高中数学难题(含答案)

合集下载

高考最难的数学题及答案

高考最难的数学题及答案

高考最难的数学题及答案高考数学最难的题目及答案(1)1、利用数学归纳法证明平面向量a=(a1, a2)和b=(b1, b2)满足如下不等式:a1/b1 + a2/b2 > 0答案:设a=(a1, a2), b=(b1, b2),由数学归纳法,令n∈N,先给出基本情形:当n=1时:a1/b1 + a2/b2 = (a1 + a2)/(b1 + b2),由a1 + a2 > 0, b1 + b2 > 0可知a1/b1 + a2/b2 > 0进行归纳:假设n时成立,即a1/b1 + a2/b2 > 0,当n+1时,a1/b1 + a2/b2 > 0,根据a1/b1 + a2/b2 = [a1 + (n+1)a2]/[b1 + (n+1)b2],有[a1 + (n+1)a2]/[b1 + (n+1)b2] > 0,由a1 + (n+1)a2 > 0, b1 + (n+1)b2 > 0可知a1/b1 + a2/b2 > 0,因此,证明平面向量a=(a1, a2)和b=(b1, b2)满足a1/b1 + a2/b2 > 0。

2、求x的集合:A={x| x^2 + 6x + 9 ≠ 0 }答案:界说明:x∈R分析:x^2 + 6x + 9 = (x + 3)^2,表述:A={x| x^2 + 6x + 9 ≠ 0 } 等价于A={x| (x + 3)^2 ≠ 0 },即A={x| x ≠ -3 }答案:A={x| x ≠ -3 }3、求一元二次方程ax^2+bx+c=0中,b^2-4ac < 0时实根的取值范围答案:界说明:x∈R分析:b^2 - 4ac < 0⇒Δ= b^2 - 4ac < 0,表述:b^2-4ac < 0时实根没有解,取值范围为空集,即实根的取值范围为:空集。

答案:实根的取值范围为:空集。

4、设弦AB=12,角A=30°,则角C的度数为多少?答案:界说明:C∈[0,360](度)分析:弦AB=12,角A=30°,表述:根据余弦定理可得:cosC=12^2/2/2^2=12/4,即cosC=3/2,由cosC=3/2可以求出角C的度数。

10道高中函数难题(详解版)

10道高中函数难题(详解版)
(3)
由 ,则 ,
,当且仅当 时,等式成立.
① 时, , ,
② , , ,
综上: 当且仅当 时等式成立.
【点睛】
本题考查了新定义问题,考查了数学阅读能力,考查了分类讨论问题,考查了数学运算能力.
8.(1) (2)3.
【解析】
【分析】
将绝对值函数写成分段函数形式,分别求出各段的最小值,最小的即为函数的最小值。
【解析】
【分析】
根据函数的奇偶性,以及特殊值即可判断.
【详解】
因为
又定义域关于原点对称,故该函数为奇函数,排除B和D.
又 ,故排除C.
故选:A.
【点睛】
本题考查函数图像的选择,通常结合函数的性质,以及特殊值进行判断即可.
6.(Ⅰ)8;(Ⅱ)(i) ;(ii)详见解析.
【解析】
【分析】
(Ⅰ)对 求导, 可得 , 单调递增,得到 最小值,从而得到 的值.

如图所示:
【点睛】
本题考查绝对值函数的图像的画法,绝对值函数需先将绝对值去掉,再分段画出图像.属于基础题.
10.325
【解析】
【分析】
利用 可得 ,再利用等差数列求和公式,即可求出结果.
【详解】
因为 ,
所以

……
故答案为:
【点睛】
本题主要考查求抽象函数的函数值,关键是利用已知将 变形转化,属于中档题.
10道高中函数难题突破(详解版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若存在正实数y,使得 ,则实数x的最大值为( )
A. B. C.1D.4

高中数学经典高考难题集锦

高中数学经典高考难题集锦

《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。

解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。

然后,将这些值组成集合A。

2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。

解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。

然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。

3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。

解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。

然后,找出属于集合A或集合B的元素,即求出集合A∪B。

二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。

解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。

因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。

2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。

解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。

我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。

当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。

3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。

解答思路:函数的极值是指函数在其定义域内的最大值或最小值。

我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。

当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。

高中数学经典高考难题集锦(解析版)1

高中数学经典高考难题集锦(解析版)1

2021年10月18日姚杰的高中数学组卷一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.116.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.22.〔2007•四川〕设F1、F2分别是椭圆=1的左、右焦点.〔Ⅰ〕假设P是第一象限内该椭圆上的一点,且,求点P的作标;〔Ⅱ〕设过定点M〔0,﹣2〕的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角〔其中O为坐标原点〕,求直线l的斜率k的取值范围.23.〔2021•丰台区校级一模〕如图,△OFP的面积为m,且=1.〔I〕假设,求向量与的夹角θ的取值范围;〔II〕设,且.假设以O为中心,F为焦点的椭圆经过点P,当取得最小值时,求此椭圆的方程.24.设、为平面向量,假设存在不全为零的实数λ,μ使得λ+μ=0,那么称、线性相关,下面的命题中,、、均为平面M上的向量.①假设=2,那么、线性相关;②假设、为非零向量,且⊥,那么、线性相关;③假设、线性相关,、线性相关,那么、线性相关;④向量、线性相关的充要条件是、共线.上述命题中正确的选项是〔写出所有正确命题的编号〕25.〔2005•安徽〕椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A、B两点,与=〔3,﹣1〕共线.〔Ⅰ〕求椭圆的离心率;〔Ⅱ〕设M为椭圆上任意一点,且,证明λ2+μ2为定值.26.〔2021•江苏模拟〕如图,D是△ABC的中点,,那么λ1+λ2=.27.〔2021•泗县校级模拟〕单位圆⊙O:x2+y2=1,A〔1,0〕,B是圆上的动点,∥,.〔1〕求点P的轨迹E的方程;〔2〕求过A作直线l被E截得的弦长的最小值.28.〔2021•西安校级模拟〕向量,动点M到定直线y=1的距离等于d,并且满足,其中O是坐标原点,k是参数.〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当时,求的最大值和最小值;〔3〕如果动点M的轨迹是圆锥曲线,其离心率e满足,求实数k的取值范围.29.〔2021•上海〕在直角坐标平面xOy上的一列点A1〔1,a1〕,A2〔2,a2〕,…,A n〔n,a n〕,…,简记为{A n}、假设由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,那么称{A n}为T点列,〔1〕判断,,是否为T点列,并说明理由;〔2〕假设{A n}为T点列,且点A2在点A1的右上方、任取其中连续三点A k、A k+1、A k+2,判断△A k A k+1A k+2的形状〔锐角三角形、直角三角形、钝角三角形〕,并予以证明;〔3〕假设{A n}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:.30.〔2021•临川区校级一模〕设点F〔,0〕〔p为正常数〕,点M在x轴的负半轴上,点P 在y轴上,且,.〔Ⅰ〕当点P在y轴上运动时,求点N的轨迹C的方程;〔Ⅱ〕直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=﹣的垂线,对应的垂足分别为A1,B1,求的值;〔Ⅲ〕在〔Ⅱ〕的条件下,记,,,λ=,求λ的值.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得,=||•||=||2﹣〔a+1〕〕||,•=﹣a,于是•≥••恒成立,整理得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.应选:D.点评:此题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.考点:平面向量数量积的运算.专题:空间向量及应用.分析:由题意可得•==,同理可得•==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕,由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕.故有n=3,m=1,∴•==,应选C.点评:此题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈〔,1〕,是解题的关键,属于中档题.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]考点:相等向量与相反向量;平面向量共线〔平行〕的坐标表示.专题:压轴题.分析:利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.解答:解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得〔sinα﹣1〕2+〔16t2+18t+2〕=0可得﹣〔16t2+18t+2〕∈[0,4]解不等式得因而解得﹣6≤k≤1.应选A.点评:此题难度较大,题目涉及到向量、三角函数的有界性、还用到了换元和解不等式等知识,表达了化归的思想方法.4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈〔0,〕,故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈〔0,〕,∴cos2θ=∈〔0,〕,故m=n=1,∴•==,应选:D.点评:此题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.解答:解:由可得〔c,0〕=λ〔1,0〕,〔d,0〕=μ〔1,0〕,所以λ=c,μ=d,代入得〔1〕假设C是线段AB的中点,那么c=,代入〔1〕d不存在,故C不可能是线段AB 的中点,A错误;同理B错误;假设C,D同时在线段AB上,那么0≤c≤1,0≤d≤1,代入〔1〕得c=d=1,此时C和D点重合,与条件矛盾,故C错误.应选D点评:此题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的数量积公式表示出,有得到的夹角与夹角的关系,利用三角函数的诱导公式和条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.解答:解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos〔90°±θ〕|=||•||•sinθ,即为以,为邻边的平行四边形的面积.应选A.点评:此题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:压轴题.分析:本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.解答:解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴的最大值是.应选C.点评:启发学生在理解数量积的运算特点的根底上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,此题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.考点:平面向量数量积的性质及其运算律.专题:压轴题.分析:根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.解答:解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确应选C.点评:此题主要考查平面向量的数量积的定义.要会巧妙变形和等积变换.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.考点:数量积表示两个向量的夹角;等可能事件的概率.专题:计算题;压轴题.分析:由题意知此题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大局部内容考查的是向量的问题,这是一个综合题.解答:解:由题意知此题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=〔m,n〕与=〔1,﹣1〕不可能同向.∴夹角θ≠0.∵θ∈〔0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.应选C.点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份〞能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.考点:向量的共线定理;向量的模.专题:计算题;压轴题.分析:将向量沿与方向利用平行四边形原那么进行分解,构造出三角形,由题目,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,防止出错.解答:解:法一:如下图:=+,设=x,那么=.=∴==3.法二:如下图,建立直角坐标系.那么=〔1,0〕,=〔0,〕,∴=m+n=〔m,n〕,∴tan30°==,∴=3.应选B点评:对一个向量根据平面向量根本定理进行分解,关键是要根据平行四边形法那么,找出向量在基底两个向量方向上的分量,再根据条件构造三角形,解三角形即可得到分解结果.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题;压轴题.分析:此题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法那么,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.解答:解:∵,那么由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心应选D点评:重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.该点叫做三角形的重心.外心定理:三角形的三边的垂直平分线交于一点.该点叫做三角形的外心.垂心定理:三角形的三条高交于一点.该点叫做三角形的垂心.内心定理:三角形的三内角平分线交于一点.该点叫做三角形的内心.12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.考点:数量积表示两个向量的夹角;向量在几何中的应用.专题:压轴题.分析:在边长为1的正方形中,减去要求的三角形以外的三角形的面积,把要求的结果表示为有三角函数的代数式,后面题目变为求三角函数的最值问题,逆用二倍角公式得到结果.解答:解:在直角坐标系里△OAB的面积=1﹣==∵θ∈〔0,],∴2θ∈〔0,π]∴当2θ=π时取得最大,即θ=应选D.点评:此题考查简单的图形面积和三角函数的最值问题,用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换,二倍角公式逆用.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;压轴题.分析:由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点解答:解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点应选D点评:此题考查向量的数量积及向量的运算,对学生有一定的能力要求14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,那么新坐标系的原点O′在原坐标系中的坐标为〔k,l〕那么据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为〔﹣m,m〕应选项为A点评:此题考查平移公式的应用.15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.1考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:利用向量的数量积求出的夹角;利用向量的运算法那么作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.解答:解:∵,∴的夹角为120°,设,那么;=如下图那么∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2应选A点评:此题考查向量的数量积公式、向量的运算法那么、四点共圆的判断定理、三角形的正弦定理.16.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.考点:平面向量的根本定理及其意义;二元一次不等式〔组〕与平面区域;向量的模.专题:压轴题;平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量根本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A〔〕,B〔〕.再设P〔x,y〕.由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,那么区域面积为.应选D.点评:此题考查了平面向量的根本定理及其意义,考查了二元一次不等式〔组〕所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为〔++〕•〔++〕的最小值、最大值,∴m<0,M<0应选D.点评:此题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.考点:平面向量的综合题.专题:综合题;压轴题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:〔1〕利用中点坐标公式求出点A1,A2的坐标,再利用向量的坐标公式求出的坐标.〔2〕由判断出y=f〔x〕的图象是由C按平移得到的;得到C是由f〔x〕左移两个单位,下移4个单位得到,利用图象变换求出C的解析式.〔3〕利用向量的运算法那么将有以P n为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.解答:解:〔1〕设点A0〔x,y〕,A1为A0关于点P1的对称点,A1的坐标为〔2﹣x,4﹣y〕,A1为P2关于点的对称点A2的坐标为〔2+x,4+y〕,∴={2,4}.〔2〕∵={2,4},∴f〔x〕的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,设曲线C是函数y=g〔x〕的图象,其中g〔x〕是以3为周期的周期函数,且当x∈〔﹣2,1]时,g〔x〕=lg〔x+2〕﹣4.于是,当x∈〔1,4]时,g〔x〕=lg〔x﹣1〕﹣4.〔3〕=++…+,由于=,得=2〔++…+〕=2〔{1,2}+{1,23}+…+{1,2n﹣1}〕=2{,}={n,}点评:此题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.考点:平面向量的综合题;复合三角函数的单调性.专题:计算题;压轴题;新定义.分析:〔1〕先利用诱导公式对其化简,再结合定义即可得到证明;〔2〕先根据定义求出其相伴向量,再代入模长计算公式即可;〔3〕先根据定义得到函数f〔x〕取得最大值时对应的自变量x0;再结合几何意义求出的范围,最后利用二倍角的正切公式即可得到结论.解答:解:〔1〕g〔x〕=3sin〔x+〕+4sinx=4sinx+3cosx,其‘相伴向量’=〔4,3〕,g〔x〕∈S.〔2〕h〔x〕=cos〔x+α〕+2cosx=〔cosxcosα﹣sinxsinα〕+2cosx=﹣sinαsinx+〔cosα+2〕cosx∴函数h〔x〕的‘相伴向量’=〔﹣sinα,cosα+2〕.那么||==.〔3〕的‘相伴函数’f〔x〕=asinx+bcosx=sin〔x+φ〕,其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f〔x〕取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan〔2kπ+﹣φ〕=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0〕∪〔0,].令m=,那么tan2x0=,m∈[﹣,0〕∪〔0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0〕∪〔0,].点评:本体主要在新定义下考查平面向量的根本运算性质以及三角函数的有关知识.是对根底知识的综合考查,需要有比拟扎实的根本功.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.考点:向量在几何中的应用.专题:立体几何.分析:〔1〕建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,通过,求出平面DMN的法向量为,,求出平面A1DN 的法向量为,推出〔1〕利用θ=90°求出M的坐标,然后求出AM 的长.〔2〕利用cos=以及,求出CM 的长.解答:解:建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,那么各点的坐标为A〔1,0,0〕,A1〔1,0,2〕,N〔,1,0〕,M〔0,1,t〕;所以=〔,1,0〕.=〔1,0,2〕,=〔0,1,t〕设平面DMN的法向量为=〔x1,y1,z1〕,那么,,即x1+2y1=0,y1+tz1=0,令z1=1,那么y1=﹣t,x1=2t所以=〔2t,﹣t,1〕,设平面A1DN的法向量为=〔x2,y2,z2〕,那么,,即x2+2z2=0,x2+2y2=0,令z2=1那么y2=1,x2=﹣2所以=〔﹣2,1,1〕,〔1〕因为θ=90°,所以解得t=从而M〔0,1,〕,所以AM=〔2〕因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和〔1〕的结论,可知t=,从而CM的长为.点评:此题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.考点:平面向量数量积的运算;圆的标准方程;轨迹方程;直线和圆的方程的应用.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:〔1〕由a⊥b,所以a•b=0,代入坐标化简整理即得轨迹E的方程mx2+y2=1.此为二元二次曲线,可分m=0、m=1、m>0且m≠1和m<0四种情况讨论;〔2〕当m=时,轨迹E的方程为=1,表示椭圆,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,由直线和圆相切可得k和t的关系,由OA⊥OB,所以x1x2+y1y1=0,只需联立直线和圆的方程,消元,维达定理,又可以得到k和t的关系,这样就可解出r.当切线斜率不存在时,代入检验即可.〔3〕因为l与圆C相切,故△OA1B1为直角△,故|A1B1|2=|OB1|2﹣|OA1|2,只需求出OB1和OA1的长度即可,直线l与圆C相切,且与椭圆相切找出关系,将|A1B1|表示为R的函数,转化为函数求最值.解答:解:〔Ⅰ〕因为a⊥b,所以a•b=0,即〔mx,y+1〕•〔x,y﹣1〕=0,故mx2+y2﹣1=0,即mx2+y2=1.当m=0时,该方程表示两条直线;当m=1时,该方程表示圆;当m>0且m≠1时,该方程表示椭圆;当m<0时,该方程表示双曲线.〔Ⅱ〕当时,轨迹E的方程为,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,A〔x1,y1〕,B〔x2,y2〕,所以,即t2=r2〔1+k2〕.①因为OA⊥OB,所以x1x2+y1y1=0,即x1x2+〔kx1+t〕〔kx2+t〕=0,整理得〔1+k2〕x1x2+kt〔x1+x2〕+t2=0.②由方程组消去y得〔1+4k2〕x2+8ktx+4t2﹣4=0.③由韦达定理代入②式并整理得〔1+k2〕,即5t2=4+4k2.结合①式有5r2=4,r=,当切线斜率不存在时,x2+y2=也满足题意,故所求圆的方程为x2+y2=.〔Ⅲ〕显然,直线l的斜率存在,设l的方程y=k1x+t1,B1〔x3,y3〕轨迹E的方程为.由直线l与圆相切得t12=R2〔1+k12〕,且对应③式有△=〔8k1t1〕2﹣4〔1+4k12〕〔4t12﹣4〕=0,即t12=1+4k12,由方程组,解得当l与轨迹E只有一个公共点时,对应的方程③应有两个相等的.由韦达定理x32===,又B1在椭圆上,所以,因为l与圆C相切,所以|A1B1|2=|OB1|2﹣|OA1|2=x32+y32﹣R2===≤,其中,等号成立的条件,。

高中数学圆锥曲线难题

高中数学圆锥曲线难题

. . . .. .高中数学圆锥曲线难题一.选择题〔共10小题〕1.椭圆+=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,那么|NF|:|AB|等于〔〕A.B.C.D .2.设点P与正方体ABCD﹣A1B 1C1D1的三条棱AD、BC、C1D1所在直线的距离相等,那么点P的轨迹是〔〕A.圆B.椭圆C.双曲线D.抛物线3.〔2010•密云县一模〕如图过抛物线y2=2px〔p>0〕的焦点F的直线依次交抛物线及准线于点A,B,C,假设|BC|=2|BF|,且|AF|=3,那么抛物线的方程为〔〕A.y2=x B.y2=9xC.y2=xD.y2=3x高中数学圆锥曲线难题4.〔2011•海珠区一模〕一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A 与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是〔〕A.椭圆B.双曲线C.抛物线D.圆5.〔2012•模拟〕抛物线y2=2px〔p>0〕的焦点为F,A、B在抛物线上,且,弦AB的中点M在其准线上的射影为N,那么的最大值为〔〕A.B.C.1D.6.〔2014•二模〕如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈〔0,〕,以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,那么〔〕A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小7.〔2014•三模〕从〔其中m,n∈{﹣1,2,3}〕所表示的圆锥曲线〔椭圆、双曲线、抛物线〕方程中任取一个,那么此方程是焦点在x轴上的双曲线方程的概率为〔〕A.B.C.D.8.〔2013•二模〕抛物线y2=2px〔p>0〕的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C 三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,那么有〔〕A.B.C.D.9.〔2014•和平区模拟〕在抛物线y=x2+ax﹣5〔a≠0〕上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,那么抛物线顶点的坐标为〔〕A.〔﹣2,﹣9〕B.〔0,﹣5〕C.〔2,﹣9〕D.〔1,6〕10.〔2012•模拟〕以下四个命题中不正确的选项是〔〕A.假设动点P与定点A〔﹣4,0〕、B〔4,0〕连线PA、PB的斜率之积为定值,那么动点P的轨迹为双曲线的一局部B.设m,n∈R,常数a>0,定义运算“*〞:m*n=〔m+n〕2﹣〔m﹣n〕2,假设x≥0,那么动点的轨迹是抛物线的一局部C.两圆A:〔x+1〕2+y2=1、圆B:〔x﹣1〕2+y2=25,动圆M与圆A外切、与圆B切,那么动圆的圆心M的轨迹是椭圆D.A〔7,0〕,B〔﹣7,0〕,C〔2,﹣12〕,椭圆过A,B两点且以C为其一个焦点,那么椭圆的另一个焦点的轨迹为双曲线二.解答题〔共10小题〕11.〔2008•XX〕中心在原点的双曲线C的一个焦点是F1〔﹣3,0〕,一条渐近线的方程是.〔Ⅰ〕求双曲线C的方程;〔Ⅱ〕假设以k〔k≠0〕为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值围.12.〔2013•〕直线y=kx+m〔m≠0〕与椭圆相交于A,C两点,O是坐标原点.〔Ⅰ〕当点B的坐标为〔0,1〕,且四边形OABC为菱形时,求AC的长;〔Ⅱ〕当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.13.焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A〔0,〕为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.〔1〕求双曲线C的方程;〔2〕假设Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.14.〔2011•〕设λ>0,点A的坐标为〔1,1〕,点B在抛物线y=x2上运动,点Q满足,经过点Q与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.15.〔2013•南开区一模〕椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.〔1〕求椭圆C的方程;〔2〕过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,假设,,求证:λ1+λ2为定值.16.〔2013•〕抛物线C的顶点为原点,其焦点F〔0,c〕〔c>0〕到直线l:x﹣y﹣2=0的距离为,设P为直线l 上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.〔1〕求抛物线C的方程;〔2〕当点P〔x0,y0〕为直线l上的定点时,求直线AB的方程;〔3〕当点P在直线l上移动时,求|AF|•|BF|的最小值.17.〔2008•〕双曲线.〔1〕求双曲线C的渐近线方程;〔2〕点M的坐标为〔0,1〕.设P是双曲线C上的点,Q是点P关于原点的对称点.记.求λ的取值围;〔3〕点D,E,M的坐标分别为〔﹣2,﹣1〕,〔2,﹣1〕,〔0,1〕,P为双曲线C上在第一象限的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.18.〔2011•三模〕过抛物线y2=4x上一点A〔1,2〕作抛物线的切线,分别交x轴于点B,交y轴于点D,点C〔异于点A〕在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.〔1〕设,求λ;〔2〕当点C在抛物线上移动时,求点P的轨迹方程.19.〔2013•〕椭圆C:〔a>b>0〕的两个焦点分别为F1〔﹣1,0〕,F2〔1,0〕,且椭圆C经过点.〔Ⅰ〕求椭圆C的离心率:〔Ⅱ〕设过点A〔0,2〕的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.20.〔2014•模拟〕点A,B的坐标分别是〔0,﹣1〕,〔0,1〕,直线AM,BM相交于点M,且它们的斜率之积﹣.〔1〕求点M轨迹C的方程;〔2〕假设过点D〔2,0〕的直线l与〔1〕中的轨迹C交于不同的两点E、F〔E在D、F之间〕,试求△ODE与△ODF 面积之比的取值围〔O为坐标原点〕.高中数学圆锥曲线难题参考答案与试题解析一.选择题〔共10小题〕1.椭圆+=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,那么|NF|:|AB|等于〔〕A.B.C.D.考点:椭圆的应用.专题:计算题;压轴题.分析:此题适合于特值法.不妨取直线的斜率为1.由此推导出|NF|:|AB|的值.解答:解:取直线的斜率为1.右焦点F〔2,0〕.直线AB的方程为y=x﹣2.联立方程组,把y=x﹣2代入整理得14x2﹣36x﹣9=0,设A〔x1,y1〕,B〔x2,y2〕,那么,,∴AB中点坐标为〔〕,那么AB的中垂线方程为,令y=0,得,∴点N的坐标〔〕.∴|NF|=,|AB|==,∴|NF|:|AB|=,应选B.点评:特值法是求解选择题和填空题的有效方法.2.设点P与正方体ABCD﹣A1B1C1D1的三条棱AD、BC、C1D1所在直线的距离相等,那么点P的轨迹是〔〕A.圆B.椭圆C.双曲线D.抛物线考点:抛物线的定义.专题:压轴题;圆锥曲线的定义、性质与方程.分析:设AB的中点为E,CD的中点为F,过EF做一个平面EFMN与BC平行,M∈C1D1,N∈A1B1,故平面EFMN的点到AD和BC的距离相等.PM为P到C1D1的距离.根据P到BC的距离等于P到点M的距离,可得点P的轨迹.解答:解:由题意可得AD和BC平行且相等,设AB的中点为E,CD的中点为F,过EF做一个平面EFMN与BC平行,且M∈C1D1,N∈A1B1,那么平面EFMN与AD也平行,故平面EFMN的点到AD和BC的距离相等.由正方体的性质可得平面EFMN垂直于平面CDD1C1,故有D1C1垂直于平面EFMN,故PM为P到C1D1的距离.由此可得P到BC的距离等于P到点M的距离,故点P的轨迹是抛物线,应选D.点评:此题主要考察抛物线的定义的应用,属于根底题.3.〔2010•密云县一模〕如图过抛物线y2=2px〔p>0〕的焦点F的直线依次交抛物线及准线于点A,B,C,假设|BC|=2|BF|,且|AF|=3,那么抛物线的方程为〔〕A.y2=x B.y2=9xC.y2=xD.y2=3x考点:抛物线的标准方程.专题:计算题;压轴题;数形结合.分析:分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,那么抛物线方程可得.解答:解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,那么由得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.应选D.点评:此题主要考察了抛物线的标准方程.考察了学生对抛物线的定义和根本知识的综合把握.4.〔2011•海珠区一模〕一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A 与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是〔〕A.椭圆B.双曲线C.抛物线D.圆考点:双曲线的定义.专题:计算题;压轴题;数形结合.分析:根据CD是线段AQ的垂直平分线.可推断出|PA|=|PQ|,进而可知|PO|﹣|PQ|=|PO|﹣|PA|=|OA|结果为定值,进而根据双曲线的定义推断出点P的轨迹.解答:解:由题意知,CD是线段AQ的垂直平分线∴|PA|=|PQ|,∴|PO|﹣|PQ|=|PO|﹣|PA|=|OA|〔定值〕,∴根据双曲线的定义可推断出点P轨迹是以Q、O两点为焦点的双曲线,应选B.点评:此题主要考察了双曲线的定义的应用,考察了学生对椭圆根底知识的理解和应用,属于根底题.5.〔2012•模拟〕抛物线y2=2px〔p>0〕的焦点为F,A、B在抛物线上,且,弦AB的中点M在其准线上的射影为N,那么的最大值为〔〕A.B.C.1D.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设|AF|=a,|BF|=b,由抛物线定义,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,进而根据根本不等式,求得|AB|的围,进而可得答案.解答:解:设|AF|=a,|BF|=b,由抛物线定义,得AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.由勾股定理得,|AB|2=a2+b2配方得,|AB|2=〔a+b〕2﹣2ab,又ab≤,∴〔a+b〕2﹣2ab≥〔a+b〕2﹣得到|AB|≥〔a+b〕.所以≤=,即的最大值为.应选A.点评:此题主要考察抛物线的应用和余弦定理的应用,考察了学生综合分析问题和解决问题的能力.6.〔2014•二模〕如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈〔0,〕,以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,那么〔〕A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小考点:椭圆的简单性质.专题:计算题;压轴题.分析:连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.解答:解:连接BD,AC设AD=t那么BD==∴双曲线中a=e1=∵y=cosθ在〔0,〕上单调减,进而可知当θ增大时,y==减小,即e1减小∵AC=BD∴椭圆中CD=2t〔1﹣cosθ〕=2c∴c'=t〔1﹣cosθ〕AC+AD=+t,∴a'=〔+t〕e2==∴e1e2=×=1应选B.点评:此题主要考察椭圆和双曲线的离心率的表示,考察考生对圆锥曲线的性质的应用,圆锥曲线是高考的重点每年必考,平时要注意根底知识的积累和练习.7.〔2014•三模〕从〔其中m,n∈{﹣1,2,3}〕所表示的圆锥曲线〔椭圆、双曲线、抛物线〕方程中任取一个,那么此方程是焦点在x轴上的双曲线方程的概率为〔〕A.B.C.D.考点:双曲线的标准方程;列举法计算根本领件数及事件发生的概率.专题:计算题;压轴题.分析:m和n的所有可能取值共有3×3=9个,其中有两种不符合题意,故共有7种,可一一列举,从中数出能使方程是焦点在x轴上的双曲线的选法,即m和n都为正的选法数,最后由古典概型的概率计算公式即可得其概率解答:解:设〔m,n〕表示m,n的取值组合,那么取值的所有情况有〔﹣1,﹣1〕,〔2,﹣1〕,〔2,2〕,〔2,3〕,〔3,﹣1〕,〔3,2〕,〔3,3〕共7个,〔注意〔﹣1,2〕,〔﹣1,3〕不合题意〕其中能使方程是焦点在x轴上的双曲线的有:〔2,2〕,〔2,3〕,〔3,2〕,〔3,3〕共4个∴此方程是焦点在x轴上的双曲线方程的概率为应选B点评:此题考察了古典概型概率的求法,椭圆、双曲线、抛物线的标准方程,列举法计数的技巧,准确计数是解决此题的关键8.〔2013•二模〕抛物线y2=2px〔p>0〕的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C 三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,那么有〔〕A.B.C.D.考点:椭圆的标准方程;等差数列的通项公式;直线的斜率.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线方程求出点C〔﹣,0〕,可得直线AB方程为y=k〔x﹣〕,将其与抛物线方程消去y得到关于x的一元二次方程,由根与系数的关系得到x1+x2和x1x2关于p、k的式子,结合两点间的距离公式算出|AB|=•.再利用抛物线的定义,得到|AF|+|BF|=x1+x2+p=+p,而|AF|、|AB|、|BF|成等差数列得出|AF|+|BF|=2|AB|,从而建立关于p、k的等式,化简整理得•=,即可解出,得到此题答案.解答:解:∵抛物线y2=2px的准线方程为x=﹣,∴准线与x轴的交点C坐标为〔﹣,0〕因此,得到直线AB方程为y=k〔x﹣〕,与抛物线y2=2px消去y,化简整理,得,设A〔x1,y1〕,B〔x2,y2〕,由根与系数的关系得∴|AB|==•=•=•∵|AF|、|AB|、|BF|成等差数列,∴|AF|+|BF|=2|AB|,根据抛物线的定义得|AF|=x1+,|BF|=x2+,因此,得到x1+x2+p=2•,即+p=2•,化简得=,约去得•=∴〔1+k2〕〔1﹣k2〕=,解之得k2=应选:D点评:此题给出抛物线准线交对称轴于点C,过点C的直线交抛物线于A、B两点,A、B与焦点F构成的三角形的三边成等差数列,求直线AB的斜率.着重考察了抛物线的定义与简单几何性质,直线与抛物线位置关系等知识点,属于中档题.9.〔2014•和平区模拟〕在抛物线y=x2+ax﹣5〔a≠0〕上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,那么抛物线顶点的坐标为〔〕A.〔﹣2,﹣9〕B.〔0,﹣5〕C.〔2,﹣9〕D.〔1,6〕考点:抛物线的应用.专题:计算题;压轴题.分析:求出两个点的坐标,利用两点连线的斜率公式求出割线的斜率;利用导数在切点处的值为切线的斜率求出切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.解答:解:两点坐标为〔﹣4,11﹣4a〕;〔2,2a﹣1〕两点连线的斜率k=对于y=x2+ax﹣5y′=2x+a∴2x+a=a﹣2解得x=﹣1在抛物线上的切点为〔﹣1,﹣a﹣4〕切线方程为〔a﹣2〕x﹣y﹣6=0直线与圆相切,圆心〔0,0〕到直线的距离=圆半径解得a=4或0〔0舍去〕抛物线方程为y=x2+4x﹣5顶点坐标为〔﹣2,﹣9〕应选A.点评:此题考察两点连线的斜率公式、考察导数在切点处的值为切线的斜率、考察直线与圆相切的充要条件是圆心到直线的距离等于半径.10.〔2012•模拟〕以下四个命题中不正确的选项是〔〕A.假设动点P与定点A〔﹣4,0〕、B〔4,0〕连线PA、PB的斜率之积为定值,那么动点P的轨迹为双曲线的一局部B.设m,n∈R,常数a>0,定义运算“*〞:m*n=〔m+n〕2﹣〔m﹣n〕2,假设x≥0,那么动点的轨迹是抛物线的一局部C.两圆A:〔x+1〕2+y2=1、圆B:〔x﹣1〕2+y2=25,动圆M与圆A外切、与圆B切,那么动圆的圆心M的轨迹是椭圆D.A〔7,0〕,B〔﹣7,0〕,C〔2,﹣12〕,椭圆过A,B两点且以C为其一个焦点,那么椭圆的另一个焦点的轨迹为双曲线考点:椭圆的定义;轨迹方程.专题:证明题;压轴题.分析:利用直译法,求A选项中动点P的轨迹方程,进而判断表示的曲线;利用新定义运算,利用直译法求选项B中曲线的轨迹方程,进而判断轨迹图形;利用圆与圆的位置关系,利用定义法判断选项C中动点的轨迹;利用椭圆定义,由定义法判断D中动点的轨迹即可解答:解:A:设P〔x,y〕,因为直线PA、PB的斜率存在,所以x≠±4,直线PA、PB的斜率分别是k1=,k2=,∴×=,化简得9y2=4x2﹣64,即〔x≠±4〕,∴动点P的轨迹为双曲线的一局部,A正确;B:∵m*n=〔m+n〕2﹣〔m﹣n〕2,∴==,设P〔x,y〕,那么y=,即y2=4ax〔x≥0,y≥0〕,即动点的轨迹是抛物线的一局部,B正确;C:由题意可知,动圆M与定圆A相外切与定圆B相切∴MA=r+1,MB=5﹣r∴MA+MB=6>AB=2∴动圆圆心M的轨迹是以A,B为焦点的椭圆,C正确;D设此椭圆的另一焦点的坐标D 〔x,y〕,∵椭圆过A、B两点,那么CA+DA=CB+DB,∴15+DA=13+DB,∴DB﹣DA=2<AB,∴椭圆的另一焦点的轨迹是以A、B为焦点的双曲线一支,D错误应选D点评:此题综合考察了求动点轨迹的两种方法:直译法和定义法,考察了圆、椭圆、抛物线、双曲线的定义,椭圆、双曲线、抛物线的标准方程,有一定难度二.解答题〔共10小题〕11.〔2008•XX〕中心在原点的双曲线C的一个焦点是F1〔﹣3,0〕,一条渐近线的方程是.〔Ⅰ〕求双曲线C的方程;〔Ⅱ〕假设以k〔k≠0〕为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值围.考点:双曲线的应用.专题:计算题;压轴题.分析:〔1〕设出双曲线方程,根据焦点坐标及渐近线方程求出待定系数,即得双曲线C的方程.〔2〕设出直线l的方程,代入双曲线C的方程,利用判别式及根与系数的关系求出MN的中点坐标,从而得到线段MN的垂直平分线方程,通过求出直平分线与坐标轴的交点,计算围城的三角形面积,由判别式大于0,求得k的取值围.解答:解:〔Ⅰ〕解:设双曲线C的方程为〔a>0,b>0〕.由题设得,解得,所以双曲线方程为.〔Ⅱ〕解:设直线l的方程为y=kx+m〔k≠0〕.点M〔x1,y1〕,N〔x2,y2〕的坐标满足方程组将①式代入②式,得,整理得〔5﹣4k2〕x2﹣8kmx﹣4m2﹣20=0.此方程有两个不等实根,于是5﹣4k2≠0,且△=〔﹣8km〕2+4〔5﹣4k2〕〔4m2+20〕>0.整理得m2+5﹣4k2>0.③由根与系数的关系可知线段MN的中点坐标〔x0,y0〕满足,.从而线段MN的垂直平分线方程为.此直线与x轴,y轴的交点坐标分别为,.由题设可得.整理得,k≠0.将上式代入③式得,整理得〔4k2﹣5〕〔4k2﹣|k|﹣5〕>0,k≠0.解得或.所以k的取值围是.点评:本小题主要考察双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等根底知识,考察曲线和方程的关系等解析几何的根本思想方法,考察推理运算能力.12.〔2013•〕直线y=kx+m〔m≠0〕与椭圆相交于A,C两点,O是坐标原点.〔Ⅰ〕当点B的坐标为〔0,1〕,且四边形OABC为菱形时,求AC的长;〔Ⅱ〕当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.考点:椭圆的简单性质;两点间的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分析:〔I〕先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为〔,〕,根据两点间的距离公式即可得出AC的长;〔II〕欲证明四边形OABC不可能为菱形,只须证明假设OA=OC,那么A、C两点的横坐标相等或互为相反数.设OA=OC=r,那么A、C为圆x2+y2=r2与椭圆的交点,从而解得,那么A、C两点的横坐标相等或互为相反数.于是结论得证.解答:解:〔I〕∵点B的坐标为〔0,1〕,当四边形OABC为菱形时,AC⊥OB,而B〔0,1〕,O〔0,0〕,∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为〔,〕,如图,于是AC=2.〔II〕欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,那么有OA=OC,设OA=OC=r,那么A、C为圆x2+y2=r2与椭圆的交点,故,x2=〔r2﹣1〕,那么A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.点评:此题主要考察了椭圆的简单性质,直线与椭圆的位置关系,考察等价转化思想,属于根底题.13.焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A〔0,〕为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.〔1〕求双曲线C的方程;〔2〕假设Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.考点:双曲线的标准方程;轨迹方程;双曲线的简单性质.专题:计算题;压轴题.分析:〔1〕设双曲线C的渐近线方程为y=kx,根据题意可得k=±1,所以双曲线C的方程为,C的一个焦点与A关于直线y=x对称,可得双曲线的焦点坐标进而求出双曲线的标准方程.〔2〕假设Q在双曲线的右支上,那么延长QF2到T,使|QT|=|OF1|;假设Q在双曲线的左支上,那么在QF2上取一点T,使|QT|=|QF1|,根据双曲线的定义|TF2|=2,再利用相关点代入法求出轨迹方程即可.解答:解:〔1〕设双曲线C的渐近线方程为y=kx,即kx﹣y=0∵该直线与圆相切,∴双曲线C的两条渐近线方程为y=±x…〔3分〕故设双曲线C的方程为,又∵双曲线C的一个焦点为∴2a2=2,a2=1,∴双曲线C的方程为x2﹣y2=1…〔6分〕〔2〕假设Q在双曲线的右支上,那么延长QF2到T,使|QT|=|OF1|假设Q在双曲线的左支上,那么在QF2上取一点T,使|QT|=|QF1|…〔8分〕根据双曲线的定义|TF2|=2,所以点T在以F2为圆心,2为半径的圆上,即点T的轨迹方程是①…〔10分〕由于点N是线段F1T的中点,设N〔x,y〕,T〔x T,y T〕那么…〔12分〕代入①并整理得点N的轨迹方程为…〔14分〕点评:此题主要考察双曲线的有关性质与定义,以及求轨迹方程的方法〔如相关点代入法〕.14.〔2011•〕设λ>0,点A的坐标为〔1,1〕,点B在抛物线y=x2上运动,点Q满足,经过点Q与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.考点:抛物线的应用;轨迹方程.专题:综合题;压轴题.分析:设出点的坐标,利用向量的坐标公式求出向量的坐标,代入条件中的向量关系得到各点的坐标关系;表示出B点的坐标;将B的坐标代入抛物线方程求出p的轨迹方程.解答:解:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设P〔x,y〕,Q〔x,y0〕,M〔x,x2〕那么x2﹣y0=λ〔y﹣x2〕即y0=〔1+λ〕x2﹣λy①再设B〔x1,y1〕由得将①代入②式得又点B在抛物线y=x2将③代入得〔1+λ〕2x2﹣λ〔1+λ〕y﹣λ=〔〔1+λ〕x﹣λ〕2整理得2λ〔1+λ〕x﹣λ〔1+λ〕y﹣λ〔1+λ〕=0因为λ>0所以2x﹣y﹣1=0故所求的点P的轨迹方程:y=2x﹣1点评:此题考察题中的向量关系提供点的坐标关系、求轨迹方程的重要方法:相关点法,即求出相关点的坐标,将相关点的坐标代入其满足的方程,求出动点的轨迹方程.15.〔2013•南开区一模〕椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.〔1〕求椭圆C的方程;〔2〕过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,假设,,求证:λ1+λ2为定值.考点:椭圆的标准方程;直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:〔1〕根据椭圆C 的一个顶点恰好是抛物线的焦点,离心率等于.易求出a,b的值,得到椭圆C的方程.〔2〕设A、B、M点的坐标分别为A〔x1,y1〕,B〔x2,y2〕,设直线l的斜率为k,那么直线l的方程是y=k〔x﹣2〕,然后采用“联立方程〞+“设而不求〞+“韦达定理〞,结合中,,求出λ1+λ2值,即可得到结论.解答:解:〔1〕设椭圆C 的方程为,那么由题意知b=1.…〔2分〕∴.∴a2=5.…〔4分〕∴椭圆C的方程为.…〔5分〕〔2〕设A、B、M点的坐标分别为A〔x1,y1〕,B〔x2,y2〕,M〔0,y0〕.又易知F点的坐标为〔2,0〕.…〔6分〕显然直线l存在的斜率,设直线l的斜率为k,那么直线l的方程是y=k〔x﹣2〕.…〔7分〕将直线l的方程代入到椭圆C的方程中,消去y并整理得〔1+5k2〕x2﹣20k2x+20k2﹣5=0.…〔8分〕∴.…〔9分〕又∵.〔11分〕∴.…〔12分〕点评:此题考察的知识点是椭圆的标准方程,直线与圆锥曲线的综合问题,其中根据条件计算出椭圆的标准方程是解答此题的关键.16.〔2013•〕抛物线C的顶点为原点,其焦点F〔0,c〕〔c>0〕到直线l:x﹣y﹣2=0的距离为,设P为直线l 上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.〔1〕求抛物线C的方程;〔2〕当点P〔x0,y0〕为直线l上的定点时,求直线AB的方程;〔3〕当点P在直线l上移动时,求|AF|•|BF|的最小值.抛物线的标准方程;利用导数研究曲线上某点切线方程;抛物线的简单性质.考点:专压轴题;圆锥曲线的定义、性质与方程.题:分析:〔1〕利用焦点到直线l:x﹣y﹣2=0的距离建立关于变量c的方程,即可解得c,从而得出抛物线C的方程;〔2〕先设,,由〔1〕得到抛物线C的方程求导数,得到切线PA,PB的斜率,最后利用直线AB的斜率的不同表示形式,即可得出直线AB的方程;〔3〕根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由〔2〕得x1+x2=2x0,x1x2=4y0,x0=y0+2,将它表示成关于y0的二次函数的形式,从而即可求出|AF|•|BF|的最小值.解答:解:〔1〕焦点F〔0,c〕〔c>0〕到直线l:x﹣y﹣2=0的距离,解得c=1 所以抛物线C的方程为x2=4y〔2〕设,由〔1〕得抛物线C 的方程为,,所以切线PA,PB 的斜率分别为,所以PA :①PB:②联立①②可得点P 的坐标为,即,又因为切线PA 的斜率为,整理得直线AB 的斜率所以直线AB 的方程为整理得,即因为点P〔x0,y0〕为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2所以直线AB 的方程为〔3〕根据抛物线的定义,有,所以=由〔2〕得x1+x2=2x0,x1x2=4y0,x0=y0+2所以=所以当时,|AF|•|BF|的最小值为点评:此题以抛物线为载体,考察抛物线的标准方程,考察利用导数研究曲线的切线方程,考察计算能力,有一定的综合性.17.〔2008•〕双曲线.〔1〕求双曲线C的渐近线方程;〔2〕点M的坐标为〔0,1〕.设P是双曲线C上的点,Q是点P 关于原点的对称点.记.求λ的取值围;〔3〕点D,E,M的坐标分别为〔﹣2,﹣1〕,〔2,﹣1〕,〔0,1〕,P为双曲线C上在第一象限的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.考点:双曲线的简单性质;直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:〔1〕在双曲线,把1换成0,就得到它的渐近线方程.〔2〕设P的坐标为〔x0,y0〕,那么Q的坐标为〔﹣x0,﹣y0〕,先求出,然后运用向量数量积的坐标运算能够求出λ的取值围.〔3〕根据P为双曲线C上第一象限的点,可知直线l 的斜率再由题设条件根据k的不同取值围试将s表示为直线l的斜率k的函数.解答:解:〔1〕在双曲线,把1换成0,所求渐近线方程为〔2〕设P的坐标为〔x0,y0〕,那么Q的坐标为〔﹣x0,﹣y0〕,=∵∴λ的取值围是〔﹣∞,﹣1].〔3〕假设P为双曲线C上第一象限的点,那么直线l 的斜率由计算可得,当;当∴s表示为直线l的斜率k的函数是点评:此题是直线与圆锥曲线的综合问题,解题要熟练掌握双曲线的性质和解题技巧.18.〔2011•三模〕过抛物线y2=4x上一点A〔1,2〕作抛物线的切线,分别交x轴于点B,交y轴于点D,点C〔异于点A〕在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.〔1〕设,求λ;〔2〕当点C在抛物线上移动时,求点P的轨迹方程.考点:抛物线的简单性质;向量在几何中的应用.专题:综合题;压轴题.分析:〔1〕设出过A点的切线方程,确定出D点,分别表示出,,根据λ1+λ2=1,求出λ的值.〔2〕设C〔x0,y0〕,P〔x,y〕,用x0,y0表示出x,y,代入抛物线方程,进而确定P点的轨迹.解答:解:〔1〕过点A的切线方程为y=x+1.…〔1分〕切线交x轴于点B〔﹣1,0〕,交y轴交于点D〔0,1〕,那么D是AB的中点.所以.〔1〕…〔3分〕由⇒=〔1+λ〕⇒.〔2〕同理由=λ1,得=〔1+λ1〕,〔3〕=λ2,得=〔1+λ2〕.〔4〕将〔2〕、〔3〕、〔4〕式代入〔1〕得.因为E、P、F三点共线,所以+=1,再由λ1+λ2=1,解之得λ=.…〔6分〕〔2〕由〔1〕得CP=2PD,D是AB的中点,所以点P为△ABC的重心.。

高中数学-高考圆锥曲线难题

高中数学-高考圆锥曲线难题

高中数学-高考圆锥曲线-难题-17道-教师版一、单选题1.(2011·湖北高考真题(文))(2011•湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n=0B .n=1C .n=2D .n≥3 【答案】C2.(2013·全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .112⎛⎫-⎪ ⎪⎝⎭, C .113⎛⎤-⎥ ⎝⎦, D .1132⎡⎫⎪⎢⎣⎭,【答案】B二、解答题3.(2014·上海高考真题(文)) 在平面直角坐标系中,对于直线:0ax by c和点记1122)().ax by c ax by c η=++++(若<0,则称点被直线分隔.若曲线C 与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C 的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M 到点的距离与到轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明轴为曲线E的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-⋃+∞;(3)证明见解析. 4.(2014·福建高考真题(文))已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.【答案】(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析.5.(2011·山东高考真题(文))在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).(1)求m2+k2的最小值;(2)若|OG|2=|OD|∙|OE|,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.【答案】(1)2 (2)见解析6.(2013·浙江高考真题(理))图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【答案】(1)(2)7.(2013·湖北高考真题(文))(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.【答案】(1)(2)见解析8.(2011·广东高考真题(理))在平面直角坐标系xOy 中,给定抛物线21:4L y x =,实数,p q 满足240p q -≥,12,x x 是方程20x px q -+=的两根,记(){}12,max ,p q x x φ=(1)过点()20001,04A P P P ⎛⎫≠ ⎪⎝⎭作L 的切线交y 轴于点B ,证明:对线段AB 上的任一点(),Q p q ,均有()0,2P p q φ=; (2)设(,)M a b 是定点,其中,a b 满足2400a b a ->≠,,过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),'(,)44E P P E P P ,12,l l 与y 轴分别交于,'F F ,线段EF 上异于两端点的点集记为X ,证明:112(,)(,)2P M a b X P P a b φ∈⇔>⇔=;(3)设()21(,)|15144y x D x y y x ⎧⎫≤-⎧⎪⎪⎪=⎨⎨⎬≥+-⎪⎪⎪⎩⎩⎭,当点(),p q 取遍D 时,求(),p q φ的最小值(记为min ϕ)和最大值(记为max ϕ).【答案】(1)见解析;(2)见解析;(3)min 1ϕ=,max 54ϕ=. 9.(2019·全国高考真题(理))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.10.(2018·浙江高考真题)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)⎡⎢⎣⎦.11.(2017·山东高考真题(理))在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(1)2212x y += (2)SOT ∠ 的最大值为π3 ,取得最大值时直线l 的斜率为12k =±. 12.(2017·浙江高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围;(II )求·PA PQ 的最大值 【答案】(I )(-1,1);(II )2716. 13.(2014·重庆高考真题(理))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 14.(2015·湖北高考真题(文))一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内作往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221164x y +=;(Ⅱ)存在最小值8. 15.(2014·重庆高考真题(文))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 16.(2015·江苏高考真题)(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)x 22+y2=1(2)y=x−1或y=−x+1.17.(2015·重庆高考真题(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+√2,|PF2|=2-√2,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且34≤λ≤43,试确定椭圆离心率的取值范围.【答案】(Ⅰ)x 24+y2=1,(Ⅱ)√22<e≤√53.。

高中数学难题100道教师版(1-10题)

高中数学难题100道教师版(1-10题)

高中数学难题100道(1-10题)第1题(函数与求导题)【湘南中学2019届高三试题】已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若a>1,存在,使得(是自然对数的底数),求实数的取值范围。

第2题(椭圆题)1. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点为F ,直线l经过F 且与椭圆交于A ,B 两点. (1)给定椭圆的离心率为√22.①若椭圆的右准线方程为x =2,求椭圆方程; ②若A 点为椭圆的下顶点,求AFBF ;(2)若椭圆上存在点P ,使得△ABP 的重心是坐标原点O ,求椭圆离心率e 的取值范围.()2()ln 0,1x f x a x x a a a =+->≠()f x []12,1,1x x ∈-12()()1f x f x e -≥-e a第3题(函数与求导题)已知函数2211()()ln (1)124f x x x x x a x =---++,a R ∈.(1)试讨论函数()f x 极值点个数;(2)当2ln 22a -<<-时,函数()f x 在[1+∞,)上最小值记为()g a ,求()g a 的取值范围.第4题(函数与求导题)已知()ln ,f x x ax a a R =-+∈ (1)讨论()f x 的单调性;(2)若21()()(1)2g x f x x =+-有三个不同的零点,求a 的取值范围.第5题(函数与求导题)已知函数2()()ln f x a x x x b =-++的图象在点(1,(1))f 处的切线方程为330x y --= (1)求,a b 的值;(2)如果对任何0x >,都有()['()3]f x kx f x ≤⋅-,求所有k 的值;第6题(函数与求导题)(2018浙江)已知函数()ln f x x =.(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-; (2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.第8题(函数与求导题)已知函数f(x)=2x+lnx−a(x2+x).(1)若函数f(x)在x=1处的切线与直线y=−3x平行,求实数a的值;(2)若存在x∈(0,+∞),使得不等式f(x)≥0成立,求实数a的取值范围;(3)当a=0时,设函数p(x)=2x+1−f(x),q(x)=x3−mx+e(其中e为自然,试确定函数h(x)的零点对数底数,m为参数).记函数h(x)=p(x)+q(x)+|p(x)−q(x)|2个数.已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x .第10题(函数与求导题) 已知函数2()e =-xf x ax .(1)若1=a ,证明:当0≥x 时,()1≥f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .高中数学难题100道(参考答案)第1题(函数与求导题)解:(Ⅰ). 1分因为当时,,在上是增函数, 因为当时,,在上也是增函数,所以当或,总有在上是增函数, 3分 又,所以的解集为,的解集为, 故函数的单调增区间为,单调减区间为. 6分 (Ⅱ)因为存在,使得成立,而当时,所以只要即可.又因为,,的变化情况如下表所示:所以在上是减函数,在上是增函数,所以当时,的最小值,的最大值为和中的最大值. 8分因为, 令,因为,所以在上是增函数.而,故当时,,即;所以,当时,,即,函数在上是增函数,解得; 12分()ln 2ln 2(1)ln x xf x a a x a x a a '=-=-++1a >ln 0a >()1ln xa a -R 01a <<ln 0a <()1ln xa a -R 1a >01a <<()f x 'R (0)0f '=()0f x '>(0,)∞+()'0f x <(),0-∞()f x (0,)∞+(),0-∞12,[1,1]x x ∈-12()()e 1f x f x --≥[1,1]x ∈-12max min ()()()()f x f x f x f x --≤max min ()()e 1f x f x --≥x ()f x '()f x ()f x [1,0]-[0,1][1,1]x ∈-()f x ()()min 01f x f ==()f x ()max f x ()1f -()1f 11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++1()2ln (0)g a a a a a=-->22121()1(1)0g a a a a '=-=->+1()2ln g a a a a=--()0,a ∈+∞(1)0g =1a >()0g a >(1)(1)f f >-1a >(1)(0)e 1f f --≥ln e 1a a --≥ln y a a =-(1,)a ∈+∞e a ≥第2题(椭圆题)解:(1)①由题意可得{ ca =√22a 2c=2a 2=b 2+c 2,解得a =√2,b =1,∴椭圆方程为x 22+y 2=1.②F(c,0),A(0,−b),∴直线AB 的方程为y =bc x −b , ∵e =c a=√22,∴b =c ,a =√2b ,∴即直线AB 方程为y =x −b ,联立方程组{x 2a 2+y 2b 2=1y =x −b ,消元得x 2−2bx =0, ∴x =0或x =2b ,∴B 点横坐标为2b ,∴AFBF =c2b−c =1.(2)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0).,依题意直线l 的斜率不能为0,故设直线l 的方程为:x =my +c , 由{b 2x 2+a 2y 2=a 2b 2x=my+c,得(b 2m 2+a 2)y 2+2mcb 2y −b 4=0. y 1+y 2=−2mcb 2b 2m 2+a 2,x 1+x 2=my 1+c +my 2+c =2a 2cb 2m 2+a 2要使△ABP 的重心是坐标原点O ,则有{x 1+x 2+x 03=0y 1+y2+y 03=0∴{x 0=−2a 2cb 2m 2+a 2y 0=2mcb 2b 2m 2+a 2P(x 0,y 0)在b 2x 2+a 2y 2=a 2b 2上,得b 2⋅4a 4c 2(b 2m 2+a 2)2+a 2⋅4m 2c 2b 4(b 2m 2+a 2)2=a 2b 2,⇒b 4m 4+(2b 2a 2−4c 2b 2)m 2+a 4−4a 2c 2=0, ⇒(b 2m 2+a 2)(b 2m 2+a 2−4c 2)=0, ∵⇒b 2m 2+a 2>0,∴椭圆上存在点P ,使得△ABP 的重心是坐标原点O ,则方程b 2m 2+a 2−4c 2=0必成立. ∴a 2−4c 2≤0,⇒c 2a 2≥14⇒e =c a ≥12,椭圆离心率e 的取值范围为[12,1).第3题(函数与求导题) 解:(1)∵()1)ln 2f x x x a '=---(,记()(1)ln 2h x x x =--,则1()ln 1h x x x '=+-,211()0(0)h x x x x''=+>>时∴()h x '在0+∞(,)上递增且(1)0h '=. ∴当01x <<时,()0h x '<,当1x >时,()0h x '>. ∴()h x 在0,1()上递减,在1+∞(,)上递增, 又0x →时,()h x →+∞,x →+∞时,()h x →+∞,min ()(1)2h x h ==-, ∴当2a ≤-时,()0f x '≥,()f x 在定义域上递增,∴无极值点, 当2a >-时,()y f x '=有两变号零点,∴有两极值点.(2)由(1)知,()f x '在[)1+∞,上递增, 又∵(1)20f a '=--<,(2)ln 220f a '=-->.∴存在唯一实数(1,2)t ∈使()0f t '=,(1)ln 2a t t ∴=--,()f x ∴在]1t (,上递减,在[),t +∞上递增, 22min 11()()()ln (1)124f x g a t t t t a t ∴==---++2211ln 124t t t t =--++ 又明显(1)ln 2a t t =--在[)1+∞,上递增, ∴对任意一个()2,ln 22a ∈--,都存在唯一()1,2t ∈与之对应,反之亦然.设()u t =2211ln 124t t t t --++,()1,2t ∈u (t)t(lnt 1)10'=-++<()u t ∴在1,2()上递减,(2)()(1)u u t u ∴<<, 即722ln 2()4u t -<<()g a ∴的取值范围为722ln 24-(,).第4题(函数与求导题)解:(1)由已知()f x 的定义域为(0,)+∞,又1'()axf x x-=, 当0a ≤时,'()0f x >恒成立,10,'()0,()x f x f x a<<>单调递增; 当0a >时,10,'()0,()x f x f x a <<>单调递增;1,'()0,()x f x f x a><单调递减; (2)由题21()ln (1)2g x x ax a x =-++-,1'()1g x x a x =+--①当1a ≤时,'()10g x a ≥-≥,此时()g x 单调递增,最多存在一个零点,不符合题意②当1a >时,2(1)1'()x a x g x x-++=,令2()(1)1h x x a x =-++,此时(3)(1)0a a ∆=+->,令()0h x =两根分别为1212,()x x x x <,由121210,1x x a x x +=+>=,可以知道1201x x <<<10,()0,'()0,()x x h x g x g x <<>>单调递增;当12,()0,'()0,()x x x h x g x g x <<<<单调递减; 2,()0,'()0,()x x h x g x g x >>>单调递增;其中(1)0g =,1212()0,()0,()0a g x g x g e--><<, (2(1))0g a +>,因此有121(,1)a x e--∃∈使得1()0g x =,21x ∃=使得2()0g x =;3(1,2(1))x a ∃∈+使得3()0g x =综上:(1,)a ∈+∞ 注1:当01x <<时,211(1)22x -<,因此有11()ln ln 22g x x ax a x a <-++<++,令1ln 02x a ++=,解得12a x e --= 注2:当1x >时,22111()ln (1)222g x x ax a x x x a x =-++-+>-+,令21(1)02x a x -+=,解得2(1)x a =+第5题(函数与求导题)解:(1)1'()(21)f x a x x=-+,由题知'(1)3,(1)0f f ==,解得2,0a b == (2)令21()()['()3]2()ln [45]g x f x kx f x x x x kx x x=-⋅-=-+--+,1'()2(21)(85)g x x k x x=-+--,其中(1)0g =,又因()0g x ≤,则必有'(1)0g =,解得1k =当1k =时,(1)(41)'()x x g x x-+=,01,'()0,()x g x g x <<>单调递增;1,'()0,()x g x g x ><单调递减,()(1)0g x g ≤=,符合题意综上:1k =第6题(函数与求导题)【解析】(1)函数()f x的导函数1()f x x'=, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=,所以所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (2)令(||)a k m e-+=,2||1()1a n k+=+,则 ()||0f m km a a k k a -->+--≥, ()))0a f n kn a n k n k n --<---<≤ 所以,存在0(,)x m n ∈使00()f x kx a =+,所以,对于任意的a ∈R 及(0,)k ∈+∞,直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得ln x a k x-=.设ln ()x a h x x-=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2g x x =-. 由(1)可知()(16)g x g ≥,又34ln 2a -≤,故()1(16)134ln 2g x a g a a --+--+=-++≤,所以()0h x '≤,即函数()h x 在(0,)+∞上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln 2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.第7题(函数与求导题)解:(1)若f (0)≤1,即:a 2+|a|﹣a (a ﹣1)≤1.可得|a|+a ﹣1≤0,当a≥0时,a ,可得a ∈[0,].当a <0时,|a|+a ﹣1≤0,恒成立.综上a .∴a 的取值范围:; (2)函数 f (x )==,当x <a 时,函数f (x )的对称轴为:x==a+>a , y=f (x )在(﹣∞,a )时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=∴,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.第8题(函数与求导题)−a(2x+1),解:(1)函数f(x)=2x+lnx−a(x2+x)的导数为f′(x)=2+1x可得函数f(x)在x=1处的切线斜率为3−3a,由切线与直线y=−3x平行,可得3−3a=−3,解得a=2;(2)存在x ∈(0,+∞),使得不等式f(x)≥0成立,即为a ≤2x+lnx x 2+x 的最大值, 令m(x)=2x+lnx x 2+x ,(x >0),m′(x)=(2x+1)(1−x−lnx)(x 2+x)2,由1−x −lnx =0,即x +lnx =1,由于x +lnx −1的导数为1+1x >0,即x +ln −1在x >0递增,且x =1时,x +lnx −1=0,则x =1为m(x)的极值点,当x >1时,m(x)递减,当0<x <1时,m(x)递增,则x =1时,m(x)取得极大值,且为最大值1,则a ≤1;(3)当a =0时,设函数p(x)=2x +1−f(x)=1−lnx ,q(x)=x 3−mx +e ,则当1−lnx ≥x 3−mx +e ,h(x)=1−lnx ;当1−lnx <x 3−mx +e ,h(x)=x 3−mx +e .①当x ∈(0,e)时,p(x)>0,依题意,h(x)≥p(x)>0,h(x)无零点;②当x =e 时,p(e)=0,q(e)=e 3−me +e ,若q(e)=e 3−me +e ≤0,即m ≥e 2+1,则e 是h(x)的一个零点;若q(e)=e 3−me +e >0,即m <e 2+1,则e 不是h(x)的零点;③当x ∈(e,+∞)时,p(x)<0,所以此时只需考虑函数q(x)在(e,+∞)上零点的情况.因为 3e^{2}-m'/>,所以 当m ≤3e 2时,0'/>,q(x)在(e,+∞)上单调递增. 又q(e)=e 3−me +e ,所以(i)当m ≤e 2+1时,q(e)≥0,q(x)在(e,+∞)上无零点;(ii)3e 2≥m >e 2+1时,q(e)<0,又q(2e)=8e 3−2me +e ≥6e 3−e >0,所以此时q(x)在(e,+∞)上恰有一个零点;当m >3e 2时,令,得x =±√m 3. 由,得e <x <√m 3; 由 0'/>,得x >√m 3. 所以q(x)在(e,√m 3)上单调递减,在(√m 3,+∞)上单调递增. 因为q(e)=e 3−me +e <e 3−3e 3+e <0,q(m)=m 3−m 2+e >m 2−m 2+e =e >0,所以此时q(x)在(e,+∞)上恰有一个零点;综上,m <e 2+1时,h(x)没有零点;m =e 2+1时,h(x)有一个零点;m >e 2+1时,h(x)有两个零点.第9题(函数与求导题)【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,x =或x =.当2()2a a x+∈+∞时,()0f x '<; 当(,22a a x+∈时,()0f x '>.所以()fx 在(0,2a,(,)2++∞a 单调递减,在(22a a -+单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.第10题(函数与求导题)【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤x x . 设函数2()(1)1-=+-x g x x e ,则22()(21)(1)--=--+=--x x g'x x x e x e . 当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减.而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x .(2)设函数2()1e -=-xh x ax . ()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点. (i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e x h'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x .所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e=-a h 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点; ②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点; ③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点, 由(1)知,当0>x 时,2e >x x , 所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a .。

高中数学轻松搞定排列组合难题二十一种方法(含答案)

高中数学轻松搞定排列组合难题二十一种方法(含答案)

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动好玩,但题型多样,思路敏捷,因此解决排列组合问题,首先要仔细审题,弄清晰是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采纳合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.驾驭解决排列组合问题的常用策略;能运用解题策略解决简洁的综合应用题。

提高学生解决问题分析问题的实力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类方法,在第1类方法中有m种不同的方法,在第2类方法1中有m种不同的方法,…,在第n类方法中有n m种不同的方法,那么完成这件2事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,须要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种1不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区分分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事务的一个阶段,不能完成整个事务.解决排列组合综合性问题的一般过程如下:1.仔细审题弄清要做什么事2.怎样做才能完成所要做的事,即实行分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必需驾驭一些常用的解题策略一.特别元素和特别位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特别要求,应当优先支配,位置.先排末位共有1C3然后排首位共有1C4最终排其它位置共有3A4434由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学集合难题

高中数学集合难题

高中数学集合难题集合在高中数学中是一个重要的概念,它是数学中的一个基础部分,也是解决问题的关键。

本文将介绍一些高中数学中的集合难题,帮助学生更好地理解和应用集合概念。

问题1:设集合A={1,2,3,4,5,6,7,8,9},集合B={5,6,7,8,9,10,11,12,13},求A∪B和A∩B。

解析:A∪B表示集合A和集合B的并集,即包含了A和B中所有的元素,不重复计算。

而A∩B表示集合A和集合B的交集,即A和B中共有的元素。

对于本题,集合A中的元素为{1,2,3,4,5,6,7,8,9},集合B中的元素为{5,6,7,8,9,10,11,12,13}。

所以A∪B的结果为{1,2,3,4,5,6,7,8,9,10,11,12,13},A∩B的结果为{5,6,7,8,9}。

问题2:设集合A={x | -3 ≤ x ≤ 3, x∈Z},集合B={x | -1 ≤ x ≤ 4, x∈Z},求A∪B和A∩B。

解析:题目中的集合A和集合B都是由条件表达式定义的集合。

集合A表示满足-3 ≤ x ≤ 3的整数集合,集合B表示满足-1 ≤x ≤ 4的整数集合。

要求A∪B,即找出满足条件-3 ≤ x ≤ 3或-1 ≤ x ≤ 4的整数集合。

可以将两个条件合并为-3 ≤ x ≤ 4,所以A∪B的结果为{-3,-2,-1,0,1,2,3,4}。

要求A∩B,即找出同时满足条件-3 ≤ x ≤ 3和-1 ≤ x ≤ 4的整数集合。

可以将两个条件合并为-1 ≤ x ≤ 3,所以A∩B的结果为{-1,0,1,2,3}。

问题3:集合A={a, b, c, d, e, f, g, h, i, j},集合B={c, d, e, f, g},集合C={f, g, h, i, j},求(A∩B)∪C。

解析:首先求A∩B,即集合A和集合B的交集。

集合A中的元素为{a, b, c, d, e, f, g, h, i, j},集合B中的元素为{c, d, e, f, g}。

高中数学难题含答案

高中数学难题含答案

龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2}2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 部随 机取一个点Q ,则点Q 取自△ABE 部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于 A .-3 B .-1 C .1 D .39.若a ∈(0,2π),且sin 2a+cos2a=14,则tana 的值等于A .22 B .3C . 2D . 310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。

高中数学必修一难题个人整理的,里面有详细答案的,供大家看看推荐一下吧!

高中数学必修一难题个人整理的,里面有详细答案的,供大家看看推荐一下吧!

三、解答题1.判断一次函数y kx b, 反比例函数y k,二次函数y ax2bx c的x单调性 .2.已知函数 f ( x) 的定义域为1,1,且同时满足下列条件:(1) f ( x) 是奇函数;( 2)f (x)在定义域上单调递减;( 3)f (1a) f (1 a2 )0, 求 a 的取值范围.3.利用函数的单调性求函数y x 1 2x 的值域;4. 已知函数f ( x) x22ax 2, x5,5 .①当 a 1 时,求函数的最大值和最小值;②求实数 a 的取值范围,使y f (x) 在区间5,5 上是单调函数.1.解:当 k0 ,y kx b 在R 是增函数,当 k0 ,y kx b 在R是减函数;当 k0 ,y k在 (,0),(0,) 是减函数,x当 k0 ,y k在 (,0),(0,) 是增函数;x当 a0, y ax2bx c 在 (,b] 是减函数,在 [ b ,) 是增函数,2a2a当 a0, y ax2bx c 在 (,b] 是增函数,在 [b, ) 是减函数. 2a2a11a12.解: f (1a) f (1 a2 ) f ( a2 1) ,则 1 1 a21,1a a210a13.解:2x 1 0, x1,显然y是x的增函数,x1,y1,22min2 y[ 1 ,)24.解: (1)a1, f ( x)x22x2, 对称轴x1, f (x)min f (1)1, f ( x)max f (5)37∴ f (x)max37, f (x)m in1( 2)对称轴x a, 当a 5 或a 5 时, f ( x)在5,5上单调∴ a 5 或 a 5 .17. 已知函数f(x)=x 2 +2ax+2,x5,5 .(1)当 a=-1 时,求函数的最大值和最小值;(2) 若 y=f(x) 在区间5,5上是单调函数,求实数 a 的取值范围。

18.已知关于x 的二次方程x2+ 2mx+ 2m+ 1= 0.(Ⅰ)若方程有两根,其中一根在区间(- 1,0)内,另一根在区间( 1,2)内,求 m 的取值范围.(Ⅱ)若方程两根均在区间(0, 1)内,求m 的取值范围.17.解:( 1)最大值37,最小值1(2)a 5 或a518.(Ⅰ)设f (x)=x2+ 2mx+ 2m+1,问题转化为抛物线 f ( x) =x2+2mx+2m+1与 x 轴的交点分别在区间(-1, 0)和( 1,2)内,则m 1 ,f (0)2m10,2m R ,f ( 1)20,5 1 .5,1.1 解得m∴ mf (1)4m20,m,6262f (2)6m50.2 m5.6(Ⅱ)若抛物线与x 轴交点均落在区间(0, 1)内,则有f (0)0,m 1 ,2f (1)0,m 1,10,即2解得m 1 2.20m 1.m12或m 1 2 ,1m0.∴ m 1,12.220. 已知 f ( x)9x 2 3x4, x1,2( 1)设t 3 x , x1,2,求t 的最大值与最小值;( 2)求f (x)的最大值与最小值;20、解:( 1)t3x在1,2是单调增函数t max329 , t min 3 113( 2)令t3x,x1,2 ,t 1,9原式变为: f ( x)t 22t 4 ,3f ( x)(t1) 2 3 , t 1,9 ,当t 1 时,此时 x 1 ,3f ( x)min 3 ,当 t9 时,此时 x 2 ,f ( x)max67x 15 的最大值和最小值20. 若 0≤ x ≤ 2, 求函数 y= 423 2 x11x3 2x 5x 2x 520. 解: y 42(2) 3 22令 2 xt1 t 41 212 1 1 t4, 因为 0≤ x ≤2,所以 , 则 y=t3t5 = ( t)( )222因为二次函数的对称轴为t=3 ,所以函数 y= 1t 2 3t5 在区间 [1,3]上是减函数,在区间21[3,4]上是增函数 .∴ 当 t3,即 x=log23时ymin25当 t1,即 x=0 时 y max219. 已知函数f (x)是定义域在R 上的奇函数,且在区间(, 0)上单调递减,求满足 f(x 2+2x-3) > f(-x 2 -4x+5)的 x 的集合19.解:f ( x) 在 R 上为偶函数,在 (,0) 上单调递减f ( x) 在 (0,) 上为增函数又 f ( x 24x 5) f ( x 2 4x 5)x 2 2x 3 (x 1)22 0 , x 24x 5 (x2)21 0由 f ( x 22 x 3) f (x 24x 5) 得 x 22x 3x 2 4x 5x 1解集为 { x | x1} .18.(本小题满分 10 分)已知定义在 R 上的函数y f x 是偶函数,且 x 0 时, f x ln x22x 2 ,(1)当 x 0 时,求 f x 解析式;(2)写出 f x 的单调递增区间。

高中数学导数难题练习题带答案

高中数学导数难题练习题带答案

高中数学导数难题一.选择题(共20小题)1.对于任意的x∈[0,],总存在b∈R,使得|sin2x+a sin x+b|≤1恒成立,则实数a的取值范围是()A.[﹣3,1]B.[﹣1,3]C.[﹣3,3]D.[﹣1,1]2.设k,b∈R,若关于x的不等式ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e﹣13.设k,b∈R,若关于x的不等式kx+b+1≥lnx在(0,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e4.已知曲线在x=x1处的切线为l1,曲线y=lnx在x=x2处的切线为l2,且l1⊥l2,则x2﹣x1的取值范围是()A.B.(﹣∞,﹣1)C.(﹣∞,0)D.5.若对任意的a∈R,不等式e2a+a2+b2﹣2ab≥20恒成立,则实数b的取值范围是()A.b B.b≥3+ln2C.b≥4+ln2D.b≥5+ln26.已知曲线f(x)=lnx+ax+b在x=1处的切线是x轴,若方程f(x)=m(m∈R)有两个不等实根x1,x2,则x1+x2的取值范围是()A.(0,)B.(0,1)C.(2,+∞)D.(4,+∞)7.已知a∈R,函数f(x)=,则下列说法正确的是()A.若a<﹣1,则y=f(x)(x∈R)的图象上存在唯一一对关于原点O对称的点B.存在实数a使得y=f(x)(x∈R)的图象上存在两对关于原点O对称的点C.不存在实数a使得y=f(x)(x∈R)的图象上存在两对关于y轴对称的点D.若y=f(x)(x∈R)的图象上存在关于y轴对称的点,则a>18.定义在R上的函数f(x)满足e4(x+1)f(x+2)=f(﹣x),且对任意的x≥1都有f'(x)+2f(x)>0(其中f'(x)为f(x)的导数),则下列一定判断正确的是()A.e4f(2)>f(0)B.e2f(3)<f(2)C.e10f(3)<f(﹣2)D.e6f(3)<f(﹣1)9.已知a,b∈R且ab≠0,对于任意x≥0均有(x﹣a)(x﹣b)(x﹣2a﹣b)≥0,则()A.a<0B.a>0C.b<0D.b>010.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.D.11.已知函数y=f(x)在R上的图象是连续不断的,其导函数为f'(x),且f'(x)>﹣f(x),若对于∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,则实数a的最小值为()A.e B.C.D.e212.若对任意的x∈R,都存在x0∈[ln2,2],使不等式+4x+m≥0成立,则整数m的最小值为()(提示:ln2≈0.693)A.3B.4C.5D.613.已知函数f(x)=e x﹣ax﹣1,g(x)=lnx﹣ax﹣1,其中0<a<1,e为自然对数的底数,若∃x0∈(0,+∞),使f (x0)g(x0)>0,则实数a的取值范围是()A.B.C.D.14.已知函数f(x)=ae x﹣x(a∈R)有两个零点x1,x2,且x1<x2则下列结论中不正确的是()A.B.0<x1<1C.x1+x2>2D.lnx1﹣x1<lnx2﹣x215.已知函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),则下列说法错误的是()A.B.x1+x2<2e C.有极大值点x0,且x1+x2>2x0D.16.已知函数f(x)=,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则最小值为()A.B.﹣C.D.﹣17.已知不等式e x﹣x﹣1>m[x﹣ln(x+1)]对一切正数x都成立,则实数m的取值范围是()A.B.C.(﹣∞,1]D.(﹣∞,e]18.已知函数f(x)是定义在(﹣,)上的奇函数.当时,f(x)+f′(x)tan x>0,则不等式cos x •f(x+)+sin x•f(﹣x)>0的解集为()A.(,)B.(﹣,)C.D.19.若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,则a的最小整数值是()A.0B.1C.2D.320.已知可导函数f(x)的导函数f'(x),若对任意的x∈R,都有f(x)>f'(x)+2,且f(x)﹣2020为奇函数,则不等式f(x)﹣2018e x<2的解集为()A.(﹣∞,0)B.(0,+∞)C.D.二.填空题(共10小题)21.已知函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则实数t的取值范围.22.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2,其导数f′(x)满足xf′(x)<2f′(x),若f(3)=0,则不等式xf(x)>0的解集为.23.已知函数f(x)=,则过原点且与“曲线y=f(x)在y轴右侧的图象”相切的直线方程为,若f(x)=mx有两个不同的根,则实数m的取值范围是.24.已知函数f(x)=axlnx+(a>0).(1)当a=1时,f(x)的极小值为;(2)若f(x)≥ax在(0,+∞)上恒成立,则实数a的取值范围为.25.若不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,则实数b的最大值为.26.若函数f(x)=x3﹣ax﹣2(a∈R)在(﹣∞,0)内有且只有一个零点,则f(x)在[﹣1,2]上的最小值为.27.过曲线上一点P作该曲线的切线l,l分别与直线y=x,y=2x,y轴相交于点A,B,C.设△OAC,△OAB的面积分别为S1,S2,则S1=,S2的取值范围是.28.当x∈[0,+∞)时,不等式x2+3x+2﹣a≥0恒成立,则a的取值范围是.29.若不等式x2﹣|x﹣2a|≤a﹣3在x∈[﹣1,1]上恒成立,则正实数a的取值范围是.30.已知函数,若直线y=2x﹣b与函数y=f(x),y=g(x)的图象均相切,则a的值为;若总存在直线与函数y=f(x),y=g(x)图象均相切,则a的取值范围是.三.解答题(共10小题)31.已知函数f(x)=ax﹣lnx.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,是否存在实数a,使得f(x)的最小值为4?若存在,求出实数a,若不存在说明理由.32.已知函数f(x)=x sin x+cos x+ax2,x∈[﹣π,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.33.已知函数f(x)=e x+,其导函数为f′(x),函数g(x)=,对任意x∈R,不等式g(x)≥ax+1恒成立.(Ⅰ)求实数a的值;(Ⅱ)若0<m<2e,求证:x2g(x)>m(x+1)lnx.34.设函数f(x)=e x﹣ax﹣1,a∈R.(Ⅰ)讨论f(x)在(0,+∞)上的单调性;(Ⅱ)当a>1时,存在正实数m,使得对∀x∈(0,m),都有|f(x)|>x,求a的取值范围.35.已知函数.(1)讨论f(x)的单调性;(2)若恒成立,求证:.36.已知函数f(x)=.(1)求函数f(x)的极值;(2)令h(x)=x2f(x),若对∀x≥1都有h(x)≥ax﹣1,求实数a的取值范围.37.已知函数f(x)=lnx﹣.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)存在两个极值点x1,x2,求实数a的取值范围,并证明:f(x1),f(1),f(x2)成等差数列.38.已知函数f(x)=alnx(a≠0)与的图象在它们的交点P(s,t)处具有相同的切线.(1)求f(x)的解析式;(2)若函数g(x)=(x﹣1)2+mf(x)有两个极值点x1,x2,且x1<x2,求的取值范围.39.已知函数f(x)=﹣x+(x+1)ln(x+1)(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),求实数a的取值范围.40.已知实数a≥﹣1,设f(x)=(x+a)lnx,x>0.(1)若a=﹣1,有两个不同实数x1,x2不满足|f'(x1)|=|f'(x2)|,求证:x1+x2>2;(2)若存在实数,使得|f(x)|=c有四个不同的实数根,求a的取值范围.参考答案与试题解析一.选择题(共20小题)1.【解答】解:令t=sin x∈[0,1],则f(t)=t2+at+b,t∈[0,1].由已知得:①当,即a≥0时,则,整理得0≤a≤1;②当,即﹣1<a<0时,则,即,显然始终存在符合题意的b,使原式成立;③当,即﹣2<a≤﹣1时,则,显然符合题意的b存在;④当,即a≤﹣2时,则,即,可得始终存在b,且﹣3≤a≤﹣2.综上可知,a的取值范围是[﹣3,1].故选:A.2.【解答】解:ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,即为ln(x﹣1)+x﹣kx≤b对x>1恒成立,可令t=x﹣1,t>0,则lnt+t+1﹣k(t+1)≤b,令f(t)=lnt+(1﹣k)t+1﹣k,f′(t)=+1﹣k,若k≤1,则f′(t)>0,可得f(t)在t>1递增,当t→∞时,f(t)→∞,不等式不能成立;故k>1,当=k﹣1时,f(t)取得最大值f(t)max=f()=ln﹣1+1﹣k=﹣ln(k﹣1)﹣k,即﹣ln(k﹣1)﹣k≤b,所以ln(k﹣1)+k﹣1≥﹣2﹣(b﹣1),则≥﹣﹣1,可令k﹣1=u,g(u)=﹣﹣1,g′(u)=﹣=,可得当lnu=﹣1时,u=,g(u)min=﹣2e+e﹣1=﹣e﹣1,则的最小值是﹣e﹣1.故选:D.3.【解答】解:kx+b+1≥lnx在(0,+∞)上恒成立,即为lnx﹣kx﹣1≤b在(0,+∞)上恒成立,令f(x)=lnx﹣kx﹣1,f′(x)=﹣k,若k≤0,则f′(x)>0,可得f(x)在(0,+∞)递增,当x→∞时,f(x)→∞,不等式不能成立;故k>0,当=k时,f(x)取得最大值f(x)max=f()=ln﹣2=﹣lnk﹣2,即﹣lnk﹣2≤b,则≥﹣﹣,k>0,可令g(k)=﹣﹣,k>0,g′(k)=﹣=,可得当lnk=﹣1时,k=,g(k)min=﹣2e+e=﹣e,则的最小值是﹣e.故选:D.4.【解答】解:由,得,则,由y=lnx,得y′=,则,∵l1⊥l2,∴,即.∵x2>0,∴x1>1,又,令h(x)=,x>1.则h′(x)=.当x∈(1,+∞)时,y=2﹣x﹣e x为减函数,故2﹣x﹣e x<2﹣1﹣e<0.∴h′(x)<0在(1,+∞)上恒成立,故h(x)在(1,+∞)上为减函数,则h(x)<h(1)=﹣1.又当x>1时,<,∴h(x)的取值范围为(﹣∞,﹣1).即x2﹣x1的取值范围是(﹣∞,﹣1).故选:B.5.【解答】解:令f(x)=e2x+x2+b2﹣2bx﹣20,f′(x)=2e2x+2x﹣2b,f″(x)=4e2x+2>0,所以f′(x)在R上单调递增,又∵,所以存在x0使得f′(x0)=0,代入化简可得,那么f(x)在(﹣∞,x0)单调递减,在(x0,+∞)上单调递增.∴=,又∵f(x0)≥0,即.令,则t2+t≥20,解得:t≤﹣5 (含去),t≥4,即x0≥ln2,∴,故选:C.6.【解答】解:易知,切点为(1,0),切线斜率为0,而.∴,解得a=﹣1,b=1.∴f(x)=lnx﹣x+1(x>0).∵,易知f′(1)=0,且当x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,故若方程f(x)=m(m∈R)有两个不等实根x1<x2,则必有0<x1<1<x2,则2﹣x1>1.∵f(x1)=f(x2),∴f(x2)﹣f(2﹣x1)=f(x1)﹣f(2﹣x1),令g(x)=f(x)﹣f(2﹣x)=lnx﹣x﹣1﹣[ln(2﹣x)﹣(2﹣x)﹣1]=lnx﹣ln(2﹣x)﹣2x+2,x∈(0,1),∵(0<x<1),∴g(x)在(0,1)上单调递增,而g(1)=0,故g(x)<0在(0,1)上恒成立,∴f(x2)﹣f(2﹣x1)<0恒成立,即f(x2)<f(2﹣x1)恒成立而此时x2,2﹣x1∈(1,+∞),且f(x)在(1,+∞)上是减函数,∴x2>2﹣x1,即x1+x2>2.故选:C.7.【解答】解:由关于原点对称的点的特点,可将x换为﹣x,y换为﹣y,可得f(x)=﹣x2﹣2x+a(x≤0)关于原点O对称的解析式g(x)=x2﹣2x﹣a(x≥0),令h(x)=e x﹣x2+2x+a(x>0),则h'(x)=e x﹣2x+2,h''(x)=e x﹣2,由x>ln2可得h′(x)递增;0<x<ln2时,h′(x)递减,所以h'(x)≥h′(ln2)=4﹣2ln2>0,因此,h(x)是单调递增的,且h(x)=e x﹣x2+2x+a≥h(0)=1+a,故当a<﹣1,h(x)有唯一零点,当a≥﹣1时,h(x)不存在零点,故A正确;B不正确;由关于y轴对称的点的特点,可将x换为﹣x,y不变,可得f(x)=﹣x2﹣2x+a(x≤0)关于y轴对称的解析式m(x)=﹣x2+2x+a(x≥0),令n(x)=e x+x2﹣2x﹣a(x>0),n′(x)=e x+2x﹣2,n″(x)=e x+2,所以n″(x)>0,n′(x)递增,n′(x)≥n′(0)=﹣1,因此,n(x)不单调,当a<0时,n(x)有零点,当a=1时,n(x)存在两对零点,故C,D都不正确.故选:A.8.【解答】解:设F(x)=e2x•f(x),则F'(x)=2e2x f(x)+e2x f'(x)=e2x[2f(x)+f'(x)],∵对任意的x≥1都有f′(x)+2f(x)>0;则F'(x)>0,则F(x)在[1,+∞)上单调递增;F(x+2)=e2(x+2)•f(x+2);F(﹣x)=e﹣2x•f(﹣x);因为e4(x+1)f(x+2)=f(﹣x),∴e2(x+2)•e2x•f(x+2)=f(﹣x);∴e2(x+2)•f(x+2)=e﹣2x•f(﹣x)∴F(x+2)=F(﹣x),所以F(x)关于x=1对称,则F(﹣2)=F(4),∵F(x)在[1,+∞)上单调递增;∴F(3)<F(4)即F(3)<F(﹣2),∴e6•f(3)<e﹣4•f(﹣2);即e10•f(3)<f(﹣2)成立.故C正确;F(3)=F(﹣1),F(0)=F(2)故A,D均错误;F(3)>F(2)∴e2f(3)>f(2).B错误.故选:C.9.【解答】解:设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),可得f(x)的图象与x轴有三个交点,即f(x)有三个零点a,b,2a+b且f(0)=﹣ab(2a+b),由题意知,f(0)≥0在x≥0上恒成立,则ab(2a+b)≤0,a<0,b<0,可得2a+b<0,ab(2a+b)≤0恒成立,排除B,D;我们考虑零点重合的情况,即中间和右边的零点重合,左边的零点在负半轴上.则有a=b或a=2a+b或b=b+2a三种情况,此时a=b<0显然成立;若b=b+2a,则a=0不成立;若a=2a+b,即a+b=0,可得b<0,a>0且a和2a+b都在正半轴上,符合题意,综上b<0恒成立.故选:C.10.【解答】解:当x≥1时,f(x)=x2﹣x+4=(x﹣2)2+>0,当x<1时,f(x)=﹣x3+x2﹣x+,则f′(x)=﹣x2+2x﹣1<0,故f(x)在(﹣∞,1)递减,f(x)>f(1)=3>0,若关于x的不等式在R上恒成立,则﹣x2+x﹣4≤x﹣a≤x2﹣x+4且x3﹣x2+x﹣≤x﹣a≤﹣x3+x2﹣x+恒成立,即﹣x2+x﹣4≤a≤x2﹣x+4且x3﹣x2+x﹣≤a≤﹣x3+x2﹣x+恒成立,所以(﹣x2+x﹣4)max≤a≤(x2﹣x+4)min且(x3﹣x2+x﹣)max≤a≤(﹣x3+x2﹣x+)min,对于y=﹣x2+x﹣4(x≥1),对称轴是x=,故x=时y取最大值﹣,对于y=x2﹣x+4(x≥1),对称轴是x=,故x=时y取最小值,故﹣≤a≤①,对于y=x3﹣x2+x﹣(x<1),y′=x2﹣2x+>0,函数在(﹣∞,1)递增,故y<y|x=1=﹣,对于y=﹣x3+x2﹣x+(x<1),y′=﹣(x﹣1)2+,令y′>0,解得<x<1,令y′<0,解得x<,故函数在(﹣∞,)递减,在(,1)递增,y min=y|x==,故﹣≤a≤②,综合①②,得﹣≤a≤.故选:B.11.【解答】解:根据題意,令F(x)=e x•f(x),则F'(x)=e x[f(x)+f'(x)]>0,故函数F(x)在R上单调递增,F(lnx)=e lnx f(lnx)=xf(lnx),F(ax)=e ax f(ax),又∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,所以F(lnx)≤F(ax)在(0,+∞)恒成立.从而lnx≤ax,即在(0,+∞)恒成立.令,,令g'(x)=0,则x=e,所以在(0,e)单调递增,在(e,+∞)单调递减.所以,故.则实数a的最小值为,故选:B.12.【解答】解:设,由题意可知f(x)≥0对x∈R恒成立,则在x0∈[ln2,2]上有解,即在x0∈[ln2,2]上有解.设g(x)=x2+2x﹣e x﹣m+4,∴h(x)=g'(x)=2x﹣e x+2,则h'(x)=2﹣e x,∵x∈[ln2,2],∴h'(x)≤h'(ln2)=2﹣e ln2=0,则g'(x)在[ln2,2]上单调递减.∵g'(ln2)=2ln2>0,g'(2)=6﹣e2<0,∴∃x1∈(ln2,2),g'(x1)=0,则g(x)在[ln2,x1)上单调递增,在(x1,2]上单调递减.∵g(ln2)=(ln2)2+2ln2+2﹣m,g(2)=12﹣e2﹣m,∴g(2)﹣g(ln2)=10﹣e2﹣(ln2)2﹣2ln2>0,则g(ln2)≤0,即(ln2)2+2ln2+2﹣m≤0,故m≥(ln2)2+2ln2+2,∵m∈Z,∴m的最小值是4.故选:B.13.【解答】解:由e x﹣ax﹣1,得f′(x)=e x﹣a,∵0<a<1,∴当x∈(0,+∞)时,f′(x)=e x﹣a>0恒成立,则f(x)在(0,+∞)上单调递增,则f(x)>f(0)=0;若∃x0∈(0,+∞),使f(x0)g(x0)>0,则∃x0∈(0,+∞),使g(x0)>0,即∃x0∈(0,+∞),使lnx0﹣ax0﹣1>0,∴∃x0∈(0,+∞),a<,令h(x)=,则h′(x)==,当x∈(0,e2)时,h′(x)>0,h(x)单调递增,当x∈(e2,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)有极大值也是最大值为h(e2)=,则a<,∴实数a的取值范围是,故选:A.14.【解答】解:f′(x)=ae x﹣1,当a≤0时,f′(x)<0在x∈R上恒成立,此时f(x)在R上单调递减,不合题意;当a>0时,由f'(x)=0,解得x=﹣lna,当x<﹣lna时,f'(x)<0,f(x)单调递减,当x>﹣lna时,f'(x)>0,f(x)单调递增,∴当a>0时,f(x)单调减区间为(﹣∞,﹣lna),单调增区间为(﹣lna,+∞),可知当x=﹣lna时,函数取得极小值为f(﹣lna)=ae﹣lna+lna=lna+1,又当x→﹣∞时,f(x)→+∞,x→+∞时,f(x)→+∞,∴要使函数f(x)有两个零点,则,得0<a<,故A正确;由f(0)=a>0,极小值点x=﹣lna>0,可得0<x1<x2.∵x1,x2是f(x)的两个零点,∴,.可得lnx1=lna+x1,lnx2=lna+x2.故lnx1﹣x1=lnx2﹣x2,故D错误;由lnx1﹣x1=lnx2﹣x2=lna,设g(x)=lnx﹣x﹣lna,则x1,x2为g(x)的两个零点,g′(x)=﹣1=,得g(x)在(0,1)上单调增,在(1,+∞)上单调减,∴0<x1<1<x2,故B正确;设h(x)=g(x)﹣g(2﹣x),(0<x<1),则h(x)=lnx﹣ln(2﹣x)+2﹣2x(0<x<1),h′(x)=+﹣2=>0恒成立,则h(x)在(0,1)上单调增,∵h(x)<h(1)=0,∴h(x1)=g(x1)﹣g(2﹣x1)<0,即g(x1)<g(2﹣x1),得g(x2)<g(2﹣x1).又g(x)在(1,+∞)上单调减,x2,2﹣x1∈(1,+∞),∴x2>2﹣x1,即x1+x2>2,故C正确.综上,错误的结论是D.故选:D.15.【解答】解:由f(x)=lnx﹣ax,可得,当a≤0时,f′(x)>0,∴f(x)在x∈(0,+∞)上单调递增,与题意不符;当a>0时,可得当,解得:,可得当时,f′(x)>0,f(x)单调递增,当时,f′(x)<0,f(x)单调递减,可得当时,f(x)取得极大值点,又因为由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得,可得,综合可得:,故A正确;由上可得f(x)的极大值为,设,设,其中,可得,可得,可得,易得当时,g′(x)=0,当,g′(x)≤0,故,,故,,由,易得,且,且时,f′(x)<0,f(x)单调递减,故由,可得,即,即:有极大值点,且,故C正确,B不正确;由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得lnx1=ax1,lnx2=ax2,可得,,可得,由前面可得,,可得,故D正确.故选:B.16.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,又f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0,同时g(x)===f(e x),若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且f(x1)=g(x2)=f(),所以x1=,即x2=lnx1,又k=,所以==k,故e k=k3e k,令h(k)=k3e k,k<0,则h′(k)=k2(k+3)e k,令h′(k)<0,解得k<﹣3,令h′(k)>0,解得:﹣3<k<0,∴h(k)在(﹣∞,﹣3)单调递减,在(﹣3,0)单调递增,∴h(k)min=h(﹣3)=﹣,故选:D.17.【解答】解:由题意可知:当x>0时,e x﹣x﹣1﹣m[x﹣ln(x+1)]>0恒成立,设f(x)=e x﹣x﹣1﹣m[x﹣ln(x+1)],则f′(x)=e x﹣1﹣m(1﹣),f″(x)=e x﹣,①m≤0时,f″(x)>0恒成立,∴f′(x)递增,∵f′(0)=0,∴x>0时,f′(x)>f′(0)=0,f(x)递增,又∵f(0)=0,∴x>0时,f(x)>f(0)=0,符合题意,②m>0时,f″′(x)=e x+,∴f′″(x)>0恒成立,f″(x)递增,f″(0)=1﹣m,(i)1﹣m≥0即0<m≤1时,与①同理,m符合题意,(ii)1﹣m<0,即m>1时,f″(0)<0,另一方面,显然当x→+∞时,f″(x)>0,且f″(x)连续,∴由零点定理,存在x0∈(0,+∞),使得f″(x0)=0,∴0<x<x0时,f″(x)<0,f′(x)递减,又∵f′(0)=0,∴0<x<x0时,f′(x)<0,f(x)递减,f(0)=0,∴0<x<x0时,f(x)<0,不合题意,综上,m的范围是(﹣∞,1],故选:C.18.【解答】解:令g(x)=f(x)sin x,g′(x)=f(x)cos x+f′(x)sin x=[f(x)+f′(x)tan x]•cos x,当x∈[0,)时,f(x)+f′(x)tan x>0,∴g′(x)>0,即函数g(x)单调递增.又g(0)=0,∴时,g(x)=f(x)sin x>0,∵f(x)是定义在(﹣,)上的奇函数,∴g(x)是定义在(﹣,)上的偶函数.不等式cos x•f(x+)+sin x•f(﹣x)>0,即sin(x+)f(x+)>sin xf(x),即g(x+)>g(x),∴|x+|>|x|,∴x>﹣①,又﹣<x+<,故﹣π<x<0②,由①②得不等式的解集是(﹣,0).故选:C.19.【解答】解:若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,问题等价于a≥在(0,+∞)恒成立,令g(x)=,则g′(x)=,令h(x)=﹣x﹣lnx,(x>0),则h′(x)=﹣﹣<0,故h(x)在(0,+∞)递减,不妨设h(x)=0的根是x0,则lnx0=﹣x0,则x∈(0,x0)时,g′(x)>0,g(x)递增,x∈(x0,+∞)时,g′(x)<0,g(x)递减,∴g(x)max=g(x0)===,∵h(1)=1>0,h(2)=﹣ln2<0,∴1<x0<2,<<1,∴a≥1,a的最小整数值是1,故选:B.20.【解答】解:设g(x)=,由f(x)>f′(x)+2,得:g′(x)=<0,故函数g(x)在R递减,由f(x)﹣2020为奇函数,得f(0)=2020,∴g(0)=f(0)﹣2=2018,即g(0)=2018,∵不等式f(x)﹣2018e x<2,∴<2018,即g(x)<g(0),结合函数的单调性得:x>0,故不等式f(x)﹣2018e x<2的解集是(0,+∞),故选:B.二.填空题(共10小题)21.【解答】解:函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则(x+t)3﹣3(x+t)>x3﹣3x+t,即x3+3x2t+3xt2+t3﹣3x﹣3t>x3﹣3x+t,所以3x2t+3xt2+t3﹣4t>0(t≠0)恒成立,所以t>0,且△=(3t2)2﹣4•3t•(t3﹣4t)=﹣3t4+48t2<0,解得t>4,又t<0时,不等式不恒成立.综上,t的范围是(4,+∞).22.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)<2f′(x)⇔f′(x)(x﹣2)<0,∴当x>2时,f′(x)<0,f(x)在(2,+∞)上的单调递减;同理可得,当x<2时,f(x)在(﹣∞,2)单调递增;∵f(3)=0,∴f(1)=0,即当1<x<3时,f(x)>0,当x>3或x<1时,f(x)<0,即f(x)的草图如右:则不等式xf(x)>0等价为或,即1<x<3或x<0,即不等式的解集为(﹣∞,0)∪(1,3),故答案为:(﹣∞,0)∪(1,3).23.【解答】解:设切点为(x0,lnx0),由f(x)=lnx,得f′(x)=,则f′(x0)=,∴曲线y=f(x)在y轴右侧的图象在切点处的切线方程为y﹣lnx0=,把原点代入,可得﹣lnx0=﹣1,即x0=e.则切线方程为y﹣1=(x﹣e),即y=;作出函数f(x)=的图象如图:若f(x)=mx有两个不同的根,则m≤0或<m<1.∴m的取值范围为(﹣∞,0]∪(,1).故答案为:y=;(﹣∞,0]∪(,1).24.【解答】解:(1)a=1时,f(x)=xlnx+,(x>0),f′(x)=lnx+1﹣,f″(x)=+>0,故f′(x)在(0,+∞)递增,而f′(1)=0,故x∈(0,1)时,f′(x)<0,f(x)递减,x∈(1,+∞)时,f′(x)>0,f(x)递增,故f(x)极小值=f(1)=1;(2)若f(x)≥ax在(0,+∞)上恒成立,即a(1﹣lnx)≤在(0,+∞)恒成立,①1﹣lnx≤0即x≥e时,∵a>0,(1﹣lnx)≤0,>0,故a(1﹣lnx)≤在(0,+∞)恒成立,②1﹣lnx>0即0<x<e时,问题转化为a≤在(0,+∞)恒成立,即a≤[]min,只需求出g(x)=x2(1﹣lnx)的最大值即可,(0<x<e),g′(x)=x(1﹣2lnx),令g′(x)>0,解得:0<x<,令g′(x)<0,解得:<x<e,故g(x)在(0,)递增,在(,e)递减,故g(x)max=g()=,故a≤=,综上,a∈(0,].故答案为:1,(0,].25.【解答】解:由x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,得﹣x2+x﹣2≤ax+b≤4lnx﹣x2对任意的x∈[1,e]恒成立,令f(x)=﹣x2+x﹣2,g(x)=4lnx﹣x2.由g(x)=4lnx﹣x2,得g′(x)=(1≤x≤e).当x∈(1,)时,g′(x)>0,g(x)单调递增,当x∈()时,g′(x)<0,g(x)单调递减.在同一平面直角坐标系内,作出函数y=f(x)与y=g(x)的图象如图:设过(1,﹣1)与f(x)=﹣x2+x﹣2相切的直线方程为y+1=k(x﹣1),联立,消去y得x2+(k﹣1)x+1﹣k=0.由△=(k﹣1)2﹣4(1﹣k)=0,解得k=﹣3或k=1.当k=﹣3时,直线方程为y=﹣3x+2.由图可知,满足不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立的实数b的最大值为2.故答案为:2.26.【解答】解:∵f(x)=x3﹣ax﹣2(a∈R),∴f′(x)=3x2﹣a(x<0),①当a≤0时,f′(x)=3x2﹣a>0,函数f(x)在(﹣∞,0)上单调递增,又f(0)=﹣2<0,∴f(x)在(﹣∞,0)上没有零点;②当a>0时,由f′(x)=3x2﹣a>0,解得x<或x>(舍).∴f(x)在(﹣∞,﹣)上单调递增,在(,0)上单调递减,而f(0)=﹣2<0,要使f(x)在(﹣∞,0)内有且只有一个零点,∴f()=,解得a=3,f(x)=x3﹣3x﹣2,f′(x)=3x2﹣3=3(x+1)(x﹣1),x∈[﹣1,2],当x∈(﹣1,1)时,f′(x)<0,f(x)单调递减,当x∈(1,2)时,f′(x)>0,f(x)单调递增.又f(﹣1)=0,f(1)=﹣4,f(2)=0,∴f(x)min=f(1)=﹣4.故答案为:﹣4.27.【解答】解:由y=x+,得y′=1﹣,设P()(x0>0),则,∴曲线在P处的切线方程为.分别与y=x与y=2x联立,可得A(2x0,2x0),B(,),取x=0,可得C(0,),又O(0,0),∴△OAC的面积S1=;OA=,点B到直线x﹣y=0的距离d==.∴△OAB的面积S2===∈(0,2).故答案为:2;(0,2).28.【解答】解:可设t=,由x≥0可得t≥1,由x=,可得不等式恒成立,即为()2+3()+2﹣at﹣a2≥0对t≥1恒成立,化为a2+at﹣(t2+3)(t2+1)≤0对t≥1恒成立,设f(t)=a2+at﹣(t2+3)(t2+1),f′(t)=a﹣(t3+2t),由题意可得f(t)的最大值小于等于0,若f(x)不单调,可得a≥3,再由t≥1时,f(t)=(t3+2t)2+t(t3+2t)﹣﹣(t2+3)(t2+1)的导数为f′(t)=6t5+19t3+10t>0,即有f(t)≥f(1)=10>0,不等式不恒成立,可得f(x)单调,且f(x)在[1,+∞)递减,可得a﹣(t3+2t)≤0,即a≤3;又a2+a﹣×(1+3)×(1+1)≤0,解得﹣2≤a≤1,即a的范围是[﹣2,1].故答案为:[﹣2,1].29.【解答】解:x2﹣|x﹣2a|≤a﹣3即|x﹣2a|≥x2﹣a+3,可得x﹣2a≥x2﹣a+3,或x﹣2a≤﹣x2+a﹣3,即为a≤x﹣x2﹣3或3a≥x2+x+3在﹣1≤x≤1恒成立,由y=x﹣x2﹣3在[﹣1,1]的最小值为﹣1﹣1﹣3=﹣5,可得a≤﹣5;由y=x2+x+3在[﹣1,1]的最大值为1+1+3=5,可得3a≥5,即a≥;由a>0,可得a≥.故答案为:a≥.30.【解答】解:设直线y=2x﹣b与函数y=f(x)的图象相切的切点为(m,2lnm),由f′(x)=,可得=2,即m=1,切点为(1,0),则b=2,切线的方程为y=2x﹣2,联立y=g(x)=ax2﹣x﹣,可得ax2﹣3x+=0,由题意可得△=9﹣4a•=0,解得a=;设y=f(x)与y=g(x)的图象在交点处存在切线y=kx+t,且切点为(n,2lnn),由f′(x)=,g′(x)=2ax﹣1,可得=k=2an﹣1,2lnn=kn+t=an2﹣n﹣,化为kn=2,an2=,则2lnn=,即4lnn+n=1,设h(n)=4lnn+n,h′(n)=+1>0,可得h(n)在(0,+∞)递增,由h(1)=1,可得4lnn+n=1的解为n=1,则a=,由y=ax2﹣x﹣(a>0)的图象可得,当a越大时,抛物线的开口越小,可得此时y=f(x)和y=g(x)的图象相离,总存在直线与它们的图象都相切,则a的范围是[,+∞).故答案为:,[,+∞).三.解答题(共10小题)31.【解答】解:(1)f′(x)=a ﹣=(x>0),当a≤0时,f′(x)<0,∴f(x)递减,当a>0时,令f′(x)<0,得0<x <;令f′(x)>0,得x >,综上:a≤0时减区间为(0,+∞),a>0,时减区间为(0,);增区间为[,+∞);(2)a≤0时,f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =>0,舍去,a>0时①若≥e即a ≤时f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =,舍去,②若<e即a >时f(x)在(0,)上递减,在(,e]上递增,∴f(x)min=f ()=1﹣ln=4,∴a=e3.32.【解答】解:(1)当a=0时,f(x)=x sin x+cos x,x∈[﹣π,π].f'(x)=sin x+x cos x﹣sin x=x cos x.当x在区间[﹣π,π]上变化时,f'(x),f(x)的变化如下表x﹣π(﹣π,﹣)﹣(﹣,0)0(0,)(,π)πf'(x)+0﹣0+0﹣f(x)﹣1极大值极小值1极大值﹣1∴f(x)的单调增区间为(﹣π,﹣),(0,);f(x )的单调减区间为(﹣,0),(,π).(2)任取x∈[﹣π,π].∵f(﹣x)=(﹣x)sin(﹣x)+cos(﹣x)+a(﹣x)2=x sin x+cos x +ax2=f(x),∴f(x)是偶函数.f′(x)=ax+x cos x=x(a+cos x).当a≥1时,a+cos x≥0在[0,π)上恒成立,∴x∈[0,π)时,f′(x)≥0.∴f(x)在[0,π]上单调递增.又∵f(0)=1,∴f(x)在[0,π]上有0个零点.又∵f(x)是偶函数,∴f(x)在[﹣π,π]上有0个零点.当0<a<1时,令f′(x)=0,得cos x=﹣a.由﹣1<﹣a<0可知存在唯一x0∈(,π)使得cos x0=﹣a.∴当x∈[0,x0)时,f′(x)≥0,f(x)单调递增;当x∈(x0,π)时,f′(x)<0,f(x)单调递减.∵f(0)=1,f(x0)>1,f(π)=aπ2﹣1.①当aπ2﹣1>0,即<a<1时,f(x)在[0,π]上有0个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有0个零点.②当aπ2﹣1≤0,即0<a≤时,f(x)在[0,π]上有1个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有2个零点.综上,当0<a≤时,f(x)有2个零点;当a>时,f(x)有0个零点.33.【解答】解:(Ⅰ)f′(x)=e x﹣e﹣x,g(x)=e x,h(x)=e x﹣ax﹣1,h′(x)=e x﹣a,(1)a≤0时,h′(x)>0,h(x)在R递增,又h(﹣1)=﹣1+a<0,与题意不符,舍去,(2)a>0时,由h′(x)>0,解得:x>lna,由h′(x)<0,解得:x<lna,故h(x)在(﹣∞,lna)递减,在(lna,+∞)递增,故h(x)min=h(lna)=a﹣alna﹣1,由已知得e x﹣ax﹣1≥0恒成立,故只需h(x)min≥0,故只需a﹣alna﹣1≥0①,设g(x)=a﹣alna﹣1,g′(x)=﹣lna,由g′(x)>0,解得:0<x<1,由g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,故g(x)max=g(1)=0,即a﹣alna﹣1≤0②,由①②得实数a的值为1,综上:a=1;证明:(Ⅱ)由(Ⅰ)得:当x>0时,e x﹣x﹣1>0即e x>x+1,x2e x>x2(x+1),欲证x2e x>m(x+1)lnx,x>0,即证x2(x+1)>m(x+1)lnx,即证x2>mlnx(x>0),①当x∈(0,1]时,x2>0>mlnx,②当x∈(1,+∞)时,令F(x)=,则F′(x)=,由F′(x)>0,解得:x>,由F′(x)<0,解得:1<x<,故F(x)在(1,)递减,在(,+∞)递增,故x>1时,F(x)≥F()=2e,由已知0<m<2e,故m<F(x),即当x∈(1,+∞)时,m<,故x∈(1,+∞)时,x2>mlnx,综上,x>0时,x2>mlnx恒成立,故x2(x+1)>m(x+1)lnx,x2e x>m(x+1)lnx成立.34.【解答】解:(Ⅰ)由f(x)=e x﹣ax﹣1,得f′(x)=e x﹣a,∵x∈(0,+∞),∴e x>1,当a>1时,由f′(x)=e x﹣a>0,得x>lna,即函数y=f(x)在(lna,+∞)上单调递增,由f′(x)<0,得0<x<lna,即函数y=f(x)在(0,lna)上单调递减;当a≤1时,f′(x)>0在(0,+∞)上恒成立,即函数y=f(x)在(0,+∞)上单调递增.综上所述,当a≤1时,函数y=f(x)在(0,+∞)上单调递增;当a>1时,函数y=f(x)在在(0,lna)上单调递减,(lna,+∞)上单调递增.(3分)(Ⅱ)f(0)=0,当a>1时,由(1)结合函数y=f(x)的单调性知,∃x0>0,使得对任意x∈(0,x0),都有f(x)<0,则由|f(x)|>x得(a﹣1)x+1﹣e x>0.设t(x)=(a﹣1)x+1﹣e x,则t′(x)=a﹣1﹣e x,由t′(x)>0得x<ln(a﹣1),由t′(x)<0得x>ln(a﹣1).(1)若1<a≤2,则ln(a﹣1)≤0,故(0,x0)⊆(ln(a﹣1),+∞),即函数y=t(x)在(0,x0)上单调递减,∵t(0)=0,∴对任意x∈(0,x0),都有t(x)<0,不合题意;(2)若a>2,则ln(a﹣1)>0,故(0,ln(a﹣1))⊆(﹣∞,ln(a﹣1)),∴y=t(x)在(0,ln(a﹣1))上单调递增,∵t(0)=0,∴对任意x∈(0,ln(a﹣1)),都有t(x)>0,符合题意,此时取0<m≤min{x0,ln(a﹣1)},可使得对∀x∈(0,m),都有|f(x)|>x.综上可得a的取值范围是(2,+∞).(12分)35.【解答】解:(1)因为,所以当时,f′(x)=﹣≤0,f(x)在R递减,当时,时,时,f′(x)<0,f(x)在上单调递增,在上单调递减,当时,时,时,f′(x)<0,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减,综上,时,f(x)在R递减,当时,f(x)在(2,)递增,在(﹣∞,2),(,+∞)递减,a>时,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减;证明:(2)由>0,(x>0)知:ax2﹣x+1>0在(0,+∞)上恒成立,即a>﹣+在(0,+∞)上恒成立,∵﹣+=﹣+≤,故a>,又1﹣2a>0,故<a<,由(1)知:<a<时,f(x)在(,)递减,故f(a)<f()=<=.36.【解答】解:(1)由题意,函数f(x)=,则f′(x)=,当x∈(0,e)时,f′(x)>0,函数f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,函数f(x)递减,当x=e时,f(x)取得极大值,没有极小值;(2)h(x)=x2f(x)=xlnx,对∀x≥1,有xlnx≥ax﹣1,即a≤=lnx+,令g(x)=lnx+,则g′(x)=,当x>1时,g′(x)>0,g(x)在(1,+∞)递增,故g(x)min=g(1)=1,故a≤1,即实数a的取值范围是(﹣∞,1].37.【解答】解:(1)由f(x)=lnx﹣得f′(x)=+,故切线斜率k=f′(1)=1+,又f(1)=﹣,故切线方程为:y+=(1+)(x﹣1),即(4+a)x﹣4y﹣4﹣3a=0;(2)f′(x)=+=(x>0),由题意知:x1,x2是方程f′(x)=0在(0,+∞)内的两个不同实数解,令g(x)=x2+(2+a)x+1(x>0),注意到g(0)=1>0,其对称轴为直线x=﹣2﹣a,故只需,解得:a<﹣4,即实数a的取值范围是(﹣∞,﹣4),由x1,x2是方程x2+(2+a)x+1=0的两根,得:x1+x2=﹣2﹣a,x1x2=1,故f(x1)+f(x2)=(lnx1﹣)+(lnx2﹣)=ln(x1x2)﹣a•=﹣a•=﹣a,又f(1)=﹣,即f(x1)+f(x2)=2f(1),故f(x1),f(1),f(x2)成等差数列.38.【解答】解:(1)根据题意,函数f(x)=alnx(a≠0)与y=x2可知f′(x)=,y′=x,两图象在点P(s,t)处有相同的切线,所以两个函数切线的斜率相等,即•s=,化简得s=①,将P(s,t)代入两个函数可得=alns②,综合上述两式①②可解得a=1,所以f(x)=lnx.(2)函数g(x)=(x﹣1)2+mf(x)=(x﹣1)2+mlnx,定义域为(0,+∞),g′(x)=2(x﹣1)+=,因为x1,x2为函数g(x)的两个极值点,所以x1,x2是方程2x2﹣2x+m=0的两个不等实根,由根与系数的关系知x1+x2=1,x1x2=,(*),又已知x1<x2,所以0<x1<<x2<1,=,将(*)式代入得==1﹣x2+2x2lnx2,令h(t)=1﹣t+2tlnt,t∈(,1),h′(t)=2lnt+1,令h′(t)=0,解得:t=,当t∈(,)时,h′(t)<0,h(t)在(,)单调递减;当t∈(,1)时,h′(t)>0,h(t)在(,1)单调递增;所以h(t)min=h()=1﹣=1﹣,h(t)<max{h(),h(1)},h()=﹣ln2<0=h(1),即的取值范围是[1﹣,0).39.【解答】解:(1)f(x)=﹣x+(x+1)ln(x+1)的导数为f′(x)=a•﹣1+ln(x+1)+1=ln(x+1)﹣,当a=1时,f′(x)=ln(x+1)﹣,可得曲线y=f(x)在x=1处的切线的斜率为k=ln2﹣,又f(1)=﹣1+2ln2,则曲线y=f(x)在x=1处的切线方程为y﹣(﹣1+2ln2)=(ln2﹣)(x﹣1),化为(ln2﹣)x﹣y+﹣1+ln2=0;(2)f(x)的导数f′(x)=ln(x+1)﹣,由∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),可得f(x)在(0,+∞)递增,则f′(x)≥0在(0,+∞)内恒成立,即为a≤在(0,+∞)内恒成立,设g(x)=,由于x>0,所以e x>1,ln(x+1)>0,g(x)>0,设h(x)=g(x)﹣1=,由y=e x ln(x+1)﹣x的导数为y′=e x(ln(x+1)+)﹣1,且y″=e x(ln(x+1)+﹣)=e x[ln(x+1)+]>0,可得函数y′=e x(ln(x+1)+)﹣1在x>0递增,即有y′>0,可得函数y=e x ln(x+1)﹣x在x>0递增,可得e x ln(x+1)>x恒成立,则h(x)>0恒成立,可得g(x)>1,则a≤1.40.【解答】解:(1)证明:a=﹣1时,f(x)=(x﹣1)lnx(x>0),.因为f'(x)在x∈(0,+∞)上单调递增,故f'(x1)+f'(x2)=0(即)以下主要有三种做法:法一:由基本不等式得:(等号可不写)因此.令,可知f'(t)≥0.因为f'(t)在x>0上单调递增,且f'(1)=0,因此.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法二:先证明:x1x2≥1.因为f'(1)=0,故不妨x1>1,0<x2<1.设.由基本不等式知:.因为f'(x)在x>0上单调递增且f'(x1)+f'(x2)=0,所以x1>x2′即x1x2≥1.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法三:因为f'(1)=0,故不妨x1>1,0<x2<1.设x2′=2﹣x2>1.由基本不等式得:(即x2x2′<1).因为f'(x)在x>0上单调递增,且f'(1)=0,因此f'(x2′)+f'(x2)<0.所以x1+x2>x2′+x2>2.((6分),若写x1+x2≥2不得分)(2)原题即f(x)=±c共有四个不同的实数根..①﹣1≤a≤0,因为f'(x)在x>0上单调递增,且当x→0时f'(x)→﹣∞,当x→+∞时f'(x)→+∞,故存在唯一实数x0>0,使得f'(x0)=0,即a=﹣x0(lnx0+1).因此f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.由﹣1≤a≤0可知.把a=﹣x0(lnx0+1)代入得:f(x)的极小值.令h(x)=﹣x(lnx)2,h'(x)=﹣lnx(lnx+2).当时,h′(x)<0;当时,h′(x)>0.因此h(x)在上单调递减,在上单调递增.故,所以f(x)=c上至多有两个不同的实数根,f(x)=﹣c上至多有一个的实数根,故不合题意.②a>0,当x→0时f'(x)→+∞,当x→+∞时f'(x)→+∞,.当x∈(0,a)时,f''(x)<0;当x∈(a,+∞)时,f''(x)>0,f'(a)=2+lna.因此f'(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(i)若a≥,则f'(x)≥0(当且仅当时取等),故f(x)在x>0上单调递增.因此f(x)=±c上至多有两个不同的实数根,故不合题意.(ii)若,则f'(a)<0,故存在x1∈(0,a)和,使得f'(x1)=f'(x2)=0.因此f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.因为当x→0时f(x)→﹣∞,当x→+∞时f'(x)→+∞,且,故f(x)=c上有且仅有一个实数根.由①的h(x)可知:,.故存在﹣c∈(f(x2),f(x1)),使得.此时f(x)=﹣c上恰有三个不同的实数根.此时f(x)=±c共有四个不同的实数根.综上:满足条件.。

世界最难的10道数学题加答案高中

世界最难的10道数学题加答案高中

世界最难的10道数学题加答案高中1.求三角形三边a,b,c。

将任意两边的平方和加和求出:a²+b²=c²答案:即求三角形三边关系式,即勾股定理。

2.如果x的平方减2的平方等于4,求x的值?解:x²-2²=4x²=8x=√8答案:√83.如果一个等比数列的首项为a,公比为r,求该等比数列的前n项和?解:Sn=a[(1-rⁿ)÷(1-r)]a=首项,r=公比,n=项数答案:Sₙ=a[(1-rⁿ)÷(1-r)]4.以x,y,z三个变量来表示三条边,用何种等式表示三角形的充要条件?解:x+y > z, y+z > x, z+x > y答案:三角形充要条件等式为:x+y > z, y+z > x, z+x > y5.已知函数f(x)=2x⁴+5,求f(2)的值解:f(x)=2x⁴+5f(2)=2*2⁴+5f(2)=2⁵+5f(2)=33答案:f(2)=336.给定四边形ABCD的两个对角线,如何求出此四边形的周长?解:周长=AB+BC+CD+DA答案:先计算四边形各边的长度,然后求和即可求出四边形的周长。

7.已知一元二次方程ax²+bx+c=0有两个不等实根x₁和x₂,若其系数b处以解公式中的Δ,求ax²-2bx+2c=0的解?解:ax²-2bx+2c=0ax²-2bx+2c=0即可化为2x²-2(b/Δ)x+2c/Δ=0x₁= b/Δ+√(b²-4ac/Δ)/2x₂= b/Δ-√(b²-4ac/Δ)/2答案:x₁= b/Δ+√(b²-4ac/Δ)/2x₂= b/Δ-√(b²-4ac/Δ)/28.已知正太分布的数据有n个,求该数据的平均数和标准差?解:平均数:X¯=Σ(Xᵢ)/n标准差:σ=√((Σ(Xᵢ²)-nX¯²)/(n-1))答案:平均数X¯=Σ(Xᵢ)/n;标准差σ=√((Σ(Xᵢ²)-nX¯²)/(n-1))9.如果f(x)=4x²+2x+1,求函数f(x)的极值?解:f'(x)=8x+2f'(x)=0 -> 8x+2=0 ->x=-1/4在x=-1/4处取得极值,再代入f(x)求值f(-1/4)=4(-1/4)²+2(-1/4)+1f(-1/4)=1/2答案:f(x)在x=-1/4处取得极值,值为f(-1/4)=1/210.三角形有三条边,求三角形的面积?解:三角形面积公式为S=√(p(p-a)(p-b)(p-c))其中p=(a+b+c)/2,a、b、c为三边答案:三角形面积公式为S=√(p(p-a)(p-b)(p-c)),其中p=(a+b+c)/2,a、b、c为三边。

高中数学难题(含答案)

高中数学难题(含答案)

东莞龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .39.若a ∈(0,2),且sin 2a+cos2a=14,则tana 的值等于A .22 B .33C .2D .310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。

高中数学难题汇编带解析

高中数学难题汇编带解析
方法(二):
(1) //
又 平面 , 平面 ,∴ // 平面
(2)易证:平面 底面
所以截面 与面 所成的二面角即为面 与面 所成的二面角,
ห้องสมุดไป่ตู้因为 平面 所以 平面

由(1)可知 四点共面
所以 为截面 与平面 所成的二面角的平面角.
所以 ,
所以
考点:线面平行,二面角.
7.如图,在四棱锥 中, , 平面 , 平面 , , , .
试题解析:(1)∵点 到 和 的距离之和等于 且 ,∴ 是以 和 为焦点的椭圆,设椭圆方程为 ,则 ,故 ,∴曲线 的方程为 .
(2)设 , ,则联立方程 ,得 ,此时 恒成立,又由韦达定理可得 , ………………①
由点 在直线 上,可得 , 又∵ , ∴ 即
即 ,整理得 ,将①式代入得 ,故 .
当 时, ,当 时, ,综上所述, .
(2)若分数在(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这次满意度测评的人中随机抽取一人,求此人满意的概率;
(3)请你估计全市的平均分数.
【答案】(1) ;(2) ;(3) .
【解析】
试题分析:(1)利用频率分布表以及 进行求解;(2)利用互斥事件的概率公式进行求解;(3)利用平均数的计算公式进行求解.
(Ⅰ)求棱锥 的体积;
(Ⅱ)求证:平面 平面 ;
(Ⅲ)在线段 上是否存在一点 ,使 平面 ?若存在,求出 的值;若不存在,说明理由.
【答案】(I) ;(II)证明见解析;(III)存在, .
【解析】
试题分析:(I)在在 中, ,可得 ,由于 平面 ,可的棱锥的高,利用体积公式求解几何体的体积;(II)由 平面 ,可得 ,进而得到 平面 ,即可证明平面 平面 ;(III)在线段 上存在一点 ,使得 平面 , ,设F为线段DE上的一点,且 ,过F作 ,由线面垂直的性质可得 ,可得四边形ABMF是平行四边形,于是 ,即可证明 平面 .

高中数学排列组合难题

高中数学排列组合难题

高中数学排列组合难题
1、小张家住在二楼,他每次回家走楼梯时都是一步走二级或三级台阶,已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?
答案:设小明从一层到二层走二级台阶走了x步,走三级台阶走了y步,于是有:
2x+3y=16
1)x=2,y=4
2)x=5,y=2
3)x=8,y=0
∴小明从一层到二层不同的走法有:
N=C6(2)+C7(5)+C8(8)
=15+21+1
=37种。

2、“六个人,他们每人有一个帽子,但他们每个人都被要求戴别人的帽子,请问有多少种戴法?”
答案:这是错位问题记住通项公式An=(n-1)(A(n-1)+A(n-
2))A1=0A2=1A3=2A4=9A5=44A6=265
3、安排7个同学去5个运动项目,要求甲乙两同学不能参加一个项目,每个项目都有人参加,每人只参加一个,求方案书?
答案:(C73-C51+C72*C52/2-C52)*P55
思路:先分堆,再全排列,分堆方法有2种,
第一种:31111,把其中甲乙在一起的排除掉第二种:22111,把其中甲乙在一起的排除掉。

最新高中数学常见难题

最新高中数学常见难题

1、已知正三棱锥S-ABC的高SO为3,底面边长为6,过A向它所对侧面SBC作垂线,垂足为O′,在AO′上取一点P,使AP︰PO′=8,求经过P点且平行底面的截面的面积.分析:本题的关键在于求出过P平行于底的截面到顶点的距离与底面到顶点的距离之比.解答:如图10.13,因S-ABC是正三棱锥,所以O是正三角形ABC的中心.连结AO延工交BC于D,则D是BC的中点,故BC⊥AD,BC⊥SD,因而BC⊥平面SAD,从而平面ASD⊥平面SBC.又AO′⊥平面SBC,故SO′在平面SAD内,因而O′在SD上,于是由设过P作平行于底的平面与SD的交点为O1,则于是故所求截面面积2、设正三棱锥P—ABC的高为PO,M为PO的中点,过AM作与棱BC平行的平面,将正三棱锥截成上、下两部分,试求两部分体积之比.分析:设过AM且平行BC的平面交平面PBC于EF(E∈PB,F∈PC),要求两部分体积之比,只要求VP—ABC=S△PEF︰S△PBC.解答:如图10.14,过设AM且平行BC的平面与棱PB、PC分别交于E、F.则EF//BC.连结AO并延长交BC于D,则D为BC的中点,连结PD交EF于G,则因A到平面PEF的距离即为A到平面ABC的距离,所以在△PAD中,过O作PD的平行线,交AG于N.因为M为PO的中点,故|ON|=|PG|,,故,因而,故所求上下两部分体积之比为3、四面体ABCD被平面α所截,对棱AB,CD都与α平行且与α等距,设α截得截面四边形的面积为S,对棱AB与CD的距离为h,求这个四面体ABCD的体积.分析:利用“等底、等高的两个四面体的体积相等”将四面体添加几个等体积的四面体,构成一个平行六面体来计算.解答:过四面体ABCD的各棱分别作与其对棱平行的平面,六个平面相交得一平行六面体AC1BD1-A1CB1D(如图10.15).此时VABCD等于平行六面体的体积V减去四个彼此等积的三棱锥的体积,这四个三棱锥分别是A-A1CD,B-B1DC,C-C1AB,D-D1AB.因为这四个三棱锥的底面积为平行六面体底面积的,其高与平行六面体的高相等,故每一个三棱锥的体积等于于是由于AB,CD与截面α等距,如图10.15可知K,L,M,N分别是AA1,CC1,BB1,DD1的中点,易知,而h就是平面AC1BD1与平面A1CB1D的距离,所以说明:利用“等积”进行割补,是解决多面体体积问题的一个有效方法.例1、已知x、y∈R+,求证:证明:∵∴这三者可视为如图中AB、BC、CD三条线段的长度.显然|AB|+|BC|+|CD|≥|AD|=.所以.评述:二次根式内是一个二次式,常构造图形,利用余弦定理证明.同法可证:例3、函数f (x)在[0,1]上有定义,f (0)= f (1) .如果对于任意不同的x1,x2∈[0,1],都有|f (x1)-f (x2)|<|x1-x2|.求证:对于任意明:不妨设0≤x1≤x2≤1.(1)若,则.命题成立.(2)若,根据条件f (0)= f (1)得|f (x2)-f(x1)|=|f (1)-f (x2)+f (x1)-f (0)|≤| f (1)-f (x2)|+| f (x1)-f (0)| <1-x2+x1-0=1-(x2-x1)<.命题同样得证.综上命题成立.例5、已知n≥2,证明:.证明:(1)显然是n的增函数.∴.(2)思路分析:易猜出时,,A、B、C中任两者不等时,.证明:我们先假定C是常量,于是A+B=π-C也是常量..显然,当A=B时,上式达到最大值.因此,只要A、B、C中任意两个不等,表达式sin A+sin B+sin C就没有达到最大值.因而,当时,sin A+sin B+sin C取到最大值,不等式得证.评述:不等式中含有多个变量时,我们往往固定其中部分变量,求其他变量变化时,相应表达式的最值.类似可证:△ABC中,锐角△ABC中,tan A+tan B+tan C≤3.。

高中数学难题

高中数学难题

高中数学难题难题一:三角函数题目:已知一直角三角形的两条边分别为6和8,求斜边的长度。

:已知一直角三角形的两条边分别为6和8,求斜边的长度。

:已知一直角三角形的两条边分别为6和8,求斜边的长度。

解题思路:对于直角三角形,我们可以运用勾股定理来解题。

勾股定理表示直角三角形中,斜边的平方等于两直角边的平方之和。

根据这个定理,我们可以得到::对于直角三角形,我们可以运用勾股定理来解题。

勾股定理表示直角三角形中,斜边的平方等于两直角边的平方之和。

根据这个定理,我们可以得到::对于直角三角形,我们可以运用勾股定理来解题。

勾股定理表示直角三角形中,斜边的平方等于两直角边的平方之和。

根据这个定理,我们可以得到:斜边的平方 = 6的平方 +通过计算,可以得到斜边的长度为10。

因此,答案是10。

难题二:函数与方程题目:已知函数 f(x) = 2x^2 + 3x - 5,求 f(x) 的零点。

:已知函数 f(x) = 2x^2 + 3x - 5,求 f(x) 的零点。

:已知函数 f(x) = 2x^2 + 3x - 5,求 f(x) 的零点。

解题思路:函数的零点是指函数取值为0的点。

要求函数 f(x) 的零点,我们可以将函数设置为0,然后解方程。

对于这个函数,我们可以得到以下方程::函数的零点是指函数取值为0的点。

要求函数 f(x) 的零点,我们可以将函数设置为0,然后解方程。

对于这个函数,我们可以得到以下方程::函数的零点是指函数取值为0的点。

要求函数 f(x) 的零点,我们可以将函数设置为0,然后解方程。

对于这个函数,我们可以得到以下方程:2x^2 + 3x - 5 = 0通过求解这个方程,我们可以得到两个解。

因此,函数 f(x) 的零点为两个解的横坐标。

难题三:概率统计题目:一批产品的尺寸在正常范围内的概率为0.8,如果从中随机抽取5个产品,其中有3个尺寸在正常范围内,求这种情况发生的概率。

:一批产品的尺寸在正常范围内的概率为0.8,如果从中随机抽取5个产品,其中有3个尺寸在正常范围内,求这种情况发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东莞龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .39.若a ∈(0,2),且sin 2a+cos2a=14,则tana 的值等于A .22 B .33C .2D .310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。

给出如下四个结论: ①2011∈[1] ②-3∈[3]; ③Z=[0]∪[1]∪[2]∪[3]∪[4] ④“整数a ,b 属于同一“类”的充要条件是“a-b ∈[0]”。

其中正确结论的个数是 A .1 B .2 C .3 D .4第II 卷(非选择题 共90分)注意事项:用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上。

13.若向量a=(1,1),b (-1,2),则a ·b 等于_____________. 14.若△ABC 的面积为3,BC=2,C=︒60,则边AB 的长度等于_______.15.如图,正方体ABCD-A 1B 1C 1D 1中,AB=2。

,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.16.商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a ,最高销售限价b (b >a )以及常数x (0<x <1)确定实际销售价格c=a+x (b-a ),这里,x 被称为乐观系数。

经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项,据此可得,最佳乐观系数x的值等于_____________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或验算步骤.17.(本小题满分12分)已知等差数列{a n}中,a1=1,a3=-3.(I)求数列{a n}的通项公式;(II)若数列{a n}的前k项和=-35,求k的值.18.(本小题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A。

(I)求实数b的值;(11)求以点A为圆心,且与抛物线C的准线相切的圆的方程.19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1 2 3 4 5f a 0.2 0.45 b C(I)若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a、b、c的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。

20.(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB 。

(I )求证:CE ⊥平面PAD ;(11)若PA=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD 的体积 21.(本小题满分12分)设函数f (θ)=3sin cos θθ+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0θπ≤≤。

(1)若点P 的坐标为13(,)22,求f ()θ的值; (II )若点P (x ,y )为平面区域Ω:x+y 1x 1y 1≥⎧⎪≤⎨⎪≤⎩,上的一个动点,试确定角θ的取值范围,并求函数()f θ的最小值和最大值。

22.(本小题满分14分)已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数的底数)。

(I )求实数b 的值;(II )求函数f (x )的单调区间;(III )当a=1时,是否同时存在实数m 和M (m<M ),使得对每一个t ∈[m ,M],直线y=t 与曲线y=f (x )(x ∈[1e,e])都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由。

东莞龙文教育高中数学试卷(24)参考答案一、选择题:本大题考查基础知识和基本运算,每小题5分,满分60分。

1——12 ADABBCCADDAC二、填空题:本大题考查基础知识的基本运算,每小题4分,满分16分。

13.1 14.2 15 16三、解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题主要考查等差数列的基础知识,考查运算求解能力,考查函数与方程思想,满分12分。

解:(I )设等差数列{}n a 的公差为d ,则1(1).n a a n d =+-由121,312 3.a a d ==-+=-可得 解得d=-2。

从而,1(1)(2)32.n a n n =+-⨯-=- (II )由(I )可知32n a n =-, 所以2[1(32)]2.2n n n S n n +-==-进而由2135235,S k k =--=-可得即22350k k --=,解得7 5.k k ==-或 又*,7k N k ∈=故为所求。

18.本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想,满分12分。

解:(I )由22,4404y x b x x b x y=+⎧--=⎨=⎩得,(*) 因为直线l 与抛物线C 相切,所以2(4)4(4)0,b ∆=--⨯-= 解得b=-1。

(II )由(I )可知21,(*)440b x x =--+=故方程即为, 解得x=2,代入24, 1.x y y ==得故点A (2,1),因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y=-1的距离, 即|1(1)|2,r =--=所以圆A 的方程为22(2)(1) 4.x y -+-=19.本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、分类与整合思想、必然与或然思想,满分12分。

解:(I )由频率分布表得0.20.451,a b c ++++=即a+b+c=0.35,因为抽取的20件日用品中,等级系数为4的恰有3件, 所以30.15,20b == 等级系数为5的恰有2件,所以20.120c ==, 从而0.350.1a b c =--=所以0.1,0.15,0.1.a b c ===(II )从日用品1212,,,x x y y 中任取两件, 所有可能的结果为:12131112232122313212{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}x x x x x y x y x x x y x y x y x y y y ,设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其等级系数相等”,则A 包含的基本事件为:12132312{,},{,},{,},{,}x x x x x x y y 共4个,又基本事件的总数为10, 故所求的概率4()0.4.10P A == 20.本小题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查空间想象能力,推理论证能力,运算求解能力;考查数形结合思想,化归与转化思想,满分12分(I )证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以.PA CE ⊥因为,//,.AB AD CE AB CE AD ⊥⊥所以 又,PAAD A =所以CE ⊥平面PAD 。

(II )由(I )可知CE AD ⊥,在Rt ECD ∆中,DE=CD cos 451,sin 451,CE CD ⋅︒==⋅︒= 又因为1,//AB CE AB CE ==, 所以四边形ABCE 为矩形,所以1151211.222ECD ADCE ABCD S S S AB AE CE DE ∆=+=⋅+⋅=⨯+⨯⨯=矩形四边形 又PA ⊥平面ABCD ,PA=1, 所以11551.3326P ABCD ABCD V S PA -=⋅=⨯⨯=四边形四边形 21.本小题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分12分。

解:(I )由点P 的坐标和三角函数的定义可得3sin ,21cos .2θθ⎧=⎪⎪⎨⎪=⎪⎩于是1()cos 2.22f θθθ=+=+= (II )作出平面区域Ω(即三角形区域ABC )如图所示,其中A (1,0),B (1,1),C (0,1)。

相关文档
最新文档