圆心角圆周角垂径定理及其应用
九年级数学圆的基本性质
九年级数学圆的基本性质九年级数学:圆的基本性质及其应用圆的性质是九年级数学中的一个重要内容,它在实际生活和后续数学知识中都具有重要的地位。
本文将详细介绍圆的基本性质,并通过实例阐述其应用。
一、圆的基本定义圆是一种几何图形,由一条固定长度的线段(称为半径)围绕一个定点(称为圆心)旋转一周所形成的封闭曲线。
圆具有如下基本元素:1、圆心:定义圆的中心点,用符号“O”表示。
2、半径:连接圆心与圆上任意一点的线段,用符号“r”表示。
3、直径:通过圆心的线段,其长度为半径的两倍,用符号“d”表示。
4、周长:圆的所有边界点组成的封闭曲线长度,用符号“C”表示。
5、面积:圆所占平面的大小,用符号“S”表示。
二、圆的基本性质1、圆的确定:到一个定点距离等于定长的所有点组成的图形是一个圆。
2、圆心与半径的关系:在同圆或等圆中,半径等于直径的一半。
3、圆的基本性质:圆是轴对称图形,其对称轴有无数条,任何一条直径所在的直线都是其对称轴。
4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
5、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
6、圆周角定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
7、弦切角定理:在圆中,与圆相交的直线被圆截得的线段相等。
三、圆的性质的应用1、日食和月食:当月球绕地球运动时,太阳、地球和月球在同一直线上,太阳照射在月球的背面,地球上的观察者会看到月偏食或月全食。
这是由于太阳照射在月球的背面,使得月球背面的影子投射在地球上,形成了月食。
2、汽车轮胎:汽车轮胎的设计考虑了圆的性质。
因为车轮是由一个圆柱体和两个半圆形组成的,所以当车轮转动时,可以平稳地行驶。
3、计算圆的周长和面积:圆的周长和面积是圆的两个基本量,可以用于计算圆的周长和面积,也可以用于计算球体、圆柱、圆锥等几何形体的体积和表面积。
4、工程设计:在工程设计中,经常需要用到圆的性质。
例如,在设计桥梁时,需要考虑桥墩之间的距离以及桥墩的形状;在设计房屋时,需要考虑窗户和门的形状和大小。
中考考点突破之圆的专题复习
中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。
垂径定理、圆周角与圆心角
圆1一、知识点1、旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.2、轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.3、圆是轴对称图形,经过圆心的每一条都是它的对称轴。
(因为直径是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成:“圆的对称轴是经过圆心的每一条直线”。
)4、、垂径定理:垂直于弦的直径这条弦,并且弦所对的弧。
(这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是过“圆心”。
)5、推论:(1)平分弦(不是直径)的直径,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,弦且平分弦所对的另一条弧。
推论:圆的两条平行弦所夹弧。
6、与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.7、垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.二、例题(泸州市2008年)如图1,正方形ABCD是⊙O的内接正方形,点P在劣弧CD上不同于点C得到任意一点,则∠BPC的度数是()A.45 B.60 C.75 D.902.(PA切⊙O于A,PO交⊙O于B,若PA=6,PB=4,则⊙O的半径是()`A.52B.56C.2 D.53、(南京市2008年)如图3,已知O的半径为1,AB与O 相切于点A,OB与O交于点C,OD OA⊥,垂足为D,则cos AOB∠的值等于()A.OD B.OA C.CD D.AB)4、(威海市2008年)如图,⊙O的半径为2,点A的坐标为(2,32),直线AB为⊙O的切线,B为切点.则B点的坐标为A.⎪⎪⎭⎫⎝⎛-5823,B.()13,- C.⎪⎭⎫⎝⎛-5954,D.()31,-5、(2009年潍坊)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若,则BD的长为()A.B.C.D.6、(09湖南邵阳)如图,AB是圆O的直径,AC是圆O的切线,A为切点,连结BC交圆O于点D,连结AD,若45ABC∠=°,则下列结论正确的是()A.12AD BC= B.12AD AC= C.AC AB> D.AD DC>7.如图,在⊙O中,弦BC15∶AB AB BC CD==50ACABC∆AB O60,70B C∠=∠=BOD∠AB O COA OB=O4,8AB=OB sin A A B C O//AB OC(1)求证:AC平分OAB∠.|(2)过点O作OE AB⊥于点E,交AC于点P. 若2AB=30AOE∠=︒,求PE的长.30CAB∠=°2R3R R32R~ABCO D xyO11BACBA OMBADCEC、BDOAOPBDEOBC、18、(2010湖北荆门)如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点. (1)求证:AC ·CD=PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大并求出这个最大面积S 。
垂径定理-弦-弧-圆心角-圆周角-
圆的对称性,圆周角1. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
2. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.圆周角和圆心角的关系:1. 圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2. 圆周角定理; 一条弧所对的圆周角等于它所对的圆心角的一半.推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; 推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;1、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是(A 、CE=DEB 、 BCBD = C 、∠BAC=∠BAD D 、AC >AD2、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM的长为3,则弦AB 的长是(A 、4 B 、6 C 、7 D 、83、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm,则修理人员应准备_________cm 内径的管道(内径指内部直径). 4、如图,一条公路的转弯处是一段圆弦(即图中 CD,点O 是 CD 的圆心,•其中CD=600m ,E 为 CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.5、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.6、如图,已知AB 是⊙O 的直径,AC 为弦,D 是AC 的中点,6BC cm =,求OD 的长.7. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?第4题CE OA DB 8. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。
第24章圆的垂径定理圆周角定理(教案)
-学会应用圆的垂径定理和圆周角定理来证明圆内接四边形的性质。
-能够计算弓形的面积,并理解其与圆心角的关系。
举例解释:
-圆的垂径定理:通过具体作图,演示如何通过一点作圆的切线,并证明此切线与通过该点的直径垂直。
-圆周角定理:通过实际测量和计算,让学生观察并理解圆周角与圆心角的关系。
关于小组讨论,我觉得在分组时要更加科学合理,尽量保证每个小组内都有不同水平的学生,以促进他们之间的相互学习和交流。在讨论过程中,我要注意观察每个小组的进展,及时给予指导和帮助,确保讨论能够顺利进行。
在课堂总结环节,我发现有些学生对所学知识点的掌握仍然不够扎实。为了加强学生的记忆,我决定在课后增加一道与圆的垂径定理和圆周角定理相关的巩固练习,让学生在练习中进一步巩固所学知识。
-圆内接四边形:通过构造图形,让学生直观感受四边形内接于圆时,对角线互相平分的性质。
-弓形计算:给出具体弓形的半径和圆心角,指导学生计算弓形的面积,并总结规律。
2.教学难点
-理解并掌握圆的垂径定理的证明过程,尤其是对于几何证明的逻辑推理。
-理解圆周角定理中,圆周角与圆心角的对应关系,以及在不同情况下如何应用定理。
五、教学反思
在今天的教学过程中,我发现学生们对圆的垂径定理和圆周角定理的理解程度参差不齐。有些学生能够迅速掌握定理的要点,并能将其应用到实际问题中;而有些学生则在理解上存在一定的困难。针对这种情况,我认为在今后的教学中需要注意以下几点:
首先,对于定理的讲解,我需要更加生动形象,通过举例、图示等方法,让学生更直观地感受和理解定理的含义。同时,在讲解过程中,要注重引导学生积极参与,鼓励他们提问和思考,以提高课堂的互动性。
第24章圆的垂径定理圆周角定理(教案)
9 垂径定理 圆心角 圆周角定理(
垂径定理圆心角圆周角定理垂径定理: 垂直于弦的直径平分弦且平分这条弦所对的两条弧1、平分弦所对的两条弧)2、平分弦(不是直径)3、垂直于弦4、过圆心推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等[垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。
]圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。
圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半。
1.在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
2.半圆(直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
3.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
切线定理(定义)和圆有且只有一个公共点的直线是圆的切线。
(数量法d=r)圆心到直线的距离等于半径的直线是圆的切线。
判定定理:1、经过半径的外端并且垂直于这条半径的直线是圆的切线。
判定性质:圆的切线垂直于过切点的半径。
有交点,连半径,证垂直;无交点,作垂线,证半径(d=r)练习一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55°C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110°C.120° D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB 于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B.C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35ºC.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110°C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为弧CBD上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B.C.或D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B.C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
自学初中数学资料 圆之垂径定理、圆心角、圆周角定理 (资料附答案)
自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。
浙教版九年级上册第三章 3.3垂径定理 圆心角定理 圆周角定理的综合应用
【综合训练提升】1. 如图,⊙O 的两条弦AB ,CD 相交于点M ,直径PQ 过点M ,且MP 评分∠AMC ,则图中相等的线段的对数为( )A. 1B. 2C. 3D.4第1题 第2题2. 如图,在⊙O 内有折线OABC ,若OA=8,AB=12,∠A=∠B=60°,则BC 的长为( ) A. 19 B. 16 C. 18 D.203. 如图,在Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为_______.第3题 第4题4. 如图,已知EF 是⊙O 的直径,把∠A 为60°的直角三角尺ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P ,点B 与点O 重合;将三角尺ABC 沿OE 方向平移,直至点B 与点E 重合为止.设∠POF =x °,则x 的取值范围是________.5. 如图所示,A 是半圆上的一个三等分点,B 是AN ︵的中点,P 是直径MN 上一动点,⊙O 的半径为1,则姓 名 年级:九年级 学科:数 学 第 次课 课时课 题垂径定理 圆心角定理 圆周角定理的综合应用教 学目 标 熟练运用垂径定理、圆心角、圆周角定理解决综合题重 点难 点垂径定理、圆心角定理及圆周角定理的综合应用教 学 过 程P A +PB 的最小值是多少?6. 如图,四边形ABCD 的四个顶点在⊙O 上,且对角线AC ⊥BD ,OE ⊥BC 于点E . 求证:OE =12AD .7. 如图,⊙O 的两条弦AB ,CD 交于点E ,OE 平分∠BE D. (1)求证:AB =C D.(2)若∠BED =60°,EO =2,求BE -AE 的值.8.(1)如图①,AB 是⊙O 的直径,C ,P 是⊙O 上两点,AB =13,AC =5.若P 是AB ︵的中点,求P A 的长;(2)如图②,若P 是BC ︵的中点,求P A 的长.9. 如图所示,在⊙O 中,半径OA ⊥OB ,C ,D 是AB ︵的三等分点,AB 分别交OC ,OD 于点E ,F . 求证:AE =BF =CD .10. 如图,C 为△ABD 外接圆上的一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°. (1)求证:BD 是该外接圆的直径. (2)连结CD ,求证:2AC =BC +C D.(3)若△ABC 关于直线AB 的对称图形为△ABM ,连结DM ,试探究AM ,BM ,DM 三者之间满足的等量关系,并证明你的结论.11. 如图,半圆的直径AB 长为2,C ,D 是半圆上的两点,若AC ︵的度数为96°,BD ︵的度数为36°,动点P在直径AB 上,求CP +PD 的最小值.12. 如图所示,两等圆⊙O 1和⊙O 2,相交于A ,B 两点,且两圆互过圆心,过点B 作任一直线,分别交⊙O 1,⊙O 2于C ,D 两点,连接AC ,AD. (1)试猜想△ACD 的形状,并说明理由;(2)若已知条件中两圆不一定互相过圆心,试猜想△ACD 的形状,并说明理由.13.(1)如图,CD ,AB 所在的直线分别交⊙O 于C ,D ,A ,B 四点,CD ,AB 相交于点P ,若AC ︵的度数为x°,BD ︵的度数为y°(x°>y°),则∠BPD=12(x°+y°),你认为这个结论正确吗?请说明理由.(2)若CD ,AB 所在的直线的交点P 在⊙O 外,则上述结论还成立吗?若成立,请证明;若不成立,应怎样表示∠BPD?。
垂径定理及圆周角和圆心角的关系
垂径定理及圆周角和圆心角的关系垂径定理及圆周角和圆心角的关系垂径定理圆周角和圆心角的关系垂径定理垂径定理的推论圆周角定理圆周角定理的推论知识点1 垂径定理及其推论示意图垂径定理推论垂直于弦的直径平分弦,并且平分弦所对的两条弧.如图,'AA 是⊙O 的弦,CD 是⊙O 的直径,'AA CD ⊥于点M ,则M A AM '=,⌒AD =⌒A `D , ⌒AC =⌒A `C .平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图,'AA 是⊙O 的弦,CD 是⊙O 的直径,CD AA <','AA 与CD 交于点M ,M A AM '=,则'AA CD ⊥,⌒AD =⌒A `D ,⌒AC =⌒A `C .圆是 图形,它有 对称轴,每一条过 的直线都是它的对称轴.例1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,他的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,锯口深一寸,锯道长一尺.问径几何?”译为:“今有一圆柱形木材埋在墙壁中,不知其大小,用锯去锯木料,锯口深一寸(ED =1寸),锯道长一尺(AB =1尺=10寸).问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径是 ( )A .13寸B . 20寸C .26寸D . 28寸例 2.已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°.(1)求EBC ∠的度数; (2)求证:BD CD =.例3.如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( ) A .4cm B .6cm C .8cm D .10cm例4.如图,AB 是⊙的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM =DM B . CB BD = C .∠ACD =∠ADC D .OM =MD例5.如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC =30°,则∠BOC 的大小是( )A 、60°B 、45°C 、30°D 、15°例6.下列命题中正确的有( )①垂直于弦的直径平分这条弦;②与弦垂直的直线必过圆心; ③平分一条弧的直线必平分这条弧所对的弦;④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧. A . 1 个B . 2 个C . 3 个D . 4 个例7.某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出弧AB 所在圆O 的半径.例8.如图所示,⊙O 的弦AB ,CD 的延长线相交于点M ,AD 与CB 交于点E .若AC ︵所对的圆心角为72°,BD ︵所对的圆心角为18°,求∠M +∠AEC 的度数.例9. 如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O 的半径为()A.cm B.5cm C.4cm D.cm例10.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm例11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42 °B.28°C.21°D.20°知识点2 圆周角定理及其推论示意图圆周角的定义圆周角定理推论1 推论2ABCO顶点在圆上,并且两边都与圆相交,我们把这样的角叫做圆周角.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧长也相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.同一条弧所对的圆周角有个.如上图,我们可以得到:∠AOB=∠ACB.例1.如图,⊙O的半径OA⊥OB,弦AC⊥BD.求证:AD∥BC.例2.如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.140°B.110°C.90°D.70°例3.一条弦把圆分成1:3两部分,则弦所对的圆周角为.例4.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.例5.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.例6.如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=____.。
垂径定理
A O B D C
图① 第(22)题
A O B l D E
图②
F
l
2013 年广东省梅州市初中毕业生学业考试数学试卷(圆) 11. (3 分)如图,在△ABC 中,AB=2,AC= 切,则∠BAC 的度数是 度. ,以 A 为圆心,1 为半径的圆与边 BC 相
(2012•贵港)如图,MN 为⊙O 的直径,A、B 是⊙O 上的两点,过 A 作 AC⊥MN 于点 C, 过 B 作 BD⊥MN 于点 D,P 为 DC 上的任意一点,若 MN=20,AC=8,BD=6,则 PA+PB 的最小值是 _________ .
启示一:点与圆的位置关系 例 6、点 P 到圆 O 的最大距离为 6,最小距离为 2,求圆 O 的半径
启示二:点与弦的位置关系 例 7、 ABC 三个顶点都在圆 O 上, OD BC 于点 D,且 BOD 48 ,求 BAC
启示三:弦所对的圆周角 例 8、半径为 1 的圆中有一条长为 3 的弦,求弦所对圆周角的度数。
1 2
四、弧、弦、圆心角的关系 在同圆或等圆中,弧、弦、圆心角只要有一组量相等 其他两组量就都相等, 五、拓展内容(与相似三角形综合) 1、圆的内接四边形的一个外角等于与它相邻的内角的对角
2、相交弦定理: AE BE CE DE
3、割线定理 PA PB PC PD
例 1:
圆 垂径定理 要点 1、垂径定理及推论 2、圆周角定理及推论 3、圆周角、圆心角、弧的度数 4、弧、弦、圆心角的关系 5、补充内容 一、垂径定理: 1、垂径定理:垂直于弦的直径平分弦,并平分弦所对的两条弧。 2、推论:①直径(过圆心的线段)②垂直于弦 ③平分弦 ④平分弦所对的优弧
⑤平分弦所对的劣弧,以其中的两个为条件,一定能得到其他三个结论, 即”知二推三” 二、圆周角定理 1、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等 2、推论1:半圆或直径所对的圆周角为 90 3、推论2:圆的内接四边形对角互补 三、圆周角、圆心角、弧的度数 1、弧的度数就是它所对圆心角的度数 2、弧的度数和它所对的圆心角度数相等 3、同弧所对的圆周角的度数,为它所对圆心角的度数的
第14讲:垂径定理及圆周角与圆心角的关系-教案
2. 如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为( )
A.3cmB.4cmC.5cmD.6cm
【答案】C
【解析】作垂直,连半径,根据勾股定理易得。
3.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于( )
3.如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=____.
【答案】60°
【解析】连接AD.∵AC为⊙O的直径,点D在圆上,OD⊥AC,∴△AOD是等腰直角三角形,∴∠ADO=45°,又∠BDO=15°,∴∠ADB=60°,∵∠ACB与∠ADB所对的弧都是AB弧,∴∠ACB=∠ADB=60°.
【答案】见解析
【解析】如下图,连接AC,作AC的垂直平分线交AC于点G,交BD于点N,交圆的另一点为M,则MN为圆弧形所在圆的直径,取MN的中点O,则点O为圆心,连接OA,OC.
∵AB⊥BD,CD⊥BD,∴AB∥CD.
∵AB=CD,∴四边形ABDC为矩形,
∴AC=BD=200cm,GN=AB=CD=20cm,
1.下列命题中正确的有( )
①垂直于弦的直径平分这条弦;
②与弦垂直的直线必过圆心;
③平分一条弧的直线必平分这条弧所对的弦;
④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.
A. 1 个B. 2 个C. 3 个D. 4 个
【答案】D
【解析】根据垂径定理的逆定理易得。
2.如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为( )
A.140°B.110°C.90°D.70°
初中圆的十八个定理
初中圆的十八个定理1、圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。
4、切线的判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。
5、切线长定理:从圆外一点引圆的两条切线,他们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。
6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。
如果他们相交,那么交点一定在两圆的连心线上。
7、相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。
8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长。
9、割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
10、切线的性质定理:圆的切线垂直于经过切点的半径。
11、弦切角定理:弦切角等于它所夹的弧对的圆周角。
12、定理:相交两圆的连心线垂直平分两圆的公共弦。
13、定理:把圆分成n(n≥3),依次连结各分点所得的多边形是这个圆的内接正n边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
14、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
16、定理:正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
18、(d是圆心距,R、r是半径)①两圆外离d>R+r;②两圆外切d=R+r;③两圆相交R-r<dr;④两圆内切d=R-r (R>r);⑤两圆内含dr。
初中数学重点梳理:圆的基本性质
圆的基本性质知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理是今后我们学习综合题目的重要基础。
圆的基本性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中圆相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、圆的定义:(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.⊙”,(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O读作“圆O”。
(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.2、弦和弧:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B弧AB.(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3、垂径定理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.4、圆心角和圆周角:(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(4)圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.5、正多边形:各边相等,各角也相等的多边形是正多边形。
第九讲(圆心角、弧、弦、圆周角)
第九讲:弧、弦、圆心角、圆周角一、基本知识:1、垂径定理:垂直于弦的直径 ,并且平分 垂径定理推论:平分弦( )的直径垂直于弦,并且平分2、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的 ____. 圆心角定理推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距中有一对量相等,那么 都相等。
注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。
3、圆周角定理:一条弧所对的圆周角等于它所对的圆周角定理推论1:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是______圆周角定理推论2:在同圆或等圆中, 所对的圆周角相等; _______ 的也相等 4、圆内接四边形的对角之和为 。
二、例题讲解 1、圆心角定理(1)如图,⊙O 是△ABC 的外接圆,且AB=AC=13,BC=24,求⊙O 的半径为 .⑵ 下列说法正确的是( )A .相等的圆心角所对的弧相等 B.等弧所对的圆心角相等 C .相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等⑶ 如图AB 是⊙O 的直径,弧AD=弧AC ,求证:∠BOD= ∠ BOC(4)如图,⊙O 的两条弦AB 、CD 相交于P ,M 、N 分别是 AB 、CD 的中点,PM =PN ,求证:AB =CD2、圆周角定理⑴ 求圆中的角x 的度数?⑵ 如图,AB 是⊙O 的直径,∠ A =80°,∠ABC =______.B⑶ 如图,D 是弧AC 的中点,与∠ABD 相等的角是________________.⑷ 如图,已知AB 为⊙O 的直径, C 为⊙O 外一点, BC 交⊙O 于 AC 交⊙O 于D ,∠DOE =60°,求∠ C 的度数.三、练 习1. 如图所示,在⊙O 中,AB 是⊙O 的直径,∠ACB 的 角平分线CD 交⊙O 于D ,则∠ABD =_____________度。
垂径定理、圆周角
教学目的掌握垂径定理、圆周角和圆心角的关系教学重点垂径定理、圆周角教学内容(一)垂径定理1、圆是轴对称图形,任何一条直径所在直线都是它的对称轴.圆有无数条对称轴。
圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
2、垂径定理:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
3、推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
圆的两条平行弦所夹的弧相等。
①平分弧的直径必平分弧所对的弦。
( )②平分弦的直线必垂直弦。
( )③垂直于弦的直径平分这条弦。
( )④平分弦的直径垂直于这条弦。
( )⑤弦的垂直平分线是圆的直径。
( )⑥平分弦所对的一条弧的直径必垂直这条弦。
( )⑦在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧。
( )例题赏析如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.小试牛刀1、如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.2、我市某居民区一处圆形地下水管道破裂,修理工人准备更换一段新管道,经测量得到如图所示的数据,修理工人应准备内径多大的管道?若此题只知下面弓形的高和AB的长,你仍然会做吗?60cm10cmA BO3、如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度ABD OBCA(二)弧、弦、圆心角1、圆心角的概念:顶点在圆心的角ABCDO2、弧、弦与圆心角的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
1、相等的圆心角所对的弧相等。
( )2、相等的弧所对的弦相等。
( )3、相等的弦所对的弧相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时辅导讲义
4、圆周角定理及其推论(重点)
同弧所对的圆周角等于它所对的圆心的角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三
角形。
即:在△ABC中,∵OC=OA=OB
∴△ABC是直角三角形或∟C=90°
5.垂径定理的应用(难点)
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的的弧,
垂径定理的表现形式:如图5-2-8所示,
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径②AB CD
⊥③CE DE
=④弧BC=弧BD⑤弧AC=弧AD
中任意2个条件推出其他3个结论。
C
B A
O
O
E
D
C
B
A
考点一:圆心角,弧,弦的位置关系
例1、(2006•)如图,BE是半径为6的圆D的1/4圆周,C点是BE上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值围是()
例2、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()
例3、(2007•)如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其
中正确结论的序号是
例4.(2005•江)如图所示,⊙O半径为2,弦BD=2√3,A为弧BD的中点,E为弦AC的中点,且
在BD上,则四边形ABCD的面积为
考点二:圆周角定理
例1如图,三角形ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB,AC于点D,E.连接DE,已知DE=EC.下列结论:①BC=2DE;②BD+CE=2DE.其中一定正确的有()
例2、(2011•)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角
∠ACB=45°,则这个人工湖的直径AD为()
例3、(2010•)如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为AN^的中点,P是直径MN上一动点,则PA+PB的最小值为()
、
例4、如图AB是⊙O的直径,AC^所对的圆心角为60°,BE^所对的圆心角为20°,且∠AFC=∠BFD,
∠AGD=∠BGE,则∠FDG的度数为()
考点三:垂径定理
1、(2010•大田县)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()
A、(5,3)
B、(3,5)
C、(5,4)
D、(4,5)
2、(2010•潍坊)已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8m,OC=5m,则DC的长为()
A、3cm
B、2.5cm
C、2cm
D、1cm
3、(2009•)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,
CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?
4、已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.
5、如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求
CD.
6、如图,△OAB中,OA=OB,以O为圆心的圆交BC于点C,D,求证:AC=BD.
考点四:垂径定理的应用
1、(2009•)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少?
2(2006•)如图,底面半径为5cm的圆柱形油桶横放在水平地面上,向桶加油后,量得长方形油面的宽度为8cm,则油的深度(指油的最深处即油面到水平地面的距离)为多少?
3、(2008•黄冈)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,
BD=200cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?
5、如图,圆柱形水管原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?
针对性练习
1、(2004•)如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC^与CB^弧长的大小关系是
2、如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.
3、(2009•)如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.
求证:CD=CE.
4、(2011•)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()
5、(2011•)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()
6、(2005•)如图,⊙O是等边三角形ABC的外接圆,D、E是⊙O上两点,则∠D= 度,∠E= 度
7、在△ABC中,∠A=150°,BC=6cm,则△ABC的外接圆的半径为cm.
8、如图,P是直径AB上一点,且PA=2,PB=6,CD为经过点P的弦,那么下列PC与PD的长度中,
符合题意的是()
9、如图,在圆O中,直径AB=10,C、D是上半圆AB^上的两个动点.弦AC与BD交于点E,则AE •AC+BE•BD=
10、(2008•荆州)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()
11、(2003•)如图所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.
求证:OC=OD.。