习题参考解答图论部分
第四部分图论练习题答案
《离散数学》第四部分---图论练习题答案一、选择或填空1、设G是一个哈密尔顿图,则G一定是( )。
(1) 欧拉图(2) 树(3) 平面图(4) 连通图答:(4)2、下面给出的集合中,哪一个是前缀码?( )(1) {0,10,110,101111} (2) {01,001,000,1}(3) {b,c,aa,ab,aba} (4) {1,11,101,001,0011}答:(2)3、一个图的哈密尔顿路是一条通过图中( )的路。
答:所有结点一次且恰好一次4、在有向图中,结点v的出度deg+(v)表示( ),入度deg-(v)表示( )。
答:以v为起点的边的条数,以v为终点的边的条数5、设G是一棵树,则G 的生成树有( )棵。
(1) 0 (2) 1 (3) 2 (4) 不能确定答:16、n阶无向完全图K n 的边数是( ),每个结点的度数是( )。
答:2)1(nn, n-17、一棵无向树的顶点数n与边数m关系是( )。
8、一个图的欧拉回路是一条通过图中( )的回路。
答:所有边一次且恰好一次9、有n个结点的树,其结点度数之和是( )。
答:2n-210、下面给出的集合中,哪一个不是前缀码( )。
(1) {a,ab,110,a1b11} (2) {01,001,000,1}(3) {1,2,00,01,0210} (4) {12,11,101,002,0011}答:(1)11、n个结点的有向完全图边数是( ),每个结点的度数是( )。
答:n(n-1),2n-212、一个无向图有生成树的充分必要条件是( )。
答:它是连通图13、设G是一棵树,n,m分别表示顶点数和边数,则(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。
答:(3)14、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。
答:215、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。
图论第一章课后习题解答
bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。
图论习题答案
习题一1. 一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。
若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。
若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。
2. 若存在孤立点,则m 不超过K n-1的边数, 故 m <= (n-1)(n-2)/2, 与题设矛盾。
3.4. 用向量(a 1,a 2,a 3)表示三个量杯中水的量, 其中a i 为第i 杯中水的量, i = 1,2,3.以满足a 1+a 2+a 3 = 8 (a 1,a 2,a 3为非负整数)的所有向量作为各结点, 如果(a 1,a 2,a 3)中某杯的水倒满另一杯得到 ( a ’1, a ’2, a ’3 ) , 则由结点到结点画一条有向边。
这样可得一个有向图。
本题即为在此图中找一条由( 8, 0, 0 )到( 4, 4, 0 )的一条有向路,以下即是这样的一条:5. 可以。
7. 同构。
同构的双射如下:8. 记e 1= (v 1,v 2), e 2= ( v 1,v 4), e 3= (v 3,v 1), e 4= (v 2,v 5), e 5= (v 6,v 3), e 6= (v 6,v 4), e 7= (v 5,v 3), e 8= (v 3,v 4), e 9 = (v 6,v 1), 则邻接矩阵为: 关联矩阵为:∑∑∑∑∑∑∑==+====-=++=-==---=--=ni i n i i n i n i n i ni i i n i i n i i i i a a n n a a a n n n a n a v v 1111121212/)1()1(2)1(])1[(。
, 所以 因为 ,+ 的负度数,则为结点的正度数,为结点记-----22 222 i i C a a ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------100110000001001000010100010011010100000001001100000111, 001101000100000000001001010000001010⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡( 8, 0, 0 ) ( 5, 3, 0 ) ( 5, 0, 3 ) ( 2, 3, 3 ) ( 2, 5, 1 )(7, 0, 1 ) ( 7, 1, 0 ) ( 4, 4, 0 )( 4, 1, 3 )边列表为:A= (1,1,3,2,6,6,5,3,6), B= (2,4,1,5,3,4,3,4,1). 正向表为:A= (1,3,4,6,6,7,10), B= (2,4,5,1,4,3,3,4,1).习题二1. 用数学归纳法。
离散数学习题解答第6部分(图论)
离散数学习题解答 习题六 (第六章 图论)1.从日常生活中列举出三个例子,并由这些例子自然地导出两个无向图及一个向图。
[解] ①用V 代表全国城市的集合,E 代表各城市间的铁路线的集合,则所成之图G=(V ,E )是全国铁路交通图。
是一个无向图。
②V 用代表中国象棋盘中的格子点集,E 代表任两个相邻小方格的对角线的集合,则所成之图G=(V ,E )是中国象棋中“马”所能走的路线图。
是一个无向图。
③用V 代表FORTRAN 程序的块集合,E 代表任两个程序块之间的调用关系,则所成之图G+(V ,E )是FORTRAN 程序的调用关系图。
是一个有向图。
2.画出下左图的补图。
[解] 左图的补图如右图所示。
3.证明下面两图同构。
a v 2 v 3 v 4图G图G ′[证] 存在双射函数ϕ:V →V ′及双射函数ψ : E →E ′ϕ (v 1)=v 1′ ϕ (v 1,v 2)=(v 1′,v 2′) ϕ (v 2)=v 2′ ϕ (v 2,v 3)=(v 2′,v 3′) ϕ (v 3)=v 3′ ϕ (v 3,v 4)=(v 3′,v 4′) ϕ (v 4)=v 4′ ϕ (v 4,v 5)=(v 4′,v 5) ϕ (v 5)=v 5′ ϕ (v 5,v 6)=(v 5′,v 6′) ϕ (v 6)=v 6′ϕ (v 6,v 1)=(v 6′,v 1′) ϕ (v 1,v 4)=(v 1′,v 4′) ϕ (v 2,v 5)=(v 2′,v 5′) ϕ (v 3,v 6)=(v 3′,v 6′)显然使下式成立:ψ (v i ,v j )=(v i ,v j ′)⇒ ϕ (v i )=v i ′∧ϕ (v j )=v j ′ (1≤i ·j ≤6) 于是图G 与图G ′同构。
4.证明(a ),(b )中的两个图都是不同构的。
图G 中有一个长度为4的圈v 1v 2v 6v 5v 1,其各顶点的度均为3点,而在图G ′中却没有这样的圈,因为它中的四个度为3的顶点v 1',v 5',v 7',v 3'不成长度的4的圈。
图论习题参考答案
二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。
证明这n个人中必有3个人互相认识。
注:[n/2]表示不超过n/2的最大整数。
证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。
由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)N G≥[n/2];(x(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。
需要证明G中有三个顶点两两相邻。
反证,若G中不存在三个两两相邻的顶点。
在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。
情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。
情况二;n=2r+1: 此时[n/2]=r,由于N G(x1)和N G(y1)不相交,t≥r,k≥r,所以r+1≥t,r+1≥k。
若t=r+1,则k=r,即N G(y1)=r,N G(x1)=V-N G(y1),由(2),N G(x1)或N G(y1)中有相邻的顶点对,矛盾。
故k≠r+1,同理t≠r+1。
所以t=r,k=r。
记w∈V- N G(x1) ∪N G(y1),由(2),w分别与N G(x1)和N G(y1)中一个顶点相邻,设wx i0∈E, wy j0∈E。
若x i0y j0∈E,则w,x i0, y j0两两相邻,矛盾。
若x i0y j0∉E,则与x i0相邻的顶点只能是(N G(x1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G(y1)-{x j0})∪{w}。
图论习题参考答案
二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。
证明这n个人中必有3个人互相认识。
注:[n/2]表示不超过n/2的最大整数。
证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。
由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)(xN G≥[n/2];(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。
需要证明G中有三个顶点两两相邻。
反证,若G中不存在三个两两相邻的顶点。
在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。
情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。
情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。
若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。
故k ≠r+1,同理t ≠r+1。
所以t=r,k=r 。
记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。
若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。
图论测试题及答案
图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。
答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。
答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。
答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。
解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。
7. 描述图论中的图着色问题,并说明其在实际生活中的应用。
答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。
在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。
结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。
图论试题及答案解析图片
图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。
答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。
答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。
答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。
答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。
答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。
答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。
2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。
四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。
答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。
图论习题+答案
1 设图G有12条边,G中有1度结点2个,2度结点2个,4度结点3个,其余结点度数不超过3.求G中至少有多少个结点?2 设有向简单图G的度数序列为(2,2,3,3), 入度序列为(0,0,2,3),求G得出度序列 .3 设D是n阶有向简单完全图,则图D的边数为 .4设G是n阶无向简单完全图K n,则图G的边数为 .5 仅有一个孤立结点组成的图称为( )(A)零图(B)平凡图(C)补图(D)子图6设n阶图G中有m条边,每个结点的度数不是k的是k+1,若G中有N k个k度顶点,N k+1个k+1度顶点,则N k = .7设图G如右图.已知路径(1) P1=(v1e5 v5e7 v2e2 v3 )(2) P2=(v5e6 v2e2 v3e3 v4e8 v2e7 v5)(3) P3=(v2e7 v5e6 v2)(4) P4=(v1e1 v2e2 v3e3 v4e8 v2e6 v5)判断路径类型,并求其长度.81)判断下图G1中的路径类型, 并求其长度. P1=(v3e5v4e7v1e4v3e3v2e1v1e4v3)P2=(v3e3v2e2v2e1v1e4v3)P3=(v3e3v2e1v1e4v3).2)判断下图G2中的路径类型, 并求其长度. P1=(v1e1v2e6v5e7v3e2v2e6v5e8v4)P2=(v1e5v5e7v3e2v2e6v5e8v4)P3=(v1e1v2e6v5e7v3e3v4).v1e1e5v2e65e7e4 e2e8v3 4e3v e v1 设图G 有12条边,G 中有1度结点2个,2度结点2个,4度结点3个,其余结点度数不超过3.求G 中至少有多少个结点? 至少9个2 设有向简单图G 的度数序列为(2,2,3,3), 入度序列为(0,0,2,3),求G 得出度序列 (2,2,5,6) .3 设D 是n 阶有向简单完全图,则图D 的边数为 )1(−n n .4 设G 是n 阶无向简单完全图K n ,则图G 的边数为 m =n (n -1)/2 .5 仅有一个孤立结点组成的图称为( B ) (A) 零图 (B)平凡图 (C)补图 (D)子图6设n 阶图G 中有m 条边,每个结点的度数不是k 的是k+1,若G 中有N k 个k 度顶点,N k+1个k+1度顶点,则N k = N k =(k+1)n-2m . 7设图G 如右图.已知路径 (1) P 1=(v 1e 5 v 5e 7 v 2e 2 v 3 ) (2) P 2=(v 5e 6 v 2e 2 v 3e 3 v 4e 8 v 2e 7 v 5) (3) P 3=(v 2e 7 v 5e 6 v 2)(4) P 4=(v 1e 1 v 2e 2 v 3e 3 v 4e 8 v 2e 6 v 5)判断路径类型,并求其长度. (1) 初级通路;3 (2) 简单回路;5 (3) 初级回路;2 (4) 简单通路. 5 81)判断下图G1中的路径类型, 并求其长度. P 1=(v 3e 5v 4e 7v 1e 4v 3e 3v 2e 1v 1e 4v 3) P 2=(v 3e 3v 2e 2v 2e 1v 1e 4v 3) P 3=(v 3e 3v 2e 1v 1e 4v 3).2)判断下图G2中的路径类型, 并求其长度. P 1=(v 1e 1v 2e 6v 5e 7v 3e 2v 2e 6v 5e 8v 4) P 2=(v 1e 5v 5e 7v 3e 2v 2e 6v 5e 8v 4) P 3=(v 1e 1v 2e 6v 5e 7v 3e 3v 4).解:在图G 1中,v 3e 5v 4e 7v 1e 4v 3e 3v 2e 1v 1e 4v 3是一条长度为6的回路,但既不是简单回路,也不是初级回路; v 3e 3v 2e 2v 2e 1v 1e 4v 3是一条长度为4的简单回路,但不是初级回路; v 3e 3v 2e 1v 1e 4v 3是一条长度为3的初级回路。
(图论)离散数学习题参考答案2
解此不等式可得 n ≥ 7 , 即 G 中至少有 7 个顶点, 当为 7 个顶点时, 其度数列为 2, 2, 2, 3, 3, 4, 4 , Δ = 4, δ = 2 8. 设有 n 个顶点,由握手定理可得: ∑ d (vi ) = 2m ,即
i =1 n
1 × (3 + 5) + (n − 2) × 2 = 2 × 6
d − (v1 ) = 3, d + (v1 ) = 0; d − (v2 ) = 1, d + (v2 ) = 2; d − (v3 ) = 1, d + (v3 ) = 3; d − (v4 ) = 2, d + (v4 ) = 2
第十一次: (欧拉图与哈密顿图)P305 1.2.11.21 (无向树及其性质)P318 2.24(a), 25(b) 1. (a),(c) 是欧拉图,因为它们均连通且都无奇度顶点; (b),(d)都不是欧拉图;因为(b) 不连通,(d) 既不连通又有奇度顶点;要使(b),(d)变为欧拉图 均至少加两条边,使其连通并且无奇度顶点。如下图所示。
(1) v2 到 v5 长度为 1,2,3,4 的通路数分别为 0, 2, 0,0 条; (2) v5 到 v5 长度为 1,2,3,4 的通路数分别为 0,0,4,0 条; (3) D 中长度为 4 的通路(含回路)为 32 条; (4) D 中长度为小于或等于 4 的回路数为 12 条; (5) 因为 D 是强连通图,所以可达矩阵为 4 阶全 1 方阵,如上图所示。 46. 各点的出度和入度分别如下:
(v2,12)** (v5, 7)*
根据上表的最后一行,从 v1 到其余各点的最短路径和距离如下: v1v2, d(v1,v2)=6 v1v2v6, d(v1,v6)=12 v1v3, d(v1,v3)=3 v1v3v4v5v7, d(v1,v7)=7 v1v3v4, d(v1,v4)=5 v1v3v4v5v7v8, d(v1,v8)=10 v1v3v4v5, d(v1,v5)=6
离散数学图论部分综合练习及答案
3.设图 G=<V, E>,则下列结论成立的是 ( C
A.deg(V)=2E
B.deg(V)=E
C. ∑deg(v) = 2 E v∈V
D. ∑deg(v) = E v∈V
).神马东东?????
aο
οb
οd
οf
4.图 G 如图一所示,以下说法正确的是 ( C ) .
2.设 G 是一个 n 阶无向简单图,n 是大于等于 2 的奇数.证明图 G 与它的 补图 G 中的奇数度顶点个数相等.
2.证明:设 G =< V , E > , G =< V , E′ > .则 E′ 是由 n 阶无向完全图 Kn 的边 删去 E 所得到的.所以对于任意结点 u ∈V ,u 在 G 和 G 中的度数之和等于 u 在 Kn 中的度数.由于 n 是大于等于 2 的奇数,从而 Kn 的每个结点都是偶数度的 ( n −1 (≥ 2) 度),于是若 u ∈V 在 G 中是奇数度结点,则它在 G 中也是奇数度 结点.故图 G 与它的补图 G 中的奇数度结点个数相等.
(v2, v4),(v3, v4),(v3, v5),(v4, v5) },试 (1)画出 G 的图形表示;
(2)写出其邻接矩阵;
(3)求出每个结点的度数;
V1:2;V2:3;V3:4;V4:3;V5:2
(4)画出图 G 的补图的图形.
3.设 G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4), (v3,v5),(v4,v5) },试
则对于结点集 V 的每个非空子集 S,在 G 中删除 S
离散数学图论部分经典试题及答案
离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) .A .{(a , d )}是割边B .{(a , d )}是边割集C .{(d , e )}是边割集D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集ο ο ο ο οcab edο f图一图二C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图三7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).图四A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的应该填写:D8.设完全图Kn 有n个结点(n≥2),m条边,当()时,Kn中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m 为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2 B.v+e-2 C.e-v-2 D.e+v +210.无向图G存在欧拉通路,当且仅当( ).A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.1m n-+B.m n-C.1m n++D.1n m-+ 12.无向简单图G是棵树,当且仅当( ).A.G连通且边数比结点数少1 B.G连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 .9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.ο οο ο οca b e dο f 图四2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图? 2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵; (2)求出每个结点的度数; (4)画出图G 的补图的图形.3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试v 1v 2v 3v 4v 5v 6v 1v 2v 3v 5 d bae f ghn图六οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图八(1)给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形.4.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b,d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.5.用Dijkstra算法求右图中A点到其它各点的最短路径。
离散数学及其应用图论部分课后习题答案
(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(3)构成了初级通路,因为点不重复;
(4)不构成通路,因为边 不存在;
(5)构成通路,但是不为简单通路和初级通路,因为有重复的边
(6)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(7)构成了初级通路;
(8)简单通路,但是不为初级通路,有重复边。
23、用Dijkstra标号法求图9.22中各图从顶点 到其余各点的最短路径和距离。
解答
步骤
1
2
3
4
5
6
7பைடு நூலகம்
到 最短路为 ,路长为6;
到 最短路为 ,路长为3;
到 最短路为 ,路长为5;
到 最短路为 ,路长为6;
到 最短路为 ,路长为12;
到 最短路为 ,路长为7;
那么对于n阶m条边的无向图G是 棵树组成的森林,在任意两棵树中分别找一点进行连一条边,那么得到的图则为n阶m+1条边的无向图G是 棵树组成的森林,
那么 ,所以 。
方法二:设 棵树中,分别有 个顶点和 条边, ,则有
, , ,即可得证。
19、求图10.17中两个带权图的最小生成树。
解答:
P204:习题十一
16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
解答:
(1)三条边一共提供6度;所以点度序列可能是
①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;
由于是简单图,①②两种情形不可能
离散数学习题三参考答案
离散数学习题三参考答案第三节图论1.画出所有4个顶点的简单图。
解:本题这考虑连通图的情况。
共有5个不同构的图。
2.在某次宴会上,许多人互相握手,证明奇数次握手的人一定是偶数个。
解:设每个人看成一个顶点,两人握手看成两顶点间的一条边,每人握手的次数就是该顶点的度数,由定理1的推论2马上可得结论。
3.设图G=(V,E)中有12条边,已知G中3度顶点的有3个,其余顶点的度数均小于3,问G中至少有多少个顶点?为什么?解:如图G不是连通图,那么12条边最多的顶点数是12×2=24;一个顶点的度数是3,则要减去2个顶点数,所以3度顶点的有3个,就要减去2×3-6个顶点;同样一个顶点的度数是2,则要减去1个顶点数;为了使顶点数最小,图必须是连通图,所以顶点数为2的顶点的个数是(12×2-3×3)÷2的整数部分等于7个,有一个顶点的度数是1,所以G中至少有的顶点数是3+7+1=11(个)。
4.n个运动队之间安排一项比赛,已赛完了n+1场,求证:一定存在这样一个队,它已经至少参加了3场比赛。
解:如果每个运动队都只赛了2场,则共赛了2n÷2=n<n+1,所以一定存在这样一个队,它已经至少参加了3场比赛。
5.下图表示用堤埂分割成很多小块的水稻田。
为了用水灌溉需要挖开一些堤埂(不能挖堤埂的交点)。
问最少要挖开多少条堤埂,才能使水浇灌到每小块稻田?第五题解:把每块田看成顶点,相邻的田同一条边连接,这题就是最小生成树问题。
因为有12块田地,所以最少要挖开11条堤埂,才能使水浇灌到每小块稻田。
(见上右图)6在下列图中,求一条欧拉通路。
解:略2,其中m为图的边数,n为图的顶7.证明:若G=〈V,E〉是简单图,则m≤Cn点数。
(7,9一样)解:顶点数相同的情况下,简单图的边数一定小于完全图的边数。
8.设G是一个连通图,不含奇数点,证明:从G中任意去掉一条边,得到的图仍是连通图。
图论习题参考答案
二、应用题题0:(1996年全国数学联赛)有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。
证明这n 个人中必有3个人互相认识。
注:[n /2]表示不超过n /2的最大整数。
证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。
由条件可知,G 是具有n 个顶点的简单图,并且有(1)对每个顶点x ,)(x N G ≥[n /2];(2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有两个顶点相邻。
需要证明G 中有三个顶点两两相邻。
反证,若G 中不存在三个两两相邻的顶点。
在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。
情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。
情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。
若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。
故k ≠r+1,同理t ≠r+1。
所以t=r,k=r 。
记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。
图论习题及答案
作业解答练习题2 利用matlab编程FFD算法完成下题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。
解答一:function [num,s] = BinPackingFFD(w,capacity)%一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序,%然后按FF算法对物体装箱%输入参数w为物品体积,capacity为箱子容量%输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装%物品体积数组%例w = [60,45,35,20,20,20]; capacity = 100;% num=3,s={[1,3],[2,4,5],6};w = sort(w,'descend');n = length(w);s = cell(1,n);bin = capacity * ones(1,n);num = 1;for i = 1:nfor j = 1:num + 1if w(i) < bin(j)bin(j) = bin(j) - w(i);s{j} = [s{j},i];if j == num + 1num = num + 1;endbreak;endendends = s(1:num);解答二:clear;clc;V=100;v=[60 45 35 20 20 20];n=length(v);v=fliplr(sort(v));box_count=1;x=zeros(n,n);V_Left=100;for i=1:nif v(i)>=max(V_Left)box_count=box_count+1;x(i,box_count)=1;V_Left=[V_Left V-v(i)];elsej=1;while(v(i)>V_Left(j))j=j+1;endx(i,j)=1;V_Left(j)=V_Left(j)-v(i);endtemp=find(x(i,:)==1);fprintf('第%d个物品放在第%d个容器\n',i,temp) endoutput:第1个物品放在第1个容器第2个物品放在第2个容器第3个物品放在第1个容器第4个物品放在第2个容器第5个物品放在第2个容器第6个物品放在第3个容器解答三:function box_count=FFD(x)%降序首次适应算法v=100;x=fliplr(sort(x));%v=input('请输入箱子的容积:');n=length(x);I=ones(n);E=zeros(1,n);box=v*I;box_count=0;for i=1:nj=1;while(j<=box_count)if x(i)>box(j)j=j+1;continue;elsebox(j)=box(j)-x(i);E(i)=j;break;endendif j>box_countbox_count=box_count+1;box(box_count)=box(box_count)-x(i);E(i)=j;endenddisp(E);在命令窗口输入:>> x=[60,45,35,20,20,20];>> FFD(x)1 2 1 2 2 3ans =3练习题5 “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3, 奖品i占用的空间为w i dm3,价值为v i元, 具体的数据如下:v i= { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}w i = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。
习题与解答(图论)
2 3 4 2 3 4
V1 V2
V2
V4 (d)
V3
V4 (e)
(1) (2)
(1)v2 到 v5 长度为 1,2,3,4 的通路数分别为 a25 =0,a25 =2 条, a25 =0 条,
(3)
a25 =0 条,
(1) (2)
(4)
(2)v5 到 v5 长度为 1,2,3,4 的回路数分别为 a55 =0,a55 =0 条, a55 =4 条, a55 =0 条, (3)D 中长度为 4 的通路数(含回路)(即 A 中元素之和)为 32 条。 (4)D 中长度小于或等于为 4 的回路数为(即为 A, A ,A ,A 中对角 元素之和)12 条 (5)D 是强连通的,所以可达矩阵为元素全为 1 的 5 阶方阵。 50、设 G 是 6 阶无向简单图,证明 G 或它的补图 G 中存在 3 个顶点彼此 相邻 证明:取一个顶点 v1,由鸽巢原理,v1 至少关联 3 条 G 中的边,或至少 关联 3 条 G 中的边,不妨设 v1 至少关联 3 条 G 中的边,设这 3 条边的 另一个端点分别为 v2, v3, v4,如图(a)所示,再对 v2, v3, v4 之间的邻 接关系进行讨论。 (1)若(v2,v3), (v3,v4), (v2,v4)中有一条是 G 的边,则在 G 中有 3
(2)n 阶非连通的简单图至少有 2 个连通分支,边数最多的情 况是由 Kn-1 和一个孤立点构成,它的边数为(n-1)(n-2)/2. 边数最少的非连通图,当然是 n 阶零图,边数 m=0,由 n 个 孤立点构成的图 16、画出无向完全图 K4 的所有非同构的子图,指出哪些是生成子图, 哪些是自补图。 解: 下面给出了 K4 的 18 个非同构的子图,其中有 11 个生成子图 ((8)-(18)),其中连通的有 6 个((11)(12)(13)(14)(16)(17))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题十1. 设G是一个(n,m)简单图。
证明:,等号成立当且仅当G是完全图。
证明:(1)先证结论:因为G是简单图,所以G的结点度上限 max(d(v)) ≤ n-1, G图的总点度上限为 max(Σ(d(v)) ≤ n﹒max(d(v)) ≤ n(n-1) 。
根据握手定理,G图边的上限为 max(m) ≤ n(n-1)/2,所以。
(2) =〉G是完全图因为G具有上限边数,假设有结点的点度小于n-1,那么G的总度数就小于上限值,边数就小于上限值,与条件矛盾。
所以,G的每个结点的点度都为n-1,G为完全图。
G是完全图 =〉因为G是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G的边数。
■2. 设G是一个(n,n+1)的无向图,证明G中存在顶点u,d(u)≥3。
证明:反证法,假设,则G的总点度上限为max(Σ(d(u)) ≤2 n,根据握手定理,图边的上限为max(m) ≤2n/2=n。
与题设m = n+1,矛盾。
因此,G中存在顶点u,d(u)≥3。
■3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来:(1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5)解:除序列(1)不是图序列外,其余的都是图序列。
因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。
可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。
最后,将奇数序列对应的点两两一组,添加连线即可。
下面以(2)为例说明:(6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5}每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)将奇数3,3 对应的结点v 2,v 3一组,画一条连线其他序列可以类式作图,当然大家也可以画图其它不同的图形。
■4.证明:在(n ,m )图中。
证明:图的点度数是一组非负整数{d(v 1),d(v 2)…d(v n )},那么这组数的算术平均值一定大于等于其中的最小值,同时小于等于其中的最大值。
对应到图的术语及为:最大值为,最小值为δ,平均值 = (d(v 1)+d(v 2)…+d(v n ))/n = 2m/n,所以。
■5.证明定理。
【定理】 对于任何(n ,m )有向图G =(V ,E ),证明:有向图中,每条有向边为图贡献一度出度,同时贡献一度出度,所以总出度和总入度相等,并和边数相等。
因此,上述关系等式成立。
■6.设G是(n,m)简单二部图,证明:。
证明:本题目,我们是需要说明n阶的简单二部图的边数的最大值 = 即可。
设n阶的简单二部图,其两部分结点集合分别为V1,V2,那么|V1| + |V2| = n。
此种情况下,当G为完全二部图时,有最多的边数,即max(m) = |V1||V2|,变形为,max(m) =( n-|V2|)|V2|.此函数的最大值及为n阶二部图的边的上限值,其上限值为当|V2|=n/2 时取得。
及max(max(m)) = ,所以n阶二部图(n,m), ■7. 无向图G有21条边,12个3度数结点,其余结点的度数均为2,求G 的阶数n。
解:根据握手定理有: 21 =( 3Χ12 + 2(n-12))/2, 解此方程得n = 15■8.证明:完全图的点诱导子图也是完全图。
证明:方法1为证明此结论,我们先证两个引论:引论1:设G(V,E)为母图,,则G的任意子图G'(V’,E’)是G关于V’的点诱导子图G''(V’,E’’)的子图。
引论2:引论1中G’’(V’,E’’)的任意点诱导子图,也是G图的点诱导子图。
证明:略,请读者证明。
设有完全图Kn( n≥1),现根据其p阶点诱导子图作归纳证明。
Kn的1阶点诱导子图,显然是完全图,且都是K1图。
当n≥2,Kn的2阶点诱导子图,显然是完全图,且都是K2图假设Kn的p(n>p>2)阶点诱导子图,为Kp图,那么对任意的p+1阶点诱导子图G,根据引理2结论,G的任意p阶点诱导子图G’为Kn的p阶点诱导子图,且为Kp图。
因此,G必为Kp+1图。
根据以上论证可得原命题成立■方法2因为完全图的任意两个顶点均邻接,所以点导出子图任意两个顶点也邻接,为完全图。
■9.若,称G是自补图。
确定一个图为自补图的最低条件;画出一个自补图来。
解:设G为(n,m)图,为(n,m`)图,根据补图的定义有,至少应该满足m+m`=n(n-1)/2 (1) 根据同构的定义有,至少应该满足m=m` (2)(1),(2)联立求解得:m=n(n-1)/4, 及一个图为自补图,最低条件为结点数为4的倍数或为4的倍数加1。
图示略■10.判断图中的两个图是否同构,并说明理由。
图9-1.15解:题中两个图不同构,因为左边图的唯一3度点有2个1度点为其邻接点,而右图唯一的3度点只有1个1度点为其邻接点。
因此这两个图不可能同构■11.证明: 图中的两个图是同构的。
解:略■12. 求具有4个结点完全图K 4的所有非同构的生成子图。
解:我们可以把生成子图按总度数不同进行分类,不同总度数的子图类决不同构。
总度数相同的子图类中,再去找出不同购的子图。
因此求解如下: Σd(v) = 0: (0,0,0,0) =2: (1,1,0,0)=4: (2,1,1,0) (1,1,1,1)=6: (3,1,1,1) (2,2,1,1)(2,2,2,0) =8: (2,2,2,2) (3,2,2,1)=10: (3,3,2,2)=12: (3,3,3,3)图图总共10个不同构生成子图■13. 设有向图D=<V,E>如下图所示。
(1) 在图中找出所有长度分别为1,2,3,4的圈 (至少用一种表示法写出它们,并以子图形式画出它们)。
(2) 在图中找出所有长度分别为3,4,5,6的回路,并以子图形式画出它们。
解:(1)(2)子图略长度为三的回路:Ae 1Ae 1Ae 1A,Ae 1Ae 3De 2A,Ae 4Be 7Ce 5A,Ae 4Be 8Ce 5AC=AAC=ADAC=Ae 4Be 7Ce 5AC=Ae 4Be 8Ce 5A C=Ae 4Be 7Ce 6De 2AC=Ae 4Be 8Ce 6De 2A长度为四的回路:AAAAA ,AAADA ,AABe 7CA,AABe 8CA,ABe 7CDA,ABe 8CDA 长度为五的回路:AAAAAA,AAAADA,AAABe 7CA,AAABe 8CA,AABe 7CDA,AABe 8CDA, AADADA,AAAe 4Be 7Ce 5A,AAAe 4Be 8Ce 5A, ADAe 4Be 7Ce 5A,ADAe 4Be 8Ce 5A ■14. 试证明在任意6个人的组里,存在3个人相互认识,或者存在3个人相互不认识。
证明:设A 为6人中的任一人,那么A 要么至少与3人认识,要么至少与3人不认识,二者必居其一。
假设A 与B ,C ,D 三人认识,如果B ,C ,D 三人互不认识,结论成立 如果B ,C ,D 三人中,至少有两人相互认识,则它们和A 一起,构成相互认识的3人,结论成立。
同理,A 至少与3人不认识,结论也成立。
因此,题设结论成立■15. 若u 和v 是图G 中仅有的两个奇数度结点,证明u 和v 必是连通的。
证明:反证法,假设u 和v 不连通,那么他们必然分布于此图的两个连通分支中。
那么它们将分别是各连通分支中唯一的奇数度结点。
根据握手定理,一个图中奇度点的个数为偶数。
而两个连通分支中,奇度点的个数为奇数。
矛盾。
矛盾的产生,是由于假设不连通导致的,因此,题设结论成立■16. 证明:G 是二部图当且仅当G 的回路都是偶长回路。
证明:设二部图G ,顶点分为两个集合V1 ,V2充分性:先证明在二部图中,奇长路的道路的两个端节点一定分别在两个顶点集合中,对道路长度使用归纳法,(1)当道路长度为1是,根据二部图的定义,每条边的两个顶点分别在两个点集合中,结论成立(2)假设道路长度为2n-1 ( n≥2)时结论成立(3)当道路长度为2n+1时,设P=v1v2…v2n-1v2n v2n+1,在此路径上删除最后两个结点,那么道路P将变为长度为2n-1的奇长道路,根据假设,v 1,v2n-1分别在两个顶点集合中,那么v2n和v1在同一顶点集合中,而v2n+1和v1在不同顶点集合,结论成立因为G中的任何回路,写成道路的形式,起点和终点时一个结点,当然在同一个顶点集合中,因此长度必为偶数;必要性:(仅对连通分支证明)在图中任意取一点着色为白色,将和此点最短距离为奇数的点着色为黑点,为偶数的着色为白点,那么将结点分为白色和黑色连个点集,任何同色点之间没有边相连。
否则将形成奇数长度的回路,例如同色结点v1,v2 相邻,那么从初始着色点v开始通过最短路径可以形成如下回路v…v1v2…v,因为v…v1,v2…v长度和为偶数,那么回路v…v1v2…v长度为奇数,与题设矛盾。
所以是二部图17.设(n, m)简单图G满足,证明G必是连通图。
构造一个的非连通简单图。
证明:假设G不连通,分支G1,G2..Gk,那么他们的边数的最大值max(m)=Σ(ni-1)ni/2≤Σ(ni-1)(n-1)/2=(n-1)/2Σ(n-1)=(n-1)(n-k)/2,所以,只有当k=1i时,才能满足题设要求,G是连通图。
如果将顶点集合分成两个点集,|V1|=1,|V2|=n-1,构成如下的有两个分支的非连通简单图,G1=(1,0),G2=Kn-1,满足题设条件■18. 设G是阶数不小于3的连通图。
证明下面四条命题相互等价:(1)G无割边;(2) G中任何两个结点位于同一回路中;(3) G中任何一结点和任何一边都位于同一回路中;(4) G中任何两边都在同一回路中。
证明:(1)=〉(2)因为G连通,且G无割边,所以任意两个结点u,v,都存在简单道路p=u (v)又因为G无割边,所以,删除边wv后,子图依然连通,即w,v存在简单道路p’,以此类推,可以找到一条核p每条边都不相同的p’’=v…u,这样p和p’’就构成了一条回路。
(2)=〉(3)因为G中任意两个结点都位于同一回路中,所以任意结点u,和任意边e的两个端点v1,v2都分别在两个回路C1,C2中,如果C1=C2=u…v1…v2…u,那么将回路中v1…v2,用v1v2=e替换,就得到新的新的回路,并满足要求。
如果C1≠C2,C1=u…v1…u,C2=u…v2…u,那么构成新的道路P=u…v1…u…v2…u,在其中将重复边剔出掉,得到新的回路C3,其中包含v1,v2结点,可以将回路中v1…v2用v1v2=e替换,就得到新的新的回路,并满足要求.(3)=〉(4)对任意两条边e1,e2其端点分别为u1,u2,v1,v2。