怎样说明白两点之间,线段最短

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样说明白两点之间,线段最短

设计思路

(1)国家数学课程标准指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

(2)初一学生从基础知识,基本技能和思维水平以及学习方式等方面有一个逐步适应和提高的过程。因此,在进行教学设计时,必须时时考虑到新初一学生的学习实际,既不能盲目拔高,也不能搞简单化的结论式教学。在新课改的过程中,教学设计应立足于学生实际,从大处着眼,深入挖掘教材内容的素质教育功能。

(3)数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习。

(4)本课题通过对内容的挖掘与整理,采用“问题情境──模型──解释、应用与拓展”的模式展开教学,让学生经历“从生活中发现数学──在教室里学习数学──到生活中运用数学” 这样一个过程,从而更好地理解数学知识的意义,发展应用数学知识的意识与能力,进一步增强学好数学的愿望和信心。学生通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。体会在解决问题中与他人合作的重要性。体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。

任务分析

流程安排

课前准备

过程设计

动手实验,自主探究,合作交流。

发表观点,引发思考

效果检测

1、通过课堂学习活动的展示与交流,学生对学生进行相互评价

2、在学习活动过程中教师注意及时地鼓励、指导、点评,实施过程评价

3、课后要求学生“蚂蚁爬行最短”问题进行继续研究,并写出数学小作文。

附件──本节课的后续影响的例举

关于最短路径思考

我们已经学过“两点之间,线段最短”这个数学公理了。这看似简单的八个字蕴涵着许多奥妙,将它扩展、延伸可得到一个最短路径问题、即求连接A、B两点的线段中哪一条最短。

当A、B在同一平面内时,即使是从北京到天津,我们也可以轻松地利用“两点之间,线段最短”得出线段AB是A、B两点间的最短路径(如图1-1)。

图1-1

有人会说:“这也太简单了!”别着急,请看下面这道题(如图2-1):

图2-1

有一位将军骑着马要从A地走到B地,但途中要到水边喂马喝一次水,则将军怎样走最近。这道题乍一看似乎无从下手。但经过观察可以发现此题依然可以利用“两点之间,线段最短”来解决问题,具体方法为:做B点与河面的对称点B',连接AB',可得到马喝水的地方C(如图2-2)。

图2-2

再连接CB得到这道题的解A→C→B。这就是著名的“将军饮马”问题。不信的话你可以在河边任意取一点C'连接AC'和C'B,比较一下就知道了。

明白了刚才的平面问题,接下来看看立体图形问题(如图3-1)。

图3-1

求点A到点C'的最短路径是那一条。此时已不在同一平面内,不能直接利用公理解决问题。此时,就要利用数学中的转化思想,把立体图形转化成平面图形来研究(如图3-2)。

图3-2

从而得到两条最短路径:A→BC→C'和A→CD→C'。同理,还可以得出6条最短路径来(如图3-345)。

图3-3 图3-4 图3-5

分别为:A→BC→C'、A→CD→C'、A→DD'→C'、A→BB'→C'、A→A'D'→C'、A→A'B'→C'。

那长方体的最短路径呢?我们来看一下这题(如图4-1)

图4-1

从A'到C,不经过A'B'C'D'和ABCD两面,怎样走最近?我们不如先不考虑第二个条件,从上题可知有六条最短路径,但此题与上题略有不同──长方体各面不相等,因此我们需比较那条路径最短。观察发现这六条路径,两两长度相等,即只比较这三条路径谁更短就可以了(如图4-23)。

图4-2 图4-3

解:设长方体长、宽、高分别为x、y、z,依题意,得:

①=

②=

③=

∵ 2xy>2xz>2yz

∴ ③<②<①

即走第三条路径最短。

得到从A'到C的路径中从A'→BB'→C和A'→DD'→C最短,与第二个已知条件无关。

平面是这样,那曲面呢?我们再看一题(如图5-1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图5-2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB。

图5-1 图5-2

从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考。而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径。这短短的八个字还真是奥妙无穷啊!

教师注:初一刚入学不久的学生,能把问题一个问题表述得如此清晰,很是难能可贵。不足之处是在对圆柱体问题的探究中考虑不周,有其他可能未进行探究。继续努力,力争把问题研究的更清楚、更透彻。

两点之间线段最短的探究与再思考

原静雯

初一上学期,我们学习了两点之间线段最短的知识,并利用它作了一节课,相信大家对它还是记忆犹新的。自从那次课后,不知大家有没有进行更深的思考,小人不才,愿用这贫乏的文字,说一说我的想法。

探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小。(如图所示)

解:根据两点之间线段最短的基本概念,只用连接AB即可轻松的得到答案。如图所示。线段AB与直线L的交点,就是题目要求的点P。

总结:本题虽然十分简单,但却是所有有关本类题目难题的基础,是必须要牢记与掌握的。下面一题,就是上一题的变形,你还会做吗?

探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小。(如图所示)

解:本题的难点不在于解题过程,而在于解题的思想,往往大家不能正确的找到解题的思路。那么,我就在此抛砖引玉,说说我的看法。首先,作点B关于L的对称点B',(如图所示),因为OB'=OB,∠BOP=∠B',OP=OP,所以△OPB≌△OPB'。所以,PB=PB'。因此,求AP+BP就相当于求AP+PB'。这样,复杂的问题便通过转化变得简单,成了探究问题一。因此只用连接AB'即可,与直线L的交点,就是题目要求的点P。

结论:我们完全也可以把以上的结论当作一个模块牢记下来,成为自己解题的方法之一。

探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小。(如图所示)

相关文档
最新文档