[VIP专享]第六章 染色体变异改

合集下载

第六章染色体变异

第六章染色体变异

第六章染色体变异第七章染色体数目变异染色体不仅会发生结构变异,也会发生数目变异。

染色体可以增加一个或几个,也可以减少一个或几个,也可以增加一套或几套。

当然,随着染色体数目的变异,生物体的遗传性状也会随之发生相应的变异。

一、染色体组和染色体基组。

我们平常见到的大多数植物都是二倍体(diploid),动物几乎全部是二倍体。

我们所接触到的农作物,如玉米2n=20,水稻2n=24,大麦2n=14等也都是二倍体。

为什么叫做二倍体呢?因为在这些生物的体细胞中含有两个染色体组。

何谓染色体组:由形态、结构和连锁基因群都彼此不同的几个染色体组成的完整而协调的遗传体系。

染色体组的基本特征:增加或缺少其中任何一条都会造成遗传上的不平衡,从而导致对生物体不利的遗传效应。

在遗传学上,染色体组用n表示。

在这里,n有两个基本含义:①染色体组(genome)的标志符号;②表示配子所含的染色体数目。

以玉米为例,n=10 , 2n=20 。

n=10是指玉米的正常配子内的染色体数是10;2n=20是指玉米体细胞内含有20条染色体,也就是说玉米孢子体内(或者说是体细胞内)的染色体数是20。

对于这样的物种,我们称之为二倍体物种。

但是,对于小麦而言,情况则有些不同。

小麦是一个属。

属内分为若干种。

各个种之间的染色体数是不相同的。

一粒小麦、野生一粒小麦2n=14 , n=7二粒小麦、硬粒小麦、圆锥小麦、提莫菲维小麦2n=28 , n=14 。

斯卑尔脱小麦、密穗小麦、普通小麦2n=42 , n=21。

这三种类型之间,染色体数都是以7为基数变化的。

7是小麦属的染色体基数,以x代表。

2n=14 , n=7的小麦种,配子内含有7条染色体,这七条染色体称为一个基本染色体组。

显然,2n=14的小麦体细胞内含有2个基本染色体组,故而称为二倍体。

在小麦属内,2n=28的种,染色体数是7的4倍,称为四倍体(tetroploid),2n=42的种,染色体数是7的6倍,称为六倍体。

染色体结构变异(共101张PPT)

染色体结构变异(共101张PPT)
如人类第5染色体短臂缺失杂合个 体生活力差、智力迟钝、面部小,患 儿哭声轻,音调高,常发出咪咪声, 通常在婴儿期和幼儿期夭折-猫叫综 合症 .猫叫综合征患者的两眼距离较 远,耳位低下,生长发育缓慢,而且 存在严重的智力障碍。
• 例如,猫叫综合征是人的第5号染色体局 部缺失引起的遗传病,因为患病儿童哭 声轻,音调高,很像猫叫而得名。猫叫 综合征患者的两眼距离较远,耳位低下, 生长发育缓慢,而且存在严重的智力障 碍;果蝇的缺刻翅的形成也是由于一段 染色体缺失造成的
• 位置效应(position effect):
– 果蝇眼面大小遗传的位置效应 – 位置效应的意义
〔三〕重复的遗传效应
(1)剂量效应:随着细胞内基因拷 贝数增加,基因的表现能力和表 现程度也会随之加强,即细胞内基 因拷贝数越多,表现型效应越显 著
例1 果蝇眼色:红色(v+) 朱红色(v)
果蝇棒眼遗传
〔1〕断头很难愈合,断头可能同另一
有着丝粒的染色体的断头重接, 成为双着丝粒染色体 〔2〕顶端缺失染色体的两个姊妹染色
单体可能在断头上彼此接合,形
成双着丝粒染色体
双着丝粒染色体就会在细胞分裂的后期 受两个着丝粒向相反两极移动所产生的拉 力所折断,再次造成结构的变异而不能稳 定
双着丝粒染色体:
两条末端缺失的染色体末端之间相互连接,形成双着丝粒染色体。 用dic表示,如46,X,dic〔Y〕表示X正常,Y是双着丝粒染色 体。
图 6-6 不等交换与果蝇16A区段重复形成
重复区段内不能有着丝粒,否那么重复 染色体就变成双着丝粒的染色体,就会 继续发生结构变异,很难稳定成型。
重复和缺失总是伴随出现的。某染色 体的一个区段转移给同源的另一个染 色体之后,它自己就成为缺失染色体 了。

遗传学第六章染色体变异PPT课件

遗传学第六章染色体变异PPT课件

CHENLI
17
❖ 缺失的遗传效应
➢ 缺失的后果 打破了基因的连锁平衡,破坏了基因间的互作关系,
基因所控制的生物功能或性状丧失或异常。
➢ 缺失的危害程度 取决于缺失区段的大小、缺失区段所含基因的多少、
缺失基因的重要程度、染色体倍性水平。
缺失纯合体——致死或半致死
缺失杂合体——缺失区段较长时,生活力差、配子(尤 其是花粉)败育或育性降低;缺失区段较小时,可能会 造成假显性现象或其它异常现象(猫叫综合症)。
失纯合体减数分裂过程也无明显的细胞学特征。
CHENLI
12
断裂—融合—桥
顶端缺失的形成(断裂) 复制
姊妹染色单体顶端断头连 接(融合)
有丝分裂后期桥(桥)
新的断裂
CHENLI
13
缺失的细胞学特征
CHENLI
14
缺失染色体的联会
CHENLI
15
玉米缺失杂合体粗线期缺失环
CHENLI
16
果蝇唾腺染色体的缺失圈
➢ 重复杂合体(duplication heterozygote):指同源 染色体中,有一个正常而另一个是重复染色体的生 物个体。
➢ 重复纯合体(duplication homozygote):指同源染 色体中,每个染色体都含有相同的重复片段且重复 类别相同的生物个体。
CHENLI
26
❖ 重复的细胞学鉴定
CHENLI
3
本章要求
➢ 掌握四种染色体结构变异的类型,及其它们 的形成方式、主要生物学特征和细胞学鉴定 方法;
➢ 掌握结构变异的主要遗传效应及其在遗传研 究与育种实践中的应用。
掌握染色体数目变异类型及其应用
CHENLI

染色体变异ppt

染色体变异ppt

染色体变异ppt引言染色体变异是生物体发生基因突变的一种方式,它在生物演化和种群遗传中起着重要的作用。

染色体变异可以导致基因组的结构和功能发生改变,从而影响个体的遗传特征和适应环境的能力。

本文档将介绍染色体变异的定义、类型、原因以及对生物进化的影响。

定义染色体变异是指在染色体上发生的结构和功能的突变。

它通常包括染色体的数目变化、结构的改变以及染色体上基因的缺失、重复、倒位、转座等。

类型1.染色体数目变异:包括染色体的多倍化和少倍化。

染色体的多倍化可以导致基因组的扩大和功能的增强,而少倍化则相反。

2.染色体结构改变:包括缺失、重复、倒位和转座等。

缺失是指染色体上的一段或多段基因缺失,重复是指染色体上的一段或多段基因重复,倒位是指染色体上的一段或多段基因的顺序颠倒,转座是指染色体上的一段或多段基因在染色体间的移动和插入。

原因染色体变异的原因主要包括自然选择、突变和基因重组等。

1.自然选择:染色体变异可能是适应环境的结果。

在环境变化的压力下,具有染色体变异的个体可能更有可能适应新环境,从而在繁殖中获得更高的适应度。

2.突变:突变是染色体变异的主要驱动力。

突变可以是自发发生的,也可以是由外界环境因素引起的,如辐射、化学物质等。

3.基因重组:基因重组是染色体变异的重要机制之一。

在有性生殖过程中,染色体会发生交叉互换,使得基因在染色体上的位置发生改变,从而产生新的染色体组合和突变。

影响染色体变异对生物进化具有重要的影响。

1.物种分化:染色体变异可以导致基因组的重组和重新组合,从而使得不同种群的个体遗传特征发生差异,进而导致物种分化。

2.进化速度:染色体变异可以增加物种的遗传多样性,并加速进化的速度。

染色体结构和功能的变异可以为物种的适应性提供新的基因变异源,使得物种能够更好地适应环境的变化。

3.适应性:染色体变异可以帮助个体适应不同的环境和生活方式。

染色体变异可能会导致一些有利变异的基因表达,从而增加个体对环境的适应度。

染色体变异练习习题参考答案

染色体变异练习习题参考答案

第六章染色体变异1.植株是显性 AA纯合体,用隐性 aa 纯合体的花粉给它授粉杂交,在500株 F1中,有 2 株表现为 aa。

如何证明和解说这个杂交结果?答:这有可能是显性AA株在进行减数分裂时,有A 基因的染色体发生断裂,丢掉了拥有 A 基因的染色体片断,与带有 a 基因的花粉授粉后, F1缺失杂合体植株会表现出 a 基因性状的假显性现象。

可用以下方法加以证明:⑴. 细胞学方法判定:① . 缺失圈;② . 非姐妹染色单体不等长。

⑵ . 育性:花粉对缺失敏感,故该植株的花粉经常高度不育。

⑶ . 杂交法:用该隐性性状植株与显性纯合株回交,回交植株的自交后辈6 显性: 1 隐性。

2.玉米植株是第9 染色体的缺失杂合体,同时也是Cc 杂合体,糊粉层有色基因 C 在缺失染色体上,与 C等位的无色基因 c 在正常染色体上。

玉米的缺失染色体一般是不可以经过花粉而遗传的。

在一次以该缺失杂合体植株为父本与正常的cc 纯合体为母本的杂交中, 10%的杂交子粒是有色的。

试解说发生这类现象的原由。

答:这可能是 Cc 缺失杂合体在产生配子时,带有 C 基因的缺失染色体与正常的带有 c 基因的染色体发生了互换,其互换值为 10%,进而产生带有 10%C基因正常染色体的花粉,它与带有 c 基因的雌配子授粉后,其杂交子粒是有色的。

3.某个体的某一对同源染色体的区段次序有所不一样,一个是 12·34567,另一个是 12·36547(" · " 代表着丝粒)。

试解说以下三个问题:⑴. 这一对染色体在减数分裂时是如何联会的?⑵.若是在减数分裂时, 5 与 6 之间发生一次非姐妹染色单体的互换,图讲解明二分体和四分体的染色体构造,并指出产生的孢子的育性。

⑶.若是在减数分裂时,着丝粒与 3 之间和 5 与 6 之间各发生一次互换,但两次互换波及的非姐妹染色单体不一样,试图讲解明二分体和四分体的染色体结构,并指出产生的孢子的育性。

遗传学

遗传学

第六章染色体变异(一) 名词解释:1.假显性:(pseudo-dominant):和隐性基因相对应的同源染色体上的显性基因缺失了,个体就表现出隐性性状,(一条染色体缺失后,另一条同源染色体上的隐性基因便会表现出来)这一现象称为假显性。

2.位置效应:基因由于交换了在染色体上的位置而带来的表型效应的改变现象。

3.剂量效应:即细胞内某基因出现的次数越多,表型效应就越显著的现象。

4.染色体组:在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体。

或者说是指细胞内一套形态、结构、功能各不相同,但在个体发育时彼此协调一致,缺一不可的染色体。

5.整倍体(Euploid):指具有基本染色体数的完整倍数的细胞、组织和个体。

6.非整倍体:体细胞染色体数目(2n)上增加或减少一个或几个的细胞,组织和个体,称为非整倍体。

7.单倍体:具有配子(精于或卵子)染色体数目的细胞或个体。

如,植物中经花药培养形成的单倍体植物。

8.二倍体:具有两个染色体组的细胞或个体。

绝大多数的动物和大多,数植物均属此类9.一倍体:具有一个染色体组的细胞或个体,如,雄蜂。

同源多倍体10.异源多倍体[双二倍体] (Allopolyploid):指染色体组来自两个及两个以上的物种,一般是由不同种、属的杂种经染色体加倍而来的。

11.超倍体;染色体数多于2n的细胞,组织和个体。

如:三体、四体、双三体等。

12.亚倍体:染色体数少于2n的细胞,组织和个体。

如:单体,缺体,双单体等。

13.剂量补偿作用(dosage compensation effect):所谓剂量补偿作用是使具有两份或两份以上的基因量的个体与只具有一份基因量的个体的基因表现趋于一致的遗传效应。

14.同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体称为同源多倍体。

(二) 是非题:1.在易位杂合体中,易位染色体的易位接合点相当于一个半不育的显性基因,而正常的染色体上与易位接合点相对的等位点则相当于一个可育的隐性基因。

第六章-染色体变异--习题参考答案

第六章-染色体变异--习题参考答案

第六章染色体变异1.植株是显性AA纯合体,用隐性aa纯合体的花粉给它授粉杂交,在500株F1中,有2株表现为aa。

如何证明和解释这个杂交结果?答:这有可能是显性AA株在进行减数分裂时,有A 基因的染色体发生断缺失杂合裂,丢失了具有A基因的染色体片断,与带有a基因的花粉授粉后,F1体植株会表现出a基因性状的假显性现象。

可用以下方法加以证明:⑴.细胞学方法鉴定:①.缺失圈;②. 非姐妹染色单体不等长。

⑵.育性:花粉对缺失敏感,故该植株的花粉常常高度不育。

⑶.杂交法:用该隐性性状植株与显性纯合株回交,回交植株的自交后代6显性:1隐性。

2.玉米植株是第9染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C等位的无色基因c在正常染色体上。

玉米的缺失染色体一般是不能通过花粉而遗传的。

在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,10%的杂交子粒是有色的。

试解释发生这种现象的原因。

答:这可能是Cc缺失杂合体在产生配子时,带有C基因的缺失染色体与正常的带有c基因的染色体发生了交换,其交换值为10%,从而产生带有10%C基因正常染色体的花粉,它与带有c基因的雌配子授粉后,其杂交子粒是有色的。

3.某个体的某一对同源染色体的区段顺序有所不同,一个是12·34567,另一个是12·36547("· "代表着丝粒)。

试解释以下三个问题:⑴.这一对染色体在减数分裂时是怎样联会的?⑵.倘若在减数分裂时,5与6之间发生一次非姐妹染色单体的交换,图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

⑶.倘若在减数分裂时,着丝粒与3之间和5与6之间各发生一次交换,但两次交换涉及的非姐妹染色单体不同,试图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

4.某生物有3个不同的变种,各变种的某染色体的区段顺序分别为:ABCDEFGHIJ、ABCHGFIDEJ、ABCHGFEDIJ。

六章染色体变异-PPT精品

六章染色体变异-PPT精品
Recessive c phenotype
Wild type
6.2.1.3 缺失与进化
进化的趋势是基因组C值的增加,而缺失减小C值, 因此它在进化中没有直接的作用。
6.2.1.4 缺失的应用
作为一种研究手段用来探测某些调控元件和蛋白 质的结合位点,如E.coli的复制起始区的分析等。
利用假显性原理可以进行基因的缺失定位 (deletion mapping)。
Overlap of homologues
Simultaneous break
Reunion of homologues
6.2.2.2 重复的细胞学和遗传学效应
1)、染色体重复与正常染色体联会时,在粗线期的 染色体上会出现环状突起。
2)、位置效应(position effect)
一个基因随着染色体畸变而改变它和邻近基因的 位置关系,从而改变了表型的现象称位置效应。 可能是随位置的改变也改变了和5’端调控元件的 关系和距离,从而影响基因的表达。
雄果蝇是完全连锁的,不会发生交换。
用ClB雌果蝇有以下的优点:
用C可抑制交换,使得结果明确,不受重组的干扰。 B作为一种标记易区分两类雌蝇,可将ClB品系分
离出来。 使一半无待测X染色体的雄蝇致死。
2)、平衡致死品系(balanced lethal system)
这是利用倒位的交换抑制效应,为了同时保存两 个致死基因而设计建立的果蝇品系。
按表型效应的稳定性可把位置效应分为两类,一 类叫稳定位置效应(stable position effect),又称 S型位置效应,如果蝇的棒眼遗传。另一种位置 效应是不稳定的,称为花斑位置效应(variegated position effect),也称为V型位置效应,常由易位 而引起。

染色体变异修改1[1].ppt

染色体变异修改1[1].ppt

染色体结构的变异
位置颠倒
4、倒位 染色体的某一片段
a b c d e f
e f a e d c
颠倒
b f
(一)
染色体结构变异
缺失
果蝇缺刻翅、 猫叫综合症 果蝇棒状眼
染色体结构的变 重复 异导致生物变异 易位 的原因是什么?
倒位
夜来香的 变异、 慢性粒细 胞白血病
染色体结构变异 染色体上的基因的数 目和排列顺序改变 生物性状的变异
X
Y
1、染色体组的概念
形态、结构 细胞中的一组________染色体,它们在_____ 非同源 和______上各不相同,但又相互协调,共同控 功能 制着生物的生长,发育,遗传和变异即携带着 全部遗传信息 控制生物生长发育的____________ ,这样的 一组染色体,叫做一个染色体组。
染色体组的内涵
染色体结构 的变异导致生物 变异的原因是什 么?
多数不利
请讨论: Q1:染色体结构变异对生物都是有害的吗? 大多有害、少数有利
Q2:染色体变异与基因突变相比,哪一种变异 引起的性状变化较大一些?为什么?
每条染色体上含有许多基因,染色体变异 会引起多个基因的变化,所以引起的性状 变化较大一些
(二)染色体数目的变异:
自然界中,几乎全部的动物和过半数的 高等植物都是二倍体。
由受精卵发育而成的,体细胞中含有 多倍体:
三个或三个以上的染色体组的个体。 例如:香蕉、马铃薯等。
多倍体在高等植物中是相当普遍的,例如显花植物中大 约有一千种以上是多倍体,栽培植物中更为常见,禾本植物可 达75%。但动物界中的多倍体却少得多,脊椎动物则更少。
C、AaBbCcDd,8
D、BbbbDddd,8

染色体变异

染色体变异

染色体变异染色体变异是什么我们经常都会看到染色体这个词语,但是染色体是什么?染色体变异也是经常出现的词语,染色体变异是什么?其实染色体变异跟我们的生活是有很大关系的,并不仅仅是跟医学或者我们学过的知识有关系。

染色体是细胞内具有遗传性质的遗传物质深度压缩形成的聚合体,易被碱性染料染成深色,所以叫染色体(染色质);染色体和染色质是同一物质在细胞分裂间期和分裂期的不同形态表现而已。

那么染色体变异是什么呢?在真核生物的体内,染色体是遗传物质DNA的载体。

当染色体的数目发生改变时(缺少,增多)或者染色体的结构发生改变时,遗传信息就随之改变,带来的就是生物体的后代性状的改变,这就是染色体变异。

它是可遗传变异的一种。

根据产生变异的原因,它可以分为结构变异和数量变异两大类。

结构变异和数量变异由不同的表现,差别比较大。

妈网百科总结以上的信息,可以将染色体变异归纳为:生物类别:真核生物。

主要原因:染色体缺失,增添,易位或倒位。

发生时期:有性生殖形成配子时。

产生后果:遗传病,极少数为有利变异。

常见病例:21-三体综合症,猫叫综合症等。

有利应用:三倍体植株(如无籽西瓜)培育等。

染色体结构变异染色体结构变异是染色体变异的其中一种。

染色体结构变异会导致很多人类疾病,对染色体结构变异加以了解,对我们有很大的帮助。

染色体结构变异可以发生在任何一个时期,导致染色体结构变异的原因有自然条件或者人为因素的影响。

染色体发生的结构变异主要有以下四种类型:1、缺失染色体中某一片段的缺失。

例如,猫叫综合征是人的第5号染色体部分缺失引起的遗传病,因为患病儿童哭声轻,音调高,很像猫叫而得名。

猫叫综合征患者的两眼距离较远,耳位低下,生长发育迟缓,而且存在严重的智力障碍;果蝇的缺刻翅的形成也是由于一段染色体缺失造成的。

2、重复染色体增加了某一片段果蝇的棒眼现象就是X染色体上的部分重复引起的。

3、倒位染色体某一片段的位置颠倒了180度,造成染色体内的重新排列如女性习惯性流产(第9号染色体长臂倒置)。

染色体变异习题参考答案

染色体变异习题参考答案

第六章染色体变异1.植株是显性AA纯合体,用隐性aa纯合体的花粉给它授粉杂交,在500株F1中,有2株表现为aa。

如何证明和解释这个杂交结果?答:这有可能是显性AA株在进行减数分裂时,有A 基因的染色体发生断缺失杂合裂,丢失了具有A基因的染色体片断,与带有a基因的花粉授粉后,F1体植株会表现出a基因性状的假显性现象。

可用以下方法加以证明:⑴.细胞学方法鉴定:①.缺失圈;②. 非姐妹染色单体不等长。

⑵.育性:花粉对缺失敏感,故该植株的花粉常常高度不育。

⑶.杂交法:用该隐性性状植株与显性纯合株回交,回交植株的自交后代6显性:1隐性。

2.玉米植株是第9染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C等位的无色基因c在正常染色体上。

玉米的缺失染色体一般是不能通过花粉而遗传的。

在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,10%的杂交子粒是有色的。

试解释发生这种现象的原因。

答:这可能是Cc缺失杂合体在产生配子时,带有C基因的缺失染色体与正常的带有c基因的染色体发生了交换,其交换值为10%,从而产生带有10%C基因正常染色体的花粉,它与带有c基因的雌配子授粉后,其杂交子粒是有色的。

3.某个体的某一对同源染色体的区段顺序有所不同,一个是12·34567,另一个是12·36547("· "代表着丝粒)。

试解释以下三个问题:⑴.这一对染色体在减数分裂时是怎样联会的?⑵.倘若在减数分裂时,5与6之间发生一次非姐妹染色单体的交换,图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

⑶.倘若在减数分裂时,着丝粒与3之间和5与6之间各发生一次交换,但两次交换涉及的非姐妹染色单体不同,试图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

4.某生物有3个不同的变种,各变种的某染色体的区段顺序分别为:ABCDEFGHIJ、ABCHGFIDEJ、ABCHGFEDIJ。

染色体变异修改ppt讲课文档

染色体变异修改ppt讲课文档
DT Dt dT dt 幼苗
秋水仙 素处理
DDTT DDtt ddTT ddtt
筛选所需的品种
筛选所需的品种
优点:
明显缩短育种年限、子代都是纯合子
现在三十一页,总共五十九页。
对一个个体称单倍体还是几倍体, 关键看什么?
关键看它是由受精卵发育而成的个体,还是由 配子发育而成的个体。由受精卵发育而成的个体 叫几倍体,由受精卵发育而成的个体叫单倍体。
体2常1细 植个胞 株染的 体中 染色叫个含 色体单体有 体。倍叫本数体可几。物目倍见种的体,,一配单由子半倍配的。体子染植发色株育体而的成染数的色目个体的数个目体总。是正
单倍体是二倍体或多倍体单性生殖的结果。
现在三十六页,总共五十九页。
对一个个体称单倍体还是几倍体,关键看什么?
关键看它是由受精卵发育而成的个体,还是由 配子发育而成的个体。由受精卵发育而成的个体 叫几倍体,由配子发育而成的个体叫单倍体。
1、四倍体植株上所结瓜的果皮、 种皮、胚、胚乳的染色体组数分 别是多少?
2、三倍体无子瓜的果皮、种皮、 胚、胚乳的呢?
现在二十九页,总共五十九页。
4、单倍体
(1)概念:
由配子发育而来,体细胞中含有本物 种配子染色体数目的个体
(2)单倍体植株特点
弱小,且高度不育
(3)单倍体育种的措施和优点
措施:
二倍体植株 花药离体培养
发育, 无生育能
现在十二页,总共五十九页。
请思考:
Q1:果蝇体细胞有几条染色体?
8条
Q2:Ⅱ号和Ⅱ号染色体是什么关系?Ⅲ号和Ⅳ号呢?
同源染色体
非同源染色体
Q3:雄果蝇的体细胞中共有哪几对同源染色体? Ⅱ和Ⅱ、Ⅲ和Ⅲ、Ⅳ和Ⅳ、X和Y

染色体变异修改[].ppt讲课文档

染色体变异修改[].ppt讲课文档
第二十七页,共56页。
人工诱导多倍体的方法
低温处理 秋水仙素处理
萌发种子或幼苗
第二十八页,共56页。

二倍体 发育 二倍体
幼苗
植株

♀粉
二倍体 秋水仙素处理 四倍体 幼苗 染色体加倍 植株
二倍体 发育 二倍体
幼苗
植株
花粉
诱导
三倍体 发育 三倍体
种子
植株
三倍体 无籽瓜
第一年
思考:
第二年
1、四倍体植株上所结瓜的果皮、 种皮、胚、胚乳的染色体组数分别 是多少?
次,则有几个染色体组。即控制同一性状的基因出现
几次,则有几个染色体组。
AaBb 2个染色体组
AAaBbb
3个染色体组
AaaaBBbb
4个染色体组
第十八页,共56页。
上图是某植物正常的体细胞,判断该植物可能的 基因型及细胞中所含的染色体组数( ) B
A、ABCd,4
B、Aaaa,4
C、AaBbCcDd,8 D、BbbbDddd,8
是非什同么源关染系色?体它们是否携带着控制生物生长发育的全
部遗传信息? 是

Q5:如果将果蝇
的精子中的染
色体看作一 组,那么果蝇 的体细胞中有 几组染色体?




XY
减数分裂






X
Y
第十四页,共56页。
1、染色体组的概念
细胞中的一组__非___同__源_染色体,它们在____形_和态、结构
制____纺__锤__丝的形成,导致______染__色不体能_______移_向_,两极
从而引起细胞内染色体_______数__目_。加染倍色体数目加 倍的细胞继续进行_____有__丝分裂,将来就可能发育成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章染色体变异习题及答案
1.植株是显性AA纯合体,用隐性aa纯合体的花粉给它授粉杂交,在500株F1中,有2株表现为aa。

如何证明和解释这个杂交结果?
答:这有可能是显性AA株在进行减数分裂时,有A 基因的染色体发生断裂,丢失了具有A基因的染色体片断,与带有a基因的花粉授粉后,F1缺失杂合体植株会表现出a基因性状的假显性现象。

可用以下方法加以证明:⑴.细胞学方法鉴定:①.缺失圈;②.非姐妹染色单体不等长。

⑵.育性:花粉对缺失敏感,故该植株的花粉常常高度不育。

⑶.杂交法:用该隐性性状植株与显性纯合株回交,回交植株的自交后代6显性:1隐性。

2.玉米植株是第9染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C等位的无色基因c在正常染色体上。

玉米的缺失染色体一般是不能通过花粉而遗传的。

在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,10%的杂交子粒是有色的。

试解释发生这种现象的原因。

答:这可能是Cc缺失杂合体在产生配子时,带有C基因的缺失染色体与正常的带有c基因的染色体发生了交换,其交换值为10%,从而产生带有10%C基因正常染色体的花粉,它与带有c基因的雌配子授粉后,其杂交子粒是有色的。

3.某个体的某一对同源染色体的区段顺序有所不同,一个是12·34567,另一个是12·36547("· "代表着丝粒)。

试解释以下三个问题:
⑴.这一对染色体在减数分裂时是怎样联会的?
⑵.倘若在减数分裂时,5与6之间发生一次非姐妹染色单体的交换,图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

⑶.倘若在减数分裂时,着丝粒与3之间和5与6之间各发生一次交换,但两次交换涉及的非姐妹染色胆体不同,试图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

答:如下图说示。

*为败育孢子。

4.某生物有3个不同的变种,各变种的某染色体的区段顺序分别为:
ABCDEFGHIJ、ABCHGFIDEJ、ABCHGFEDIJ。

试论述这3个变种的进化关系。

答:这3个变种的进化关系为:以变种ABCDEFGHIJ为基础,通过DEFGH染色体片段的倒位形成ABCHGFEDIJ,然后以通过EDI染色体片段的倒位形成ABCHGFIDEJ。

5.假设某植物的两个种都有4对染色体:以甲种与乙种杂交得F1,问F1植株的各个染色体在减数分裂时是怎样联会的?绘图表示联会形象。

甲种 乙种
ABCDE FGHIJ ADCBE FGMNO
----- ----- ----- -----
----- ----- ----- -----
ABCDE FGHIJ ADCBE FGMNO
KLMNO PQRST KLHIJ PQRST
----- ----- ----- -----
----- ----- ----- -----
KLMNO PQRST KLHIJ PQRST
答:F1植株的各个染色体在减数分裂时的联会。

6.玉米第6染色体的一个易位点(T)距离黄胚乳基因(Y)较近,T与Y之间的重组率为20%。

以黄胚乳的易位纯合体与正常的白胚乳纯系(yy)杂交,试解答以下问题:
⑴.F1和白胚乳纯系分别产生哪些有效配子?图解分析。

⑵.测交子代(F1)的基因型和表现型(黄粒或白粒,完全不育或半不育)的种类和比例如何?图解说明。

答:
7.曾使叶基边缘有条纹(f)和叶中脉棕色(bm2)的玉米品系(ffbm2bm2),叶基边缘和中脉色都正常的易位纯合体(FFBm2Bm2TT)杂交,F1植株的叶边缘和脉色都正常,但半不育。

检查发现该F1的孢母细胞在粗线期有十字形的四分体。

使全隐性的纯合亲本与F1测交,测交子代的分离见下表。

已知F-f和Bm2-Bm2本来连锁在染色体1的长臂上,问易位点(T)与这两对基因的位置关系如何?
⑵.易位点T与正常基因之间的遗传距离:F-T为7.16%、Bm2-T为45.52%。


其中:F t Bm2和f F bm2为双交换,则:
AaaaBBbb F2
自交
(n-2)II + IIyb1yb1 +OIyb21白
则正常株和白肋株的比例为1:1,而上表中只有O染色体单体后代表现为19:17接近于理论比例1:1,故推测Yb2基因位于O染色体上。

同理如Yb1基因位于单体染色体上,也表现为相同的遗传规律,因此Yb1基因也可位于O染色体上。

 ⑵.如果不在O染色单体上,则
(n-2)II + IIyb1yb1 +IIyb2yb2 ×(n-3)II + IIYb1Yb1 +IIYb2Yb2 + OI

(n-2)II+ IIYb1yb1 + IIYb2yb2 ;
(n-3)II + IIYb1yb1+ IIYb2yb2 + OI ×(n-2)II + IIyb1yb1 +IIyb2yb2

((n-3)II +OI)(n-2)II + IIYb1yb1 +IIYb2yb21绿株
((n-3)II +OI)(n-2)II + IIYb1yb1 +IIyb2yb21绿株
((n-3)II +OI)(n-2)II + IIyb1yb1 +IIYb2yb21绿株
((n-3)II +OI)(n-2)II + IIyb1yb1 +IIyb2yb21白肋株
则正常株和白肋株的比例为3:1,而上表中只有除O染色体株之外其它染色体单体后代的表现接近于这一理论比例。

相关文档
最新文档