中考数学工程问题专题练习
中考数学压轴题---《工程、生产类问题》例题讲解
中考数学压轴题---《工程、生产类问题》例题讲解例1、(2022•聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?【解答】解:(1)设原计划每天改造管网x米,则实际施工时每天改造管网(1+20%)x米,由题意得:﹣=10,解得:x=60,经检验,x=60是原方程的解,且符合题意.此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m米,由题意得:(40﹣20)(72+m)≥3600﹣72×20,解得:m≥36.答:以后每天改造管网至少还要增加36米.【变式1-1】(2022•四会市一模)为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道的长度是乙队每天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.(1)求甲、乙两工程队每天分别铺设电路管道多少米;(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?【解答】解:(1)设乙队每天铺设电路管道x米,则甲队每天铺设电路管道1.5x 米,依题意,得:.解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=1.5×40=60.答:甲队每天铺设电路管道60米,乙队每天铺设电路管道40米.(2)设乙队施工m天正好完成该项工程,依题意,得:≤20,解得:m≥30.答:若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.【变式1-2】(2022•永州)为提高耕地灌溉效率,小明的爸妈准备在耕地A、B、C、D四个位置安装四个自动喷洒装置(如图1所示),A、B、C、D四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管).方案一:如图2所示,沿正方形ABCD的三边铺设水管;方案二:如图3所示,沿正方形ABCD的两条对角线铺设水管.(1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;(2)小明看了爸妈的方案后,根据“蜂巢原理”重新设计了一个方案(如图4所示).满足∠AEB=∠CFD=120°,AE=BE=CF=DF,EF∥AD.请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由.(参考数据:≈1.4,≈1.7)【解答】解:(1)方案一:铺设水管的总长度为50×3=150(米),方案二:铺设水管的总长度为2=100≈140(米),∵140<150,∴方案二铺设水管的总长度更短;(2)小明的方案中铺设水管的总长度最短,理由如下:如图:∵AE=BE,GE⊥AB,∴AG=BG=AB=25米,∠AEG=∠BEG=∠AEB=60°,同理DH=CH=25米,∠DFH=∠CFH=60°,在Rt△AEG中,GE==(米),AE==(米),同理FH=米,BE=CF=DF=AE=米∴EF=GH﹣GE﹣FH=(50﹣)米,∴方案中铺设水管的总长度为×4+50﹣=50+50≈135(米),∵135<140<150,∴小明的方案中铺设水管的总长度最短.【变式1-3】(2022•呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【解答】解:(1)设去年每吨土豆的平均价格是x元,则今年第一次采购每吨土豆的平均价格为(x+200)元,第二次采购每吨土豆的平均价格为(x﹣200)元,由题意得:×2=,解得:x=2200,经检验,x=2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:×3=375(吨),设应将m吨土豆加工成薯片,则应将(375﹣m)吨加工成淀粉,由题意得:,解得:150≤m≤175,设总利润为y元,则y=700m+400(375﹣m)=300m+150000,∵300>0,∴y随m的增大而增大,∴当m=175时,y的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.【变式1-4】(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m 个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x 为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)12(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.【解答】解:(1)根据题意得:y1=150+(x﹣1)m=mx+150﹣m,设y2=ax2+bx+c,将(1,220),(2,229),(6,245)代入得:,解得,∴y2=﹣x2+12x+209;(2)前9天的总供应量为150+(150+m)+(150+2m)+......+(150+8m)=(1350+36m)个,前10天的供应量为1350+36m+(150+9m)=(1500+45m)个,在y2=﹣x2+12x+209中,令x=10得y=﹣102+12×10+209=229,∵前9天的总需求量为2136个,∴前10天的总需求量为2136+229=2365(个),∵前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量,∴,解得19≤m<21,∵m为正整数,∴m的值为20或21;(3)由(2)知,m最小值为20,∴第4天的销售量即供应量为y1=4×20+150﹣20=210,∴第4天的销售额为210×100=21000(元),而第12天的销售量即需求量为y2=﹣122+12×12+209=209,∴第12天的销售额为209×100=20900(元),答:第4天的销售额为21000元,第12天的销售额为20900元.。
2018初三数学第二章 分式方程的应用专项训练——工程问题(附答案详解)
2018初三数学第二章分式方程的应用专项训练——工程问题(附答案详解)1.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?2.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?3.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?4.某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?5.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?6.某校为美化校园,安排甲、乙两个工程队进行绿化.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在各自独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若绿化区域面积为1800m2,学校每天需付给甲队的绿化费用为0.4万元,每天需付给乙队的绿化费用为0.25万元,设安排甲队工作y天,绿化总费用为W万元.①求W与y的函数关系式;②要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?7.某地在进入防汛期间,准备对4800米长的河堤进行加固,在加固工程中,该地驻军出色地完成了任务,它们在加固600米后,采用了新的加固模式,每天加固的长度是原来的2倍,结果只用9天就完成了加固任务.(1)求该地驻军原来每天加固大坝的米数;(2)由于汛情严重,该驻军部队又接到了加固一段长4200米大坝的任务,他们以上述新的加固模式进行了2天后,接到命令,必须在4天内完成剩余任务,求该驻军每天至少还要再多加固多少米?8.徒骇河风景区建设是今年我市重点工程之一,某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务,问该工程公司新增工程机械后每天清淤多少方?9.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
2025年中考数学二轮复习专题:工程问题与方案问题训练
2025年中考数学二轮复习专题:工程问题与方案问题训练【工程问题】思考1 :车工班原计划每天生产50个零件,改进操作方法后,实际每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,设原计划车工班应该生产x个零件,则方程式可列为_______________思考2:单独干某项工程,甲队需100天完成,乙队需150天完成。
甲、乙两队合干50天后,设剩下的工程乙队干还需x天,则方程式可列为_______________ 例1 修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3300元.问:(1)甲、乙两队每天的费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?(限时训练第1题)【变式练习1】为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,甲工程队单独完成这项工程需要200天,且甲工程队每天的施工量是乙工程队的3倍.若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?【方案问题】例2 某商店计划一次购进两种型号的手机共110部,销售一部A型手机获利150元,销售一部B型手机获利100元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求商店共有多少种进货方案?(2)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.(限时训练第4题)【变式练习2】实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,要使(1)中所有方案获利相同,求m的值.【二元一次方程整数解类】例3 已知1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请你帮该物流公司设计最省钱的租车方案,并求出最少租车费.(限时训练第3题)【拓展提升】期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.工程问题与方案问题限时训练班级:______ 学号:____ 姓名:__________1、修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3300元.问:(1)甲、乙两队每天的费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?2.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?3、已知1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请你帮该物流公司设计最省钱的租车方案,并求出最少租车费.4、某商店计划一次购进两种型号的手机共110部,销售一部A型手机获利150元,销售一部B型手机获利100元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求商店共有多少种进货方案?(2)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.(此部分课堂完成)【变式练习1】为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,甲工程队单独完成这项工程需要200天,且甲工程队每天的施工量是乙工程队的3倍.若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?【变式练习2】实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,要使(1)中所有方案获利相同,求m的值.【拓展提升】期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.。
关于工程施工的数学题目
关于工程施工的数学题目1. 一辆工程车以60公里/小时的速度向东行驶,另一辆工程车以40公里/小时的速度向西行驶,如果它们相距500公里,那么它们相遇需要多长时间?2. 一座高楼的地基深度为30米,施工方需要在地基中挖掘一个10米宽、20米长、深度为5米的基坑,那么挖掘这个基坑需要多少方的土方量?3. 一辆起重机起重1000吨的货物,起重机的满载能力为2000吨,如果货物的重心位于离起重机25米的位置,那么起重机需要多大的力来平衡货物?4. 一根长20米的钢筋,施工方需要将其切割成10米和6米两段,那么切割后的剩余废料有多少米?5. 一根钢材的密度为7850公斤/立方米,长度为10米,如果其横截面积为0.02平方米,那么这根钢材的质量是多少?6. 一辆发电机每小时发电60千瓦时的电能,如果工地需要每天使用120千瓦时的电能,那么这台发电机需要连续发电多少小时?7. 一辆装有40方混凝土的混凝土搅拌车,混凝土搅拌机每分钟搅拌能力为0.5方,如果混凝土搅拌机全程以最大产能搅拌,那么需要多长时间才能将这40方混凝土搅拌完成?8. 一箱螺丝钉共有3000个,每个螺丝钉的直径为5毫米,如果施工方需要使用2500个螺丝钉,那么这些螺丝钉的总长度是多少?9. 一辆泵车起重能力为10吨,混凝土的密度为2400公斤/立方米,如果需要将25立方米的混凝土泵送到高楼的顶端,那么泵车需向上施加多大力来完成任务?10. 一家工程公司需借贷300万元资金来完成一个工程项目,如果银行的年利率为5%,那么工程公司每年需要支付多少利息?以上的数学题目都是和工程施工相关的实际问题,通过这些题目的解答,工程师和施工人员可以更好地理解和应用数学知识来解决工程领域中的实际问题。
同时,这些题目也能够帮助学生在学习数学的过程中,更加直观地理解数学知识的应用场景,提高数学学习的兴趣和学习成绩。
专题2-9二元一次方程组的应用大题专练(2)行程工程问题(重难点培优30题)-(0002)
【拔尖特训】2023-2024学年七年级数学下册尖子生培优必刷题【浙教版】专题2.9二元一次方程组的应用大题专练(2)行程工程问题(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(2012春·浙江温州·七年级统考期中)A、B两地相距36千米,甲从A地步行到B地,乙从B地步行到A 地,两人同时相向出发,4小时后两人相遇,6小时后,甲剩余的路程是乙剩余路程的2倍,求二人的速度.(用方程解)2.(2019春·浙江·七年级统考阶段练习)从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟,甲地到乙地全程多少km?3.(2021春·浙江宁波·七年级浙江省余姚市实验学校校考期中)代驾已成为人们酒后出行的常见方式,其计价规则如下表:小王和小张由于酒后出行,各自雇佣代驾,在同一地点约见,已知到达约见地点时他们的行车里程分别是6公里和8公里,两人所付代驾费相同.(1)求这两辆车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一个人早,所以提前到达约定地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的3倍,且比另一人的实际乘车时间多16分钟,计算两人各自的实际乘车时间.4.(2021春·浙江温州·七年级校考期中)某工地派96人去挖土和运土,如果平均每人每天挖土5m3或运土3m3,那么该怎样分配挖土和运土的人数,使挖出土的土刚好及时运走?5.(2022春·浙江杭州·七年级校考期中)西溪中学计划对新教学楼外墙进行粉刷装饰.若甲、乙两个装饰公司合作施工,则共需要6天完成,学校总共需要支付9.6万元;若甲装饰公司先单独施工2天,则乙装饰公司单独完成剩下的装饰工作还需要8天,学校总共需要支付9.2万元.(1)求甲、乙两个装饰公司平均每天分别收取的费用.(2)若设甲装饰公司每天完成的工作量为a,乙装饰公司每天完成的工作量为b,现在仅指定一家装饰公司独立完成施工,选择哪家公司的总费用最低,并求出最低费用.6.(2022春·浙江宁波·七年级校联考期中)今年,新型冠状病毒来势汹汹,疫情刻不容缓.某医用材料厂紧急召回放假的工人生产防病毒口罩,已知甲车间和乙车间共同生产3天可完成336万只,且甲车间比乙车间每天少生产56万只.(1)求甲车间和乙车间每天各生产防病毒口罩多少万只?(2)甲车间和乙车间准备共同完成840万只防病毒口罩的任务,在甲、乙车间合作生产了2天后,为了应对疫情的发展,医用材料厂的领导决定加快速度生产,结果余下的任务恰好用了5天完成,求该医用材料厂加快速度生产后的日产量比未加快速度的日产量多多少万只?7.(2020春·浙江衢州·七年级统考期中)春天来了,衢江河畔,鸟语花香,柳条摇曳.为给衢州市民提供更好的休闲锻炼环境,决定对衢江沿河步行道修建改造.据了解我市步行道改造工程路线约12千米,若该任务由甲、乙两工程队先后接力完成,甲工程队每天修建0.04千米,乙工程队每天修建0.02千米,则两工程队共需修建500天,求甲、乙两工程队分别修建步行道多少千米.根据题意,小刚同学列出了一个不完整的方程组{x+y=⋯0.04x+0.02y=⋯.(1)根据小刚同学所列的方程组,请你分别指出未知数x,y表示的意义.x表示;y表示;(2)小红同学的做法是:“设甲工程队修建步行道a千米,乙工程队修建步行道b千米”,请你利用小红同学设的未知数解决问题.8.(2020·浙江杭州·模拟预测)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)9.(黑龙江省齐齐哈尔市梅里斯区2021-2022学年七年级下学期期末数学试卷)甲乙二人分别从相距20千米的A,B两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米,求甲乙二人每小时各走多少千米?10.(江西省上饶市广丰区2020-2021学年七年级下学期期末数学试题)A、B两地的路段有一段上坡路和一段下坡路组成,某人步行的速度是:上坡4km/h、下坡5km/h,此人从A地到B地花了5h,从B返回A地时花了4.9h,求A、B两地的距离.11.(重庆市江津区12校联盟学校2021-2022学年七年级下学期5月月考数学试题)A、B两地相距6km,甲、乙两人从A、B两地同时出发,若同向而行,甲3h可追上乙;若相向而行,1h相遇.求甲、乙两人的平均速度各是多少?12.(湖南省张家界市民族中学2021-2022学年七年级下学期期中数学试题)某城市规定:出租车起步价所包含的路程为0~3km,超过3km的部分按每千米另收费.甲说:“我乘这种出租车走了11km,付了17元.”乙说:“我乘这种出租车走了23km,付了35元.”请你算一算:出租车的起步价是多少元?超过3km后,每千米的车费是多少元?13.(广西百色市靖西市2020-2021学年七年级上学期期末考试数学试题)甲乙二人相距21千米,二人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可以追上乙.求二人的平均速度各是多少?14.(安徽省亳州市涡阳县2021-2022学年七年级上学期期末数学试题)某体育场的环行跑道长400m,甲、乙分别以一定的速度练习徒步和骑自行车.如果反向而行,那么他们每隔30s相遇一次.如果同向而行,那么每隔90s乙就追上甲一次.甲、乙的速度分别是多少?15.(湖南省娄底市娄星区2021-2022学年七年级下学期期末数学试题)娄底市出租车收费规定:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.刘同学说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费11元.”李同学说:“我乘出租车从市政府到娄底火车站走了6.5千米,付车费15元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从家里到娄底南站(高铁站)走了9.5千米,应付车费多少元?16.(云南省昆明市八县区2020-2021学年七年级下学期期末数学试题)甲、乙两名同学都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔32分钟相遇一次;如果同时同地出发,同向而行,每隔92分钟快的追上慢的一次,已知甲比乙跑得快,求甲、乙两名同学每分钟各跑多少圈?17.(安徽省马鞍山市2020-2021学年七年级下学期期末数学试题)某高速铁路一路段正在建设中,甲、乙两个工程队计划参与其中一项工程建设,甲队单独施工30天,恰好完成了该项工程的13,若这时乙队加入,则两队还需同时施工15天,才能完成该项工程.(请用方程或不等式的知识解决以下问题)(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少还需施工多少天才能完成该项工程?(请用方程或不等式知识解答以下问题)18.(2021年江苏省泰州市中考数学真题试卷)甲、乙两工程队共同修建150km 的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?19.(期末复习模拟试卷(五)-2020-2021学年七年级数学下学期期末专项复习(苏科版))长江是我们的母亲河,金港新区为了打造沿江风景,吸引游客搞活经济,将一段长为180米的沿江河道整治任务交由A 、B 两工程队先后接力完成.A 工作队每天整治12米,B 工程队每天整治8米,共用时20天,求A 、B 两工程队分别整治河道多少米?(1)根据题意,七(1)班甲同学列出的方程组如下.根据甲同学所列的方程组,请你分别指出未知数x 、y 表示的意义:{x +y =2012x +8y =180,x 表示______.y 表示______. (2)如果乙同学直接设A 工程队整治河道x 米,B 工程队整治河道y 米,列出了一个方程组,求A 、B 两工程队分别整治河道多少米,请你帮助他写出完整的解答过程.20.(辽宁省锦州市2020-2021学年八年级上学期期末数学试题)在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了个不完整的二元一次方程组{p+q= ,150p+200q= .张红列出的这个不完整的方程组中未知数p表示的是______,未知数q表示的是_________;张红所列出正确的方程组应该是__________;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?21.(四川省南充市2018-2019学年七年级下学期教学质量检测数学试题)一家商铺进行维修,若请甲、乙两名工人同时施工,6天可以完成,共需支付两人工资5700元,若先请甲工人单独做4天,再请乙工人单独做7天也可完成,共需付给两人工资5450元(1)甲、乙工人单独工作一天,商铺应分别支付多少工资?(2)单独请哪名工人完成,商铺支付维修费用较少?22.(安徽省阜南县文勤学校2023-2024学年七年级上学期数学第三次月考试题)阅读理解:为打造陶子河沿岸的风景带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成,A工程队每天整治24米,B工程队每天整治16米,共用20天.(1)根据题意,甲乙两个同学分别列出了尚不完整的方程组如下:甲:{x+y=_________24x+16y=_________乙:{x+y=_________ x24+y16=_________根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且补全甲、乙两名同学所列的方程组:甲:x表示___________________,y表示_______________;乙:x表示___________________,y表示_______________;(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?23.(专题21环形跑道问题-【微专题】2023-2024学年七年级数学上册常考点微专题提分精练(人教版))小明与哥哥在环形跑道上练习长跑,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥追上小明,并且比小明多跑20圈.求:(1)若哥哥的速度为8米/秒,小明的速度为4米/秒,环形跑道的长度为多少米?(2)若哥哥的速度为6米/秒,则小明的速度为多少?(3)哥哥的速度是小明的多少倍?(4)哥哥追上小明时,小明跑了圈(直接写出答案)24.(山东省济宁市嘉祥县宗圣中学2021-2022学年七年级下学期5月月考数学试题)张老师组织七年级(1)班的学生乘客车去环境自然保护区去参观,前三分之二路段为平路,其余路段为坡路,已知客车在平路上行驶的平均速度为60千米/时,在上坡路行驶的平均速度为40千米/时.客车从学校到环境自然保护区走平路和上坡路,一共行驶了4.2时.(1)求客车在平路和上坡路上各行驶多少时间?(2)第二天原路返回,发现回程比去时少用了0.9时,问客车在下坡路行驶的平均速度是多少?25.(河北省石家庄市晋州市2021-2022学年七年级下学期期中数学试卷)如图,A,B两地由公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是到A地距离的2倍,现该食品厂从A地购买原料,全部制成食品制作过程中有损耗)卖到B地,两次运输(第一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元.已知公路运费为1.5元/(千米⋅吨),铁路运费为1元/(千米⋅吨).(1)求该食品厂到A地,B地的距离分别是多少千米?(2)求该食品厂买进原料及卖出食品各多少吨?(3)若该食品厂此次买进的原料每吨花费5000元,要想该批食品销售完后工厂共获利863800元,求卖出的食品每吨售价是多少元?(利润=总售价−总成本−总运费)26.(沪科版2021-2022学年七年级数学上册第三章一次方程与方程组专题10二元一次方程组的应用(专题强化-提高))马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米.如下是关于某市今年全程马拉松比赛的部分信息.①在起点,沿途每隔5千米处及终点提供水,运动饮料,水果等补给,最后两个补给站之间为2千米;①在起点,终点和沿途等距离设置若干个固定医疗站若每个补给站安排1个值班员,每个固定医疗站或两站重合的都安排2个值班员,则需要64个值班员;若每个补给站安排2个值班员,每个固定医疗站或两站重合的都安排3个值班员,则需要99个值班员.(1)本次马拉松比赛共设置______个补给站;(2)沿途中,每两个固定医疗站之间距离是多少?(3)沿途中,补给站和固定医疗站重合处距离起点多少千米?27.(2021春·浙江杭州·七年级统考期末)甲地到乙地全程5.5km,小明从甲地走路去乙地,其中有一段上坡路、一段平路和一段下坡路.如果上坡路的平均速度为2km/h ,下坡路的平均速度为5km/h .(1)若小明走路从甲地到乙地需74小时,从乙地走路到甲地需1910小时,来回走平路分别都用了14小时,求出小明从甲地到乙地的上坡路和下坡路的路程(请用方程组的方法解).(2)若小明从甲地到乙地,平路上的平均速度为v (km/h ),上坡和下坡走的路程分别为1.5km 和2km .若小明从乙地到甲地所用的时间与从甲地到乙地的时间相同,求小明从乙地到甲地平路上走的平均速度(用含v 的代数式表示).28.(2021春·浙江·七年级期末)甲、乙两车分别从A,B 两地同时出发,相向而行,其终点分别为B,A 两地.两车均先以100千米每小时的速度行驶,再以80千米每小时的速度行驶,且甲车以两种速度行驶的路程相等,乙车以两种速度行驶的时间相等.甲车从A 地到达B 地行驶的总时间为a 小时,乙车从B 地到达A 地行驶的总时间为b 小时.(1)若乙车行驶的总时间为4小时,求a 的值;(2)若乙车比甲车早到达0.25小时,求a,b 的值.29.(2022秋·浙江·七年级专题练习)甲、乙两人同时从A ,B 两地出发赶往目的地B ,A ,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶,出发后经2.5小时两人相遇. 已知在相遇时甲比乙多行驶了75千米,相遇后经过1小时甲到达B 地.(1)求甲、乙两人行驶的速度.(2)在整个行程中,问甲、乙行驶多少小时,两车相距35千米.30.(2020·浙江金华·七年级期中)“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/千米计算,耗时费按q 元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:(1)求p ,q 的值;(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数?。
中考数学-工程问题
1。
甲、乙两人共同加工一批零件,8小时可以完成任务。
如果甲单独加工,便需要12小时完成。
现在甲、乙两人共同生产了 2.4小时,甲被调出做其他工作,由乙继续生产了420个零件才完成任务。
问乙一共加工零件多少个?解:甲乙共同做的占全部任务的2.4/8=3/10,乙后做的420个对应于1-3/10=7/10,全部任务为420/(7/10)=600个。
甲做的占2.4/12=1/5,乙做了4/5,600*4/5=4 80个。
2.某工程先由甲单独做63天,再由乙单独做28天即可完成。
如果由甲、乙两人合作,需48天完成。
现在甲先单独做42天,然后再由乙来单独完成,那么还需要多少天?解:甲、乙两人合作,需48天完成,则甲乙合作的工作效率为1/48;甲单独做63天,再由乙单独做28天,相当于甲乙合作28天,再由甲单独做63-28=35天,合作28天可以完成28*(1/48)=7/12,剩余1-7/12=5/12,甲35天完成,甲的工作效率为(5/12)/35=1/84,那么乙的工作效率为1/48-1/84=1/112;现在甲先单独做42天,那么可完成任务的42*1/84=1/2,剩余1-1/2=1/2,由乙来单独完成,那么需要(1/2)/(1/112)=56天。
3.有一条公路,甲队单独修需10天,乙队独修需12天,丙队独修需15天。
现在让3个人合修,但中间甲队撤出去到另外工地,结果用了6天才把这条公路修完。
当甲队撤出后,乙、丙两队又共同合修了多少天才完成?解:甲队单独修需10天,乙队独修需12天,丙队独修需15天,则甲、乙、丙三队的工作效率分别为1/10、1/12、1/15;乙、丙合作工作效率为1/12+1/15=3/ 20;乙、丙合作6天可完成6*3/20=9/10,剩余1-9/10=1/10,这1/10的任务,甲需要干(1/10)/(1/10)=1天,说明三队合作1天,后面5天为乙、丙合作。
所以,当甲队撤出后,乙、丙两队又共同合修了5天才完成。
中考应用题之工程问题
中考应用题之工程问题一.解答题(共10小题)1.新型冠状病毒疫情发生后,全社会积极参入疫情防拉工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.(1)求甲、乙两个工厂每天各生产多少万只口罩?(2)在生产过程中甲、乙合作生产5天后,甲厂因设备故障暂停生产,问乙厂至少还需要工作多少天才能完成任务?2.佛顶山大道改造,工程招标时,工程指挥部收到甲、乙两个工程队的投标书,根据甲、乙两队的投标书测算:若让甲队单独完成这项工程需要40天;若由乙队先做10天,剩下的工程由甲、乙两队合作20天才可完成.(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期,若安排两队共同完成这项工程需要多少天?3.某工厂准备今年春季开工前美化厂区,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?4.深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?5.某段公路施工,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍,由甲、乙两工程队合作20天可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此项过程由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程,已知甲工程队每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64万元,则甲工程队至少要单独施工多少天?6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下,可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师每天到工厂进行技术指导,并担负每天5元的午餐补助,请帮公司需出一种既省时又省钱的加工方案.8.宝安区某街道对长为20千米的路段进行排水管道改造后,需对该段路面全部重新进行修整,甲、乙两个工程队将参与施工,已知甲队每天的工作效率是乙队的2倍,若由甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天.(1)求甲队每天可以修整路面多少米?(2)若街道每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算55万元,为了不超出预算,至少应该安排甲队参与工程多少天?9.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x天做完其中一部分,乙队用了y天做完另一部分,若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?10.为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的.(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?中考应用题之工程问题参考答案与试题解析一.解答题(共10小题)1.新型冠状病毒疫情发生后,全社会积极参入疫情防拉工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.(1)求甲、乙两个工厂每天各生产多少万只口罩?(2)在生产过程中甲、乙合作生产5天后,甲厂因设备故障暂停生产,问乙厂至少还需要工作多少天才能完成任务?【解答】解:(1)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,所以1.5x=6,答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只;(2)设乙厂还需要工作y天才能完成任务,由题意得:(6+4)×5+4y≥100,解得:y≥12.5,答:乙厂至少还需要工作12.5天才能完成任务.2.佛顶山大道改造,工程招标时,工程指挥部收到甲、乙两个工程队的投标书,根据甲、乙两队的投标书测算:若让甲队单独完成这项工程需要40天;若由乙队先做10天,剩下的工程由甲、乙两队合作20天才可完成.(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期,若安排两队共同完成这项工程需要多少天?【解答】解:(1)设安排乙队单独完成这项工程需要x天,依题意得:+=1,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:安排乙队单独完成这项工程需要60天.(2)设安排两队共同完成这项工程需要y天,依题意得:+=1,解得:y=24.答:安排两队共同完成这项工程需要24天.3.某工厂准备今年春季开工前美化厂区,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据题意得:﹣=6,解得:x=40.经检验,x=40是原方程的解,∴2x=80.答:甲工程队每天能完成绿化的面积为80m2,乙工程队每天能完成绿化的面积为40m2.(2)设安排甲工程队工作y天,则乙工程队工作=(50﹣2y)天,根据题意得:0.4y+0.5(50﹣2y)≤10,解得:y≥25.答:至少应安排甲队工作25天.4.深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?【解答】解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,依题意有+=1,解得x=12,经检验,x=12是原方程的解.故甲工程队单独完成此工程需要12天;(2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100﹣a)瓶,依题意有6a+9(100﹣a)≤780,解得a≥40.故A种清洁剂最少应购买40瓶.5.某段公路施工,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍,由甲、乙两工程队合作20天可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此项过程由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程,已知甲工程队每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64万元,则甲工程队至少要单独施工多少天?【解答】解:(1)设乙单独完成此项工程需要x天,则甲单独完成需要2x天,根据题意可得:+=1,解得:x=30,经检验x=30是原方程的解.故x+30=60,答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)设甲工程队要单独施工m天,则甲、乙两工程队要合作施工=天,由题意得:m+×3.5≤64,解得:m≥36,答:甲工程队至少要单独施工36天.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?【解答】解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下,可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师每天到工厂进行技术指导,并担负每天5元的午餐补助,请帮公司需出一种既省时又省钱的加工方案.【解答】解:(1)设乙工厂每天能加工x件新产品,则甲工厂每天能加工x件新产品,根据题意得:﹣=20,解得:x=24,经检验,x=24是原方程的解,∴x=×24=16.答:乙工厂每天能加工24件新产品,甲工厂每天能加工16件新产品.(2)甲工厂独立完成需要的费用为×(80+5)=5100(元);乙工厂独立完成需要的费用为×(120+5)=5000(元);甲、乙合作完成需要的费用为×(80+120+5)=4920(元).∵5100>5000>4920,∴甲、乙两个厂家合作完成省时省钱.8.宝安区某街道对长为20千米的路段进行排水管道改造后,需对该段路面全部重新进行修整,甲、乙两个工程队将参与施工,已知甲队每天的工作效率是乙队的2倍,若由甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天.(1)求甲队每天可以修整路面多少米?(2)若街道每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算55万元,为了不超出预算,至少应该安排甲队参与工程多少天?【解答】解:(1)设甲队每天可以修整路面x米,则乙队每天可以修整路面x米,根据题意,得+5=解得x=160.经检验,x=160是原方程的根,且符合题意.答:甲队每天可以修整路面160米;(2)设应该安排甲队参与工程y天,根据题意,得0.4y+×0.25≤55解得y≥75.故至少应该安排甲队参与工程75天.9.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x天做完其中一部分,乙队用了y天做完另一部分,若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?【解答】解:(1)设乙工程队单独做需要x天完成任务,由题意,得+×20=1,解得:x=100,经检验,x=100是原方程的根.答:乙工程队单独做需要100天才能完成任务;(2)根据题意得+=1.整理得y=100﹣x.∵y<70,∴100﹣x<70.解得x>12.又∵x<15且为整数,∴x=13或14.当x=13时,y不是整数,所以x=13不符合题意,舍去.当x=14时,y=100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.10.为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的.(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?【解答】解:(1)设甲队每天完成x千米,则乙队每天完成(x﹣0.4)千米.根据题意得:=×,解得:x=2.4.经检验,x=2.4是原方程的解.2.4﹣0.4=2.答:甲队每天修2.4千米,乙队每天修2千米.(2)设甲队改造a千米,则乙队改造(24﹣a)千米.根据题意得×0.8+×0.5≤7,解得:a≤12.=5,答:甲工程队至多施工5天.第11页(共11页)。
初三数学工程问题(解答题)集合
初三数学工程问题(解答题)集合1.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂。
为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂。
(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时。
若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?2.为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只。
在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天。
(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?3.为创建国家级生态市,遵义市政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包.已知甲工程队每天的施工量是乙工程队的3倍,若先让乙工程队单独施工14天后甲工程队加入,甲、乙两个工程队合作4天后,可完成总工程的。
(1)求甲工程队单独完成这项工程需要多少天;(2)甲工程队每天需支付的工程款为10万元,乙工程队每天需支付的工程款为3万元,若工程费用不超过190万元,则甲工程队最多工作多少天?4.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产。
为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变。
中考数学分式方程行程、工程类应用题
分式方程行程、工程类应用题一•选择题(共2小题)1•一项工程,甲单独做ah完成,乙单独做bh完成,甲、乙两人一起完成这项工程所需的时间为()" 1 . … z , x—a+b, ab ,A • ------- hB • (a+b)h C. ------------ h D . ha+b ab a+b2.轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为()二小时B厶「小时D •屮」小时x2- 4二•解答题(共8小题)3・A、B两种型号的机器加工同一种零件,件,A型机器加工400个零件所用时间与已知A型机器比B型机器每小时多加工20个零B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.4•甲、乙两同学的家与学校的距离均为3000米•甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校. 已知甲步行速度是乙骑自行车速度的丄,公交车的速度是乙骑2自行车速度的2倍•甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟. (1 )求乙骑自行车的速度;(2 )当甲到达学校时,乙同学离学校还有多远?找家教,去师大中南湖大家教中心QQ 13574919795.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完全任务.(1 )求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?6.汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的亠,这时乙队加入,两队还需同时施工15天,才能完成该项工3程.(1 )若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?7•—项工程,甲,乙两公司合作,6天可以完成,共需付工费51000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的 1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1 )甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?&某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的2;甲队每天的施3工费用为8.4万元,乙队每天的施工费用为 5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.9•某公司在工程招标时,接到甲、乙两个工程队的投标书•每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.10•一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成•从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1 )甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问: 租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.分式方程行程、工程类应用题参考答案与试题解析一 •选择题(共2小题)1. ( 2016春?东港市期末)一项工程,甲单独做 a h 完成,乙单独做b h 完成,甲、乙两人 一起完成这项工程所需的时间为()" 1 . … z , x — a+b , ab ,A . ------- hB . (a+b ) h C. ------------ h D . h a+b ab a+b【解答】 解:设甲、乙两人一起完成这项工程所需的时间为 xh ,解得x =2. ( 2010春?桃源县校级期末)轮船顺流航行 40千米由A 地到达B 地,然后又返回 A 地, 已知水流速度为每小时 2千米,设轮船在静水中的速度为每小时 x 千米,则轮船往返共用的 时间为( )【分析】设轮船在静水中的速度为每小时 x 千米,根据轮船顺流航行 40千米由A 地到达B地,然后又返回 A 地,已知水流速度为每小时 2千米,可求出轮船往返共用的时间. 【解答】 解:设轮船在静水中的速度为每小时 x 千米, 根据题意得:「+二=「工 故选D .【点评】本题考查分式方程的应用,这是个行程问题,关键知道时间 求解. 二.解答题(共8小题)3. ( 2016?长春)A 、B 两种型号的机器加工同一种零件,已知 A 型机器比B 型机器每小时 多加工20个零件,A 型机器加工400个零件所用时间与 B 型机器加工300个零件所用时间 相同,求A 型机器每小时加工零件的个数.【分析】本题先根据题意列出方程即•••甲、乙两人一起完成这项工程所需的时间为 【点评】本题主要考查一元一次方程的应用. 即工作总量为1. 二 h .a+b解题的关键是由题意得出列出方程的等量关系A° I 小时B .—小时80小时80K小时□■b 护「,从而可列式,解出即可.则有【分析】关键描述语为:A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400十A型机器每小时加工零件的个数=300十B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,贝U B型机器每小时加工零件(X- 20)个. 根据题意列方程得:丄I = 「一x X- 20解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4. ( 2016?娄底)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校. 已知甲步行速度是乙骑自行车速度的二,公交车2的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1 )求乙骑自行车的速度;(2 )当甲到达学校时,乙同学离学校还有多远?【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是'x米/分钟,公交车的速2度是2x米/分钟,根据题意列方程即可得到结论;(2) 300 X 2=600米即可得到结果.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是1x米/分钟,公交车2的速度是2x米/分钟,根据题意得;+「一' - 2,2 x解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2 )T 300 X 2=600 米,答:当甲到达学校时,乙同学离学校还有600米.【点评】此题主要考查了一元一次方程的应用,分式方程的应用,根据题意得到乙的运动速度是解题关键.5. (2016?广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%, 结果提前4天完全任务.(1 )求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【分析】(1)设原计划每天修建道路x米,则实际每天修建道路 1.5x米,根据题意,列方程解答即可;(2 )由(1)的结论列出方程解答即可.【解答】解:(1)设原计划每天修建道路x米,可得:一:一".,,x 1. 5K解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2 )设际平均每天修建道路的工效比原计划增加y% ,可得:,100 _10Q+100y%解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数, 找出合适的等量关系,列方程.6. (2016?湖北襄阳)汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的丄,这时乙队加入,两队还需同时施工153天,才能完成该项工程.(1 )若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【分析】(1)直接利用队单独施工30天完成该项工程的这时乙队加入,两队还需同时3施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,•••甲队单独施工30天完成该项工程的-,3•••甲队单独施工90天完成该项工程,根据题意可得:— 15(+ )=1 ,3 90 x解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2 )设乙队参与施工y天才能完成该项工程,根据题意可得:丄x 36+y X——> 1,90 30解得:y》18,答:乙队至少施工18天才能完成该项工程.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.7. ( 2016?宜春模拟)一项工程,甲,乙两公司合作,6天可以完成,共需付工费51000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的 1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1 )甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?【分析】(1)设甲公司单独完成需x天,则乙单独完成需要 1.5x天,接下来,依据甲,乙两公司合作,6天可以完成列方程求解即可;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为 (y- 1500)元,然后根据甲、乙两公司合作6天的施工费为51000元列出方程,从而可求得甲、乙两公司单独施工每天的施工费,然后再求得各自需要的总费用即可.【解答】解:(1)设甲公司单独完成需x天,则乙单独完成需要 1.5x天.根据题意得:-+ =-,x 6解得:x=10经检验x=10是原方程的解•••甲需10天,乙公司需15天.(2)设甲公司每天的施工费为y元,可得方程:6y+6 (y- 1500) =51000解得y=5000 .则y- 1500=3500•甲公司费用:5000 X 10=50000元乙公司费用:3500 X 15=52500元•甲公司施工费较少.【点评】本题主要考查的是分式方程和一元一次方程的应用,找出题目的相等关系,并列出方程是解题的关键.& ( 2016?畐建模拟)某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的9―;甲队每天的施工费用为8.4万元,乙队每天的施工费用为 5.6万元.3(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.【分析】(1 )设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要—x天,根3据由甲队先做30天,剩下的工程由乙队做45天可完成”列方程求解.(2)求出甲、乙两队施工天数得出需要施工费用,再与500万元进行比较,即可得出答案. 【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,3根据题意得:1 130 X +45 X 一=1X解得:x=90,经检验x=90分式方程的解,则甲队单独完成这项工程需要的天数是:90X2=60 (天).3答:甲需要60天,乙需要90天.(2)设甲、乙两队合作,完成这项工程需y天,则:=1,解得y=36,需要施工费用(8.4+5.6)X 36=504 (万元).•/ 504 > 500,•••工程预算的费用不够用,需增加预算4万元.【点评】此题主要考查了分式方程的应用,列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系,列出方程.9. (2016春?靖江市期末)某公司在工程招标时,接到甲、乙两个工程队的投标书•每施工一天,需付甲工程队工程款 1.5万元,付乙工程队工程款 1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天•求得规定天数的等量关系为:甲乙合作4天的工作总量+乙做(规定天数-4)天的工作量=1 , 据此列出方程并解答;(2)根据(1)的结论可以得到三种施工方案,分别求得每一施工方案的费用,然后比较,取其费用最少的方案即可.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.解得:x=20.经检验:x=20是原分式方程的解.•••( x+5) =25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天;(2)由(1)得到:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25 天.这三种施工方案需要的工程款为:方案1:1.5X 20=30 (万元);方案2: 1.1X(20+5)+5X 0.3=29 (万元);方案3: 1.5X 4+1.1 X 20=28 (万元).•/ 3027.5 >30 > 28,•••第三种施工方案最节省工程款.【点评】本题考查了列分式方程解实际问题的运用,列一元一次方程解实际问题的运用,有理数大小比较的运用,解答时求出工程的施工规定天数是关键.10. (2016春?长沙校级期中)一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成.从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1 )甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问: 租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.【分析】(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.【解答】解:(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,可得: 解得:x=15,经检验x=15是原方程的解,答:甲15天,乙30天;(2)设甲车每天租金为a元,乙车每天租金为b元,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:f10a+10b-65000\a-b=1500 '解得:严000,[b=2500①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15X 4000=60000元;③单独租乙车需要的费用为:30X 2500=75000元;综上可得,单独租甲车租金最少.【点评】此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.考点卡片1. 二元一次方程组的应用(一)、列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.学习必备欢迎下载(2 )设元:找出题中的两个关键的未知量,并用字母表示出来.(3 )列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)、设元的方法:直接设元与间接设元.即为间接设元.无论怎当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,样设元,设几个未知数,就要列几个方程.2•分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率= 工作量工作时间列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3. —元一次不等式的应用(1 )由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以至少” 最多” 不超过”、不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.。
中考数学专题:实际应用题带答案
1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。
重庆市数学中考23题-应用题(1)
2015年数学中考预测-23题 应用题一、工程问题: 1.(13A 23.)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元。
在保证工程质量的前提下,为了缩短工期,拟安排甲乙两队分工合作完成这项工程。
在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲乙两队的施工时间按月取整数).2.(13B 23、)4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小车运送,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运m 200顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 21次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值. 3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?4.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗。
2024年陕西省中考数学试题含答案解析
2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 3−倒数是( )A. 3B. 13C. 13−D. 3−【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵1313 −×−=, ∴3−的倒数是13−. 故选C2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.的【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3. 如图,AB DC ∥,BC DE ∥,145B ∠=°,则D ∠的度数为( )A. 25°B. 35°C. 45°D. 55°【答案】B【解析】 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=°,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=°∴,145B ∠=°,18035C B ∴∠=°−∠=°,∥ BC DE ,35D C ∴∠=∠=°.故选B .4. 不等式()216x −≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥【答案】D【解析】【分析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解.【详解】解:()216x −≥,去括号得:226x −≥,移项合并得:28x ≥,解得:4x ≥,故选:D .5. 如图,在ABC 中,90BAC ∠=°,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断.【详解】解:由图得ABD △,ABC ,ADC △,ADE 为直角三角形,共有4个直角三角形.故选:C .6. 一个正比例函数图象经过点()2,A m 和点(),6B n −,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =−C. 13y x =D. 13y x =− 【答案】A【解析】【分析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出,A B 的坐标,进而利用待定系数法求出函数表达式即可.【详解】解:∵点A 与点B 关于原点对称,∴6,2m n ==−,∴()2,6A ,()2,6B −−,设正比例函数的解析式为:()0y kx k =≠,把()2,6A 代入,得:3k =, ∴3y x =;故选A .7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )的A. 2B. 3C. 52D. 83【答案】B【解析】 【分析】本题考查了相似三角形的判定和性质,正方形的性质.证明ADH FGH ∽△△,利用相似三角形的性质列式计算即可求解.【详解】解:∵正方形ABCD ,6AB =,∴6AB AD CD ===,∵正方形CEFG ,2CE =,∴2CE GF CG ===,∴4DG CD CG =−=,由题意得AD GF ∥,∴ADH FGH ∽△△, ∴AD DH GF GH=,即624DH DH =−, 解得3DH =,故选:B .8. 已知一个二次函数2y ax bx c ++的自变量x 与函数y 的几组对应值如下表,x …4− 2− 0 3 5 … y … 24− 8− 0 3− 15− …则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象对称轴是直线1x =【答案】D【解析】【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.的【详解】解:由题意得4280933a b c c a b c −+=− = ++=− ,解得102a c b =− = =,∴二次函数的解析式为()22211y x x x =−+=−−+,∵10a =−<,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线1x =,故选项D 符合题意;当01x <<时,y 的值随x 的值增大而增大,当1x >时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为()1,1且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D . 第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab −=_______________.【答案】a (a ﹣b ).【解析】【详解】解:2a ab −=a (a ﹣b ). 故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)【答案】0【解析】【分析】本题考查有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果.【详解】解:由题意,填写如下:()()10102020++−=++−=,,满足题意;故答案为:0.11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.【答案】90°##90度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=°,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是 BC所对的圆周角,BOC ∠是 BC 所对的圆心角, 2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=° ,2180A OBC OCB ∴∠+∠+∠=°,OB OC = ,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=°,22180A OBC ∴∠+∠=°,90A OBC ∴∠+∠=°.故答案为:90°.12. 已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y +________0. 【答案】<##小于【解析】【分析】本题主要考查了反比例函数的性质,先求出152y =,25y m=−,再根据01m <<,得出25y <−,最后求出120y y +<即可.【详解】解:∵点()12,A y −和点()2,B m y 均在反比例函数5y x =−的图象上, ∴152y =,25y m=−, ∵01m <<,∴25y <−,∴120y y +<.故答案为:<.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.【答案】60【解析】【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点C 作C M A B ⊥,CN BF ⊥,根据等边对等角结合平行线的性质,推出ABC CBF ∠=∠,进而得到CM CN =,得到CBF ACE S S = ,进而得到四边形EBFC 的面积等于ABC S ,设AM x =,勾股定理求出CM 的长,再利用面积公式求出ABC 的面积即可.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BF AC ∥,∴ACB CBF ∠=∠,∴ABC CBF ∠=∠,∴BC 平分ABF ∠,过点C 作C M A B ⊥,CN BF ⊥,则:CM CN =, ∵11,22ACE CBF S AE CM S BF CN =⋅=⋅ ,且BF AE =, ∴CBF ACE S S = ,∴四边形EBFC 面积CBF CBE ACE CBE CBA S S S S S =+=+= ,∵13AC =,∴13AB =,设AM x =,则:13BM x =−,由勾股定理,得:22222CM AC AM BC BM =−=−,∴()2222131013x x −=−−, 解:11913x =,∴12013CM =, ∴1602CBA S AC CM ⋅ , ∴四边形EBFC 的面积为60.故答案为:60.三、解答题(共13小题,计81分。
专题06 方程与不等式的实际运用【考点精讲】【无答案】
题型1:工程问题【例1】(2021·辽宁丹东市·中考真题)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?【例2】(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?1.(2021·北京中考真题)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,专题06 方程与不等式的实际运用知识导航知识精讲针对训练则分配到A生产线的吨数与分配到B生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn的值为______________.题型2:行程问题【例3】(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【例4】(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.1.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为10km 的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/h x ,则下列方程中正确的是( ) A .1010121.2x x -= B .10100.21.2x x -= C .1010121.2x x-= D .10100.21.2x x-= 题型3:历史文献问题【例5】(2021·四川成都市·中考真题)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩C .D .【例6】(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .D .305310x y x y+=⎧⎪⎨+=⎪⎩1.(2021·湖南永州市·中考真题)中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈针对训练针对训练三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x 人参与组团,物价为y 元,则以下列出的方程组正确的是( ) A .9465x y y x -=⎧⎨-=⎩B .9465x y x y -=⎧⎨-=⎩C .9465y x y x -=⎧⎨-=⎩D .9465y x x y -=⎧⎨-=⎩2.(2021·辽宁大连市·中考真题)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹每人六竿多十四,每人八竿恰齐足”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知与多少人和竹竿每人6竿,多14竿;每人8竿,恰好用完”若设有牧童x 人,根据题意,可列方程为__________.3.(2021·湖北中考真题)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)题型4:数字问题【例7】(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n .题型5:增长率问题【例8】(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( ) A .()0.6310.68x += B .()20.6310.68x += C .()0.63120.68x +=D .()20.63120.68x +=【例9】(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人. (1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?1.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.2.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( )A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=题型6:几何图形问题【例10】如图,一幅长、宽的矩形图案,其中有两条互相垂直的彩条,竖直彩条的宽度是水平彩条宽度的2倍,若图案中两条彩条所占面积是整个矩形图案面积的.求彩条的宽度.1.《生物多样性公约》第十五次缔约方大会(COP 15)将于2021年10月11日至24日在云南省昆明市举办.昆明某景观园林公司为迎接大会召开,计划在一个长35米、宽20米的矩形场地上要开辟一横两纵三条等宽的小道(如图),其余部分种植草坪,草坪面积为627平方米.设小道的宽为x 米,则可列方程为________.题型7:方案问题【例11】某制纸厂生产A 型、B 型两种不同规格的纸,需用甲、乙两种不同的原料.若甲原料成本为0.58cm 6cm 38针对训练针对训练元/m3,乙原料成本为1元/kg,其它相关数据如下表所示:甲原料/m3乙原料/kg售价/元每百张A型纸124每百张B型纸 1.235(1)若生产这两种纸需用甲原料108m3、乙原料240kg,则这两种规格的纸各多少百张?(2)若该厂生产A型纸a百张,则生产这种A型纸的利润是多少元(用含a的代数式表示)?(利润=售价﹣成本)(3)该厂发现,当制纸总量超过10000百张时,需额外支出8800元的设备维护费,现该厂接到一笔订单,要求生产A型纸的数量是B型纸数量的2倍,若该厂希望获得13200元的利润,则有哪几种生产方案?【例12】雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)全部物资可用甲型车8辆,乙型车5辆,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)已知三种车的总辆数为14辆,你有哪几种安排方案刚好运完?哪种运费最省?1.(2021·四川泸州市·中考真题)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.题型8:利润问题【例13】(2021·黑龙江绥化市·中考真题)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买,A B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的25,则在购买方案中最少费用是_____元.针对训练【例14】(2021·山东威海市·中考真题)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?针对训练1.(2021·山东济宁市·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?题型9:一般问题【例15】(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩【例16】(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B 型预处置点位进行初筛、压缩等处理.已知一个A 型点位比一个B 型点位每天多处理7吨生活垃圾. (1)求每个B 型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?题型8:分段问题【例17】(2021·广西贺州市·中考真题)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m 时,按一级单价收费;当每户每月用水量超过312m 时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m ,缴纳水费32元.七月份因孩子放假在家,用水量为314m ,缴纳水费51.4元. (1)问该市一级水费,二级大费的单价分别是多少? (2)某户某月缴纳水费为64.4元时,用水量为多少?【例18】为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分 6.000.80已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?。
最新初三数学应用题(工程问题)训练题
初三数学应用题(工程问题)训练题初中数学(工程问题)训练题基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.在题目中未给出工作总量时,设工作总量为单位1。
1.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?2.某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,•甲,乙两工程队再合作20天完成.(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x<15,y<70,求x,y.3.某单位分三期完成一项工程,第一期用了全部工程时间的40%,第二期用了全部工程时36%,第三期工程用了24天,完成全部工程共用了多少天?4.一个水箱有两个塞子,拔出甲塞,箱里的水5分钟流完,拔出乙塞,7分钟流完,若两塞拔出2分钟,一共放水1200升,再把甲塞塞上,问还需多少分钟,把水箱里的水放完?5.一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。
如果甲完成任务的31以后,由乙完成其余部分,则两人共用1小时50分钟。
间由甲、乙两人单独完成分别要用几小时?6.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的65?7.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?8.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;a)如果单独打开进水管,每小时可以注入的水占水池的几分之几?b)如果单独打开出水管,每小时可以放出的水占水池的几分之几?c)如果将两管同时打开,每小时的效果如何?如何列式?d)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?e)9.水池中一根进水管、一根出水管同时打开可以将满池的水在60分钟放完,如果单独打开进水管,需要90分钟将水池注满,问单独打开出水管多少时间,可以将满池的水放完?。
初中数学的工程问题专题总结(2)
数学中工程问题一、基本概念理解。
工作量:完成工作的多少,可以是全部工作量,为了方便解题,一般用数“ 1表示,也可以是部分工作量,常用分”数表示。
例如工程的一半可表示成 1 / 2,工程的五分之一可表示成 1 /5。
常用的数量关系式1:小明一分钟能写15 个汉字,请问五分钟他能写多少个汉字?【解题关键点】工作量 = 工作效率× 工作时间, 15× 5=75(个)。
常用的数量关系式2:做 500 个零件,平均每天做50 个,几天可以做完?【解题关键点】工作时间= 工作量÷ 工作效率, 500÷50=10 (天)。
常用的数量关系式3: 4 小时做了100 个零件,平均每小时做多少个零件?【解题关键点】工作效率= 工作量÷ 工作时间,,100 ÷4=25(个)。
常用的数量关系式4:甲一天能生产10 个产品,乙一天能生产20 个产品,问甲、乙一天一共生产多少个产品?【解题关键点】总工作量= 各份工作量之和, 10+20=30 (个)。
二、合作完工问题。
通过计算工效和,来算出工作时间。
工效和为所有工作人员的效率之和。
工作总量÷ 工效和 = 工作时间合作完工问题 1 :一项工程,由甲工程队单独做需20 天完成,由乙工程队单独做需30 天完成,两队合作需多少天完成?分析:设总工作量为 1 ,由甲工程队单独做需20 天完成,由乙工程队单独做需30 天完成,可知甲、乙的工作效率分别是 1 / 20、 1/ 30。
【解题关键点】工作总量÷ 工效和 = 工作时间, 1 ÷ ( 1 / 20+1 / 30) =12 (天)。
合作完工问题2:甲乙两车运一堆货物。
若甲单独运,则甲车运的次数比乙车少 5 次;如果两车何运,那么各运 6次就能运完,甲车单独运完这堆货物需要多少次?【解题关键点】设甲单独运需要X 次,则乙单独需要X+5 次,则甲、乙的工作效率分别为 1 / X 、1 /(X+5 )依题意有 1 / X + 1 /(X+5 ) =1 / 6 解得 X=10三、组合合作完工问题。
中考数学专题06 方程与不等式的实际运用【考点巩固】(解析版)
专题06 方程与不等式的实际运用题型1:工程问题1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别承包了杨家坪地区的A 工程、B 工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了 天.【分析】根据题意找出两个等量关系:①甲工程队晴天所做的工程量+雨天所做的工程量=总工程量;②乙工程队晴天所做的工程量+雨天所做的工程量=总工程量.设工程总量为1,则甲工程队晴天工作效率为114,雨天工作效率为1−30%14;乙工程队晴天工作效率为115,雨天工作效率为1−20%15,根据等量关系列出方程组求解即可. 【详解】解:设两工程队各工作了x 天,在施工期间有y 天有雨,(x−y)+1−30%14y =1(x−y)+1−20%15y =1, 解得:x =17y =10.即两工程队各工作了17天.故答案为:17.2.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的. (1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)千米.13300.85【分析】(1)设开通后的长益高铁的平均速度为千米/分钟,从而可得某次长益城际列车的平均速度为千米/分钟,再根据“路程速度时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得. 【详解】解:(1)设开通后的长益高铁的平均速度为千米/分钟,则某次长益城际列车的平均速度为千米/分钟, 由题意得:, 解得, 则(千米),(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为(千米), 乙工程队每天对其施工的长度(千米), 设甲工程队后期每天施工千米,则, 解得, 即,答:甲工程队后期每天至少施工千米.题型2:行程问题3.某体育场的环形跑道长400m ,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次.则甲的速度是 m /s .【分析】设甲的速度为xm /s ,乙的速度为ym /s ,根据“某体育场的环形跑道长400m ,如果反向而行,他们每隔30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.x 1330x =⨯y x 1330x 1360164030x x ⨯-=4x =16464⨯=1313606041043030x ⨯=⨯⨯=7647794010⨯=+9649794010⨯=+y 979(4053)(64(5101010y --+≥-+⨯1720y ≥0.85y ≥0.85【解答】解:设甲的速度为xm/s,乙的速度为ym/s,依题意,得:30x+30y=400 80y−80x=400,解得:x=256y=556.故答案为:256.4.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟【分析】设走路线一到达太原机场需要x分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可.【详解】解:设走路线一到达太原机场需要x分钟.根据题意,得5253037x x⨯=-.解得:25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.5.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】妈妈开车的平均速度是48km/h .【分析】设妈妈开车的平均速度为x km/h ,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论.【详解】解:设妈妈开车的平均速度为x km/h ,则小明的速度为4x km/h ,根据题意得, 161614x x -=解得,48x =经检验,48x =是原方程的根,答:妈妈开车的平均速度是48km/h .题型3:历史文献问题6.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A .3(2)29y x y x -=⎧⎨-=⎩B .3(2)29y x y x +=⎧⎨+=⎩C .3(2)29y x y x -=⎧⎨+=⎩D .3(2)29y x y x -=⎧⎨+=⎩【答案】C【分析】 设共有x 人,y 辆车,由每3人坐一辆车,有2辆空车,可得()32,y x -= 由每2人坐一辆车,有9人需要步行,可得:29,y x += 从而可得答案.【详解】解:设共有x 人,y 辆车,则3(2)29y x y x -=⎧⎨+=⎩故选:.C7.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)【答案】46【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解.【详解】解:设有x 人一起分银子,根据题意建立等式得,7498x x +=-,解得:6x =,∴银子共有:67446⨯+=(两)故答案是:46.8.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.【答案】53【分析】设人数为x ,再根据两种付费的总钱数一样即可求解.【详解】解:设一共有x 人由题意得:8374x x -=+解得:7x =所以价值为:78353⨯-=(钱)故答案是:53.题型4:数字问题9.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为,则最大数为,结合已知,利用最大数与最小数的乘积为65列出方程求解即可.【详解】解:设这个最小数为.根据题意,得.解得,(不符合题意,舍去).答:这个最小数为5.题型5:增长率问题10.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为() A .B .C .D . 【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:=亿件,2020年我国快递业务量为:+,x +8x x ()865x x +=15=x 213x =-()50712833.6x +=()50721833.6x ⨯+=()25071833.6x +=()()250750715071833.6x x ++++=507507x +507(1)x +507(1)x +2507(1)=507(1)x x x ++根据题意,得:故选C .11.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】【分析】根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值,按照数量关系列方程即可得解.【详解】解:根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值列方程得:,故答案为:.题型6:几何图形问题12.在一幅长50cm ,宽40cm 的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm 2,设边框的宽为x cm ,那么x 满足的方程是( )A .(50﹣2x )(40﹣2x )=3000B .(50+2x )(40+2x )=3000C .(50﹣x )(40﹣x )=3000D .(50+x )(40+x )=3000【答案】B【详解】解:设边框的宽为x cm , 所以整个挂画的长为(50+2x )cm ,宽为(40+2x )cm ,根据题意,得:(50+2x )(40+2x )=3000,故选:B .()25071833.6x +=()26521960x +=(1⨯+2)=(1⨯+2)=()26521960x +=()26521960x +=13.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【答案】(1)养鸡场的宽是10m,长为15m;(2)围成养鸡场的面积不能达到200m2,见解析【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.题型7:方案问题14.(2021·江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?【答案】(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【分析】(1)设一、二等奖奖品的单价分别是4x ,3x ,根据等量关系,列出分式方程,即可求解; (2)设购买一等奖品的数量为m 件,则购买二等奖品的数量为件,根据4≤m ≤10,且为整数,m 为整数,即可得到答案. 【详解】 解:(1)设一、二等奖奖品的单价分别是4x ,3x ,由题意得:,解得:x =15, 经检验:x =15是方程的解,且符合题意,∴15×4=60(元),15×3=45(元),答:一、二等奖奖品的单价分别是60元,45元;(2)设购买一等奖品的数量为m 件,则购买二等奖品的数量为件, ∵4≤m ≤10,且为整数,m 为整数, ∴m =4,7,10,答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.15.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m 件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,8543m -8543m -60012756002543x x-+=127560854453m m --=8543m -最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m 的一元一次不等式组,求解即可得到m 的范围,从而根据实际意义确定出m 的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元.根据题意,得, 解得:, 答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)根据题意,得, 解得:,∵m 为整数,∴m 可取5、6、7,∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件.设总资金为W 万元,则,∵,∴W 随m 的增大而增大,∴当时,(万元),∴方案一需要资金最少,最少资金是10万元.(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为(万元), 2 3.533x y x y +=⎧⎨+=⎩1.50.5x y =⎧⎨=⎩1.50.5(10)9.81.50.5(10)12m m m m +-≥⎧⎨+-≤⎩4.87m ≤≤()1.50.5105W m m m =+-=+10k =>5m =5510W =+=最小50.750.2 4.5⨯+⨯=降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a 台甲种,b 台乙种,则:,由题意,a ,b 均为非负整数,∴满足条件的解为:或, ∴节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.16.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于万元又不超过12万元,设购进甲种农机具件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,然后根据题意可得,进而求解即可; (2)由(1)及题意可得购进乙种农机具为(10-m )件,则可列不等式组为,然后求解即可;(3)设购买农机具所需资金为w 万元,则由(2)可得,然后结合一次函数的性质及(2)可直接进行求解.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,由题意得: , 0.80.3 4.5a b +=015a b =⎧⎨=⎩37a b =⎧⎨=⎩3.59.8m 2 3.533x y x y +=⎧⎨+=⎩()9.8 1.50.51012m m ≤+-≤5w m =+2 3.533x y x y +=⎧⎨+=⎩解得:, 答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)由题意得:购进乙种农机具为(10-m )件,∴,解得:,∵m 为正整数,∴m 的值为5、6、7,∴共有三种购买方案:购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.(3)设购买农机具所需资金为w 万元,则由(2)可得,∵1>0,∴w 随m 的增大而增大,∴当m =5时,w 的值最小,最小值为w=5+5=10,答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.题型8:利润问题17.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,1.50.5x y =⎧⎨=⎩()9.8 1.50.51012m m ≤+-≤4.87m ≤≤5w m =+x x∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.18.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示: 购票方式甲 乙 丙 可游玩景点A B A 和B 门票价格 100元/人 80元/人 160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案; (2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x +=()210104000x --+()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问; ()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-< ,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元. 题型9:一般问题19.(2021·辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元. (1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本.【分析】(1)设每本手绘纪念册x 元,每本图片纪念册y 元,根据题意列出二元一次方程组,求解即可;(2)设购买手绘纪念册a 本,则购买图片纪念册本,根据题意列出不等式,求解不等式即可.【详解】解:(1)设每本手绘纪念册x 元,每本图片纪念册y 元,()40a -根据题意可得:, 解得, 答:每本手绘纪念册35元,每本图片纪念册25元;(2)设购买手绘纪念册a 本,则购买图片纪念册本,根据题意可得: ,解得,∴最多能购买手绘纪念册10本.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨, 由题意得:,解得:x =2, 经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润.(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?【答案】(1)1050元;(2)50元【详解】解:(1)(4530)[80(4540)2]1050-⨯--⨯=(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x 元,则每天的销售量是[802(40)]x --件,依题意,得(30)[802(40)]1200x x ---=,413552225x y x y +=⎧⎨+=⎩3525x y =⎧⎨=⎩()40a -()3525401100a a +-≤10a ≤202052x x-=整理,得2x 110x 30000-+=,解得1250,60x x ==(不合题意,舍去).答:每件工艺品售价应为50元.题型10:分段收费22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?【分析】(1)设第一档的电价为x 元/度,第二档的电价为y 元/度,根据“小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用小军家4月份的电费=第一档电价×4月份的用电量和小军家5月份的电费=第一档电价×180+第二档电价×(5月份的用电量﹣180),即可求出结论.【解答】解:(1)设第一档的电价为x 元/度,第二档的电价为y 元/度, 依题意,得:180x +(200−180)y =119180x +(210−180)y =125.4, 解得:x =0.59y =0.64.答:第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)0.59×160=94.4(元),0.59×180+0.64×(230﹣180)=138.2(元).答:小军家4月份的电费为94.4元,5月份的电费为138.2元.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格每户每月用水量单位:元/吨 15吨及以下a 超过15吨但不超过25吨的部分 b超过25吨的部分 5(1)小王家今年3月份用水20吨,要交水费 元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.【分析】(1)根据题意列出代数式即可;(2)根据题意列方程组,即可得到结论;(3)根据题意列出二元一次方程,求出符合条件的所有可能情况即可.【解答】解:(1)∵小王家今年3月份用水20吨,要交水费为15a+5b,故答案为:(15a+5b);(2)根据题意得,15a+6b=4815a+10b+5×2=70,解得:a=2 b=3;(3)设a上调了x元,b的值上调了y元,根据题意得,15x+6y=9.6,∴5x+2y=3.2,∵x,y为整数角钱(没超过1元),∴当x=0.6元时,y=0.1元,当x=0.4元时,y=0.6元,∴a的值上调了0.6元或0.4元,b的值上调了0.1元或0.6元。
应用题04工程问题
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.模块一、工程问题基本题型【例 1】(难度等级※)一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【例 2】(难度等级※)一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【巩固】(难度等级※)一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例 3】(难度等级※※)甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生25产了420个零件才完成任务.问乙一共加工零件多少个?【巩固】(难度等级※※)一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?【例 4】(难度等级※※)一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】(难度等级※※)一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【巩固】(难度等级※※)一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?【巩固】(难度等级※※)一件工程,甲、乙两人合作8天可以完成,乙、丙两人合作6天可以完成,丙、丁两人合作12天可以完成.那么甲、丁两人合作多少天可以完成?【巩固】(难度等级※※)一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?【例 5】(难度等级※※※)一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例 6】(难度等级※※※)(2007年四中考题)某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放小时.【例 7】(难度等级※※※)一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?【例 8】(难度等级※※※※)有10根大小相同的进水管给A、B两个水池注水,原计划用4根进水管给A水池注水,其余6根给B水池注水,那么5小时可同时注满.因为发现A水池以一定的速度漏水,所以改为各用5根进水管给水池注水,结果也是同时注满.(1)如果用10根进水管给且要求在注水过程中每个水池的进水管的数量保持不变,那么要把两个水池注满最少需要多少分钟?(结果四舍五入到个位)【例 9】(难度等级※※※)甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需10小时,乙车单独清扫需15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米.问:东、西两城相距多少千米?【例 10】(难度等级※※※)一项工程,甲单独完成需要12天,乙单独完成需要9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?【巩固】(难度等级※※※)一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?【例 11】(难度等级※※※)(2009年十三分小升初入学测试题)一项工程,甲单独做40天完成,乙单独做60天完成.现在两人合作,中间甲因病休息了若干天,所以经过了27天才完成.问甲休息了几天?【巩固】(难度等级※※※)一项工程,甲单独做20天完成,乙单独做30天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天.乙请假多少天?【巩固】(难度等级※※※)有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?【例 12】(难度等级※※※)(2007年十一学校考题)有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成.现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天.那么丙休息了天.【例 13】(难度等级※※※)一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?【例 14】(2007年人大附中考题)一些工人做一项工程,如果能调来16人,那么10天可以完成;如果只调来4人,就要20天才能完成,那么调走2人后,完成这项工程需要天.模块二、工程问题——变速问题【例 15】(难度等级※※※)甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际上从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?【例 16】(难度等级※※※※)(人大附中考题)甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高110,乙的工作效率比单独做时提高15.甲、乙两人合作6小时,完成全部工作的2 5,第二天乙又单独做了6小时,还留下这件工作的1330尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?【例 17】(难度等级※※※※)(2009年四中小升初入学测试题、2009年第七届“希望杯”六年级第2试)甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行工作,最初,甲清理的速度比乙快13,中途乙曾用10分钟去换工具,而后工作效率比原来提高了一倍,结果从开始算起,经过1小时,就完成了清理积雪的工作,并且两人清理的跑道一样长,问乙换了工具后又工作了多少分钟?【例 18】(难度等级※※※※)(2009年十三分小升初入学测试题)甲、乙两人同时加工同样多的零件,甲每小时加工40个,当甲完成任务的12时,乙完成了任务的12还差40个.这时乙开始提高工作效率,又用了7.5小时完成了全部加工任务.这时甲还剩下20个零件没完成.求乙提高工效后每小时加工零件多少个?【例 19】(难度等级※※※※)甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工作要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%.结果两队同时完成工作,问工作时间内下了多少天雨?【例 20】(难度等级※※※※)一项工程,甲独做需10天,乙独做需15天.如果两人合做,甲的工作效率就要降低,只能完成原来的45,乙只能完成原来的910.现在要8天完成这项工程,两人合做天数尽可能少,那么两人要合做多少天?【例 21】(难度等级※※※※)一项挖土万工程,如果甲队单独做,16天可以完成,乙队单独做要20天能完成.现在两队同时施工,工作效率提高20%.当工程完成1时,突然遇到了地下水,4影响了施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程.问整工程要挖多少方土?【例 22】(难度等级※※※※)(2009年第七届“希望杯”六年级第1试)甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、同时完工.那么在施工期间,下雨的天数是天.模块三、工程问题方法与技巧(一)整体分析法【例 23】(难度等级※※※)甲、乙两队合作挖一条水渠要30天完成,若甲队先挖4天后,再由乙队单.如果这条水渠由甲、乙两队单独挖,各需要多少天?独挖16天,共挖了这条水渠的25【例 24】(难度等级※※※)(2008年第六届小学“希望杯”全国数学邀请赛六年级第二试,第8题),乙生产的个数甲、乙、丙三人生产一批玩具,甲生产的个数是乙、丙二人生产个数之和的12,丙生产了50个。
中考数学工程问题专题练习
中考数学工程问题专题练习1.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A. B.C.D.2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8 B.7 C.6 D.53.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.B.C.D.4.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A. B.C.D.5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=6.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为A.+=1 B.10+8+x=30 C.+8(+)=1 D.(1﹣)+x=87.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产台机器.8.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.9.2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?10.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.12.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x、y都是整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?13.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.14.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?15.2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?16.在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?17.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?18.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务个需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?19.某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?20.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?21.我市新城区环形路的拓宽改造工程项目,经投标决定由甲、乙两个工程队共同完成这一工程项目.已知乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程如果由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.求甲、乙两队单独完成这项工程各需要多少天?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学工程问题专题练习
1.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()
A. B.C.D.
2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成
任务,则甲志愿者计划完成此项工作的天数是()
A.8 B.7 C.6 D.5
3.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方
程为()
A.B.C.D.
4.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设
原计划每天加工x套运动服,根据题意可列方程为()
A. B.C.D.
5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()
A.=B.=C.=D.=
6.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为
A.+=1 B.10+8+x=30 C.+8(+)=1 D.(1﹣)+x=8
7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产
台机器.
8.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成
任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.
9.2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?
10.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,
具有一次函数的关系,如下表所示.
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.
11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).
(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?
(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.
12.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:
(1)乙队单独做需要多少天能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x、y都是整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?
13.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出
相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
14.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,
原计划每天种多少棵树?
15.2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救
灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?
16.在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需
的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?
17.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲
乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.
(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?
最低费用为多少?
18.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队
单独施工30天的工作量相同.
(1)甲、乙两队单独完成此项任务个需多少天?
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
19.某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个
月完成这一工程.求原计划完成这一工程的时间是多少月?
20.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每
天生产多少台机器?
21.我市新城区环形路的拓宽改造工程项目,经投标决定由甲、乙两个工程队共同完成这一工程项目.已知乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程如果由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.求甲、乙两队单独完成这项工程各需要多少天?。