中,α与γ相交或平行;在C中,由线面垂直的判定定理得b⊥α;在D中,a与β相交、平行或a⊂β.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.【答案】C【解析】解:圆C的一条直径的端点坐标分别是(4,1)和(-2,3),故利用中点公式求得圆心为(1,2),半径为=,故圆的方程为(x-1)2+(y-2)2=10,故选:C.利用中点公式求得圆心坐标,再求出半径,可得圆C的方程.本题主要考查求圆的方程的方法,关键是求出圆心和半径,属于基础题.8.【答案】B【解析】解:长方体的外接球直径即为长方体的体对角线,由题意,体对角线长为:=,外接球的半径R=,=17π,故选:B.利用长方体的外接圆直径为体对角线,容易得解.此题考查了长方体的外接球面积,属容易题.9.【答案】B【解析】解:作出x,y满足不等式组对应的平面区域,由z=5x+2y,得y=x+z,平移直线y=x+z,由图象可知当直线y=x+z,经过点B时,直线y=x+z的截距最大,此时z最大.由,得A(2,3),此时z的最大值为z=5×2+2×3=16,故选:B.作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.【答案】D【解析】解:直线ax+y+a=0与直线x+ay+a=0不可能平行,故B错误;当a>0时,直线ax+y+a=0是减函数,直线x+ay+a=0是减函数,故A和C都错误;当a<0时,直线ax+y+a=0是增函数,与y轴交于正半轴,直线x+ay+a=0是增函数,与y轴交于负半轴,故A,B,C和D都错误.综上,正确答案是a>0,直线ax+y+a=0与直线x+ay+a=0在同一坐标系中的图象可能是D.故选:D.根据a的符号,分类讨论,利用数形结合思想和排除法能求出结果.本题考查函数图象的判断,考查直线的图象与性质等基础知识,考查运算求解能力,是基础题.11.【答案】D【解析】解:如图,在正方体ABCD-A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.由A1C⊥平面AB1D1,直线A1H与直线A1C重合,结合线线角和线面角的定义,可判断①②;由四边形A1ACC1为矩形,可判断③;由垂直于直线A1H的平面与平面AB1D1平行,可判断④.本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.12.【答案】A【解析】解:点P(-2,4)关于直线x-y+2=0的对称点为Q(2,0),设反射光线所在直线方程为:y=k(x-2),即kx-y-2k=0,依题意得:=1,解得:k=±,依题意舍去k=故反射线所在直线方程为:x+y-2=0,故选:A.根据光学性质,点P(-2,4)关于直线x-y+2=0对称的点在反射线所在直线上,设出所求直线方程,然后用点到直线的距离等于半径,求出斜率,舍去正值即可.本题考查了直线与圆的位置关系.属中档题.13.【答案】(32,−12)【解析】解:设A、B的中点为P(x0,y0),由A(3,-3)、B(0,2),再由中点坐标公式得:,.∴线段AB的中点坐标为().故答案为:().直接利用中点坐标公式求解.本题考查了中点坐标公式,是基础题.14.【答案】2【解析】解:∵直线l1:x-2y=1,l2:mx+(3-m)y+1.l1⊥l2,∴1×m+-2×(3-m)=0,解得m=2.故答案为:2.利用直线与直线垂直的性质直接求解.本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.15.【答案】34【解析】解:由三视图还原原几何体如图,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC是以∠ABC为直角的直角三角形.则x2+y2=x2+PA2+AD2=(PA2+AB2)+AD2=52+32=34.故答案为:34.由三视图还原原几何体,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC是以∠ABC为直角的直角三角形,然后利用勾股定理转化求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.16.【答案】√102【解析】解:取MC中点O,连结AO,BO,∵△ABC中,∠C=90°,∠A=60°,AB=2,M为AB中点,∴AC=BM=AM=CM=1,∴AO==,BO===,AO⊥MC,将△BMC沿CM折叠,当平面BMC⊥平面AMC时,AO⊥平面BMC,∴AO⊥BO,∴A,B两点之间的距离|AB|===.故答案为:.取MC中点O,连结AO,BO,推导出AC=BM=AM=CM=1,AO==,BO==,AO⊥MC,AO⊥平面BMC,AO⊥BO,由此能求出A,B两点之间的距离.本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(1)∵B(2,3),C(3,-2),∴边BC所在的直线方程为y−(−2)3−(−2)=x−32−3,即5x+y-13=0;(2)设B到AC的距离为d,则S△ABC=12|AC|⋅d,|AC|=√(3−1)2+(−2−1)2=√13,AC方程为:y−(−2)1−(−2)=x−31−3即:3x+2y-5=0∴d=|3×2+2×3−5|√32+22=7√13.∴S△ABC=12×√13×7√13=72.【解析】(1)直接由两点式直线方程公式求解即可;(2)求出B到AC的距离为d,再求AC的距离,然后利用面积公式求解即可.本题考查两点式直线方程公式,考查点到直线的距离公式的应用,考查计算能力,是中档题.18.【答案】证明:(1)∵正方体ABCD-A1B1C1D1.∴C1D1∥A1B1,C1D1=A1B1,又AB∥A1B1,AB=A1B1,∴C1D1∥AB,C1D1=AB,∴四边形C1D1AB是平行四边形,∴AD1∥C1B,∵C1B⊂平面C1BD,AD1⊄平面C1BD,∴AD1∥平面C1BD.(2)∵正方体ABCD-A1B1C1D1.∴A1D⊥AD1,CD⊥平面A1ADD1,∵AD1⊂平面A1ADD1,∴CD⊥AD1,又A1D∩CD=D,∴AD1⊥平面A1DC.【解析】(1)推导出四边形C1D1AB是平行四边形,从而AD1∥C1B,由此能证明AD1∥平面C1BD.(2)推导出A1D⊥AD1,CD⊥平面A1ADD1,CD⊥AD1,由此能证明AD1⊥平面A1DC.本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(1)圆C的方程为x2+y2-4tx-2ty+5t2-4=0(t>0),即(x-2t)2+(y-t)2=4,故圆心C(2t,t),故直线OC的方程为y=12x.(2)圆心C(2t,t)到直线y=x+1的距离为d=√2=√2,根据弦心距、弦长、半径之间的关系,可得(√2)2+(√2)2=4,∴t=1,或t=-3 (舍去),∴t=1.【解析】(1)把圆C的方程化为标准形式,可得C的坐标,从而求得直线OC的方程.(2)求出弦心距,再根据弦心距、弦长、半径之间的关系,求得t的值.本题主要考查圆的一般方程和标准方程,点到直线的距离公式,弦长公式的应用,属于中档题.20.【答案】解:(1)∵PA⊥平面ABCD,∴∠PDA为PD与平面ABCD所成角,且PA⊥AD,∵AD=2AB=√3PA=2,∴tan∠PDA=PAAD =√3 3,∴PD与平面ABCD所成角的大小为π6.(2)∵PA⊥平面ABCD,∴PA⊥AB,∵底面ABCD为矩形,∴AD⊥AB,∵PA∩AD=A,∴AB⊥平面PAD,∵AE⊥PD,∴S△PAE=12×PE×AE=√36,∴三棱锥P-ABE的体积为:V P-ABE=13×S△PAE×AB=√318.【解析】(1)由PA⊥平面ABCD,得∠PDA为PD与平面ABCD所成角,由此能求出PD 与平面ABCD所成角的大小.(2)推导出PA ⊥AB ,AD ⊥AB ,从而AB ⊥平面PAD ,由此能求出三棱锥P-ABE 的体积.本题考查线面角的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 21.【答案】证明:(1)∵AB =BC ,AD =DC ,∴AC ⊥BD ,∵PA ⊥平面ABCD ,∴PA ⊥BD , ∵PA ∩AC =A ,∴BD ⊥平面PAC ,∵BD ⊂平面BED ,∴平面BED ⊥平面PAC . 解:(2)设AC 与BD 交于点F ,连结EF , 由(1)知EF ⊥BD ,FC ⊥BD , ∴∠EFC =45°,由(1)知F 为AC 中点, ∴PA =AC =2,∵PA ⊥AC ,∴∠PCF =45°,∴EF =√22,PE =3√22,且EF ⊥PC ,又PC ⊥BD ,∴PC ⊥平面BED , ∴三棱锥P -BED 的体积: V P -BDE =13×S △BDE ×PE=13×12×BD ×EF ×PE =16×4√33×√22×3√22=√33.【解析】(1)推导出AC ⊥BD ,PA ⊥BD ,从而BD ⊥平面PAC ,由此能证明平面BED ⊥平面PAC .(2)设AC 与BD 交于点F ,连结EF ,三棱锥P-BED 的体积V P-BDE =,由此能求出结果.本题考查面面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.22.【答案】解:(1)证明:由已知得C 1:(1,-5),r 1=5√2,C 2(-1,-1),r 2=√10,所以r 1+r 2=5√2+√10,|r 1-r 2|=5√2-√10,|C 1C 2|=2√5, 因为|r 1-r 2|<|C 1C 2|<r 1+r 2,所以两圆相交;(2)解:设圆C 3:(x -1)2+(y +5)2-50+λ[(x +1)2+(y +1)2-10]=0 因为过原点,所以12+52-50+λ(12+12-10)=0,解得λ=-3,代入C 3:(x -1)2+(y +3)2-50+(-3)[(x +1)2+(y +1)2-10]=0, 化简得x 2+y 2+4x -2y =0,所以圆C 3:x 2+y 2+4x -2y =0. 【解析】(1)用圆心距与两圆半径的关系证明;(2)设出经过两圆交点的圆系方程,然后代入原点. 本题考查了圆与圆的位置关系及其判定.属中档题.23.【答案】解(1)由已知得C 1(-1,2),r 1=2,C 2(2,0),r 2=3,所以r 1+r 2=5,|r 1-r 2|=1,|C 1C 2|=√13,因为|r 1-r 2|<|C 1C 2|<r 1+r 2,所以圆C 1与圆C 2相交,将两个圆方程相减,得(x +1)2+(y -2)2-(x -2)2-y 2=-5, 化简得两圆公共弦所在直线方程为:3x -2y +3=0 (2)由{y =kx +1(x+1)2+(y−2)2=4,得(x +1)2+(kx -1)2=4,化简得(1+k 2)x 2+(2-2k )x -2=0且△=(2-2k )2+8(1+k 2)>0, 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=-2−2k1+k 2,x 1x 2=−21+k 2, 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即x 1x 2+(kx 1+1)(kx 2+1)=0, 化简得:(1+k 2)x 1x 2+k (x 1+x 2)+1= 所以-2-k(2−2k)1+k 2+1=0,化简得k 2-2k -1=0,解得k =1+√2或k =1-√2. 【解析】(1)用圆心距与两圆半径的关系判断两圆位置关系;用两圆方程相减消去二次项得相交弦所在直线方程;(2)联立直线与圆的方程,根据韦达定理以及两线垂直的向量关系列式可解得k .本题考查了圆与圆的位置关系及其判定.属中档题.。
_山西省太原市2018-2019学年九年级上学期数学期中考试试卷
=,答案第2页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.5.一元二次方程x 2+6x+9=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数偎C.只有一个实数根D.没有实数根6.小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为()A. B. C. D.7.用配方法解方程x 2-8x+5=0,将其化为(x+a )2=b 的形式,正确的是()A.B.C.D.8.如图,△ABC 中,点P 是AB 边上的一点,过点P 作PD ∥BC ,PE ∥AC ,分别交AC ,BC 于点D ,E ,连按CP .若四边形CDPE 是菱形,则线段CP 应满足的条件是()A. B.CP 是AB 边上的中线 C. D.CP 平分9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程()答案第4页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.如图,在菱形ABCD 中,AB=4,AE ⊥BC 于点E ,点F ,G 分别是AB ,AD 的中点,连接EF ,FG ,若∠EFG=90°,则FG 的长为.评卷人得分二、计算题(共1题)6.解下列方程:(1)x 2-6x+3=0;(2)3x (x-2)=2(x-2).评卷人得分三、解答题(共4题)7.如图,矩形ABCD 中,AB=4,点E ,F 分别在AD ,BC 边上,且EF ⊥BC ,若矩形ABFE ∽矩形DEFC ,且相似比为1:2,求AD 的长.8.已知,如图,矩形ABCD 中,AC 与BD 相交于点O ,BE ⊥AC 于E ,CF ⊥BD 于F .答案第6页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”售价为20元/千克时,每天能售出200千克,售价每降低1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1800元,则售价应降低多少元?12.已知:如图,菱形ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,且BE=BF=DH=DG .(1)求证:四边形EFGH 是矩形;(2)已知∠B=60°,AB=6.请从A ,B 两题中任选一题作答,我选择▲题.A 题:当点E 是AB 的中点时,矩形EFGH 的面积是.B 题:当BE=时,矩形EFGH 的面积是8.13.综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD 中,AB=4,点E 是AB 边上的一点,点G 是CE 的中点,将正方形纸片沿CE 所在直线折叠,点B 的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG ,B′G ,求证:四边形BEB′G 是菱形;答案第8页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………3.【答案】:【解释】:4.【答案】:【解释】:第9页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.【答案】:【解释】:6.【答案】:【解释】:答案第10页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………7.【答案】:【解释】:8.【答案】:【解释】:9.【答案】:第11页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:10.【答案】:【解释】:答案第12页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第13页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:答案第14页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:第15页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………答案第16页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:【答案】:【解释】:第17页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:答案第18页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:【解释】:第19页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:答案第20页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:第21页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:答案第22页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第23页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
高中数学-高一上学期期末调研测试数学试题 Word版含解析72
2018-2019学年高一上学期期末调研测试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.有一个容量为66的样本,数据的分组及各组的频数如下:,,,,根据样本的频数分布估计,大于或等于的数据约占A. B. C. D.【答案】C【解析】【分析】找到大于或等于的频数,除以总数即可.【详解】由题意知,大于或等于的数据共有:则约占:本题正确选项:【点睛】考查统计中频数与总数的关系,属于基础题.3.秦九韶算法是中国古代求多项式的值的优秀算法,若,当时,用秦九韶算法求A. 1B. 3C. 4D. 5【答案】C【解析】【分析】通过将多项式化成秦九韶算法的形式,代入可得.【详解】由题意得:则:本题正确选项:【点睛】本题考查秦九韶算法的基本形式,属于基础题.4.下列四组函数中,不表示同一函数的是A. 与B. 与C. 与D. 与【答案】D【解析】【分析】根据相同函数对定义域和解析式的要求,依次判断各个选项.【详解】相同函数要求:函数定义域相同,解析式相同三个选项均满足要求,因此是同一函数选项:定义域为;定义域为,因此不是同一函数本题正确选项:【点睛】本题考查相同函数的概念,关键在于明确相同函数要求定义域和解析式相同,从而可以判断结果.5.执行如图所示程序框图,当输入的x为2019时,输出的A. 28B. 10C. 4D. 2【答案】C【解析】【分析】的变化遵循以为公差递减的等差数列的变化规律,到时结束,得到,然后代入解析式,输出结果.【详解】时,每次赋值均为可看作是以为首项,为公差的等差数列当时输出,所以,即即:,本题正确选项:【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.6.函数的单调递增区间为A. B. C. D.【答案】C【解析】【分析】结合对数真数大于零,求出定义域;再求出在定义域内的单调递减区间,得到最终结果.【详解】或在定义域内单调递减根据复合函数单调性可知,只需单调递减即可结合定义域可得单调递增区间为:本题正确选项:【点睛】本题考查求解复合函数的单调区间,复合函数单调性遵循“同增异减”原则,易错点在于忽略了函数自身的定义域要求.7.在一不透明袋子中装着标号为1,2,3,4,5,6的六个质地、大小、颜色无差别小球,现从袋子中有放回地随机摸出两个小球,并记录标号,则两标号之和为9的概率是A. B. C. D.【答案】A【解析】【分析】确定所有可能的基本事件总数,再列出标号和为的所有基本事件,根据古典概型可求得概率. 【详解】有放回的摸出两个小球共有:种情况用表示两次取出的数字编号标号之和为有:,,,四种情况所以,概率本题正确选项:【点睛】本题考查古典概型的相关知识,对于基本事件个数较少的情况,往往采用列举法来求解,属于基础题.8.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是A. 336B. 510C. 1326D. 3603 【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.9.设,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】将化成对数的形式,然后根据真数相同,底数不同的对数的大小关系,得到结果.【详解】由题意得:又本题正确选项:【点睛】本题考查对数大小比较问题,关键在于将对数化为同底或者同真数的对数,然后利用对数函数图像来比较.10.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】试题分析:根据题意,A.错误,令定义域为,由:,所以是非奇非偶函数;B错误,令定义域为,由:即:,所以是偶函数;C.错误.令定义域为,由:,所以为非奇非偶函数;D.正确.令定义域为,由,即,所以为偶函数,正确.综上,答案为D.考点:1.函数的奇偶性;2.奇偶函数的定义域.11.已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于当时,取得两个最值本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.12.设,表示不超过实数的最大整数,则函数的值域是A. B. C. D.【答案】B【解析】【分析】根据不同的范围,求解出的值域,从而得到的值域,同理可得的值域,再根据取整运算得到可能的取值.【详解】由题意得:,①当时,则,此时,,,则②当时,,,,.③当时,则,此时,,,则综上所述:的值域为本题正确选项:【点睛】本题考查新定义运算的问题,解题关键在于能够明确新定义运算的本质,易错点在于忽略与的彼此取值影响,单纯的考虑与整体的值域,造成求解错误.二、填空题(本大题共4小题,共20.0分)13.函数的定义域是_______________【答案】【解析】由题要使函数有意义须满足14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于,则去看电影;若豆子到正方形中心的距离大于,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______豆子大小可忽略不计【答案】【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知,小明不在家写作业的概率为:本题正确结果:【点睛】本题考查几何概型中的面积型,属于基础题.15.若函数为偶函数,则______.【答案】1【解析】【分析】为定义域上的偶函数,所以利用特殊值求出的值.【详解】是定义在上的偶函数即解得:本题正确结果:【点睛】本题考查利用函数奇偶性求解参数值,对于定义域明确的函数,常常采用赋值法来进行求解,相较于定义法,计算量要更小.16.已知函数,若存在实数a,b,c,满足,其中,则abc的取值范围是______.【答案】【解析】【分析】根据解析式,画出的图像,可知函数与每段的交点位置,由此可得,再求出的范围后,可确定整体的取值范围.【详解】由解析式可知图像如下图所示:由图像可知:又且时,可知即又本题正确结果:【点睛】本题考查函数图像及方程根的问题,关键在于能够通过函数图像得到的关系.三、解答题(本大题共6小题,共70.0分)17.设集合,不等式的解集为B.当时,求集合A,B;当时,求实数a的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2.【解析】【分析】(1)直接代入集合即可得,解不等式得;(2)分别讨论和两种情况,得到关于的不等式组,求得取值范围.【详解】(1)当时,(2)若,则有:①当,即,即时,符合题意,②当,即,即时,有解得:综合①②得:【点睛】本题考查了解二次不等式、集合间的包含关系及空集的定义,属基础题.易错点在于忽略了的情况.18.在平面直角坐标系中,记满足,的点形成区域A,若点的横、纵坐标均在集合2,3,4,中随机选择,求点落在区域A内的概率;若点在区域A中均匀出现,求方程有两个不同实数根的概率;【答案】(1);(2).【解析】【分析】(1)利用列举法确定基本事件,即可求点落在区域内的概率;(2)以面积为测度,求方程有两个实数根的概率.【详解】根据题意,点的横、纵坐标在集合中随机选择,共有个基本事件,并且是等可能的其中落在,的区域内有,,,,,,,,共个基本事件所以点落在区域内的概率为(2),表示如图的正方形区域,易得面积为若方程有两个不同实数根,即,解得为如图所示直线下方的阴影部分,其面积为则方程有两个不同实数根的概率【点睛】本题考查概率的计算,要明确基本事件可数时为古典概型,基本事件个数不可数时为几何概型,属于中档题.19.计算:;若a,b分别是方程的两个实根,求的值.【答案】(1);(2)12.【解析】【分析】(1)利用指数与对数运算性质即可得出;(2)根据题意,是方程的两个实根,由韦达定理得,,利用对数换底公式及其运算性质即可得出.【详解】(1)原式(2)根据题意,是方程的两个实根由韦达定理得,原式【点睛】本题考查了指数与对数运算性质、对数换底公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.20.下面给出了2010年亚洲某些国家的国民平均寿命单位:岁.国家平均寿命国家平均寿命国家平均寿命阿曼阿富汗59 巴基斯坦巴林阿联酋马来西亚朝鲜东帝汶孟加拉国韩国柬埔寨塞浦路斯老挝卡塔尔沙特阿拉伯蒙古科威特哈萨克斯坦缅甸菲律宾印度尼西亚日本黎巴嫩土库曼斯坦65吉尔吉斯斯泰国尼泊尔68坦乌兹别克斯约旦土耳其坦越南75 伊拉克也门中国以色列文莱伊朗74 新加坡叙利亚印度根据这40个国家的样本数据,得到如图所示的频率分布直方图,其中样本数据的分组区间为:,,,,,请根据上述所提供的数据,求出频率分布直方图中的a,b;请根据统计思想,利用中的频率分布直方图估计亚洲人民的平均寿命及国民寿命的中位数保留一位小数.【答案】(1),;(2)平均寿命71.8,中位数71.4.【解析】【分析】(1)根据表中数据,亚洲这个国家中,国民平均寿命在的频数是,频率是,由此能求出,同理可求;(2)由频率分布直方图能估计亚洲人民的平均寿命及国民寿命的中位数.【详解】(1)根据表中数据,亚洲这个国家中国民平均寿命在的频数是,频率是国民平均寿命在的频数是,频率是,计算得,由频率分布直方图可知,各个小矩形的面积各个区间内的频率转换为分数分别是:,,,,,以上所有样本国家的国民平均寿命约为:前三组频率和为中位数为根据统计思想,估计亚洲人民的平均寿命大约为岁,寿命的中位数约为岁【点睛】本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21.某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:年份年 1 2 3 4 5维护费万元Ⅰ求y关于t的线性回归方程;Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.参考公式:,【答案】(Ⅰ);(2)甲更有道理.【解析】【分析】(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.【详解】(Ⅰ),,,,,所以回归方程为(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:(万元)若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:(万元)所以甲更有道理【点睛】本题考查了求回归方程问题,考查函数求值,是一道常规题.22.已知,.求在上的最小值;若关于x的方程有正实数根,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)通过讨论的范围,结合二次函数的性质求出函数的单调区间,求出函数的最小值即可;(2)得到,令,问题转化为在有实根,求出的范围即可.【详解】(1)当时,在上单调递减故最小值当时,是关于的二次函数,对称轴为当时,,此时在上单调递减故最小值当时,对称轴当,即时,在单调递减,在单调递增故最小值当时,即时,在上单调递减故最小值综上所述:(2)由题意化简得令,则方程变形为,根据题意,原方程有正实数根即关于的一元二次方程有大于的实数根而方程在有实根令,在上的值域为故【点睛】本题考查了二次函数的性质,考查函数的单调性,最值问题,考查分类讨论思想,转化思想.关键是通过换元的方式将问题转化为二次函数在区间内有实根的问题,可以用二次函数成像处理,也可以利用分离变量的方式得到结果.。
山西省太原市第五中学2018-2019学年高一12月月考数学试题(解析版)
太原五中2018—2019学年度第一学期阶段性检测高一数学命题:廉海栋禹海清校对:薛亚云时间:2018.12第Ⅰ卷一.选择题:本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域为()A. B. C. D.【答案】B【解析】【分析】由分母中根式大于0,对数的真数大于0联立不等式组求解即可.【详解】由,解得1<x<4.∴函数f(x)定义域为{x|1<x<4}.故选:B.【点睛】本题考查了根式和对数函数的解析式求定义域的问题,属于基础题.2.下列幂函数中过点,(1,1)的偶函数是()A. B. C. D.【答案】B【解析】试题分析:四个选项中的函数,,均过点,函数不过点,所以排除C选项.函数定义域为,所以函数为非奇非偶函数;,为偶函数;,为奇函数.综上可知B正确.考点:函数的奇偶性.【方法点晴】本题主要考查的是函数奇偶性定义,属于容易题.判断函数奇偶性时应先求其定义域,若定义域不关于原点对称,则直接下结论此函数为非奇非偶函数;若定义域关于原点对称,再进一步验证若则此函数为偶函数,若则此函数为奇函数,若且则此函数为非奇非偶函数.3.如图是一个算法的流程图,若输入x的值为1,则输出的值为()A. 1B. 2C. 3D. 5【答案】A【解析】【分析】根据流程图所示的顺序,可知该程序的作用是计算变量f(x)并输出,根据x值可得.【详解】由程序框图知其功能是计算并输出分段函数f(x)的值.因为x=1,满足的条件,所以==1,故输出的值为1.故选:A.【点睛】本题考查根据流程图求程序的运行结果,解题的关键是从流程图中即要分析出计算的类型,又要分析出参与计算的数据,属于基础题.4.函数的零点所在区间为()A. B. C. D.【答案】C【解析】解:因为的零点所在区间为可以根据端点值的函数值异号,来判定选项为C.也可以用图像法来求解交点的大概位置,再估算。
5.下列式子中成立的是()A. B. C. 3.5 D.【答案】D【解析】试题分析:因为,所以,故A错;因为当时,为增函数,所以,,故B,C错;因为,,所以,故D正确,故选D.考点:函数的单调性.【方法点睛】(1)比较同底数的对数值大小时,考虑使用对数函数的单调性;(2)如果底数与真数都不相同时,经常采用放缩法或借助第三个量来比较大小(通常以1作为中间量);(3)也可利用函数图象及其相互位置关系来比较大小.6.函数在上最大值和最小值之和为,则的值为()A. B. C. 2 D. 4【答案】B【解析】由题意得当时,函数在上是增函数;当时,函数在上是减函数,则函数在上的最大值、最小值之和为,则,解得。
山西省太原市高一上学期数学期中考试试卷
山西省太原市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高一上·白城期中) 集合A={x|0≤x<3,x∈N}的真子集的个数是()A . 7B . 8C . 16D . 42. (2分) (2019高一上·汤原月考) 的值是()A . 1B .C .D .4. (2分) (2016高一下·攀枝花期中) 函数的定义域为()A . [﹣3,0]B . (﹣∞,﹣3]∪[0,+∞)C . [0,3]D . (﹣∞,0]∪[3,+∞)5. (2分) (2018高一上·牡丹江期中) 已知,则()A . 15B . 21C . 3D . 06. (2分) (2019高二下·平罗月考) 下列函数为同一函数的是()A . y=lg x2和y=2lg xB . y=x0和y=1C . y=和y=x+1D . y=x2-2x和y=t2-2t7. (2分)(2018·衡水模拟) 已知函数是定义在上的偶函数,且在区间上单调递增,记,,,则,,的大小关系为()A .B .C .D .8. (2分) (2016高一下·河源期末) 函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A . (,)B . (,)C . (,1)D . (1,2)9. (2分) (2019高三上·大同月考) 已知定义在上的可导函数,对于任意实数都有成立,且当时,都有成立,若,则实数的取值范围为()A .B .C .D .10. (2分)已知f(x)=a•2x+x2+bx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则a+b的取值范围是()A . [0,1)B . [﹣1,4]C . [0,4)D . [﹣1,3]11. (2分) (2019高一上·成都期中) 给出下列命题,其中正确的命题的个数()①函数图象恒在轴的下方;②将的图像经过先关于轴对称,再向右平移1个单位的变化后为的图像;③若函数的值域为,则实数的取值范围是;④函数的图像关于对称的函数解析式为A . 1B . 2C . 3D . 412. (2分) (2019高一上·河南期中) 若函数在上的最大值为4,则的取值范围为()A .B .C .D .二、填空题 (共5题;共9分)13. (1分)(2016·江苏) 已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=________.14. (1分)的结果为________.15. (1分) (2016高一上·东莞期末) 已知幂函数y=f(x)的图象经过点(,),则lg[f(2)]+lg[f (5)]=________.16. (1分)设f(x)是定义在R上的偶函数,∀x∈R,都有f(2﹣x)=f(2+x),且当x∈[0,2]时,f(x)=2x﹣2,若函数g(x)=f(x)﹣loga(x+1)(a>0,a≠1)在区间(﹣1,9)内恰有三个不同零点,则实数a的取值范围是________17. (5分)在一条笔直公路上有A,B两地,甲骑自行车从A地到B地,乙骑着摩托车从B地到A地,到达A地后立即按原路返回,如图是甲乙两人离A地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)直接写出y甲, y乙与x之间的函数关系式(不必写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(2)若两人之间的距离不超过5km时,能够用无线对讲机保持联系,求在乙返回过程中有多少分钟甲乙两人能够用无线对讲机保持联系;三、解答题 (共5题;共55分)18. (10分)(2019高一上·定远月考) 已知集合是函数的定义域,,且 .(1)求集合;(2)求实数的取值范围.19. (10分) (2016高三上·荆州模拟) 已知函数f(x)=|x﹣2|+|2x+a|,a∈R.(1)当a=1时,解不等式f(x)≥5;(2)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.20. (10分) (2016高三上·长宁期中) 如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f=f(x+a)=f(﹣x)成立,则称此函数具有“P(a)性质”;(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,试写出所有a的值;若不具有“P (a)性质”,请说明理由;(2)已知y=f(x)具有“P(0)性质”,当x≤0时,f(x)=(x+t)2,t∈R,求y=f(x)在[0,1]上的最大值;(3)设函数y=g(x)具有“P(±1)性质”,且当﹣≤x≤ 时,g(x)=|x|,求:当x∈R时,函数g(x)的解析式,若y=g(x)与y=mx(m∈R)交点个数为1001个,求m的值.21. (15分) (2015高二下·咸阳期中) 设复数Z=lg(m2﹣2m﹣2)+(m2+3m+2)i,试求m取何值时(1) Z是实数;(2) Z是纯虚数.22. (10分)(2017·山东) 在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为,焦距为2.(14分)(Ⅰ)求椭圆E的方程.(Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2 ,且看k1k2= ,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.参考答案一、单选题 (共12题;共24分)1-1、2-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共9分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共55分) 18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、。
2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)
2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。
山西省太原市2018-2019学年高二上学期期中考试数学试题(解析版)
山西省太原市2018-2019学年高二上学期期中考试数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
)1.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.【答案】A【解析】【分析】根据关于yOz平面对称,x值变为相反数,其它不变这一结论直接写结论即可.【详解】在空间直角坐标系Oxyz中,点A(1,2,3)关于yOz平面对称的点的坐标为(﹣1,2,3).故选:A.【点睛】本题考查空间向量的坐标的概念,考查空间点的对称点的坐标的求法,属于基础题.2.由下列主体建筑物抽象得出的空间几何体中为旋转体的是()A. B.C. D.【答案】B【解析】【分析】利用旋转体的定义、性质直接求解.【详解】在A中,主体建筑物抽象得出的空间几何体不为旋转体,故A错误;在B中,主体建筑物抽象得出的空间几何体为旋转体,故B正确;在C中,主体建筑物抽象得出的空间几何体不为旋转体,故C错误;在D中,主体建筑物抽象得出的空间几何体不为旋转体,故D错误.故选:B.【点睛】本题考查旋转体的判断,考查旋转体的定义及性质等基础知识,考查运算求解能力,是基础题.3.已知,则直线AB的倾斜角为()A. 0°B. 90°C. 180°D. 不存在【答案】B【解析】【分析】由直线经过A(0,1),B(0,﹣1)两点,直线AB的斜率不存在,从而能求出直线AB的倾斜角.【详解】∵直线经过A(0,1),B(0,﹣1)两点,∴直线AB的斜率不存在,∴直线AB的倾斜角90°.故选:B.【点睛】本题考查直线的倾斜角的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.下列四面体中,直线EF与MN可能平行的是()A. B.C. D.【答案】C【解析】【分析】利用异面直线判定定理可确定A,B错误;利用线面平行的性质定理和过直线外一点有且仅有一条直线与已知直线平行,可判定D错误.【详解】根据过平面内一点和平面外一点的直线,与平面内不过该点的直线异面,可判定A,B中EF,MN异面;D中,若EF∥MN,则过EF的平面与底面相交,EF就跟交线平行,则过点N有两条直线与EF平行,不可能;故选:C.【点睛】此题考查了异面直线的判定方法,线面平行的性质等,难度不大.5.已知点在直线上,若,则直线的斜率为()A. 2B. ﹣2C.D.【答案】A【解析】【分析】由点A(2,3)在直线11:2x+ay﹣1=0上,求出直线l1:2x﹣y﹣1=0,再由l2∥l1,能示出直线l2的斜率.【详解】∵点A(2,3)在直线11:2x+ay﹣1=0上,∴2×2+3a﹣1=0,解得a=﹣1,∴直线l1:2x﹣y﹣1=0,∵l2∥l1,∴直线l2的斜率k=2.故选:A.【点睛】本题考查直线的斜率的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.设为三条不同的直线,为三个不同的平面,则下列结论成立的是()A. 若且,则B. 若且,则C. 若且,则D. 若且,则【答案】C【解析】【分析】在A中,a与c相交、平行或异面;在B中,α与γ相交或平行;在C中,由线面垂直的判定定理得b⊥α;在D中,a与β相交、平行或a⊂β.【详解】由a,b,c为三条不同的直线,α,β,γ为三个不同的平面,知:在A中,若a⊥b且b⊥c,则a与c相交、平行或异面,故A错误;在B中,若α⊥β且β⊥γ,则α与γ相交或平行,故B错误;在C中,若a⊥α且a∥b,则由线面垂直的判定定理得b⊥α,故C正确;在D中,若α⊥β且a∥α,则a与β相交、平行或a⊂β,故D错误.故选:C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.已知圆C的一条直径的端点坐标分别是和,则圆C的方程是()A. B.C. D.【答案】C【解析】【分析】利用中点公式求得圆心坐标,再求出半径,可得圆C的方程.【详解】圆C的一条直径的端点坐标分别是(4,1)和(﹣2,3),故利用中点公式求得圆心为(1,2),半径为,故圆的方程为(x﹣1)2+(y﹣2)2=10,故选:C.【点睛】本题主要考查求圆的方程的方法,关键是求出圆心和半径,属于基础题.8.一个长方体由同一顶点出发的三条棱的长度分别为2,2,3,则其外接球的表面积为()A. B. C. D.【答案】B【解析】【分析】利用长方体的外接圆直径为体对角线,容易得解.【详解】长方体的外接球直径即为长方体的体对角线,由题意,体对角线长为:,外接球的半径R=,=17π,故选:B.【点睛】此题考查了长方体的外接球面积,属容易题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.9.已知满足不等式组,则的最大值为()A. 12B. 16C. 18D. 20【答案】B【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出x,y满足不等式组对应的平面区域,由z=5x+2y,得y=x+z,平移直线y=x+z,由图象可知当直线y=x+z,经过点B时,直线y=x+z的截距最大,此时z最大.由,得A(2,3),此时z的最大值为z=5×2+2×3=16,故选:B.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
山西省太原市2018-2019学年高一上学期期中考试数学试卷(带解析)
2018-2019学年山西省太原市高一(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】画数轴结合子集的概念即可得到答案.【详解】∵集合,,∴.故选:A.【点睛】本题考查集合间的基本关系.2.函数的定义域为()A. B. C. D.【答案】B【解析】【分析】根据二次根式的性质以及分母不为0,求出函数的定义域即可.【详解】要使函数有意义,只需x>0,故选:B.【点睛】本题考查了求函数的定义域问题,考查二次根式的性质.3.若集合,,则()A. B. C. D.【答案】C【解析】求出集合A和B,取两集合的交集即可.【详解】由集合A得:(x-5)(x+1)=0,解得:x=5或x=-1,∴集合A={-1,5},由集合B解得:x=1或x=-1,∴集合B={-1,1},则A∩B={-1}.故选:C.【点睛】本题考查集合的交集运算.4.已知函数,且,则()A. 4B. 2C.D.【答案】A【解析】【分析】利用函数解析式得log2a=2,即可得a的值.【详解】根据题意,f(a)=2,则log2a=2,解可得:a=4,故选:A.【点睛】本题考查函数值的计算,关键是掌握函数解析式的定义.5.已知集合,若B∪A=A,则满足该条件的集合的个数是()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】由题意得B⊆A,即可求出满足该条件的集合B的个数.【详解】∵B∪A=A,∴B⊆A,集合A={0,1},∴满足该条件的集合B的个数为:22=4.故选:D.【点睛】本题考查满足该条件的集合的个数的求法,考查并集、子集定义等基础知识.6.下列函数中,既是偶函数又在上是增函数的是()A. B. C. D.【解析】【分析】根据题意,依次分析选项中函数的单调性以及奇偶性,即可得答案.【详解】根据题意,依次分析选项:对于A,,函数为偶函数,由指函数的性质可知在上为减函数,不符合题意;对于B,f(-x)=-f(x),函数为奇函数,不符合题意;对于C,f(-x)=f(x),函数为偶函数,由对数函数的性质可知在(0,+∞)上是增函数,符合题意;对于D,定义域不关于原点对称,不具有奇偶性,不符合题意;故选:C.【点睛】本题考查函数的单调性、奇偶性和指对函数图像的性质.7.已知,,,则()A. B. C. D.【答案】C【解析】【分析】利用指数函数与对数函数的单调性即可得出.【详解】由指数函数的性质可知∈(0,1),>1,由对数函数的性质可知<0,则c<a<b.故选:C【点睛】本题考查了指数函数与对数函数的图像的性质.8.已知全集,集合和关系的韦恩图如图所示,则阴影部分所示集合中的元素共有()A. 3个B. 4个C. 5个D. 无穷多个【答案】B【解析】试题分析:因,故或,图中阴影部分表示的集合为,故该集合中有个元素.应选B.考点:补集交集的概念及运算.9.已知集合中有且只有一个元素,那么实数的取值集合是()A. B. C. D.【答案】B【解析】【分析】由题意分方程为一次方程和二次方程两种情况分别求解.【详解】由集合中有且只有一个元素,得a=0或,∴实数a的取值集合是{0, }故选:B.【点睛】本题考查实数的取值集合的求法,考查单元素集的性质等基础知识.10.已知函数,则函数的图象()A. 关于轴对称B. 关于轴对称C. 关于直线对称D. 关于原点对称【答案】D【解析】【分析】先根据 f(-x)=-f(x),可得f(x)为奇函数,故f(x)的图象关于原点对称.【详解】∵,∴=-=-f(x),∴f(x)为奇函数,故f(x)的图象关于原点对称,故选:D.【点睛】本题主要考查函数的奇偶性,奇函数图像关于原点对称,偶函数图像关于y轴对称.11.已知函数,若对任意的实数都存在,使得成立,则()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】分别讨论x>1和x≤1时,由函数的单调性可得f(x)的最大值为f(1)=2,由题意可得所求值.【详解】函数,可得x>1时,f(x)递减,可得f(x)∈(0,2);x≤1时,f(x)=递增,可得f(x)≤2,且x=1时,f(x)取得最大值2,由对任意的实数x都存在,使得成立,可得=1,故选:A.【点睛】本题考查分段函数的单调性和最值求法,考查运算能力和推理能力.12.已知函数的图象如图所示,则函数的图象可能是()A.B.C.D.【答案】B【解析】【分析】利用f(x)的图象可推出a<0,b>0,c<0,然后即可判断g(x)的图象.【详解】由f(x)的图象可知,f(0)>0,∴b>0,又由图知,得c<0,且x>c时,f(x)=<0,所以 a<0,故二次函数g(x)=ax2+bx-c的图象为B.故选:B.【点睛】本题考查了函数的图象的识别,经常从函数的奇偶性,单调性和特殊点的函数值来考虑.二、填空题:本大题共4小题,每小题3分,共12分,把答案填在题中横线上13.已知全集,集合,则_____.【答案】【解析】【分析】由补集的运算即可求出C U A.【详解】因为全集U={1,2,3,4,5},集合 A={2,4},所以C U A={3,5},故答案为:{3,5}.【点睛】本题考查补集及其运算.14.函数在上的最大值为_____.【答案】【解析】【分析】由指数函数的性质可得到函数的单调性,从而可得到函数的最大值.【详解】由指数函数的性质可知y=2x在R上为增函数,则函数y=2x-1在[1,3]上为增函数,则其在[1,3]上的最大值为f(3)=23-1=7,故答案为:7.【点睛】本题考查指数函数的单调性以及应用,涉及函数的最值,属于基础题.15.已知函数是定义在上的奇函数,当时,,那么_____.【答案】【解析】【分析】根据奇函数f(0)=0,求出m的值,利用f(-1)=-f(1)即可得到答案.【详解】∵f(x)是定义在R上的奇函数,∴f(0)=0,∴m=-1,,∴f(-1)=-f(1)=-(-1+ )=故答案为:【点睛】本题考查函数的奇偶性,根据奇偶性的定义求出m值,是解决该类问题的关键.16.已知,函数,若函数的图象与轴恰有两交点,则实数的取值范围是_____.【答案】【解析】【分析】利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.【详解】函数的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:(1,3]∪(4,+∞).【点睛】本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.三、解答題:本大题共3小题共52分.解答应写出文字说明证明过程或演算步骤17.已知集合,,若,求实数,的值.【答案】或.【解析】【分析】利用集合相等的定义列出方程组,再结合集合中元素的互异性质能求出实数a,b的值.【详解】解:由已知,得(1)或.(2)解(1)得或,解(2)得或,又由集合中元素的互异性得或.【点睛】本题考查集合相等的的定义,同时要注意集合中元素的互异性.18.(1)已知,求的值;(2)已知,求的值.【答案】(1);(2).【解析】【分析】(1)由对数式可得x6=8,即可解得x.(2)先利用对数的四则运算得1+log3x=,然后利用对数相等解得x.【详解】解:(1)因为,所以,所以.(2)因为,所以,所以,解得.【点睛】本题考查了指数与对数的互化,指数与对数的四则运算性质.19.已知幂函数的图象经过点.(1)求函数的解析式;(2)设函数,求函数在区间上的值域.【答案】(1);(2).【解析】【分析】(1)设出幂函数解析式,代入点的坐标,即可求出函数的解析式(2)求出g(x)的解析式,根据函数的单调性求出函数的值域即可.【详解】解:(1)设,则,则,所以.(2)因为,且函数在区间上为增函数,所以时,有最大值-1,时,有最小值-3.所以函数在上的值域为.【点睛】本题考查了幂函数的定义,考查函数的值域以及函数的单调性问题.20.(A)已知函数在区间上有最小值.(1)求实数的取值范围;(2)当时,设函数,证明函数在区间上为增函数.【答案】(1);(2)详见解析.【解析】【分析】(1)由题意知二次函数的对称轴在区间内,可得a的取值范围;(2)求得g(x)的解析式,运用函数单调性的定义进行证明.【详解】(A)(1)函数的图象开口向上,对称轴为,则函数在上为减函数,在上为增函数,所以,即实数的取值范围是.(2)函数,设,为上任意两个实数,且,则,由,得,,即,,所以函数在区间上为增函数.【点睛】本题考查二次函数的图象和性质,考查函数单调性的证明,用定义法证明单调性的具体步骤:作差、变形和定符号、下结论等..21.(B)已知函数,的图象如图所示点,在函数的图象上,点在函数图象上,且线段平行于轴.(1)证明:;(2)若为以角为直角的等腰直角三角形,求点的坐标.说明:请同学们在(A)、(B)两个小题中任选一题作答【答案】(1)详见解析;(2).【解析】【分析】(1)由AC∥y轴,可得x1=x3.代入函数关系进而证明结论.(2)由△ABC为以角C为直角的等腰直角三角形,可得|AC|=|BC|,y2=y3.可得x3-x2=,.化简即可得出.【详解】(B)证明(1)因为线段平行于轴,所以,又,,则.(2)由等腰直角三角形,和,且平行于轴,所以,且,又,,则,解得,所以,所以点的坐标为.【点睛】本题考查了对数运算性质、等腰直角三角形的性质、平行线的性质.22.已知函数,.(1)若函数为奇函数,求实数的值.(2)若对任意的都有成立,求实数的取值范围.【答案】(I)(II)【解析】试题分析:(1)已知函数为奇函数,由,求得的值;(2)恒成立问题通常是求最值,将原不等式整理为对恒成立,进而求在上的最小值,得到结果.试题解析:(1)因为是奇函数,所以,即所以对一切恒成立,所以.(2)因为,均有即成立,所以对恒成立,所以,因为在上单调递增,所以,所以. 10分考点:1.奇函数的特点;2.函数恒成立.3.求最值.23.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式并在如图所示的坐标系中作出函数的图象;(2)若对任意的有恒成立,求实数的最小值.【答案】(1)详见解析;(2).【解析】【分析】(1)根据函数y=f(x)是定义在R上的奇函数,且x≥0时,f(x)=|x-2|-2.利用奇函数的定义可得解析式;(2)根据f(x)的图象即可求实数a的最小值.【详解】(B)(1)当时,,,又函数是定义在上的奇函数,则有,则有,所以.图象如图所示(2)函数的图象是由函数的图象向右平移个长度单位得到,由(1)中的图象可知,只要把函数的图象至少向右平移8个长度单位就满足,所以实数的最小值为8.【点睛】本题考查了函数的奇偶性和单调性的性质和函数图象应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原市 2018-2019 学年高一上学期期末考试
数学试卷
一、选择题:(本大题共 12 小题,每小题 3 分,共 36 分。
) 1.下列事件中,随机事件的个数为( ) (1)明年1月1日太原市下雪;
(2)明年 NBA 总决赛将在马刺队与湖人队之间展开; (3)在标准大气压下时,水达到80摄氏度沸腾.
A 、0
B 、1
C 、2
D 、3
【答案】 C
2.某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106], 样本数据分组为[96,98) , [98,100) , [100,102) , [102,104) , [104,106], 则这组数据中众数的估计值是:( )
A 、100
B 、101
C 、102
D 、103
【答案】 B
3.某中学为了解高一、高二、高三这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )
A 、随机数法
B 、分层抽样法
C 、抽签法
D 、系统抽样法
【答案】 B
4.已知随机事件 A 和 B 互斥,且()P A B U =0.7,P (B )=0.2,则P (A )=( )
A 、0.5
B 、0.1
C 、0.7
D 、0.8
【答案】 A
5.右图记录了甲乙两名篮球运动员练习投篮时,进行的 5 组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则 x , y 的值为( )
A 、8,2
B 、3,6
C 、5,5
D 、3,5
【答案】 D
6.已知函数3
()ln f x x e
=-
,则其零点在的大致区间为( ) A 、(1e
,1) B .(1, e ) C 、 (e , e 2) D 、(e 2, e 3)
【答案】 C
7.下列结论正确的是( )
A 、函数()y f x =在区间 a ,b 上的图像是连续不断的一条曲线,若()()f a f b g >0,
则函数()y f x =在区间a ,b 内无零点
B 、函数 ()y f x =在区间a ,b 上的图像是连续不断的一条曲线,若()()f a f b g >0 ,
则函数 ()y f x = 在区间a ,b 内可能有零点, 且零点个数为偶数
C 、函数()y f x =在区间a ,b 上的图像是连续不断的一条曲线,若()()f a f b g <0,
则函数 ()y f x =在区间 a ,b 内必有零点, 且零点个数为奇数
D 、函数 ()y f x =在区间 a ,b 上的图像是连续不断的一条曲线,若()()f a f b g <
0, 则函数 ()y f x =在区间 a ,b 内必有零点, 但是零点个数不确定 【答案】 D
8.经统计某射击运动员随机命中的概率可视为
7
10
,为估计该运动员射击 4次恰好命中 3 次的概率,现采用随机模拟的方法,先由计算机产生 0 到 9 之间取整数的随机数,用0,1,2 没有击中, 用3,4,5,6,7,8,9 表示击中, 以 4个随机数为一组, 代表射击 4 次的结果,经随机模拟产生了 20 组随机数:
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550 0371,6233,2616,8045,6011,3661,9597,7424,7610,4281 根据以上数据, 则可根据该运动员射击 4次恰好命中3 次的概率为( )
A 、
25 B 、310 C 、720 D 、14
【答案】 A
9.已知函数()y f x =为0,1上的连续数函数,且(0)(1)f f g <0, 使用二分法求函数零点, 要求近似值的精确度达到0.1,则需对区间至多等分的次数为( )
A 、2
B 、3
C 、4
D 、5
【答案】 C
10.在边长分别为3,3,25的三角形区域内随机确定一个点 ,则该点离三个顶点的距离都不小于 1的概率是( ) A 、
5π B 、1-5π C 、1-5π D 、49
【答案】 B
11.下列说法正确的是
A .对任意的 x 0,必有a x log a x
B .若 a 1,n 1,对任意的 x 0, 必有 log n
a x x >
C .若 a 1,n 1,对任意的 x 0 , 必有x n a x >
D .若 a 1,n 1,总存在 x 0 0, 当 x x 0 时,总有
【答案】 D 12.已知函数, 若存在实数 k , 使得关于 x 的方程有两个不
同的根
的值为
A 、1
B 、2
C 、4
D .不确定
【答案】 C
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分) 13.若 , 则这三个数字中最大的是
【答案】 a
14.执行右图所示的程序框图,则输出的结果是
【答案】 16
15.下表记录了某公司投入广告费x 与销售额y 的统计结果,由表可得线性回归方程为
,据此方程预报当x=6时,y=___
【答案】 37.3
16. 已知函数,给出下列结论:
,
则上述正确结论的序号是。
【答案】(2),(5)
三、解答题(本大题共 5 小题,共 52 分,解答应写出必要的文字说明,过程或演算步骤)
17. 如图所示的茎叶图,是随机抽取某中学甲乙两班各10 名同学,测量他们的身高(单位:cm )获得的数据。
(1)根据茎叶图判断哪个班的平均身高较高。
(2)计算甲班的样本方差。
【答案】(1)乙班(2) 57.2
18.在某中学举行的电脑知识竞赛中,将高一年级两个班参赛的学生成绩进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一,第三,第四,第五小组的频率分别是 0.30,0.15,0.10,0.05,第二小组的频数是 40 .
(1)补齐图中频率分布直方图,并求这两个班参赛学生的总人数;
(2)利用频率分布直方图,估算本次比赛学生成绩的平均数和中位数.
【答案】(1) 100
(2)平均数为 66.5分,中位数为 64.5分
【解析】 (1)第二小组的频率为1-0.30-0.15-0.10-0.05=0.40 ,所以补全的频率分布直方图如图.
这两个班参赛学生的总人数为
40
0.40
=100人.
(2)本次比赛学生成绩的平均数为:
中位数出现在第二组中,设中位数为x ,则
所以估计本次比赛学生成绩的平均数为 66.5分,中位数为 64.5分.
19. (本小题满分10 分)
一袋中有 3 个红球, 2个黑球, 1个白球, 6 个球除颜色外其余均相同,摇匀后随机摸球,
1有放回地逐一摸取 2 次,求恰有1红球的概率;
2不放回地逐一摸取 2 次,求恰有1红球的概率;
20. (本小题满分10 分)说明:请同学们在(A)(B)两个小题中任选一题作答.
(A)小明计划搭乘公交车回家,经网上公交实时平台查询,得到 838 路与 611 路公交车预计到达公交A站的时间均为8:30,已知公交车实际到达时间与网络报时误差不超过10 分钟.
(1)若小明赶往公交A站搭乘 611 路,预计小明到达A站时间在8: 20 到8:35 ,求小明比车早到的概率;
(2)求两辆车到达A站时间相差不超过 5 分钟的概率.
(B)小明计划达乘公交车回家,经网上公交实时平台查询,得到 838 路与 611 路公交车预计到达公交 A 站的之间均为 8:30.已知公交车实际到达时间与网络报时误差不超过 10 分钟
(1)求两辆车到达 A 站时间相差不超过 5 分钟的概率
(2)求 838 路与 611 路公交车实际到站时间与网络报时的误差之和不超过 10 分钟的概率。
21.(本小题 12 分)说明:请考生在(A)、(B)两个小题中任选一题作答。
(A)已知函数
(1)求y = f (x) +1的零点;
(2)若y = f ( f (x))+ a有三个零点,求实数a的取值范围.
(B)已知函数
(1)求的零点;
(2)若有 4 个零点,求a 的取值范围。