高中生高中全册教学人教A版数学必修课件PPT

合集下载

高中数学(新人教A版)必修第一册:充要条件课件【精品课件】

高中数学(新人教A版)必修第一册:充要条件课件【精品课件】
例 1.
【解析】
对(1),ab=0指其中至少有一个为零,而 2 +2
=0指两个都为零,因此q⇒p,但p⇏q,p是q的必
要不充分条件;
对(2),|x+y|=|x|+|y|平方得: 2 +2xy+ 2 = 2
+2|xy|+ 2 ⇔xy=|xy|⇔xy≥0,所以p是q的充要
条件;
对(3),方程 2 -x-m=0有实根的充要条件是Δ=
第一章 集合与常用逻辑用语
1.4充分条件与必要条件
教材分析
本小节内容选自
第四节
《普通高中数学必修第一册》
人教A版(2019)
第一章《集合与常用逻辑用语》
第四节《充分条件与必要条件》
以下是
“常用逻辑用语”的课时安排:
课时内容
第五节
充分条件与必要条件(共2课时)
所在位置 教材第17页
全称量词与存在量词(共2课时)
条件” 的逻辑语句或事例吗?
(一)新知导入
探索交流,解决问题
【问题1】
已 知
【思考1】
p: 整数a是6的倍数,
通过判断,你发现了什么?
q: 整数a是2和3的倍数.
这种关系是否对任意一个“若p,则q”的命题
请判断: p是q的充分条件吗?
p是q的必要条件吗?
[答案]
p⇒q,故p是q的充分条件,又q⇒p,故p
的关系,学习充分条件、必要条件、 学内容。
充要条件这三个逻辑用语。
核心素养 通过观察实例,理解充分条件、必要 通过数学实例,使学生理解全称
培养
条件、充要条件的意义
量词、存在量词的意义,体现了
会辨析充分不必要条件、必要不充分 数学抽象的核心素养;会判定命
条件、充要条件、既不充分又不必要 题的真假,会写出命题的否定,

人教A版高中数学必修第一册 第5章 三角函数 课件(1)(共38张PPT)

人教A版高中数学必修第一册 第5章 三角函数 课件(1)(共38张PPT)

图象图正象弦特曲征线、余弦曲线、正切曲线
三角函数
三角函数的图象与性质
周 奇期 偶性 性 性质
单调性
最大、最小值
A,ω,φ对函数图象的影响
函数y=Asinωx+φ的图象 图象画法五 变点 换法 法
三角函数模型的简单应用
专题训练
专题一 正弦函数与余弦函数的对称性问题 正弦函数 y=sinx,余弦函数 y=cosx,在教材中已研究了 它们的定义域、值域、单调性、奇偶性、周期性.除了上述有 关内容之外,近年来有关正弦函数、余弦函数等对称性问题在 高考中有所出现,有必要对其作进一步的探讨.
第五章
人教2019A版必修 第一册
三角函数
小结与复习
知识框图
三 角 函 数
பைடு நூலகம்
公式一~四:α+2kπk∈Z,-α,π±α的三角函数值等于α的同名函数值, 前面加上一个把α看成锐角时原函数值的符号
三角函数的诱导公式
公式五、六:π2±α的正余弦函数值,分别等于α的余弦正弦函数值, 前面加上一个把α看成锐角时原函数值的符号
解得ab= =- -41, .
∴a、b 的取值分别是 4、-3 或-4、-1.
[点拨] 本题是先由定义域确定正弦函数 y=sin(2x+6π)的 值域,但对整个函数的最值的取得与 a 有关系,故对 a 进行分 类讨论.
设 a≥0,若 y=cos2x-asinx+b 的最大值为 0,最 小值为-4,试求 a、b 的值.
[分析] 通过换元化为一元二次函数最值问题求解.
[解析] 原函数变形为 y=-(sinx+a2)2+1+b+a42. 当 0≤a≤2 时,-a2∈[-1,0], ∴ymax=1+b+a42=0.① ymin=-(1+a2)2+1+b+a42=-4② 由以上两式①②,得 a=2,b=-2,舍 a=-6(与 0≤a≤2 矛盾).

人教A版(2019)高中数学选择性必修第一册课件(共50张PPT)

人教A版(2019)高中数学选择性必修第一册课件(共50张PPT)

知 2.掌握空间直角坐标系中点的 的核心素养.


作 坐标的确定.(重点)

究 释
3.掌握空间向量的坐标表示

难 (重点、难点)
2.通过空间向量的坐标表示,培
课 时

养学生直观想象和数学建模的核 层

心素养.业Leabharlann 返 首 页·3
·








·


新 知

情景
导学
探新

素 养















坐标系 向,以它们的长为单位长度建立三条数轴:x


释 疑
轴、y轴、z轴,这样就建立了空间直角坐标系
作 业

返 首 页
·
7
·

坐标轴 _x__轴、_y__轴、_z__轴



导 学
坐标原点 点_O__
小 结
·
探 新
坐标向量 __i __,__j __,_k___
提 素


坐标平面 O__xy_平面、O__yz_平面和_O_x_z平面

探 究
点坐标 _a_=___(_x,__y_,__z_)_
时 分






返 首 页
·
10
·


景 导
1.思考辨析(正确的打“√”,错误的打“×”)

人教版A版高中数学必修一配套全册完整课件

人教版A版高中数学必修一配套全册完整课件
答案
3.设集合 A={x|x≤ 13},a= 11,那么( D )
A.a A
B.a∉A
C.{a}∈A
D.{a} A
1 23 45
答案
1 23 45
4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},
那么(∁IM)∩(∁IN)等于( A ) A.∅
B.{d}
C.{b,e}
反思与感悟
解析答案
跟踪训练4 学校举办了排球赛,某班45名同学中有12名同学参赛,后 来又举办了田径赛,这个班有20名同学参赛,已知两项都参赛的有6名 同学,两项比赛中,这个班共有多少名同学没有参加过比赛? 解 设A={x|x为参加排球赛的同学},B={x|x为参加田径赛的同学}, 则A∩B={x|x为参加两项比赛的同学}.画出Venn图(如图),
第一章 集合与函数概念
习题课
集合
学习目标
1.系统和深化对集合基础知识的理解与掌握; 2.重点掌握好集合间的关系与集合的基本运算.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
1.集合元素的三个特性:_确__定__性___,_互__异__性___,__无__序__性__. 2.元素与集合有且只有两种关系:__∈______,__∉______. 3. 已 经 学 过 的 集 合 表 示 方 法 有 _列__举__法___ , _描__述__法___ , _V_e_n_n_图___ , _常__用__数__集__字__母__代__号___.
返回
第一章 集合与函数概念
章末复习课
学习目标
1.构建知识网络,理解其内在联系; 2.盘点重要技能,提炼操作要点; 3.体会数学思想,培养严谨灵活的思维能力.

人教版高中数学必修一全套PPT课件

人教版高中数学必修一全套PPT课件
点在直线上或点在直线外。
点与平面的位置关系
点在平面内、点在平面外或点在平面上(即点在平面的边界上)。
直线与平面的位置关系
直线在平面内、直线与平面相交或直线与平面平行。
2024/1/25
31
直线、平面平行的判定及其性质
直线平行的判定
同一平面内,不相交的两条直线互相平行。
平面平行的判定
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个 平面平行。

幂函数增长模型
函数值随自变量幂次增长,增 长速度介于线性和指数之间,
如幂函数。
2024/1/25
19
函数模型的应用实例
经济学中的应用
利用函数模型研究成本、收益 、利润等经济问题。
2024/1/25
物理学中的应用
利用函数模型描述物体的运动 规律、波动现象等。
工程学中的应用
利用函数模型进行工程设计、 优化等问题。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
2024/1/25
1
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
2024/1/25
2
PART 01
高中数学必修一概述
2024/1/25
以直角梯形的垂直于底边的腰所在直线为旋转轴,其余各边旋转 形成的曲面所围成的几何体。

半圆以它的直径为旋转轴,旋转一周形成的曲面所围成的几何体 。
2024/1/25
24
空间几何体的三视图和直观图
三视图
正视图(从正面看)、侧视图(从左面看)、俯视图(从上面看)。

人教A版高中数学必修第二册教学课件PPT-第八章 -8-5-2直线与平面平行

人教A版高中数学必修第二册教学课件PPT-第八章 -8-5-2直线与平面平行

A.1个
B.2个
C.3个
D.4个
D解析 由题图知正方体的前、后、左、右四个面都与EF平行.
高中数学 必修第二册 RJ·A
4.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,
DA上的点(不与端点重合),EH∥FG,则EH与BD的位置关系是
A.平行
B.相交
C.异面
D.不确定
A解析 ∵EH∥FG,EH⊄平面BDC,FG⊂平面BDC, ∴EH∥平面BDC, 又EH⊂平面ABD且平面ABD∩平面BDC=BD, ∴EH∥BD.
高中数学 必修第二册 RJ·A
反思感悟
利用直线和平面平行的判定定理证明线面平行的关键是在平面内找一条直线与 已知直线平行,常利用平行四边形、三角形中位线、基本事实4等.
高中数学 必修第二册 RJ·A
跟踪训练
如图,四边形ABCD是平行四边形,P是平面ABCD外一点,M,N分 别是AB,PC的中点.求证:MN∥平面PAD.
所以 a∥EG,即 BD∥EG,所以AACF=AAEB.
又EBGD=AAEB,所以AACF=EBGD, 于是 EG=AFA·CBD=55×+44=290.
高中数学 必修第二册 RJ·A
反思感悟
(1)利用线面平行的性质定理找线线平行,利用线线平行得对应线段成比例即 可求线段长度. (2)通过定理的运用和平行的性质,提升直观想象和逻辑推理素养.
高中数学 必修第二册 RJ·A
典例剖析
一、直线与平面平行的判定定理的应用
例1 如图,在正方体ABCD-A1B1C1D1中,E,F,G分别是BC,CC1,BB1的中点, 求证:EF∥平面AD1G.
高中数学 必修第二册 RJ·A

高中数学必修课件全册人教A版

高中数学必修课件全册人教A版

其实,交集用通俗的语言来说,就是找两个集中中共同存在的元素。
例题: 1、A={-1,1,2,3},B={-1,-2,1},C={-1,1};
A
CB
2,3
-1,1
-2
交集的运算性质:
(1) A A A
(2) A
(3) A B B A
(4) A B A, A B B (5) A B 则 A B A
考虑题:如何用集合语言描绘?
设平面 l1上 内 的 直 点 L线 1,直 的 l2线 上 集点 合的 为 L2,试 集 用 合 集 的运l1算 ,l2的 表 位 示 .置关系
解 :(1) 直l1 线 ,l2相交P于 可一 表点 L示 1L为 2 {点 : P}; (直 2)l1 线 ,l2平行可L1表 L2示 ;为: (直 3)l1 线 ,l2重合可L1表 L2示 L1为 L2.:
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
6 、A 设 { | x x 2 集 4 x 0B 合 } { | , x x 2 2 ( 1 a ) a 2 - x 1 0 a , R} 若 B A ,a 的 求 . 值 实数
7、判断以下表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
假如两个集合的元素完全一样,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:假设一个集合不是有限集,则该集合称为无限集

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

人教版A版高中数学必修二全册课件【完整版】

人教版A版高中数学必修二全册课件【完整版】

人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。

计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。

2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。

计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。

3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。

斜截式:y = kx + b,其中k为直线斜率,b为直线截距。

一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。

4. 两条直线的位置关系平行:两条直线的斜率相等。

垂直:两条直线的斜率互为负倒数。

相交:两条直线的斜率不相等。

二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。

2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。

3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

4. 圆与直线的位置关系相离:直线与圆没有交点。

相切:直线与圆有且仅有一个交点。

相交:直线与圆有两个交点。

三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。

2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。

3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一课件全册 (人教A版)
2020年8月17日
高中数学课件
人教版必修一
第一章:集合与函数 第二章:基本初等函数 第三章:函数的应用
第一章:集合与函数
第一节:集合
集合的含义与表示
一、请关注我们的生活,会发现………
1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}
读作:A包含于B,或者B包含A 可以联系数与数之间的“≤”
BA
2、真子集:
如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们 称集合A与集合B有真包含关系,集合A是集合B的真子集 (proper subset)。记作A⊊B(或B⊋A),读作“A真包含于 B”(或“B真包含A”)。
3、空集:
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
Z:
整数集
Q: 有理数集
R:
实数集
2、集合与元素的关系(属于∈或不属于 )
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
A={x|1/2<x<2},CuA={x|x≤1/2,x≥2}
思考:
1、CUA在U中的补集是什么?
A
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=_B__, CUB=__A__。
如何用数学的语言描述这些对象??
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我பைடு நூலகம்班上的高个子男生
-
3
x
-
2},B
{(x,y) |
y x
-
3 2
1},
则A,B的关系是 ______.
3.已知A {x | 2 x 5},B {x | a 1 x 2a 1},B A, 求实数 a的取值范围 .
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数
练习题
1、下列命题: 重点考察对空集的理解! (1)空集没有子集; (2)任何集合至少有两个子集; (3)空集是任何集合的真子集;
空集是任何集 合的子集,空集 是任何非空集 合的真子集
(4)若 A,则A .其中正确的有(
)
A.0个
B.1个 C.2个
D.3个
2.设x ,y
R,A
{(x,y) |
y
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
思考:1、比较这三个集合: A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2、两个集合相等
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一(2)班女生的全体组成的集合,
B为这个班学生的全体组成的集合; ⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是 集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子 集.
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-2)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集
练习题
1、直线y=x上的点集如何表示?
{(x,y)︱x=y,x∈R,y∈R}
x+y=2 2、方程组
x-y=1
的解集如何表示{?(1.5,0.5)}
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
a≠1
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
我们把不含任何元素的集合叫做空集,记作Φ,并规定:空集是任何集合 的子集,空集是任何非空集合的真子集。
4、补集与全集
设AS,由S中不属于集合A的所有元素组成的集合称为S的子集A的补集, 记作CSA ,即CSA ={x|x∈S,且xA}
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集,通 常记作U。
相关文档
最新文档