人教版八年级数学上册第十五章《分式》15.2分式的运算同步练习题
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学上册《15.2分式的运算》练习题-附带答案
人教版八年级数学上册《15.2分式的运算》练习题-附带答案一、单选题1.化简的结果为()A.a B.C.D.2.下列计算正确的是()A.B.C.D.3.已知则A=()A.B.C.D.x2﹣14.当分式与经过计算后的结果是时则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法5.已知实数a、b满足且则的值为()A.-2 B.-1 C.1 D.26.如果那么的值是()A.正数B.负数C.零D.不确定7.已知那么之间的大小关系是()A.B.C.D.8.一项工程甲单独做需要m天完成乙单独做需要n天完成则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.二、填空题9..10.计算: = .11.将写成只含有正整数指数幂的形式:.12.若a≠0 b≠0 且4a﹣3b=0 则的值为.13.我们常用一个大写字母来表示一个代数式已知则化简的结果为.三、计算题14.计算下列各小题(1)(2)(3)15.先化简再求值:其中.16.先化简再求值:其中x取不等式组的整数解中的一个值.17.老师所留的作业中有这样一个分式的计算题甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步乙同学:=第一步=第二步=第三步=第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中选择一位同学的解答过程帮助他分析错因并加以改正.我选择同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第步开始出现错误错误的原因是(2)请重新写出完成此题的正确解答过程:参考答案:1.A2.D3.B4.A5.A6.B7.B8.C9.110.211.12.-13.14.(1)解:原式(2)解:原式(3)解:原式.15.解:原式当时原式.16.解:===解不等式组得2≤x<5整数解有2 3 4因为x不能取2和4 所以x只能取3当x=3时原式=-217.(1)甲/乙一/二通分时第一个分式的分子少乘了x-1/直接去掉分母(2)解:(选甲为例)===。
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)
一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
《好题》初中八年级数学上册第十五章《分式》经典测试卷(含答案)
一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠0D解析:D【分析】 若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x +>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解3.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ D 解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a -=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.4.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯ D解析:D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】 0.0000025=62.510-⨯,故选:D .【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数, 则1101a 2<<-. 故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.6.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5A 解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.分式242x x -+的值为0,则x 的值为( ) A .2-B .2-或2C .2D .1或2C 解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- C 解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】 此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.9.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.10.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++ C 解析:C【分析】根据分式的除法法则计算即可.【详解】 2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y-=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.二、填空题11.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =.【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.12.计算:22x x xy x y x-⋅=-____________________.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x -⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.13.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.【分析】本题的等量关系是:224000元购买A 型计算机的数量=240000元购买B 型计算机数量依此列出方程即可【详解】解:设B 型计算机每台需x 元则A 型计算机每台需(x-400)元依题意有故填【点睛】 解析:240000224000400x x =- 【分析】本题的等量关系是:224 000元购买A 型计算机的数量=240 000元购买B 型计算机数量,依此列出方程即可.【详解】解:设B 型计算机每台需x 元,则A 型计算机每台需(x-400)元,依题意有240000224000400x x =- 故填,240000224000400x x =-. 【点睛】 考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,本题重点是熟悉单价,总价,数量之间的关系.14.当x _______时,分式22x x -的值为负.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】 分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.23()a -=______(a≠0),2-=______,1-=______.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 17.若13x x +=,则231x x x ++的值是_______.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算 解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算.【详解】233111x x x x x=++++, 当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.18.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.19.方程2111x x x =--的解是___________.【分析】根据分式方程的性质求解即可得到答案【详解】∵∴∴∵时即分母为0故舍去∴故答案为:【点睛】本题考查了分式方程一元二次方程的知识;解题的关键是熟练掌握分式方程的性质从而完成求解解析:1x =-【分析】根据分式方程的性质求解,即可得到答案.【详解】 ∵2111x x x =-- ∴21x =∴1x =±∵1x =时,10x -=,即分母为0,故舍去∴1x =-故答案为:1x =-.【点睛】本题考查了分式方程、一元二次方程的知识;解题的关键是熟练掌握分式方程的性质,从而完成求解.20.已知:4a b +=,2210a b +=,求11a b+=______.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a ab b a b a ab b . 解析:(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =.【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.22.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.解析:(1)完成这项工程的规定时间是20天;(2)选择方案三,理由见解析.【分析】(1)设完成这项工程的规定时间为x 天,则甲工程队需x 天完成这项工程,乙工程队需(x+5)天完成这项工程,根据由甲、乙两队合作做4天,剩下的工程由乙队单独做,即可得出关于x 的分式方程,解之并检验后即可得出结论.(2)根据总费用=每天需付费用×工作天数,分别求出方案一、三需付的工程款,比较后即可得出结论.【详解】(1)设完成这项工程的规定时间为x 天, 由题意得1144155x x x x -⎛⎫++=⎪++⎝⎭. 解得:20x .经检验,20x 是原方程的解,且符合题意.答:完成这项工程的规定时间是20天.(2)选择方案三,理由如下:方案一:所需工程款为20 2.142⨯=(万元);方案二:超过了规定时间,不符合题意;方案三:所需工程款为4 2.120 1.538.4⨯+⨯=(万元).∵42>38.4,∴ 选择方案三.【点睛】本题考查了分式方程的应用,解题的关键是:(1)由甲、乙两队合作做4天,剩下的工程由乙队单独做,列出关于x 的分式方程;(2)根据数量关系列式计算.23.计算:(1)(2)(2)4(21)x x x -+--;(2)2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭. 解析:(1)28x x -;(2)11a +.【分析】(1)由整式的混合运算,先去括号,然后合并同类项,即可得到答案;(2)先计算括号内的运算,然后计算分式除法运算,即可得到答案.【详解】解:(1)(2)(2)4(21)x x x -+--=2484x x --+=28x x -;(2)2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭=21(1)11a a a a ++÷-- =2111(1)a a a a +-⨯-+ =11a +. 【点睛】 本题考查了整式的混合运算,分式的混合运算,解题的关键是掌握运算法则进行解题.24.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--,去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.25.计算:2212y x y x y ---. 解析:1x y+ 【分析】首先把两分式通分化为同分母分式后,再按照分母不变,分子相加减的法则计算.【详解】 解:原式2()()()()x y y x y x y x y x y +=-+-+- 2()()x y y x y x y +-=+-. ()()x y x y x y -=+-. 1x y=+. 【点睛】本题考查分式的加减运算,熟练掌握异分母分式的加减法则是解题关键.26.计算与求值(1)计算:)01π; (2)求)(2316x +=中x 的值.解析:(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++=(2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.27.先化简231124a a a +⎛⎫+÷ ⎪--⎝⎭,然后请你从2,2,1--和0中选取一个合适的值代入a ,求此时原式的值.解析:2a +,2【分析】把括号内通分,并把除法转化为乘法,约分化简后从所给数中选一个使分式有意义的数代入计算即可.【详解】 解:原式=2234221a a a a a --⎛⎫+⨯ ⎪--+⎝⎭ =()()22121a a a a a +-+⨯-+ =2a +,∵a 取2,-2,-1时分式无意义,∴a 只能取0,∴原式=0+2=2.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.28.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 解析:21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.【详解】解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
初中数学《八上》 第十五章 分式-分式方程 考试练习题
初中数学《八上》第十五章分式-分式方程考试练习题姓名:_____________ 年级:____________ 学号:______________1、(1 )化简求值:,其中;(2 )解方程.知识点:分式方程【答案】(1 )原式 =4 ;(2 ).【分析】(1 )先用完全平方差公式与多项式乘法公式将原式化简为,再将已知条件代入即可;(2 )根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为 1 、检验依次进行求解即可.【详解】解:(1 )==当时,原式==;(2 ),去分母得:,解得:,经检验,是原方程的解.则原方程的解为:.【点睛】本题主要考查了代数式的化简求值与解分式方程,关键在于熟练的掌握解题的方法与技巧,注意分式方程要检验.2、某网店开展促销活动,其商品一律按8 折销售,促销期间用 400 元在该网店购得某商品的数量较打折前多出 2 件.问:该商品打折前每件多少元?知识点:分式方程【答案】50【分析】该商品打折卖出x件,找到等量关系即可.【详解】解:该商品打折卖出x件解得x =8经检验:是原方程的解,且符合题意∴ 商品打折前每件元答:该商品打折前每件50 元.【点睛】此题考查分式方程实际问题中的销售问题,找到等量关系是解题的关键.3、如图,点分别在函数的图像上,点在轴上.若四边形为正方形,点在第一象限,则的坐标是_____________ .知识点:分式方程【答案】(2 , 3 )【分析】根据正方形和反比例函数图像上点的坐标特征,设D点坐标为(m,),则A点坐标为(,),进而列出方程求解.【详解】解:∵ 四边形为正方形,∴ 设D点坐标为(m,),则A点坐标为(,),∴m-()=,解得:m =±2 (负值舍去),经检验,m =2 是方程的解,∴D点坐标为(2 , 3 ),故答案是:(2 , 3 ).【点睛】本题主要考查反比例函数与平面几何的综合,掌握反比例函数图像上点的坐标特征,是解题的关键.4、分式方程=1 的解是 _______ .知识点:分式方程【答案】x=1【分析】先给方程两边同乘最简公分母x+1 ,把分式方程转化为整式方程 2=x+1 ,求解后并检验即可.【详解】解:方程的两边同乘x+1 ,得 2=x+1 ,解得x=1 .检验:当x=1 时,x+1=2≠0 .所以原方程的解为x=1 .故答案为:x=1 .【点睛】此题考查了解分式方程,掌握解分式方程的一般步骤及方法是解题的关键.5、“ 节能环保,绿色出行” 意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的 A 型自行车去年销售总额为 8 万元.今年该型自行车每辆售价预计比去年降低 200 元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少 10% ,求:(1 ) A 型自行车去年每辆售价多少元;(2 )该车行今年计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数量不超过 A 型车数量的两倍.已知, A 型车和 B 型车的进货价格分别为 1500 元和 1800 元,计划 B 型车销售价格为2400 元,应如何组织进货才能使这批自行车销售获利最多.知识点:分式方程【答案】(1) 2000 元;(2 ) A 型车 20 辆, B 型车 40 辆.【分析】(1 )设去年 A 型车每辆售价 x 元,则今年售价每辆为(x ﹣ 200 )元,由卖出的数量相同列出方程求解即可;(2 )设今年新进 A 型车 a 辆,则 B 型车(60 ﹣ a )辆,获利 y 元,由条件表示出 y 与 a 之间的关系式,由 a 的取值范围就可以求出 y 的最大值.【详解】解:(1 )设去年 A 型车每辆售价 x 元,则今年售价每辆为(x ﹣ 200 )元,由题意,得,解得:x=2000 .经检验,x=2000 是原方程的根.答:去年A 型车每辆售价为 2000 元;(2 )设今年新进 A 型车 a 辆,则 B 型车(60 ﹣ a )辆,获利 y 元,由题意,得y=a+ (60 ﹣ a ),y= ﹣ 300a+36000 .∵B 型车的进货数量不超过 A 型车数量的两倍,∴60 ﹣a≤2a ,∴a≥20 .∵y= ﹣ 300a+36000 .∴k= ﹣ 300 < 0 ,∴y 随 a 的增大而减小.∴a=20 时, y 最大=30000 元.∴B 型车的数量为: 60 ﹣ 20=40 辆.∴ 当新进 A 型车 20 辆, B 型车 40 辆时,这批车获利最大.【点睛】本题考查分式方程的应用;一元一次不等式的应用.6、小刚家到学校的距离是1800 米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有 20 分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了 4.5 分钟,且骑自行车的平均速度是跑步的平均速度的 1.6 倍.(1 )求小刚跑步的平均速度;(2 )如果小刚在家取作业本和取自行车共用了 3 分钟,他能否在上课前赶回学校?请说明理由.知识点:分式方程【答案】(1 )小刚跑步的平均速度为 150 米 / 分;(2 )小刚不能在上课前赶回学校,见解析【分析】(1 )根据题意,列出分式方程即可求得小刚的跑步平均速度;(2 )先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间 20 分钟作比较即可.【详解】解:(1 )设小刚跑步的平均速度为x米/ 分,则小刚骑自行车的平均速度为 1.6x米/ 分,根据题意,得,解这个方程,得,经检验,是所列方程的根,所以小刚跑步的平均速度为150 米 / 分.(2 )由(1 )得小刚跑步的平均速度为 150 米 / 分,则小刚跑步所用时间为(分),骑自行车所用时间为(分),l 故此方程无解.【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键.8、某单位在疫情期间用6000 元购进A、B两种口罩1100 包,购买A种口罩与购买B种口罩的费用相同,且一包A种口罩的单价是一包B种口罩单价的1.2 倍.(1 )求A,B两种口罩一包的单价各是多少元?(2 )若计划用不超过 11000 元的资金再次购进A、B两种口罩共2000 包,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少包?知识点:分式方程【答案】(1 )A种口罩一包的单价为6 元,B种口罩一包的单价为5 元(2 )A 种口罩最多能购进1000 包【分析】(1) 设B种口罩一包的单价为x元,则A种口罩一包单价为1.2x元,由题意列出分式方程,解方程即可;(2) 设购进A种口罩m包,则购进B种口罩(2000-m ) 包,由题意,列出一元一次不等式 6m +5 (2000-m )≤11000 ,,解之取其中的最大值即可得出结论.【详解】(1) 设B种口罩一包的单价为x元,则A种口罩一包的单价为1.2x元,根据题意,得:,解得:x = 5 ,经检验,x = 5 是原方程的解,且符合题意,则1.2x = 6 ,答:A种口罩一包的单价为6 元,B种口罩一包的单价为5 元;(2) 设购进A种口罩m包,则购进B种口罩(2000-m ) 包,依题意,得:6m +5 (2000-m )≤11000 ,解得:m ≤1000 ,答:A种口罩最多能购进1000 包.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1 )找准等量关系,正确列出分式方程; (2) 根据各数量之间的关系,正确列出一元一次不等式.9、为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多25 元,用 2000 元购进篮球的数量是用 750 元购进足球数量的 2 倍,求:每个篮球和足球的进价各多少元?知识点:分式方程【答案】每个足球的进价是75 元,每个篮球的进价是 100 元【分析】设每个足球的进价是x元,则每个篮球的进价是(x+25 )元,利用数量=总价÷ 单价,结合用 2000 元购进篮球的数量是用 750 元购进足球数量的 2 倍,即可得出关于x的分式方程,解之经检验后即可得出足球的单价,再将其代入(x+25 )中即可求出篮球的单价.【详解】解:设每个足球的进价是x元,则每个篮球的进价是(x+25 )元,依题意得:=2×,解得:x=75 ,经检验,x=75 是原方程的解,且符合题意,∴x+25 = 75 + 25 = 100 .答:每个足球的进价是75 元,每个篮球的进价是 100 元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.10、为落实“ 数字中国” 的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的 1.5 倍,乙公司安装 36 间教室比甲公司安装同样数量的教室多用 3 天.(1 )求甲、乙两个公司每天各安装多少间教室?(2 )已知甲公司安装费每天 1000 元,乙公司安装费每天 500 元,现需安装教室 120 间,若想尽快完成安装工作且安装总费用不超过 18000 元,则最多安排甲公司工作多少天?知识点:分式方程【答案】(1 )甲公司每天安装 6 间教室,乙公司每天安装 4 间教室;(2 ) 12 天【分析】(1 )设乙公司每天安装间教室,则甲公司每天安装间教室,根据题意列出分式方程,故可求解;(2 )设安排甲公司工作y天,则乙公司工作天,根据题意列出不等式,故可求解.【详解】解:(1 )设乙公司每天安装间教室,则甲公司每天安装间教室,根据题意,得解这个方程,得.经检验,是所列方程的根.(间),所以,甲公司每天安装6 间教室,乙公司每天安装 4 间教室.(2 )设安排甲公司工作y天,则乙公司工作天,根据题意,得解这个不等式,得.所以,最多安排甲公司工作12 天.【点睛】此题主要考查分式方程与不等式的实际应用,解题的关键是根据题意找到数量关系列式求解.11、2020 年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花 1 万元购买了一批口罩,随着 2021 年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降 10 元,电信公司又花 6000 元购买了一批口罩,购买的数量比 2020 年购买的数量还多 100 包,设 2020 年每包口罩为x元,可列方程为()A .B .C .D .知识点:分式方程【答案】C【分析】根据题中等量关系“2021 年购买的口罩数量比 2020 年购买的口罩数量多 100 包” 即可列出方程.【详解】解:设2020 年每包口罩x元,则2021 年每包口罩(x -10 )元.根据题意,得,即:故选:C【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.12、为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“ 足球俱乐部 1 小时” 活动,去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880 元,B品牌足球共花费2400 元,且购买A品牌足球数量是B品牌数量的1.5 倍,每个足球的售价,A品牌比B品牌便宜12 元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50 个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5% ,B品牌比去年降低了10% ,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?知识点:分式方程【答案】最多可购进33 个B足球【分析】设去年A足球售价为x元/ 个,则B足球售价为元/ 个,根据购买A足球数量是B足球数量的1.5 倍列出分式方程,求出A足球和B足球的单价,在设今年购进B足球的个数为a个,则购买A足球的数量为个,根据购买这两种足球的总费用不超过去年总费用的一半列出不等式解答即可.【详解】解:设去年A足球售价为x元/ 个,则B足球售价为元/ 个由题意得:∴经检验,是原分式方程的解且符合题意∴A足球售价为48 元 / 个,B足球售价为60 元 / 个设今年购进B足球的个数为a个,则购买A足球的数量为个,由题意可得:∴∴ 最多可购进 33 个B足球【点睛】本题考查了分式方程,一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.13、若关于的方程的解是正数,则的取值范围为_____________ .知识点:分式方程【答案】m>-7 且m ≠-3【分析】先用含m的代数式表示x,再根据解为正数,列出关于m的不等式,求解即可.【详解】解:由,得:且x ≠2 ,∵ 关于的方程的解是正数,∴且,解得:m>-7 且m ≠-3 ,故答案是:m>-7 且m ≠-3 .【点睛】本题考查了分式方程的解以及解一元一次不等式组,求出方程的解是解题的关键.14、某工厂生产、两种型号的扫地机器人.型机器人比型机器人每小时的清扫面积多50% ;清扫所用的时间型机器人比型机器人多用40 分钟.两种型号扫地机器人每小时分别清扫多少面积?若设型扫地机器人每小时清扫,根据题意可列方程为()A .B .C .D .知识点:分式方程【答案】D【分析】根据清扫100m2所用的时间A型机器人比B型机器人多用40 分钟列出方程即可.【详解】解:设A型扫地机器人每小时清扫x m2,由题意可得:,故选D .【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系.15、接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16 万剂,但受某些因素影响,有 10 名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作 8 小时增加到 10 小时,每人每小时完成的工作量不变,这样每天只能生产疫苗 15 万剂.(1 )求该厂当前参加生产的工人有多少人?(2 )生产 4 天后,未到的工人同时到岗加入生产,每天生产时间仍为 10 小时.若上级分配给该厂共 760 万剂的生产任务,问该厂共需要多少天才能完成任务?知识点:分式方程【答案】(1 ) 30 人;(2 ) 39 天【分析】(1 )设当前参加生产的工人有人,根据每人每小时完成的工作量不变列出关于的方程,求解即可;(2 )设还需要生产天才能完成任务.根据前面4 天完成的工作量+后面天完成的工作量=760 列出关于的方程,求解即可.【详解】解:(1 )设当前参加生产的工人有x人,依题意得:,解得:,经检验,是原方程的解,且符合题意.答:当前参加生产的工人有30 人.(2 )每人每小时的数量为(万剂).设还需要生产y天才能完成任务,依题意得:,解得:,(天)答:该厂共需要39 天才能完成任务.【点睛】本题考查分式方程的应用和一元一次方程的应用,分析题意,找到合适的数量关系是解决问题的关键.16、某地积极响应“ 把绿水青山变成金山银山,用绿色杠杆撬动经济转型” 发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了 90 万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 25% ,结果提前 30 天完成了任务.设原计划每天绿化的面积为万平方米,则所列方程为________ .知识点:分式方程【答案】【分析】原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,根据工作时间= 工作总量工作效率,结合实际比原计划提前30 天完成了这一任务,即可列出关于的分式方程.【详解】设原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,依据题意:故答案为:【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.17、解方程:.知识点:分式方程【答案】【分析】按照解分式方程的方法和步骤求解即可.【详解】解:去分母(两边都乘以),得,.去括号,得,,移项,得,.合并同类项,得,.系数化为1 ,得,.检验:把代入.∴是原方程的根.【点睛】本题考查了分式方程的解法,熟知分式方程的解法步骤是解题的关键,尤其注意解分式方程必须检验.18、若关于x的分式方程的解为正数,则m的取值范围是_________ .知识点:分式方程【答案】m>-3 且m ≠-2【分析】先利用m表示出x的值,再由x为正数求出m的取值范围即可.【详解】解:方程两边同时乘以x -1 得,,解得,∵x为正数,∴m +3 > 0 ,解得m>-3 .∵x ≠1 ,∴m +3≠1 ,即m ≠-2 .∴m的取值范围是m>-3 且m ≠-2 .故答案为:m>-3 且m ≠-2 .【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0 的未知数的值,这个值叫方程的解是解答此题的关键.19、随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A , B 两种型号的无人机都被用来运送快件, A 型机比 B 型机平均每小时多运送 20 件, A 型机运送 700 件所用时间与 B 型机运送500 件所用时间相等,两种无人机平均每小时分别运送多少快件?知识点:分式方程【答案】A型机平均每小时运送70 件,B型机平均每小时运送50 件【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20 件,得出B型机平均每小时运送(x -20 )件,再根据A型机运送700 件所用时间与B型机运送500 件所用时间相等,列出方程解之即可.【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x -20 )件,根据题意得:解这个方程得:x =70 .经检验x =70 是方程的解,∴x -20=50 .∴A型机平均每小时运送70 件,B型机平均每小时运送50 件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.20、分式方程的解为()A .B .C .D .知识点:分式方程【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解.【详解】解:,,,,解得:,检验:当时,,是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.。
初中数学人教版八年级上册第十五章 分式15.3 分式方程-章节测试习题(11)
章节测试题1.【题文】某工程队修建一条1200m的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】解:(1)设这个工程队原计划每天修建道路x米.由题意,得.解得x=100.经检验,x=100是所列方程的根.答:这个工程队原计划每天修建100米.(2)设实际平均每天修建道路的工效比原计划增加y%.据题意,得解得y=20.经检验,y=20是所列方程的根.答:实际平均每天修建道路的工效比原计划增加20%.【分析】【解答】2.【题文】某公司需在一个月(31天)内完成新建办公楼装修工程.如果由甲、乙两队合做,12天可以完成;如果由甲、乙两队单独做,甲队单独完成所用的时间是乙队单独完成所用时间的.(1)求甲、乙两队单独完成此工程所需的时间;(2)若请甲队施工,公司每日需付费用2000元;若请乙队施工,公司每日需付费用1400元.在规定时间内,有下列三种方案;方案一:请甲队单独施工完成此工程;方案二:请乙队单独施工完成此工程;方案三:甲、乙两队合作完成此工程.以上三种方案哪一种费用最少?【答案】解:(1)设乙队单独完成此工程所需的时间为x天.根据题意,得.解这个方程得x=30.经检验,x=30是所列方程的根.则(天).所以,甲队单独完成此工程所需时间为20天,乙队单独完成此工程所需的时间为30天.(2)方案一,费用为2000×20=40000(元);方案二,费用为1400×30=42000(元);方案三,费用为(2000+1400)×12=40800(元).所以,方案一费用最少.【分析】【解答】3.【题文】某校进行期末体育达标测试,甲、乙两班的学生人数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【答案】解:设乙班的达标率为x,则甲班的达标率为(x+6%)根据题意,得.解这个方程,得x=0.9.经检验,x=0.9是所列方程的根.故乙班的达标率为90%.【分析】【解答】4.【题文】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.求粽子与咸鸭蛋的价格各是多少.【答案】解:设咸鸭蛋的价格是x元,则粽子的价格是(x+1.8)元,根据题意,得.解得x=1.2.经检验,x=1.2是所列分式方程的根.∴x+1.8=3.答:粽子的价格是3元,咸鸭蛋的价格是1.2元.【分析】【解答】5.【题文】某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔.毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支.求钢笔、毛笔的单价分别是多少元.【答案】解:设钢笔的单价为x元/支,则毛笔的单价为1.5x元/支.据题意,得.解得x=10.经检验,x=10是原方程的根.当x=10时,1.5x=15.答:钢笔的单价为10元/支,毛笔的单价为15元/支.【分析】【解答】6.【题文】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A,B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B 种设备的数量相同.(1)求A种、B种设备每台各多少万元.(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台.【答案】解:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元.根据题意,得.解得x=0.5.经检验,x=0.5是所列方程的根,且符合题意.∴x+0.7=1.2.答:每台A种设备0.5万元,每台B种设备1.2万元.(2)设购买A种设备m台,则购买B种设备(20-m)台.根据题意,得0.5m+1.2(20-m)≤15.解得.∵m为整数,∴m≥13.答:A种设备至少要购买13台.【分析】【解答】7.【题文】烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,是进价的2倍价格销售,剩下的小苹果以高于进价的10%销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【答案】解:(1)设苹果进价为每千克x元,由题意,得.解得x=5.经检验,x=5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知每个超市苹果总量为(千克).大、小苹果售价分别为10元和5.5元.∴乙超市获利(元)∵甲超市获利2100>1650,∴甲超市的销售方式更合算.【分析】【解答】8.【答题】下列方程中,是分式方程的是()A. B.C. D. 6x2+4x+1=0【答案】B【分析】【解答】9.【答题】解分式方程时,去分母后可得到()A. x(2+x)-2(3+x)=1B. x(2+x)-2=2+xC. x(2+x)-2(3+x)=(2+x)(3+x)D. x-2(3+x)=3+x【答案】C【分析】【解答】10.【答题】分式方程的解为()A. x=1B. x=-1C. 无解D. x=-2【答案】C【分析】【解答】去分母,得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:把x=1代入(x-1)(x+2)=0.所以分式方程的无解.11.【答题】关于z的分式方程的解为x=4,则常数a的值为()A. a=1B. a=2C. a=4D. a=10【答案】D【分析】【解答】把x=4代入方程,得.解得a=10.选D12.【答题】某加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件).设安排x人加工A零件,由题意列方程得()A. B.C. D.【答案】A【分析】【解答】13.【答题】关于x的分式方程的解为负数,则a的取值范围是()A. a>1B. a<1C. a<1日a≠-2D. a>1且a≠2【答案】D【分析】【解答】解分式方程得x=1-a.根据分式方程解为负数,得1-a<0,且1-a≠-1.解得a >1且a≠2.选D.14.【答题】已知x=1是分式方程的根,则实数k=______.【答案】【分析】【解答】把x=1代入分式方程,得.所以.15.【答题】若关于x的方程有增根,则m的值是______.【答案】0【分析】【解答】由x-2=0得方程的增根x=2..方程两边都乘x-2,得2-x-m=2x-4.将x=2代入,得2-2-m=2×2-4.解得m=0.16.【答题】端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个.求平时每个粽子卖多少元.设每个粽子卖x元,列方程为______.【答案】【分析】【解答】17.【答题】已知关于x的分式方程有一个正数解,则k的取值范围为______.【答案】k<6且k≠3【分析】【解答】.方程两边都乘(x-3),得x=2(x-3)+k,x=6-k≠3.关于x 的方程有一个正数解,∴x=6-k>0.∴k<6,且k≠3.18.【题文】解方程:(1);(2).【答案】解:(1)方程两边同乘(x-2)(x+3),得6(x+3)=x(x-2)-(x-2)(x+3),.化简得.当时,(x-2)(x+3)≠0,所以当是原方程的根.(2)整理,得.方程两边都乘(x-3),得2x-x-3=2x-6.解这个方程,得x=3.检验:当x=3时,x-3=0.因此x=3是增根,原方程无解.【分析】【解答】19.【题文】若关于x的方程无解,求m的值.【答案】解:去分母,得x-2=m+2x-10,x=-m+8.因为原方程无解,所以x=-m+8为原方程的增根.又由于原方程的增根为x=5,所以-m+8=5.所以m=3.【分析】【解答】20.【题文】某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.【答案】解:设每人每小时的绿化面积为x平方米.则有.解得x=2.5.经检验,x=2.5是所列分式方程的根.答:每人每小时的绿化面积为2.5平方米.【分析】【解答】。
人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)
【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.
【详解】解:原式
当x=1时,原式= .
【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
11.当a=______时, 的值为零.
【答案】﹣1.
【解析】
【分析】
根据分式的值为零的条件列式计算即可.
【详解】由题意得:a2﹣1=0,a﹣1≠0,
解得:a=﹣1.
故答案为:﹣1.
【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.
(1)求每支钢笔和每本笔记本各是多少元;
(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?
【答案】(1)每支钢笔3元,每本笔记本5元;(2)至少要买25支钢笔.
【解析】
【分析】
(1)根据小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价铬少2元,可以得到相应的方程,解方程即可求得每支钢笔和每本笔记本各是多少元;
2018-2019年人教版八年级数学上册 第 15 章《分式》经典题型单元测试题
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
八年级数学上册第十五章《分式方程》课时练习题(含答案)
八年级数学上册第十五章《15.3分式方程》课时练习题(含答案)一、选择题1.方程2152x x =+-的解是( ) A .=1x - B .5x = C .7x = D .9x = 2.若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2 3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.分式方程3262(2)x x x x =+--的解是( ) A .0 B .2 C .0或2 D .无解5.已知111,1a b b c=-=-,用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C .1a c a -= D .1a c a -= 6.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x 7.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 二、填空题 9.方程11212x x =+-的解是______.10.定义一种新运算:对于任意的非零实数a ,b ,11b a b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.11.若关于x 的分式方程211111k k x x x +-=--+有增根,则k 的值为______. 12.某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.13.若方程2111ax a x -=+-的解与方程63x=的解相同,则=a ________. 14.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 三、解答题15.解分式方程:2312x x x --=-.16.为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?17.科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?18.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?19.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?20.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.D2.C3.B4.D5.D6.A7.D8.A9.-310.12-##0.5-11.1或13-##13-或112.30013.1 3 -14.-1或5或1 3 -15.方程2312xx x--=-,224432x x x x x-+-=-,54x-=-,45x=,经检验45x=是分式方程的解,∴原分式方程的解为45x=.16.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.17.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.18.设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:15001200100x x=+,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.19.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x米.由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 20.解:(1)设一次性医用口罩单价为x 元,则N95口罩的单价为()10x +元 由题意可知,1600960010x x =+, 解方程 得2x =.经检验2x =是原方程的解,当2x =时,1012x +=.答:一次性医用口罩和N95口单价分别是2元,12元.(2)设购进一次性医用口罩y 只根据题意得212(2000)10000y y +-≤,解不等式得1400y ≥.答:药店购进一次性医用口罩至少1400只.。
人教版八年级上册数学 第十五章分式同步复习题(含详细答案)
人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。
欣宜市实验学校二零二一学年度八年级数学上册第十五章分式15.2.3分式的加减同步精练试题
黔西北州欣宜市实验学校二零二一学年度15.分式的加减1.同分母的分式加减法那么:同分母的分式相加减,分母__不变__,分子相__加减__,用式子表示为:±=;2.异分母的分式加减法那么:异分母的分式相加减,先__通分__,变为同分母的分式后再加减.用式子表示为:±=±=.3.当整式与分式相加减时,把整式的分母看成__1__;假设运算结果不是最简分式,一定要进展__约分__化为最简分式.4.分式的混合运算法那么:先__乘方__,再__乘除__,后__加减__,假设有括号,先进展__括号内__的运算.■易错点睛■1.(2021·)化简:-.【解】==x.【点睛】分式的加减后一定要将分子和分母因式分解,化为最简分式.2.-=2,求的值.【解】原式=-.【点睛】通分是关键,然后用整体思想求值.知识点同分母的分式的加减法1.计算-的结果是(C)A.a-1 B.2a-1C. D.2.计算+的结果是(B)A.0 B.1C.-1 D.3.(2021·改)计算:+=__1__.4.计算:(1)+;【解题过程】解:3;(2)-;【解题过程】解:1;(3)+-;【解题过程】解:;(4)(2021·二中月考改)-+.【解题过程】解:-2.知识点二异分母的分式加减法5.计算-可得(A)A.0 B.1 C.2 D.3 6.计算+的结果是(导学号:58024319)(D)A.m+2 B.m-2 C. D. 7.(2021·)化简÷=(导学号:58024320)(D)A. B.C. D. 8.计算:(1)++;【解题过程】解:;(2)-;【解题过程】解:;(3)-;【解题过程】解:;(4)·(x2-1).【解题过程】解:2x.9.M=,N=-,那么M+N的值是(导学号:58024321)(C)A.1 B.-1C.0 D.不能确定10.设M=,N=,化简:M-N=.11.计算:+-=.(导学号:58024322)12.【中考变式】(2021·改)化简:÷.(导学号:58024323)【解题过程】解:原式=·=·=a.13.假设实数x满足x2+2x-3=0,求代数式·的值.(导学号:58024324)【解题过程】解:原式==.14.先化简再求值:-,其中a,b满足a2-4ab+4b2=0.(导学号:58024325)【解题过程】解:原式=-,由a2-4ab+4b2=0知(a-2b)2=0,那么a=2b,原式=-1. 15.:2x=5y,M=,N=,求+的值.(导学号:58024326)【解题过程】解:原式==,∵M+N==,∴原式=.∵2x=5y,∴原式==.16.(1)假设=a+(a,b为常数),求a,b的值;(2)假设-=(a,b为常数),求a,b的值.(导学号:58024327)【解题过程】解:(1)=,∴∴(2)==,∴∴。
人教版八年级数学上册 第十五章 分式 单元练习题及答案
第十五章 分式 单元练习一、选择题1.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1 C .-1 D .±12.下列式子计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 3.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-74.化简a +1a 2-2a +1÷⎝⎛⎭⎫1+2a -1的结果是( ) A.1a 2-1 B.1a +1C.1a -1D.1a 2+15.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A.2500x =3000x -50B.2500x =3000x +50C.2500x -50=3000xD.2500x +50=3000x 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题7.若分式3x x -2有意义,则x 应满足的条件是________. 8.方程12x =1x +1的解是________. 9.若3x -1=127,则x =________. 10.已知a 2-6a +9与(b -1)2互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b )的值是________.11.关于x 的方程2a x -1=a -1无解,则a 的值是________. 12.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、13.计算(1)-(-1)2016-(π-3.14)0+⎝⎛⎭⎫-12-2;(2)13a 2+12ab.14.化简:(1)⎝⎛⎭⎫1x 2-4+4x +2÷1x -2;(2)⎝⎛⎭⎫a +1a +2÷⎝⎛⎭⎫a -2+3a +2.15.先化简,再求值:⎝⎛⎭⎫x x +1-1÷1x 2-1,其中x =2016.16.解方程:(1)3x -1-x +3x 2-1=0;(2)2x +1+3x -1=6x 2-1.17.先化简,再求值:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1,x 在1,2,-3中选取合适的数.四、18.先化简,再求值:x 2+2x +1x +2÷x 2-1x -1-x x +2,其中x 是不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1的整数解.19.以下是小明同学解方程1-x x -3=13-x-2的过程. 解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步解得x =4. ……………………………………第二步检验:当x =4时,x -3=4-3=1≠0. ………第三步所以,原分式方程的解为x =4. …………………第四步(1)小明的解法从第________步开始出现错误;(2)写出解方程1-x x -3=13-x-2的正确过程.20.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h ,先遣队的速度是多少?大队的速度是多少?五、21.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:⎝ ⎛⎭⎪⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?22.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟.(1)由此估算这段路长约________千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a 米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了另一种方案,将原计划的a 扩大一倍,则路的两侧共计减少400棵树,请你求出a 的值.六、23.观察下列方程的特征及其解的特点.①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x=-5的解为x 1=-2,x 2=-3; ③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程:____________,其解为____________;(2)根据这类方程特征,写出第n 个方程:____________________,其解为________________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(其中n 为正整数)的解.参考答案与解析1.C 2.A 3.C 4.C 5.C6.B 解析:去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92.∵关于x 的方程x +m x -3+3m 3-x=3的解为正数,∴-2m +9>0,解得m <92.当x =3时,即-2m +92=3,解得m =32.故m 的取值范围是m <92且m ≠32.故选B. 7.x ≠2 8.x =1 9.-2 10.2311.1或0 12.12 -12 1021 解析:1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1)=2n (a +b )+a -b (2n -1)(2n +1),∴⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12.∴1(2n -1)(2n +1)=122n -1+-122n +1=12⎝⎛⎭⎫12n -1-12n +1,∴m =11×3+13×5+15×7+…+119×21=12⎝⎛⎭⎫1-13+13-15+15-17+…+119-121=12⎝⎛⎭⎫1-121=1021. 13.解:(1)原式=-1-1+4=2.(3分)(2)原式=2b 6a 2b +3a 6a 2b =3a +2b 6a 2b.(6分) 14.解:(1)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(3分) (2)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(6分) 15.解:原式=x -x -1x +1·(x 2-1)=-(x -1)=-x +1.(3分) 当x =2016时,原式=-2015.(6分)16.解:(1)方程两边同乘x 2-1,得3(x +1)-(x +3)=0,解得x =0.(2分)检验:当x =0时,x 2-1≠0,∴原分式方程的解为x =0.(3分)(2)方程两边同乘x 2-1,得2(x -1)+3(x +1)=6,解得x =1.(5分)检验:当x =1时,x 2-1=0,∴x =1不是原分式方程的解,∴原分式方程无解.(6分)17.解:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1=x 2-9x -1·x -1x +3=(x +3)(x -3)x -1·x -1x +3=x -3.(3分)∵当x =1和x =-3时,原分式无意义,∴选取x =2.当x =2时,原式=2-3=-1.(6分)18.解:原式=(x +1)2x +2·1x +1-x x +2=x +1x +2-x x +2=1x +2.(2分)解不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1,得-2≤x ≤1.(4分)∵x 是整数,∴x =-2,-1,0,1.当x =-2,-1,1时,原分式无意义,故x 只能取0.(6分)当x=0时,原式=12.(8分) 19.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以,原分式方程的解为x =4.(8分)20.解:设大队的速度为x km/h ,则先遣队的速度是1.2x km/h.(1分)根据题意得15x =151.2x+0.5,解得x =5.(5分)经检验,x =5是原分式方程的解且符合实际.(6分)1.2x =1.2×5=6.(7分)答:先遣队的速度是6km/h ,大队的速度是5km/h.(8分)21.解:(1)设所捂部分化简后的结果为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1.(4分) (2)原代数式的值不能等于-1.(5分)理由如下:若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0.当x =0时,除式x x +1=0,故原代数式的值不能等于-1.(9分) 22.解:(1)3(3分)(2)由题意可得3000a -30002a =12×400.(6分)解方程得a =7.5.经检验,a =7.5满足方程且符合题意.(8分) 答:a 的值是7.5.(9分)23.解:(1)x +20x=-9 x 1=-4,x 2=-5(3分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)x +n 2+n x +3=-2(n +2),x +3+n 2+n x +3=-2(n +2)+3,(x +3)+n 2+n x +3=-(2n +1),由(2)知x +3=-n 或x +3=-(n +1),即x 1=-n -3,x 2=-n -4.(10分)检验:∵n 为正整数,当x 1=-n -3时,x +3=-n ≠0;当x 2=-n -4时,x +3=-n -1≠0.∴原分式方程的解是x 1=-n -3,x 2=-n -4.(12分)。
八年级数学上册《第十五章-分式》同步练习题含答案(人教版)
八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。
人教版八年级数学上册第十五章分式-测试题带答案
人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
人教版八年级数学上《第15章分式》单元测试含答案解析
《第15章分式》一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣3.下列分式是最简分式的是()A.B.C.D.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=06.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1098.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1二、填空题11.若分式的值为零,则x=______.当x=______时,分式的值为0.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是______m.13.计算: =______.14.,,的最简公分母为______.15.已知3m=4n≠0,则=______.16.若解分式方程产生增根,则m=______.17.当x=______时,分式无意义;当x______时,分式有意义.18.将下列分式约分:(1)=______;(2)=______;(3)=______.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为______千米/时.20.要使分式有意义,则x应满足的条件是______.三、解答题21.计算(1)(2)(3)1﹣(4).22.解方程(1)(2)(3)(4).23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.《第15章分式》参考答案与试题解析一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个【考点】分式的定义.【分析】判断分式的依据是分式的定义,主要是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.分式不含等号.【解答】解:,, x+y,的分母中均不含有字母,因此它们是整式,而不是分式.含有等号,不是分式.,﹣,分母中含有字母,因此是分式.故选C.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A 叫做分式的分子,B叫做分式的分母.注意分式不含等号,也不含不等号.2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣【考点】分式的基本性质.【分析】根据分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,可得答案.【解答】解:A,故A错误;B,故B正确;C ,故C错误;D,故D错误;故选:B.【点评】本题考查了分式的性质,分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,注意分式的分子分母都乘或都除以同一个整式(0除外),不能遗漏.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定【考点】分式的基本性质.【分析】根据已知得出=,求出后判断即可.【解答】解:将分式中的x、y的值同时扩大2倍为=,即分式的值扩大2倍,故选A.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣1=0,且x+1≠0,解得x=1.故选:B.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.【考点】负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、合并同类项法则结合负整数指数幂的计算公式可得答案.【解答】解:A、2÷2﹣1=4,故此选项错误;B、2x﹣3÷4x﹣4=,故此选项错误;C、(﹣2x﹣2)﹣3=﹣x6,故此选项错误;D、3x﹣2+4x﹣2=,故此选项正确;故选:D.【点评】本题主要考查了负指数幂的运算.负整数指数为正整数指数的倒数.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】压轴题.【分析】若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产x套,先求出实际25天完成的套数,再求出实际的工作效率=,最后依据工作时间=工作总量÷工作效率解答.【解答】解:由分析可得列方程式是: =25.故选B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1【考点】解分式方程.【专题】方程思想.【分析】观察可得最简公分母是(x﹣3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3)(x﹣1),得x(x﹣1)=(x﹣3)(x+1),x2﹣x=x2﹣2x﹣3,解得x=﹣3.检验:把x=﹣3代入(x﹣3)(x﹣1)=24≠0.∴原方程的解为:x=﹣3.故选B.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二、填空题11.若分式的值为零,则x= ﹣3 .当x= ﹣3 时,分式的值为0.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣3=0且x﹣3≠0,解得x=﹣3.由题意可得x2﹣9=0且x﹣3≠0,解得x=﹣3.故答案为:﹣3;﹣3.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.计算: = .【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.,,的最简公分母为6x2y2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.15.已知3m=4n≠0,则= .【考点】分式的化简求值.【分析】首先化简分式,再进一步用n表示m,代入求得数值即可.【解答】解:∵3m=4n≠0,∴,∴原式======.故答案为:.【点评】此题考查分式的化简求值,注意先化简,再代入求值.16.若解分式方程产生增根,则m= ﹣5 .【考点】分式方程的增根.【专题】计算题.【分析】分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.【解答】解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.【点评】此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.当x= 1 时,分式无意义;当x ≠±3 时,分式有意义.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0列式计算即可得解;根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1=0,解得x=1;x2﹣9≠0,解得x≠±3.故答案为:1;≠±3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.将下列分式约分:(1)= ;(2)= ;(3)= 1 .【考点】约分.【分析】根据约分的定义,把分子分母同时约去它们的公因式,即可得出答案.【解答】解:(1)=;(2)=﹣;(3)==1;故答案为:,﹣,1.【点评】此题主要考查了分式的约分,关键是正确的找出分子分母的公因式.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为40 千米/时.【考点】分式方程的应用.【专题】行程问题.【分析】设该冲锋舟在静水中的最大航速为x千米/时.等量关系:洪水顺流以最大速度航行2千米所用时间与以最大速度逆流航行1.2千米所用时间相等,根据等量关系列式.【解答】解:设该冲锋舟在静水中的最大航速为x千米/时.根据题意,得,即2(x﹣10)=1.2(x+10),解得x=40.经检验,x=40是原方程的根.所以该冲锋舟在静水中的最大航速为40千米/时.故答案为:40.【点评】此题中用到的公式有:路程=速度×时间,顺流速=静水速+水流速,逆流速=静水速﹣水流速.20.要使分式有意义,则x应满足的条件是x≠﹣1,x≠2 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,(x+1)(x﹣2)≠0,解得x≠﹣1,x≠2.故答案为:x≠﹣1,x≠2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.三、解答题21.计算(1)(2)(3)1﹣(4).【考点】分式的混合运算.【专题】计算题.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(3)原式第二项利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算即可得到结果;(4)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式==;(2)原式=÷=•=;(3)原式=1﹣•=1﹣==﹣;(4)原式=﹣÷=﹣•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程(1)(2)(3)(4).【考点】解分式方程.【专题】计算题.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:4+(x+3)(x+2)=(x﹣1)(x﹣2),去括号得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解;(3)去分母得:x(x+2)+2=x2﹣4,去括号得:x2+2x+2=x2﹣4,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(4)去分母得:7(x﹣1)+x+1=6x,去括号得:7x﹣7+x+1=6x,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=﹣3与x=3代入进行计算即可.【解答】解:原式=(+)•(x+2)(x﹣2)=•(x+2)(x﹣2)=x2+4,∵(﹣3)2+4=32+4=9+4,∴她的计算结果也是正确的.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=[﹣]•=•=•=,当x=1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.【考点】分式方程的应用.【专题】应用题.【分析】本题中有两个相等关系:“B的速度是A的速度的3倍”以及“B比A少用3小时20分钟”;根据等量关系可列方程.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.【点评】利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.【考点】分式方程的应用.【分析】用到的关系式为:路程=速度×时间.由题意可知:加速后用的时间+40分钟+1小时=原计划用的时间.注意加速后行驶的路程为180千米﹣前一小时按原计划行驶的路程.【解答】解:设前一个小时的平均行驶速度为x千米/时.依题意得:1++=,3x+2(180﹣x)+2x=3×180,3x+360﹣2x+2x=540,3x=180,x=60.经检验:x=60是分式方程的解.答:前一个小时的平均行驶速度为60千米/时.【点评】本题考查了列分式方程解应用题,与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【考点】分式方程的应用.【专题】方案型.【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得++=1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。
八年级数学上册《第十五章 分式方程》同步训练题及答案(人教版)
八年级数学上册《第十五章 分式方程》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.将关于x 的分式方程3x−2−2=52−x 去分母后所得整式方程正确的是( ) A .3(2−x)−2(x −2)=5 B .3−2(x −2)=−5 C .−3−2(x −2)=5D .3−2(x −2)=52.《九章算术》之“均输篇”中记载了中国古代的“运粟之法”:今有一批公粮,需运往距出发地420km 的储粮站,若运输这批公粮比原计划每日多行10km ,则提前1日到达储粮站.设运输这批公粮原计划每日行xkm ,则根据题意可列出的方程是( ) A .420x=420x+10+1 B .420x+1=420x+10 C .420x=420x−10+1D .420x+1=420x−103.方程2x−1x+2=1的解是( ) A .x =2B .x =−2C .x =3D .x =−34.若关于x 的分式方程x−1x+1=ax+1−2有增根,则a 的值是( ) A .−2 B .−1C .0D .15.解方程x−1x−2x x−1=3时,设x−1x=y ,则原方程可化为关于y 的整式方程是( )A .y −2y =3B .y 2−2y =3C .y 2+3y −2=0D .y 2−3y −2=06.已知关于x 的分式方程mx−1+61−x =1的解是正数,则m 的取值范围是( ) A .m >5B .m ≥5C .m ≥5且m ≠6D .m >5且m ≠67.为治理城市污水,需铺设一段全长300米的污水排放管道,由于情况有变,….设原计划铺设管道x 米,列方程为300x−300(1+25%)x =3,根据方程,可知省略的部分是( )A .实际工作时每天铺设的管道比原计划降低了25%,结果延误3天完成了这一任务B .实际工作时每天铺设的管道比原计划降低了25%,结果提前3天完成了这一任务C .实际工作时每天铺设的管道比原计划提高了25%,结果延误3天完成了这一任务D .实际工作时每天铺设的管道比原计划提高了25%,结果提前3天完成了这一任务8.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x吨,则所列方程正确的是().A.75x−5=50xB.75x=50x−5C.75x+5=50xD.75x=50x+5二、填空题9.已知方程xx2−1+x2−1x=3,如果设y=xx2−1,那么原方程转化为关于y的整式方程为.10.关于x的分式方程mx−1+31−x=1的解为负数,则m的取值范围是.11.关于x的分式方程x+mx−2+12−x=3有增根,则m=.12.某传染病传播期间为尽快完成病人检测任务,某地组织甲、乙两支医疗队,分別开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人,比乙队检测500人所用的时间少10%,则甲队每小时检测的人数是人.13.若关于x的分式方程1−xx−2=m2−x−2的解小于3,则m的取值范围是三、解答题14.解分式方程:(1)2−xx−3=43−x−2;(2)4xx2−4=2x+2.15.先化简:若a是方程1a =2a+3的解,求代数式(1−3a+2)÷a2−2a+1a2−4的值.16.某公司计划购买A、B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.求A、B两种型号的机器人每小时分别搬运多少材料?17.2023年5月15日,辽宁男篮取得第三次CBA总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A,B两种品牌篮球,已知A品牌篮球单价比B品牌篮球单价的2倍少48元,采购相同数量的A,B两种品牌篮球,分别需要花费9600元和7200元.求A,B两种品牌篮球的单价分别是多少元?18.某水果店用1350元购进一批车厘子,受到消费者的欢迎,于是又用了2450元购进第二批,由于第二批的采购量是第一批的2倍,所以比第一批车厘子每斤的进价便宜了5元.(1)求第一批和第二批车厘子的进价分别为每斤多少元;(2)在销售过程中,水果店以每斤80元的价格销售完了第一批车厘子和第二批车厘子的3,为了回5流资金,决定降价销售余下的车厘子,若两批车厘子的总利润不低于1800元,求降价后的车厘子售价每斤至少多少元;参考答案 1.B 2.A 3.C 4.A 5.D 6.D 7.D 8.B9.y 2−3y +1=0 10.m <2 11.-1 12.6013.m >0且m ≠114.(1)解:方程两边同乘(x −3),得 2−x =−4−2(x −3). 解这个一元一次方程,得x =0.检验:当x =0时x −3=−3≠0,x =0是原方程的解. (2)解:方程两边同乘(x 2−4),得 4x =2(x −2).解这个一元一次方程,得 x =−2.检验:当x =−2时x 2−4=0,x =−2是增根,原方程无解. 15.解:(1−3a+2)÷a 2−2a+1a 2−4=a+2−3a+2×(a+2)(a−2)(a−1)2=(a−1)a+2×(a+2)(a−2)(a−1)2=a −2a −1又∵1a =2a+3∴a +3=2a ∴a =3经检验,a =3是1a =2a+3的解; 将a =3代入a−2a−1中,原式=3−23−1=12.16.解:设B 型机器人每小时搬运xkg 材料,则A 型机器人每小时搬运(x +30)kg 材料 根据题意得:1000x+30=800x解得:x =120经检验:x =120是原分式方程的解且符合题意. 当x =120时x +30=150答:A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料. 17.解:设B 品牌篮球单价为x 元,则A 品牌篮球单价为(2x −48)元 根据题意,得96002x−48=7200x.解这个方程,得x =72. 经检验,x =72是所列方程的根. 2×72−48=96(元).所以,A 品牌篮球单价为96元,B 品牌篮球单价为72元.18.(1)解:第一批车厘子的进价为每斤x 元,则第二批车厘子的进价为每斤(x −5)元1350x×2=2450x−5,解得x =54经检验:x =54是原分式方程的解,54−5=49(元) 答:第批车厘子的进价为每斤54元 第二批车厘子的进价为每斤49元 (2)解:降价后的车厘子售价每斤为a 元1350÷54=25斤,25×2=50斤,50×35=30斤,50×(1−35)=20斤.(80−54)×25+(80−49)×30+20(a −49)≥1800解得,a ≥60答:降价后的车厘子售价每斤至少60元.。
八年级数学上册第十五章分式专项训练题(带答案)
八年级数学上册第十五章分式专项训练题单选题1、对于任意的实数x ,总有意义的分式是( )A .x−5x 2−1B .x−3x 2+1C .x 2+18x D .2x−1答案:B分析:根据分式有意义的条件进行判断即可.A 项当x=±1时,分母为0,分式无意义;B 项分母x 2+1恒大于0,故分式总有意义;C 项当x=0时,分母为0,分式无意义;D 项当x=1时,分母为0,分式无意义;故选:B .小提示:本题考查了分式有意义的条件,掌握知识点是解题关键.2、若关于x 的分式方程m+4x−3=3x x−3+2有增根,则m 的值为( )A .2B .3C .4D .5答案:D分析:根据分式方程有增根可求出x =3,方程去分母后将x =3代入求解即可.解:∵分式方程m+4x−3=3x x−3+2有增根, ∴x =3,去分母,得m +4=3x +2(x −3),将x =3代入,得m +4=9,解得m =5.故选:D .小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、已知a =1−1b ,b =1−1c ,用a 表示c 的代数式为( )A .c =11−bB .a =11−cC .c =1−a aD .c =a−1a答案:D分析:将b =1−1c 代入a =1−1b 消去b ,进行化简即可得到结果.解:把b =1−1c 代入a =1−1b ,得 a =1−11−1c , 1−a =11−1c , 1−1c=11−a , 1c=1−11−a , 1c =−a 1−a ,c =a−1a. 故选D .小提示:本题考查了分式的混合运算,列代数式.熟练掌握运算法则是解题的关键.4、已知一个三角形三边的长分别为6,8,a ,且关于y 的分式方程y+3a y−3+4a 3−y =2的解是非负数,则符合条件的所有整数a 的和为( )A .20B .18C .17D .15答案:D分析:根据三边关系,即可求出a 的取值范围,再求出分式方程的解,利用分式方程的解为非负数建立不等式,即可求出a 的范围,注意分母不能为0.最后综合比较即可求解.解:∵一个三角形三边的长分别为6,8,a ,∴8−6<a <8+6.即:2<a <14,∵y+3a y−3+4a 3−y =2,∴y =6−a ,∵解是非负数,且y ≠3,∴6−a ≥0,且6−a ≠3,∴a ≤6且a ≠3,∴2<a≤6且a≠3,∴符合条件的所有整数a为:4或5或6.∴符合条件的所有整数a的和为:4+5+6=15.故选:D.小提示:本题考查了三角形三边关系、求解分式方程、一元一次不等式等知识,关键在于利用分式方程的解为非负数,建立不等式,同时一定要注意分母不为0的条件.属于中考填空或者选择的常考题.5、计算4ac3b ⋅9b22ac3的结果是()A.36ab2c6abc3B.6ab2cabc3C.6abcac3D.6bc2答案:D分析:先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可.解:4ac3b ·9b22ac3=36ab2c6abc3=6bc2,故选D.小提示:本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解.6、将公式1R =1R1+1R2(R,R1,R2均不为零,且R≠R2)变形成求R1的式子,正确的是()A.R1=RR2R2−R B.R1=RR2R2+RC.R1=RR1+RR2R2D.R1=RR2R−R2答案:A分析:根据等式的性质即可求出答案.1 R1=1R−1R2=R2−RRR2,所以R1=RR2R2−R.故选:A.小提示:本题考查等式的性质,解题的关键是熟练运用等式的性质,属于基础题型.7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、分式方程3x−2=2x+6x(x−2)的解是()A.0B.2C.0或2D.无解答案:D分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得,3x=2(x−2)+6,解得x=2,经检验x=2是增根,则分式方程无解.故选:D.小提示:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9、下列运算中,错误的是( )A.ab =acbc(c≠0)B.−a−ba+b=−1C.0.5a+b0.2a−0.3b=5a+10b2a−3bD.x−yx+y=y−xy+x答案:D分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、x−yx+y =−(y−x)y+x,故D错误.故选D.小提示:本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.10、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B分析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.填空题11、观察下列各等式:1x ,-2x2,4x3,-8x4,16x5......,猜想第八个分式__.答案:−128x8分析:通过观察找出规律即可,第n个分式可表示为(−1)n+12n-1x n.解:当n=8时,求得分式为:−128x8所以答案为:−128x8.小提示:本题考查了规律型:数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是得出规律(−1)n+12n-1x n.12、化简1÷(3a2b ÷9a4b⋅2b3a)得________.答案:9a4b分析:在分式乘除混合计算中,一般情况下是按照从左到右的顺序进行运算,如果有括号,那么应先算括号内的,再算括号外的.1÷(3a 2b ÷9a 4b ⋅2b 3a )=1÷(3a 2b ×4b 9a ×2b 3a )=9a 4b .所以答案是:9a 4b .小提示:此题考查了分式的乘除混合运算,分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.13、化简b 23a−b +9a 2b−3a 的结果是______.答案:−b −3a分析:根据同分母分式的加减法法则计算即可.解:原式=b 23a−b −9a 23a−b=b 2−9a 23a −b=(b +3a)(b −3a)3a −b=−b −3a所以答案是:−b −3a .小提示:本题考查同分母分式的加减,解题关键是正确地运用运算法则.14、当x________时,分式x+12x−1有意义.答案:≠12.分析:分母不为零时,分式有意义.当2x ﹣1≠0,即x ≠12时,分式x+12x−1有意义.故答案为≠12. 小提示:本题考点:分式有意义.15、若关于x 的分式方程k 1−x =2−x x−1的解为正数,则满足条件的非负整数k 的值为____.答案:0.分析:首先解分式方程k1−x =2−xx−1,然后根据方程的解为正数,可得x>0,据此求出满足条件的非负整数K的值为多少即可.∵k1−x =2−xx−1,∴x=2−k.∵x>0,∴2−k>0,∴k<2,∴满足条件的非负整数k的值为0、1,k=0时,解得:x=2,符合题意;k=1时,解得:x=1,不符合题意;∴满足条件的非负整数k的值为0.所以答案是:0.小提示:此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.解答题16、阅读材料:对于非零实数a,b,若关于x的分式(x−a)(x−b)x的值为零,则解得x1=a,x2=b.又因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx﹣(a+b),所以关于x的方程x+abx=a+b的解为x1=a,x2=b.(1)理解应用:方程x2+2x =3+23的解为:x1=,x2=;(2)知识迁移:若关于x的方程x+3x=5的解为x1=a,x2=b,求a2+b2的值;(3)拓展提升:若关于x的方程4x−1=k﹣x的解为x1=t+1,x2=t2+2,求k2﹣4k+2t3的值.答案:(1)3,23;(2)19;(3)12.分析:(1)根据题意可得x=3或x=23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5, ∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t +t 2+2)(t +t 2-2)+2t 3=t 4+4t 3+t 2-4=t (t 3+t )+4t 3-4=4t +4t 3-4=4(t 3+t )-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.17、解分式方程:3x−1+2=x x−1答案:x =−1分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解:3x−1+2=x x−1去分母得,3+2(x −1)=x ,解得,x =−1,经检验,x =−1是原方程的解.所以,原方程的解为:x =−1.小提示:本题主要考查了分式方程的解法.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、先化简,再求值:x 2−4x+4x+1÷(3x+1﹣x +1),请从不等式组{5−2x ≥1x +3>0 的整数解中选择一个合适的值代入求值.答案:2−x 2+x ,1.分析:根据分式运算的步骤先将分式进行化简,然后求出不等式组的解集,根据分式的意义在不等式组的解集中找到整数解,代入求值即可.x 2−4x+4x+1÷(3x+1﹣x +1)=(x−2)2x+1÷3−(x−1)(x+1)x+1=(x−2)2x+1⋅x+13−x 2+1=(x−2)2(2+x)(2−x)=2−x 2+x ,由不等式组{5−2x ⩾1x +3>0得,﹣3<x ≤2, ∵x +1≠0,(2+x )(2﹣x )≠0,∴x ≠﹣1,x ≠±2,∴当x =0时,原式=2−02+0=1.小提示:本题考查了分式的化简求值及分式有意义的条件,不等式组的解法,解决本题的关键是熟练掌握分式运算的步骤过程,能够详尽掌握不等式组的解法.。
2019八年级数学上册 第15章 15.2 分式的运算课时练 (新版)新人教版
精品第十五章 15.2 分式的运算学校:姓名:班级:考号:一、选择题()A. 2B.C.D. -22. 下列计算正确的是()A. +=B. +=C. -=D. +=3. 化简+的结果是()A. x+1B. x-1C. -xD. x4. 已知-=,则的值是( )A. B. - C. 2 D. -25. 计算,结果是( )A. x-2B. x+2 C. D.6. 计算-的结果为()A. B. - C. -1 D. 1-a7. 计算·÷得()A. x5B. x5yC. y5D.xy58. 计算·,其结果为()A. B. C. D.9. 某人骑自行车匀速爬上—个斜坡后立即匀速下坡回到出发点,若上坡速度为v1,下坡速度为v2,则他上、下坡的平均速度为()A. B. C. D.10. 分式++的结果是()A. B. C. D.评卷人得分二、填空题11. 化简得________;当m=-1时,原式的值为________.12. 已知ab=-1,a+b=2,则式子+=______.13. 化简:÷=.14. 对于实数a,b,定义运算如下:ab=例如,24=2-4=,计算[22]×[(-3) 2]= .15. 计算:-=________.三、解答题2 014时,求代数式÷-+1的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.17. 观察下面一列分式:,-,,-,….(其中xy≠0)(1)用任意一个分式除以它的前一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的这列分式中的第七个分式.四、计算题(1)++;(2)-+-.19. 计算:(1)·;(2)÷8x2y;(3)(a2-a)÷;(4)÷·.20. 先化简,再求值:·÷.其中a为整数且-3<a<2.21. 先化简:÷,然后从-1≤x≤2中选一个合适的整数作为x的值代入求值.参考答案精品1. 【答案】A【解析】÷=÷=÷=2.2. 【答案】D【解析】由分式的加减法法则:异分母的分式相加减,应先通分,变为同分母的分式,再加减,可知D选项正确.A选项,+=;B选项,+=;C选项,.-=.3. 【答案】D【解析】+=-===x.故选D.4. 【答案】D【解析】∵-==,∴=-2,故选D.5. 【答案】B【解析】==x+2.故选B.6. 【答案】C【解析】原式===-1,故选C.7. 【答案】A【解析】原式=·÷=··=x5.故选A.8. 【答案】D【解析】·=·==,故选D.9. 【答案】D【解析】设斜坡长度为s,则上坡时间为,下坡时间为,所以上、下坡用的总时间为+,故其上、下坡的平均速度=总路程÷总时间==.故选D.10. 【答案】D【解析】原式=++==.故选D.11. 【答案】 112. 【答案】-613. 【答案】m-614. 【答案】15. 【答案】-17.(1) 【答案】∵÷=-,÷=-,÷=-,…,故可发现任意一个分式除以它的前一个分式,其商都为-.(2) 【答案】由第1问中的规律可得这列分式中的第七个分式为:·=·=.18. 【答案】原式=-+-=-+-=--+=--=-===.19. 【答案】原式=··=.20. 【答案】解:·÷=·÷(3分)=··(a+1)(a-1)(4分)=a(a+1).(5分)[注:结果为a2+a不扣分.a2+2a=a(a+2),a2-2a+1=(a-1)2,a2-1=(a+1)(a-1)各1分]∵a≠±1,-2时分式有意义,又∵-3<a<2且a为整数,∴a=0.(7分)∴当a=0时,原式=0×(0+1)=0.(8分)21. 【答案】原式=÷=·=当x=0时,结果为1(当x=1时,结果为3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学(上)第十五章《分式》15.2分式的运算同步练习题学校:___________姓名:___________班级:___________得分:___________
一、选择题(本大题共10小题,共30分)
1.下列计算正确的是()。
A. B. C. D.
2.已知a+b+c=0,那么的值为()。
A.0
B.-1
C.1
D.-3
3.已知a+b=2,ab=-5,则的值为()。
A. B. C. D.
4.若a+a-1=2,则a2+a-2等于()。
A.4
B.2
C.6
D.8
5.某企业购电m千瓦时,计划用a天,由于采用了节约用电的措施,所以这些电实际比原计划多用了5天,则实际比原计划每天节约用电()。
A.千瓦时
B.千瓦时
C.千瓦时
D.千瓦时
6.当x=6,y=3时,的值是()。
A.2
B.3
C.6
D.9
7.计算的结果是()。
A. B. C. D.
8.若分式的值等于5,则a的值是()。
A.5
B.-5
C.
D.
9.若,则等于()。
A.k
B.
C.k2
D.
10.10.计算的结果为()。
A.3a2b2
B.-3a2b2
C.9a2b2
D.-9a2b2
二、填空题(本大题共5小题,共15分)
11.计算:_______。
12.已知(其中A,B为常数),则A=_________,B=_________。
13.计算的结果是_________。
14.计算:_________。
15.若,则m=_________,n=_________。
三、计算题(本大题共2小题,共16分)
16.计算:
(1)
(2)
17.化简:(1)
(2)
四、解答题(本大题共6小题,共59分)
18.(8分)已知x2-2=0,求代数式的值。
19.(8分)先化简,再求值:,其中x=-1。
20.(10分)已知,求的值。
21.(11分)已知a+a-1=3。
(1)求a2+a-2与a-a-1的值。
(2)如果将已知a+a-1=3改为a2-3a+1=0,你还会求(1)中式子的值吗?说明理由,不需要求值。
22.(10分)化简式子(+1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为m的值代入求值。
23.(12分)观察下列等式:
①;②;③;④;……(1)猜想并写出第n个算式:__________________ ;
(2)请说明你写出的等式的正确性。
(3)把上述n个算式的两边分别相加,会得到下面的求和公式吗?请填写出最后答案。
_________________________。
参考答案
一、选择题(本大题共10小题,共30分)
1.C
2.D
3.A
4.B
5.A
6.C
7.A
8.C
9.C 10.D
二、填空题(本大题共5小题,共15分)
11.3 12.-0.5;2.5 13.14.1 15.3,1
三、计算题(本大题共2小题,共16分)
16.解:(1)原式
(2)原式
17.解:(1)原式
=
=
(2)原式
=
=
四、解答题(本大题共6小题,共59分)
18.解:原式
∵x2-2=0,
∴x2=2
∴原式
19.解:原式=
=
=3x+2,
当x=-1时,原式=-3+2=-1
20.解:由已知,得,
解得,
,
原式
21.解:(1)∵a+a-1=3,
∴,
.
(2)可以,a2-3a+1=0两边除以a即可得出a+a-1=3。
22.解:(+1)
=[]
=()
=
=
=,
∵当m=﹣1,0,1,2时,原分式无意义,
∴当m=-2时,原式==1
23.解:(1)-=;
(2)-
=-
=,
故-=;
(3)。