高一数学周周练----第一周两角和差的正弦余弦正切公式

合集下载

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的倍角公式指出,对于任意角度α, sin(2α)、cos(2α)和tan(2α)的值可以通过
sin(α)、cos(α)、tan(α)的函数关系来表达。 利用这个公式,我们可以推导出两角和与差
总结词
通过三角函数的减法定理,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的减法定理指出,对于任意角度α、 β,sin(α-β)、cos(α-β)和tan(α-β)的值可 以通过sin(α)、cos(α)、sin(β)、cos(β)、 tan(α)和tan(β)的函数关系来表达。利用这 个定理,我们可以推导出两角和与差的正弦、 余弦和正切公式。
地理学问题
在地理学中,很多问题涉及到地 球的自转、公转等角度计算,如 时差、太阳高度角等,利用三角 函数公式可以方便地计算。
经济学问题
在经济学中,很多问题涉及到利 率、汇率等与角度相关的问题, 利用三角函数公式可以方便地描 述这些变化规律。
04
三角函数公式的扩展
利用三角函数的和差化积公式扩展
总结词
利用三角函数的积化和差公式扩展
总结词
利用三角函数的积化和差公式,可以将两角和与差的 正弦、余弦和正切公式进行扩展,得到更一般化的公 式形式。
详细描述
三角函数的积化和差公式可以将两个角度的正弦或余 弦的乘积转化为其他角度的正弦、余弦和正切的和或 差的形式,从而扩展了原有的公式。例如,利用积化 和差公式,可以将两角和的余弦表示为单个角度余弦 的函数,进一步推导得到更一般化的公式。
VS
详细描述

两角和与差的正弦、余弦、正切公式【高一数学】

两角和与差的正弦、余弦、正切公式【高一数学】

一、 公式推导借助于两角差的余弦公式cos(βα-)=cos αcos β+sin αsin β,则有:思考途径一:把βα+转化为)(βα--cos(βα+)=cos[)(βα--]=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.思考途径二:把任意角β换成-βcos(βα+)=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.即:两角和的余弦公式 cos(βα+)=cos αcos β-sin αsin β.注意:1两角和差余弦公式的异同之处.2两角和、差余弦公式间的关系.3公式中的角具有任意性.4 cos(βα+)=cos α + cos β一定成立吗?练习1、利用和角余弦公式求下列各三角函数的值(1) cos75º (2) cos105º练习2、证明公式 cos(2π-α)=sin α 如何利用两角和与差的余弦公式 cos(βα+)=cos αcos β-sin αsin β和 cos(βα-)=cos αcos β+sin αsin β推导出两角和与差的正弦公式?运用公式cos(βα+)=cos αcos β-sin αsin β及诱导公式有:sin()βα+=cos[)(2βαπ+-]=cos[βαπ--)2(] =cos(απ-2)cos β+sin(απ-2)sin β= sin αcos β+cos αsin β即:两角和的正弦公式 sin()βα+= sin αcos β+cos αsin β.在上式中用-β代换β 得:sin()βα-= sin αcos (-β)+cos αsin (-β)即:两角差的正弦公式 sin()βα-= sin αcos β-cos αsin β注意:1公式的推导应启发学生自己完成,老师做归纳总结.2 两公式间的关系、异同.3明确角、函数名和排列顺序以及公式中每一项的符号.4牢记公式,熟练左右互化.练习3、利用和角正弦公式求下列各三角函数的值(1) sin75º (2) sin105º练习4、证明公式 sin(2π-α)=cos α 如何根据两角和与差的正、余弦公式推导出利用两角和与差的正切公式?利用正切函数与正、余弦函数的关系,当cos(βα+)≠0时,将公式sin()βα+= sin αcos β+cos αsin β 与 cos(βα+)=cos αcos β-sin αsin β两边分别相除,有:βαβαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin()tan(-+=++=+若cos αcos β≠0 时,上式即为:两角和的正切公式 βαβαβαtan tan 1tan tan )tan(-+=+ 用-β代换β,则有:两角差的正切公式 βαβαβαtan tan 1tan tan )tan(+-=- 练习5、利用和与差的正切公式求下列各三角函数的值(1) tan75º (2) tan105º注意:1、 和角公式: S )(βα+、 C )(βα+ 、 T )(βα+差角公式: S )(βα-、 C )(βα- 、 T )(βα-2、公式之间的内在联系.3、明确各三角函数的意义.4、公式的逆向变换、多向变换.5、理解公式推导中角的代换的实质.6、和差公式可看成是诱导公式的推广,诱导公式可看成是和差公式的特例 如:ααααπαπαπcos sin 0cos 1sin 2sin cos 2cos )2cos(=⋅-⋅=-=+7、形如asinx+bsinx(a 、b 不同时为0)的变化.三、例题例1、(利用两角和与差的余弦公式解题)(1)求cos20ºcos70º-sin20ºsin70º的值.(2)在ΔABC 中,已知sinA=53, cosB=135 , 求cosC 的值. 例2、(利用两角和与差的正弦公式解题)(1) 求sin72ºcos42º-cos72ºsin42º的值.(2) 已知cos α=53,∈α(0,2π),求sin(6πα-). (3) 求︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值. 例3、(利用两角和与差的正切公式解题)(1) 求︒-︒+15tan 115tan 1的值. (2) 设,20,23,31tan ,55cos πβπαπβα =-=求 βα-的值. 例4、 已知,135)43sin(,53)4cos(,434,40=+=-βπαππαππβ 求 )sin(βα+的值.分析:由于)(2)4()43(βαπαπβπ++=--+,可通过求出βπ+43和απ-4的正、余弦值来求)sin(βα+.。

两角和与差的正弦、余弦、正切公式(高中数学)

两角和与差的正弦、余弦、正切公式(高中数学)
sin 20°cos 30°+cos 20°sin 30°-sin 20°cos 30° cos 20°
=cos 2c0o°s 2s0in°30°=sin 30°=12.
解决给角求值问题的方法 (1)对于非特殊角的三角函数式求值问题,一定要本着先整体后 局部的基本原则,如果整体符合三角公式的形式,则整体变形, 否则进行各局部的变形. (2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正 负相消的项并消项求值,化分子、分母形式进行约分,解题时 要逆用或变用公式.
30°)
=-1t+anta4n5°45-°ttaann3300°°
1- =-
3 3=
3-2.
1+
3 3
sin 47°-sin 17°cos 30°
(3)
sin 73°
=sin(17°+30°co)s 1-7°sin 17°cos 30°=
sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30° cos 17°
所以 cos (α+β)=cos π4+β-π4-α
=cos π4+β·cos π4-α
+sin π4+βsin π4-α
=-12× 23+
23×-12=-
3 2.
又因为π2<α+β<π,
所以 α+β=56π.
1.(2019·北京清华附中月考)若 tan α=3,tan β=43,则 tan(α-β)
1.已知 cos α=-45,且 α∈π2,π,则 tanπ4-α=(
)
A.-17
B.-7
C.17
D.7
解析:选 D.由 cos α=-45,且 α∈π2,π,得 sin α=35,所以 tan α=csoins αα=-34, 所以 tanπ4-α=1t+antaπ4n-π4ttaannαα=1-1--3434=7.故选 D.

两角和与差的正弦、余弦与正切公式

两角和与差的正弦、余弦与正切公式
b=
2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式

两角和与差的余弦、正弦、正切(一)1.2.公式:a sin θ+b cos θ=22b a +sin (θ+ϕ(其中cos ϕ=2222sin ,ba b ba a +=+ϕ,θ为任意角).(二)1.熟练掌握两角和与差的正弦、余弦、正切公式的运用2.理解公式:a sin θ+b cos θ=22b a +sin (θ+ϕ) (其中2222sin ,cos ba b ba a +=+=ϕϕ,θ为任意角).3.灵活应用上. (三)1. 2.提高学生的思维素质.利用两角和与差的正、余弦公式将a sin θ+b cos θ形式的三角函数式化为某一个角的三角函数形式.使学生理解并掌握将a sin θ+b cos θ形式的三角函数式化为某一个角的三角函数形式,并能灵活应用其解决一些问题.cos θcos ϕ+sin θsin ϕ=cos (θ-ϕ cos θcos ϕ-sin θsin ϕ=cos (θ+ϕ sin θcos ϕ+cos θsin ϕ=sin (θ+ϕ sin θcos ϕ-cos θsin ϕ=sin (θ-ϕ1.)4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x2.利用和(差))3cos(66)3sin(62)4(cos sin 3)3(cos 53sin 153)2(cos 21sin 23)1(x x x x x x x x -+---+ππ[例1]求证)6sin(2sin 3cos απαα+=+证明:右边=)sin 6coscos 6(sin2)6sin(2απαπαπ+=+)sin 23cos 21(2α+=或:左边=)sin 6cos cos 6(sin 2sin 23cos 21(2sin 3cos απαπαααα+=+=+ )6sin(2απ+=(其中令6cos 23,6sin 21ππ==) [例2]求证)3cos(2sin 3cos απαα-=+分析:要证此式,可从右边按照两角差的余弦公式展开,化简整理可证此式.若 即:左=)sin 3sin cos 3(cos 2)sin 23cos 21(2sin 3cos απαπαααα+=+=+ )3cos(2απ-=(其中令3sin 33,3cos 21ππ==) 师:综合上两例可看出对于左式ααsin 3cos +可化为两种形式)6sin(2απ+或)3cos(2απ-,右边的两种形式均为一个角的三角函数形式.那么,对于a sin α+b cos α的式子是否都可化为一个角的三角函数形式呢?师:推导)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+由于1)()(222222=+++b a b b a asin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ∴a sin α+b cos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α或=22b a +cos (α-θ(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ∴a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ) 例如:2sin θ+cos θ=)cos 55sin 552(1222θθ++ 若令cos ϕ=552,则sin ϕ=55∴2sin θ+cos θ=5(sin θcos ϕ+cos θsin ϕ)=5sin (θ+ϕ若令552=sin β,则55=cos β∴2sin θ+cos θ=5(cos θcos β+sin θsin β)=5cos (θ-β)或 =5cos (β-θ)看来,a sin θ+b cos θ均可化为某一个角的三角函数形式,且有两种形式. Ⅳ.师:通过本节的学习,要在熟练掌握两角和与差的余弦、正弦、正切公式的基础上,推导并理解公式:a sin θ+b cos θ=22b a +sin (θ+ϕ(其中cos ϕ=22ba a +,sin ϕ=22ba b +)mcos α+nsin α=22n m +cos (α-β(其中cos β=22nm m +,sin β=22nm n +进而灵活应用上述公式对三角函数式进行变形,解决一些问题.两角和差的正弦、余弦和正切公式(基础训练)1.化简)sin()sin()cos()cos(γββαγββα-----为 ( )A .)2sin(γβα+-B .)sin(γα- .cos()C αγ-D .)2cos(γβα+- 2.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( )A .3B .2110 C .13 D .1303.已知4sin 25α=-,(,)44ππα∈-,sin 4α的值为 ( )A .2425B .2425-C .45D .7254.函数2sin y x =是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数5.已知sin αcos α=38,且4π<α<2π,则cos α-sin α的值为 ( ) A .12 B .—12 C .14- D .12±6.已知α+ β =3π, 则cos αcos β αcos β αsin β – sin αsin β 的值为 ( )A .2-B .–1C .1D .7、已知1tan 23α=,求tan α的值. 8、已知4sin 5α=,(,)2παπ∈5cos 13β=-,β是第三象限角,求cos()αβ-的值.课时对点练一、选择题(本题共5小题,每小题5分,共25分) 1.函数y =2cos 2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数2.tan 70°+tan 50°-3tan 70°·tan 50°=( )A. 3B.33C .-33D .- 33.若3sin x -3cos x =23sin(x -φ),φ∈(-π,π),则φ=( )A .-π6B.π6C.5π6D .-5π64.(2010·烟台调研)已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值为( )A.725B.1625C.1425D.19255.已知cos ⎝⎛⎭⎫π6-α=33,则sin 2⎝⎛⎭⎫α-π6-cos ⎝⎛⎭⎫5π6+α的值是 ( )A.2+33B .-2+33C.2-33D.-2+33二、填空题(本题共3小题,每小题5分,共15分) 6.函数y =2cos 2x +sin 2x 的最小值是________. 7.(2010·汕头二模)若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.8.已知α、β为锐角,且cos α=17,cos(α+β)=-1114,则β的值为________.三、解答题(本题共2小题,每小题10分,共20分) 9.已知tan ⎝⎛⎭⎫π4+α=12.(1)求tan α的值; (2)求sin 2α-cos 2α1+cos 2α的值.10.(2010·湖南卷)已知函数f (x )=sin 2x -2sin 2x . (1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值及f (x )取最大值时x 的集合.素能提升练一、选择题(本题共2小题,每小题5分,共10分) 1.(2009·海南卷)有四个关于三角函说法正确的是( ) A :x ∈R ,sin 2x 2+cos 2x 2=12; B x 、y ∈R ,sin(x -y )=sin x -sin y ;C.:x ∈[0,π],1-cos 2x 2=sin x ; D :sin x =cos y ⇒x +y =π2.二、填空题(本题共2小题,每小题5分,共10分) 3.3-sin 70°2-cos 210°=________. 4.若cos(α+β)=15,cos(α-β)=35,则tan α·tan β=________.三、解答题(本题共2小题,每小题10分,共20分) 5.如图在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐 角α、β,它们的终边分别与单位圆相交于A 、B 两点.已 知A 、B 两点的横坐标分别为210、255.(1)求tan(α+β)的值;(2)求α+2β的大小.6.(2010·珠海质量检测)已知函数f (x )=4cos 4x -2cos 2x -1cos 2x .(1)求f ⎝⎛⎭⎫-1112π的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=f (x )+sin 2x 的最大值和最小值.。

两角和与差的正弦、余弦、正切

两角和与差的正弦、余弦、正切

§4.3 两角和与差的正弦、余弦、正切1. 两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β (T α+β)2. 二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.4. 函数f (x )=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)(其中tan φ=ba)或f (α)=a 2+b 2cos(α-φ)(其中tan φ=ab).1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的. ( √ ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定. ( × )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × ) (5)存在实数α,使tan 2α=2tan α.( √ ) (6)当α+β=π4时,(1+tan α)(1+tan β)=2.( √ ) 2. (2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( )A.43B.34C .-34D .-43答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.3. (2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34C .-43D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34. 4. (2012·江苏)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案17250解析 ∵α为锐角且cos ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+π6=35. ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =sin 2⎝⎛⎭⎫α+π6cos π4-cos 2⎝⎛⎭⎫α+π6sin π4=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6-22⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π6-1 =2×35×45-22⎣⎡⎦⎤2×⎝⎛⎭⎫452-1 =12225-7250=17250. 5. (2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.题型一 三角函数式的化简与给角求值例1 (1)化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ(0<θ<π).(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).思维启迪 (1)分母为根式,可以利用二倍角公式去根号,然后寻求分子分母的共同点进行约分;(2)切化弦、通分.解 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0.因此2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)(sin θ2-cos θ2)=(2sin θ2cos θ2+2cos 2θ2)(sin θ2-cos θ2)=2cos θ2(sin 2θ2-cos 2θ2)=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2(12cos 10°-32sin 10°)2sin 10°=3sin 10°2sin 10°=32.思维升华 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: ①化为特殊角的三角函数值; ②化为正、负相消的项,消去求值; ③化分子、分母出现公约数进行约分求值.(1)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C2+3tan A 2tan C2的值为________.(2)2cos 10°-sin 20°sin 70°的值是( )A.12B.32C. 3D. 2答案 (1)3 (2)C解析 (1)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C 2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. (2)原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.题型二 三角函数的给值求值、给值求角例2 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.思维启迪 (1)拆分角:α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β,利用平方关系分别求各角的正弦、余弦. (2)2α-β=α+(α-β);α=(α-β)+β. 解 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. (2)∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4. 思维升华 (1)解题中注意变角,如本题中α+β2=(α-β2)-(α2-β);(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好.(1)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33C.539D .-69(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π6答案 (1)C (2)C解析 (1)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2),∵0<α<π2,则π4<π4+α<3π4,∴sin(π4+α)=223. 又-π2<β<0,则π4<π4-β2<π2,则sin(π4-β2)=63.故cos(α+β2)=cos[π4+α-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2)=13×33+223×63=539,故选C. (2)∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×(-1010)=22. ∴β=π4.题型三 三角变换的简单应用例3 已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.思维启迪 (1)可将f (x )化成y =A sin(ωx +φ)的形式;(2)据已知条件确定β,再代入f (x )求值. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.思维升华 三角变换和三角函数性质相结合是高考的一个热点,解题时要注意观察角、式子间的联系,利用整体思想解题.(1)函数f (x )=3sin x +cos(π3+x )的最大值为( )A .2 B. 3 C .1D.12(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.答案 (1)C (2)π解析 (1)f (x )=3sin x +cos π3·cos x -sin π3·sin x=12cos x +32sin x =sin(x +π6). ∴f (x )max =1. (2)f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π.高考中的三角变换问题典例:(10分)(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( )A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z )思维启迪 (1)注意和差公式的逆用及变形;(2)可求α+β的某一三角函数值,结合α+β的范围求角. 答案 (1)3+22 (2)C解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2.∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故所求=1+121-12=3+2 2.(2)由sin α=55,cos β=31010且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.温馨提醒 三角变换中的求值问题要注意利用式子的特征,灵活应用公式;对于求角问题,一定要结合角的范围求解.方法与技巧 1. 巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.2. 利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3. 重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1. 运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2. 在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3. 在三角求值时,往往要估计角的范围后再求值.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35B.45C.74D.34答案 D解析 由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.2. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318B.1322C.322D.16答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 3. (2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32C. 3D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40° =3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.4. 若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为( ) A .-210 B.210 C.3210 D.7210答案 A解析 由tan α+1tan α=103得sin αcos α+cos αsin α=103,∴1sin αcos α=103,∴sin 2α=35.∵α∈(π4,π2),∴2α∈(π2,π),∴cos 2α=-45.∴sin(2α+π4)=sin 2αcos π4+cos 2αsin π4=22×(35-45)=-210.5. 在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于 ( )A.π3 B.2π3 C.π6 D.π4答案 A解析 由已知可得tan A +tan B =3(tan A ·tan B -1),∴tan(A +B )=tan A +tan B1-tan A tan B =-3,又0<A +B <π,∴A +B =23π,∴C =π3.二、填空题 6. 若sin(π2+θ)=35,则cos 2θ=________.答案 -725解析 ∵sin(π2+θ)=cos θ=35,∴cos 2θ=2cos 2θ-1=2×(35)2-1=-725.7. 若α=20°,β=25°,则(1+tan α)(1+tan β)的值为________.答案 2解析 由tan(α+β)=tan α+tan β1-tan αtan β=tan 45°=1可得 tan α+tan β+tan αtan β=1,所以(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β=2.8. 3tan 12°-3(4cos 212°-2)sin 12°=________. 答案 -4 3解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24° =-23sin 48°12sin 48°=-4 3. 三、解答题9. 已知tan α=-13,cos β=55,α∈(π2,π),β∈(0,π2),求tan(α+β)的值,并求出α+β的值.解 由cos β=55,β∈(0,π2), 得sin β=255,tan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β =-13+21+23=1. ∵α∈(π2,π),β∈(0,π2),∴π2<α+β<3π2, ∴α+β=5π4. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升(时间:25分钟,满分:43分)1. 已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于 ( )A .-255 B .-3510 C .-31010 D.255答案 A 解析 由tan(α+π4)=tanα+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.2. 定义运算⎪⎪⎪⎪⎪⎪a bc d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于() A.π12 B.π6 C.π4 D.π3答案 D解析 依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32, 故β=π3,选D. 3. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________. 答案 3解析 方法一 因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x, 所以令k =2-cos 2x sin 2x.又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率.又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3. 方法二 y =2sin 2x +1sin 2x =3sin 2x +cos 2x 2sin x cos x=3tan 2x +12tan x =32tan x +12tan x. ∵x ∈(0,π2),∴tan x >0. ∴32tan x +12tan x≥232tan x ·12tan x = 3. (当tan x =33,即x =π6时取等号) 即函数的最小值为 3.4. 已知tan(π+α)=-13,tan(α+β)=sin 2(π2-α)+4cos 2α10cos 2α-sin 2α. (1)求tan(α+β)的值;(2)求tan β的值.解 (1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=sin 2(π2-α)+4cos 2α10cos 2α-sin 2α=sin 2α+4cos 2α10cos 2α-sin 2α=2sin αcos α+4cos 2α10cos 2α-2sin αcos α =2cos α(sin α+2cos α)2cos α(5cos α-sin α) =sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-(-13)=516. (2)tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=516+131-516×13=3143. 5. 已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值. 解 (1)由T =2πω=10π得ω=15. (2)由⎩⎨⎧ f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617得⎩⎨⎧2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5α+53π+π6=-65,2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5β-56π+π6=1617, 整理得⎩⎨⎧ sin α=35,cos β=817. ∵α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=45,sin β=1-cos 2β=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.。

高考数学一轮复习两角和与差的正弦、余弦和正切公式

高考数学一轮复习两角和与差的正弦、余弦和正切公式
sin(α+φ) 其中tan φ=ab或 f(α)= a2+b2cos(α-φ)其中tan φ=ab.
Ⅱ.基础小题的即时强化
一、教材经典小题的回顾拓展
1.(人教 A 版必修①P 229·T12 改编)sin1π2- 3cos1π2的值为 A .0 B .- 2 C .2 D . 2
()
解析:sin1π2- 3cos1π2=212sin1π2- 23cos1π2=2sin1π2-π3=2sin-π4 =- 2.
()
A .-7
B .-17
C .17
D .7
解析:由于 sin α=53,α∈π2,π,所以 cos α=- 1-sin2α=-54,tan
α=csoins αα=-34,tanπ4-α=11-+ttaann αα=11+-3434=7. 答案:D
3.(2023·济宁模拟)已知 cosα+π6=14,则 sin2α+56π=
解 析 : tan 15 ° + tan 105 ° = tan 45°-30° + tan 60°+45° = 1t+anta4n5°4-5°t·atann3300°°+1t-anta6n0°6+0°t·atann4455°°=1+1-1×3333+1-3+3×1 1=-2 3.
答案:A
2.(不会逆用公式造成解题困难)化简: cos
D .tan(α+β)=-1
(2)(2023·齐齐哈尔模拟)已知 3tan 10°+λcos 80°=1,则实数 λ 的
值为
()
A .4 B .4 3 C .3 3 D .2 2
[解析] (1)由题意,得 sin αcos β+sin βcos α+cos αcos β-sin αsin
β=2 2× 22(cos α-sin α)sin β,整理,得 sin αcos β-sin βcos α+cos αcos β+sin αsin β=0,即 sin(α-β)+cos(α-β)=0,所以 tan(α-β)=-

两角和与差的正弦、余弦、正切公式及变形(最新整理)

两角和与差的正弦、余弦、正切公式及变形(最新整理)

两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式(1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β))②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β))③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β))④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β))⑤tan(α-β)=(T (α-β))tan α-tan β1+tan αtan β⑥tan(α+β)=(T (α+β))tan α+tan β1-tan αtan β(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β).②tan α-tan β=tan(α-β)(1+tan αtan β).2.二倍角公式(1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,③tan 2α=.2tan α1-tan 2α(2)公式变形①cos 2α=,sin 2α=;1+cos 2α21-cos 2α2②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=sin .2)4(πα±3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√)(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√)(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意tan α+tan β1-tan αtan β角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×)(6)存在角α,使得sin 2α=2sin α成立.(√)(7)若α+β=,则(1+tan α)(1+tan β)=2.(√)π4(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×)(9)存在实数α,使tan 2α=2tan α.(√)(10)y =的x 无意义.(×)1-2cos 2x考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:-sin 10°;1+cos 20°2sin 20°)5tan 5tan 1(00-解:原式=-sin 10°2cos 210°2×2sin 10°cos 10°)5cos 5sin 5sin 5cos (0000-=-sin 10°·=-sin 10°·cos 10°2sin 10°cos 25°-sin 25°sin 5°cos 5°cos 10°2sin 10°cos 10°12sin 10°=-2cos 10°=cos 10°2sin 10°cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°===.cos 10°-2(12cos 10°-32sin 10°)2sin 10°3sin 10°2sin 10°32(2)化简:sin 2α·sin 2β+cos 2α·cos 2β-cos 2α·cos 2β.12解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-·(2cos 2α-1)·(2cos 2β-1)12=sin 2α·sin 2β+cos 2α·cos 2β-·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)12=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12=sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12=sin 2β+cos 2β-=1-=.121212法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-cos 2α·cos12122β=cos 2β-sin 2α·cos 2β-cos 2α·cos 2β12=cos 2β-cos 2β·)2cos 21(sin 2αα+=-cos 2β·1+cos 2β2[sin 2α+12(1-2sin 2α)]=-cos 2β=.1+cos 2β21212法三:(从“幂”入手,利用降幂公式先降次)原式=·+·-cos 2α·cos 2β1-cos 2α21-cos 2β21+cos 2α21+cos 2β212=(1+cos 2α·cos 2β-cos 2α-cos 2β)+(1+cos 2α·cos 2β+cos 2α+cos 2β)-·cos 2α·cos 2β141412=.12[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+tan 10°).3解:sin 50°(1+tan 10°)=sin 50°(1+tan 60°·tan 10°)3=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·====1.cos (60°-10°)cos 60°cos 10°2sin 50°cos 50°cos 10°sin 100°cos 10°cos 10°cos 10°2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan +tan +tan tan 的值为A 2C 23A 2C2________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =,=,tan =,2π3A +C 2π3A +C23所以tan +tan +tan tanA 2C 23A 2C2=tan +tan tan22(C A +2tan 2tan 1(CA -3A 2C 2=+tan tan =.3)2tan 2tan1(CA -3A 2C 23考点二 三角函数式的给值求值命题点1.已知某角的三角函数值求其它的三角函数值2.已知某角的三角函数值,求三角函数的值3.已知三角函数式的值,求三角函数值[例2] (1)(2016·高考全国丙卷)若tan θ=-,则cos 2θ=( )13A .- B .-C. D.45151545解析:法一:cos 2θ=cos 2θ-sin 2θ=cos2θ-sin 2θcos 2θ+sin 2θ==.故选D.1-tan 2θ1+tan 2θ45法二:由tan θ=-,可得sin θ=±,因而cos 2θ=1-2sin 2θ=.1311045答案:D(2)已知tan =,且-<α<0,则等于( ))4(πα+12π2)4cos(2sin sin 22πααα-+A .-B .-C .-D.255351031010255解析:由tan ==,得tan α=-.)4(πα+tan α+11-tan α1213又-<α<0,所以sin α=-.π21010故==2sin α=-.)4cos(2sin sin 22πααα-+2sin α(sin α+cos α)22(sin α+cos α)2255答案:A(3)已知α∈,且2sin 2α-sin α·cos α-3cos 2α=0,则=________.)2,0(π12cos 2sin )4sin(+++ααπα解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0,由于α∈,sin α+cos α≠0,)2,0(π则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=,213∴==.12cos 2sin )4sin(+++ααπα22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)268答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan 的值.)6(θπ+解:tan ===.)6(θπ+tan π6+tan θ1-tan π6tan θ33-131+33×1353-6132.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值.解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ===-.2tan 2θ-tan θ-3tan 2θ+12×(-13)2+13-3(-13)2+11153.已知cos +sin =,则cos =________.)2(απ-)32(απ-23532(πα+解析:由cos +sin =,得)2(απ-)32(απ-235sin α+sin cos α-cos πsin α=∴sin α+cos α=,2π3232353232235即sin =,∴sin =,3)6(πα+2356(πα+25因此cos =1-2sin 2=1-2×=.)32(πα+6(πα+2)52(1725答案:1725考点三 已知三角函数式的值求角命题点1.利用弦函数值求角2.利用切函数值求角[例3] (1)已知cos α=,cos(α-β)=,0<β<α<,则β=________.171314π2解析:∵cos α=,0<α<.∴sin α=.17π2437又cos(α-β)=,且0<β<α<.∴0<α-β<,则sin(α-β)=.1314π2π23314则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×==,由于0<β<,所以β=.1713144373314497×1412π2π3答案:π3(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为________.1217解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β==>0,∴0<α<.又∵tan 2α===>0,12-171+12×1713π22tan α1-tan 2α2)31(1312-⨯34∴0<2α<,∴tan(2α-β)===1.π2tan 2α-tan β1+tan 2αtan β34+171-34×17∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-π.17π234答案:-π34[方法引航] 1.解决给值求角问题应遵循的原则(1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是,选正、余弦皆可;②)2,0(π若角的范围是(0,π),选余弦较好;③若角的范围是,选正弦较好.)2,2(ππ-2.解给值求角问题的一般步骤(1)求角的某一个三角函数值.(2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=,cos β=-,则α+β的值为( )5531010A. B.C. D.或3π45π47π45π47π4解析:选C.∵α,β为钝角,sin α=,cos β=-,5531010∴cos α=,sin β=,∴cos(α+β)=cos αcos β-sin αsin β=>0.-255101022又α+β∈(π,2π),∴α+β∈,∴α+β=.)2,23(ππ7π42.已知tan α=-,cos β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.1355),2(ππ)2,0(π解:由cos β=,β∈,得sin β=,tan β=2.55)2,0(π255∴tan(α+β)===1.tan α+tan β1-tan αtan β-13+21+23∵α∈,β∈,∴<α+β<,∴α+β=.),2(ππ)2,0(ππ23π25π4[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-sin 30°=1-=.121434(Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+cos 2α+sin αcos α+sin 2α-sin α·cos α-sin 2α=sin 2α+34321432123434cos 2α=.34法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=+-sin α(cos 30°cos α+sin 1-cos 2α21+cos (60°-2α)230°sin α)=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin 2α=-cos 2α1212121232121212++cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.121434341414141434[高考真题体验]1.(2016·高考全国甲卷)若cos =,则sin 2α=( ))4(απ-35A. B. C .-D .-7251515725解析:选D.因为cos =cos cos α+sin sin α=(sin α+cos α)=,所以sin α+cos α=)4(απ-π4π42235,所以1+sin 2α=,所以sin 2α=-,故选D.32518257252.(2016·高考全国丙卷)若tan α=,则cos 2α+2sin 2α=( )34A.B.C .1D.642548251625解析:选A.法一:由tan α==,cos 2α+sin 2α=1,得Error!或Error!,则sin 2α=2sin αcossin αcos α34α=,则cos 2α+2sin 2α=+=.2425162548256425法二:cos 2α+2sin 2α====.cos 2α+4sin αcos αcos 2α+sin 2α1+4tan α1+tan 2α1+31+91664253.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .- B.C .- D.32321212解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=.124.(2014·高考课标全国卷Ⅰ)设α∈,β∈,且tan α=,则( ))2,0(π)2,0(π1+sin βcos βA .3α-β= B .2α-β=C .3α+β= D .2α+β=π2π2π2π2解析:选B.由条件得=,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin sin αcos α1+sin βcos β,因为-<α-β<,0<-α<,所以α-β=-α,所以2α-β=,故选B.)2(απ-π2π2π2π2π2π25.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α==2sin αcos α-cos 2αsin 2α+cos 2α2tan α-1tan 2α+1==-1.-4-14+1答案:-16.(2016·高考四川卷)cos 2-sin 2=________.π8π8解析:由二倍角公式,得cos 2-sin 2=cos =.π8π8)82(π⨯22答案:22课时规范训练A 组 基础演练1.tan 15°+=( )1tan 15°A .2 B .2+C .4D.3433解析:选C.法一:tan 15°+=+1tan 15°sin 15°cos 15°cos 15°sin 15°===4.1cos 15°sin 15°2sin 30°法二:tan 15°+=+1tan 15°1-cos 30°sin 30°1sin 30°1+cos 30°=+==4.1-cos 30°sin 30°1+cos 30°sin 30°2sin 30°2.的值是( )2cos 10°-sin 20°sin 70°A. B.C.D.123232解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°==.3cos 20°cos 20°33.已知θ∈(0,π),且sin =,则tan 2θ=( ))4(πθ-210A. B. C .-D.4334247247解析:选C.由sin =,得(sin θ-cos θ)=,所以sin θ-cos θ=.)4(πθ-2102221015解方程组Error!,得Error!或Error!.因为θ∈(0,π),所以sin θ>0,所以Error!不合题意,舍去,所以tan θ=,所以tan 2θ==432tan θ1-tan 2θ=-,故选C.2×431-(43)22474.若θ∈,sin 2θ=,则sin θ等于( )]2,4[ππ378A. B. C.D.35457434解析:选D.由sin 2θ=和sin 2θ+cos 2θ=1得387(sin θ+cos θ)2=+1=,3782)473(+又θ∈,∴sin θ+cos θ=.]2,4[ππ3+74同理,sin θ-cos θ=,∴sin θ=.3-74345.已知sin 2(α+γ)=n sin 2β,则的值为( )tan (α+β+γ)tan (α-β+γ)A.B.C.D.n -1n +1nn +1nn -1n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以=tan (α+β+γ)tan (α-β+γ),故选D.n +1n -16.若sin =,则cos 2θ=________.)2(θπ+35解析:∵sin =cos θ=,∴cos 2θ=2cos 2θ-1=2×-1=-.)2(θπ+352)53(725答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈,则tan 2α的值是________.),2(ππ解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈,sin α≠0,∴cos α=-.又∵α∈,∴α=π,),2(ππ12),2(ππ23∴tan 2α=tan π=tan =tan =.43)3(ππ+π33答案:39.化简:(0<θ<π).(1+sin θ+cos θ)(sin θ2-cosθ2)2+2cos θ解:由θ∈(0,π),得0<<,∴cos >0,θ2π2θ2∴==2cos .2+2cos θ4cos 2θ2θ2又(1+sin θ+cos θ)=)2cos 2(sinθθ-2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+=2cos θ2)2cos 2(sin 22θθ-=-2cos cos θ.故原式==-cos θ.θ2-2cos θ2cos θ2cosθ210.已知α∈,且sin +cos =.),2(ππα2α262(1)求cos α的值;(2)若sin(α-β)=-,β∈,求cos β的值.35),2(ππ解:(1)因为sin +cos =,两边同时平方,得sin α=.α2α26212又<α<π,所以cos α=-.π232(2)因为<α<π,<β<π,所以-π<-β<-,故-<α-β<.π2π2π2π2π2又sin(α-β)=-,得cos(α-β)=.3545cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-×+×=-.324512)53(-43+310B 组 能力突破1.已知sin α+cos α=,则1-2sin 2=( )22)4(απ-A. B.C .-D .-12321232解析:选C.由sin α+cos α=,得1+2sin αcos α=,∴sin 2α=-.221212因此1-2sin 2=cos2=sin 2α=-.)4(απ-)4(απ-122.已知f (x )=2tan x -,则f 的值为( )2sin 2x2-1sin x 2cos x 2)12(πA .4B.C .4D .83833解析:选D.∵f (x )=2=2×=,)sin cos cos sin (2sin cos (tan xxx x x x x +⨯=+1cos x ·sin x 4sin 2x∴f ==8.)12(π4sin π63.已知sin α=,sin(α-β)=-,α,β均为锐角,则角β等于( )551010A. B. C. D.5π12π3π4π6解析:选C.∵α、β均为锐角,∴-<α-β<.π2π2又sin(α-β)=-,∴cos(α-β)=.101031010又sin α=,∴cos α=,55255∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.5531010255)1010(-22∴β=.π44.若tan α=lg(10a ),tan β=lg ,且α+β=,则实数a 的值为________.1a π4解析:tan α+tan β=lg(10a )+lg =lg 10=1,1a∵α+β=,所以tan =tan(α+β)==,π4π4tan α+tan β1-tan αtan β11-tan αtan β∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg =0.1a 所以10a =1或=1,即a =或1.1a 110答案:或11105.已知tan(π+α)=-,tan(α+β)=.13ααααπ2sin cos 10cos 4)2(2sin 22-+-(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-,∴tan α=-.∵tan(α+β)=1313ααααπ2sin cos 10cos 4)2(2sin 22-+-===sin 2α+4cos 2α10cos 2α-sin 2α2sin αcos α+4cos 2α10cos 2α-2sin αcos α2cos α(sin α+2cos α)2cos α(5cos α-sin α)====.sin α+2cos α5cos α-sin αtan α+25-tan α-13+25-(-13)516(2)tan β=tan[(α+β)-α]===.tan (α+β)-tan α1+tan (α+β)tan α516+131-516×133143。

高中 两角和与差的正弦、余弦和正切 知识点+例题

高中 两角和与差的正弦、余弦和正切 知识点+例题
tanαtanβ=1- = -1.
[例1]已知 为第二象限角, ,则
[巩固1]已知 为锐角, ,则
[巩固2]已知函数 , ,则
[例2]已知 ,则 的值为_______.
[巩固1]若 ,则
[巩固2]已知 为锐角, 为钝角, , ,则 的值为_______.
[例3]已知 ,则
[巩固]在△ABC中,若 ,则 的值为_______.
cos(α+β)=cosαcosβ-sinαsinβ(C(α+β))
3.两角和与差的正切公式:tan(α-β)= (T(α-β))
tan(α+β)= (T(α+β))
[例1]若 ,则
[巩固]已知 , ,且 ,则 的值为___________.
[例2]化简: 的值为___________.
[巩固]求 的值为________.
所以,f(α)= (sin 2α+cos 2α)+ = .
(2)由(1)得f(x)= (sin 2x+cos 2x)+ = sin + .
由x∈ ,得 ≤2x+ ≤ .
所以- ≤sin ≤1,0≤f(x)≤ ,
所以f(x)的取值范围是 .
答案-
解析由tan(α+ )= = ,得tanα=- .
又- <α<0,所以sinα=- .
故 = =2 sinα=- .
12.若α∈ ,且sin2α+cos 2α= ,则tanα的值等于_______.
答案
解析∵α∈ ,且sin2α+cos 2α= ,
∴sin2α+cos2α-sin2α= ,∴cos2α= ,
又α、β为锐角,则sinβ+cosβ>0,
∴cosα-sinα=0,∴tanα=1.
8. =________.

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin__αsin_β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin__αcos____α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z . [提醒] 三角函数公式的变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 3.三角函数公式关系判断正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意角.( ) (2)两角和与差的正切公式中的角α,β是任意角.( )(3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos 60°=12.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtanβ),且对任意角α,β都成立.( ) (5)存在实数α,使tan 2α=2tan α.( )答案:(1)√ (2)× (3)× (4)× (5)√(教材习题改编)已知cos α=-35,α是第三象限角,则cos(π4+α)为( )A.210B .-210C.7210D .-7210解析:选A.因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-(-35)2=-45,所以cos(π4+α)=cos π4cos α-sin π4sin α=22·(-35)-22·(-45)=210.(优质试题·高考江苏卷)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62.答案:62三角函数公式的直接应用[典例引领](1)(优质试题·高考全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. (2)(优质试题·广州市综合测试(一))已知f (x )=sin ⎝⎛⎭⎫x +π6,若sin α=35⎝⎛⎭⎫π2<α<π,则f ⎝⎛⎭⎫α+π12=________.【解析】 (1)因为α∈⎝⎛⎭⎫0,π2,且tan α=sin αcos α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=255,cos α=55,则cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=55×22+255×22=(2)因为sin α=35⎝⎛⎭⎫π2<α<π,所以cos α=-45,所以f ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-210. 【答案】 (1)31010 (2)-210利用三角函数公式应注意的问题(1)使用公式求值,首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.[通关练习]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A.因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.2.(优质试题·湖南省东部六校联考)已知角α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225B.2425C .-2425D .-1225解析:选B.因为α为锐角,cos ⎝⎛⎭⎫α+π6=45>0,所以α+π6为锐角,sin ⎝⎛⎭⎫α+π6=1-cos 2⎝⎛⎭⎫α+π6=35,所以sin ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2425,故选B.三角函数公式的活用(高频考点)三角函数公式的活用是高考的热点,高考多以选择题或填空题的形式出现,研究三角函数的性质和解三角形常应用三角函数公式.高考对三角函数公式的考查主要有以下两个命题角度:(1)两角和与差公式的逆用及变形应用; (2)二倍角公式的活用.[典例引领]角度一 两角和与差公式的逆用及变形应用(1)已知sin α+cos α=13,则sin 2(π4-α)=( )A.118 B.1718 C.89D.29(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12D .-12【解析】 (1)由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos (π2-2α)2=1-sin 2α2=1+892=1718.(2)由tan A tan B =tan A +tan B +1,可得tan A +tan B 1-tan A tan B=-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.【答案】(1)B (2)B 角度二二倍角公式的活用cos 15°-sin 15°cos 15°+sin 15°=________.【解析】 法一:原式=1-tan 15°1+tan 15°=tan 45°-tan 15°1+tan 45°tan 15°=tan 30°=33.法二:原式=2(sin 45°cos 15°-cos 45°sin 15°)2(sin 45°cos 15°+cos 45°sin 15°)=sin 30°sin 60°=1232=33.法三:因为⎝ ⎛⎭⎪⎫cos 15°-sin 15°cos 15°+sin 15°2=1-sin 30°1+sin 30°=13. 又cos 15°-sin 15°cos 15°+sin 15°>0, 所以cos 15°-sin 15°cos 15°+sin 15°=33.【答案】33三角函数公式的应用技巧运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.[通关练习]1.(1-tan 15°)cos 15°的值等于( ) A.1-32B .1 C.32D.12解析:选C.(1-tan 215°)cos 215°=cos 215°-sin 215°=cos 30°=32. 2.(优质试题·河北衡水中学三调考试)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118 C .-1718D.1718解析:选C.由3cos 2α=sin ⎝⎛⎭⎫π4-α可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin α·cos α=118,故sin 2α=-1718.故选C.角的变换[典例引领](1)(优质试题·四川成都摸底)已知sin 2α=35⎝⎛⎭⎫π2<2α<π,tan(α-β)=12,则tan(α+β)等于( ) A .-2 B .-1 C .-211D.211(2)(优质试题·六盘水质检)已知cos α=13,cos(α+β)=-13,且α、β∈⎝⎛⎭⎫0,π2,则cos(α-β)的值等于( ) A .-12B.12C .-13 D.2327【解析】 (1)因为sin 2α=35,2α∈⎝⎛⎭⎫π2,π, 所以cos 2α=-45,tan 2α=-34,tan(α+β)=tan[2α-(α-β)]= tan 2α-tan (α-β)1+tan 2αtan (α-β)=-2.(2)因为α∈⎝⎛⎭⎫0,π2,所以2α∈(0,π). 因为cos α=13,所以cos 2α=2cos 2α-1=-79,所以sin 2α=1-cos 22α=429, 而α,β∈⎝⎛⎭⎫0,π2,所以α+β∈(0,π), 所以sin(α+β)=1-cos 2(α+β)=223,所以cos(α-β)=cos[2α-(α+β)] =cos 2αcos(α+β)+sin 2αsin(α+β) =⎝⎛⎭⎫-79×⎝⎛⎭⎫-13+429×223=2327. 【答案】 (1)A (2)D若本例(2)条件不变,求cos 2β的值.解:因为cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,所以α+β∈(0,π), 所以sin α=223,sin(α+β)=223,cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-13×13+223×223=79.所以cos 2β=2cos 2β-1=2×⎝⎛⎭⎫792-1=1781.角的变换技巧(1)当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(3)常用拆分方法:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. [通关练习]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3 的值为( ) A.23 B.12 C.34D.45解析:选B.tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α-π3=tan (α+β)-tan ⎝⎛⎭⎫α-π31+tan (α+β)tan ⎝⎛⎭⎫α-π3=1-131+1×13=12. 2.(优质试题·湖南郴州模拟)已知α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫α+π4=45,则tan α=________. 解析:因为α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫α+π4=45, 所以α+π4∈⎝⎛⎭⎫π4,π2, 所以cos ⎝⎛⎭⎫α+π4=1-sin 2⎝⎛⎭⎫α+π4=35, 所以tan ⎝⎛⎭⎫α+π4=43, 所以tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π4=43-11+43×1=17. 答案:17运用三角函数公式时,不但要熟悉公式的直接应用,还要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力. 易错防范(1)在使用两角和与差的余弦或正切公式时运算符号易错.1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为( ) A.12 B.33 C.22D.32解析:选A.-sin 133°cos 197°-cos 47°cos 73° =-sin 47°(-cos 17°)-cos 47°sin 17° =sin(47°-17°)=sin 30°=12.2.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .-1 B .0 C.12D .1解析:选A.因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α,所以⎝⎛⎭⎫12-32sin α=⎝⎛⎭⎫32-12cos α,所以sin α=-cos α,所以tan α=-1.3.若α∈⎝⎛⎭⎫π2,π,tan ⎝⎛⎭⎫α+π4=17,则sin α等于( ) A.35 B.45 C .-35D .-45解析:选A.因为tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=17,所以tan α=-34=sin αcos α,所以cos α=-43sin α.又因为sin 2α+cos 2α=1,所以sin 2α=925.又因为α∈⎝⎛⎭⎫π2,π,所以sin α=35. 4.已知cos ⎝⎛⎭⎫π6-α=33,则sin ⎝⎛⎭⎫5π6-2α的值为( ) A.13 B .-13C.23D .-23解析:选B.sin ⎝⎛⎭⎫5π6-2α=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π3-2α =cos ⎝⎛⎭⎫π3-2α=2cos 2⎝⎛⎭⎫π6-α-1=2×⎝⎛⎭⎫332-1=-13.5.(优质试题·兰州市实战考试)sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( ) A .-15B.15C .-75 D.75解析:选D.2cos ⎝⎛⎭⎫π4-α=2⎝⎛⎭⎫22cos α+22sin α=sin α+cos α,又因为(sin α+cos α)2=1+2sin αcos α=1+sin 2α=4925,0<α<π2,所以sin α+cos α=75,故选D.6.(优质试题·贵州省适应性考试)已知α是第三象限角,且cos ()α+π=45,则tan 2α=________.解析:由cos(π+α)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tanα=34,故tan 2α=2tan α1-tan 2α=247.答案:2477.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝⎛⎫β+5π4=________. 解析:依题意可将已知条件变形为 sin[(α-β)-α]=-sin β=35,sin β=-35.又β是第三象限角,因此有cos β=-45.sin ⎝⎛⎭⎫β+5π4=-sin(β+π4)=-sin βcos π4-cos βsin π4=7210.全国名校高考数学复习优质学案汇编(理科,附详解)8.(优质试题·兰州市高考实战模拟)若sin α-sin β=1-32,cos α-cos β=12,则cos(α-β)=________.解析:由sin α-sin β=1-32,得(sin α-sin β)2=⎝⎛⎭⎫1-322,即sin 2α+sin 2β-2sin αsin β=74-3,①由cos α-cos β=12,得cos 2α+cos 2β-2cos αcos β=14,② ①+②得,2sin αsin β+2cos αcos β=3,即cos(α-β)=32. 答案:32 9.已知tan α=2.(1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1= 2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1. 10.已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求cos θ的值. 解:(1)f ⎝⎛⎭⎫5π12=A sin ⎝⎛⎭⎫5π12+π3=A sin 3π4=22A =322, 所以A =3.(2)f (θ)-f (-θ)=3sin ⎝⎛⎭⎫θ+π3-3sin ⎝⎛⎭⎫-θ+π3。

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。

两角和与差的正弦、余弦和正切公式Word版含答案

两角和与差的正弦、余弦和正切公式Word版含答案

两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。

【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式

【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。

两角和与差的正弦余弦和正切公式及二倍角公式

两角和与差的正弦余弦和正切公式及二倍角公式

(1)计算
sin110sin 20 cos2155 sin2155
的值为
(
)
A.- 1 B. 1 C. 3 D.- 3
2
2
2
2
(2)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为 ( )
A.- 2 B. 2 C. 1 D.- 1
2
2
2
2
答案 (1)B (2)B
2
2
α= 4 3 ,
5
即 3 cos α+ 3 sin α= 4 3 ,
2
2
5
所以
3 sin
2
α+
1 2
cos
α=sin
α
6
=
4 5
,
所以sin α
7 6
=-sin
α
6
=-
4 5
.
夯基提能作业 栏目索引
第五节 两角和与差的正弦、余弦 和正切公式及二倍角公式
解析
(1)
sin110sin 20 cos2155 sin2155
=
sin 70sin 20 cos 310
=
cos
20sin
20
=
1 2
sin
40
=
1
.
cos 50
sin 40 2
(2)由tan Atan B=tan A+tan B+1,
可得 tan A tan B =-1,
1 tan Atan B
教材研读
总纲目录
总纲目录 栏目索引
1.两角和与差的正弦、余弦、正切公式 2.二倍角的正弦、余弦、正切公式 3.有关公式的逆用、变形

高一数学两角和与差的正弦、余弦、正切公式1

高一数学两角和与差的正弦、余弦、正切公式1

4
4
4
2 2
3 5
24 25
2
10
4
练习2
已知α,β都是锐角,co sα =
, 5
cosα+β 5 求 cosβ的值
13
解: cos cos
cosαβcosα sinαβsinα
5 13
4 5
12 13
3 5
16 65
小结:
1、两角差的余弦公式
对于任意角α,β都有
cos(α-β)=cosαcosβ+sinαsinβ
3.1.1 两角差的余弦公式
学习目标:
1、用向量方法建立两角差的余弦公式 2、两角差的余弦公式的简单应用
OA cosα,sinα
OB cosβ ,sinβ
OAOB OA OB cos( )
cos( )
A
∵ OAOB
-1
cos cos sin sin
y 1
α -β
B
α
β
o
( 4 )( 5 ) ( 3 )( 12 )
5 13
5 13
20 36 65 65
56 65
练习1co已sα知= - 3
5
α
π 2
,
π
求cos
π 4
α
的值.
解: ∵ cos = - 3
5
π 2
,
π
∴ sin = 1 cos2 4
5
cos( π - ) cos π cos + sin π sin
金相切割机 金相切割机
例1.利用差角余弦公式求 cos15的值
分析: cos15 cos 45 30 cos15 cos 60 45
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档