2020版高考数学一轮复习第10章计数原理、概率、随机变量及其分布第9讲学案理解析版
2020高中数学第十章 3《二项式定理》复习学案+检测
2020高中数学复习学案第10章 计数原理、概率、随机变量及其分布3 二项式定理【要点梳理·夯实知识基础】1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n an -r b r +…+C n n b n(n ∈N +). 这个公式所表示的规律叫做二项式定理,等式右边的多项式叫做(a +b )n 的二项展开式,其中的系数C r n (r =0,1,2,…,n )叫做 二项式系数 .式中的 C r n an -rb r 叫做二项展开式的 通项 ,用T r +1表示,通项是展开式的第 r +1 项,即T r +1=C r n an -r b r (其中0≤r ≤n ,r ∈N ,n ∈N +). 2.二项展开式形式上的特点 (1)项数为 n +1 .(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 n . (3)字母a 按 降幂 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 升幂 排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到 C n -1n ,C nn .3.二项式系数的性质(1)对称性:与首末两端“ 等距离 ”的两个二项式系数相等,即C m n =C n -m n .(2)增减性与最大值:二项式系数C r n,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间两项T n2+1的二项式系数最大. 当n 是奇数时,那么其展开式中间两项T n +12和T n +12+1的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C r n +…+C n n =2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1 . 【学练结合】[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)C k n an -k b k是(a +b )n 的展开式中的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )答案:(1)× (2)× (3)√ (4)× [小题查验]1.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7D .6解析:B [令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]2.(教材改编)若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120解析:B [二项式系数之和2n =64,所以n =6,T k +1=C k 6·x 6-k ·⎝ ⎛⎭⎪⎫1x k =C k 6x 6-2k,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.]3.(2018·全国Ⅲ卷)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:C [T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫2x r =C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.]4.若⎝ ⎛⎭⎪⎫x 2-1x n 展开式的二项式系数之和为128,则展开式中x 2的系数为( )A .-21B .-35C .35D .21解析:C [由已知得2n =128,n =7,所以T r +1=C r 7x 2(7-r )·⎝ ⎛⎭⎪⎫-1x r =C r 7(-1)r x 14-3r,令14-3r =2,得r =4,所以展开式中x 2的系数为C 47(-1)4=35.故选C.]5.⎝ ⎛⎭⎪⎫1x +x n 的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为 ________ .解析:由题意得C 2n =C 6n ,所以n =8.所以⎝ ⎛⎭⎪⎫1x +x 8展开式的第4项为T 4=C 38⎝ ⎛⎭⎪⎫1x 3x 5=56x 2. 答案:56x 2【考点探究·突破重点难点】考点一 二项展开式的特定项或系数问题(多维探究)[命题角度1] 求展开式中的某一项1.⎝ ⎛⎭⎪⎫x 3-2x 4+⎝ ⎛⎭⎪⎫x +1x 8的展开式中x 4的常数项为( ) A .32 B .34 C .36D .38解析:D [⎝ ⎛⎭⎪⎫x 3-2x 4的展开式的通项为T k +1=C k 4·(x 3)4-k ·⎝ ⎛⎭⎪⎫-2x k =C k 4(-2)k x 12-4k,令12-4k =0,解得k =3, ⎝ ⎛⎭⎪⎫x +1x 8的展开式的通项为 T r +1=C r 8·x 8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.][命题角度2] 求展开式中的系数或二项式系数2.(1+x )(1-x )5的展开式中x 4的系数是( ) A .-35 B .-5 C .5D .35解析:B [(1-x )5展开式的通项是T r +1=C r 5(-x )r =(-1)r C r 5x r ,所以(1-x )5展开式中x 4的系数是(-1)4C 45=5,x 3项的系数是(-1)3C 35=-10,所以(1+x )(1-x )5的展开式中x 4项的系数是1×5+1×(-10)=-5,故选B.][命题角度3] 由已知条件求n 的值或参数的值3.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a = ________ .解析:⎝⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r ·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2.答案:-2 【解题规律方法】与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[跟踪训练](1)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:C [因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40,x 3y 3=y ·(x 3y 2),其系数为C 25·23=80.所以x 3y 3的系数为80-40=40.故选C.] (2)若⎝ ⎛⎭⎪⎪⎫x -23x n (n ∈N +)展开式的二项式系数和为32,则其展开式的常数项为( )A .80B .-80C .160D .-160解析:B [根据二项式系数和的性质,可知2n =32,解得n =5,所以⎝⎛⎭⎪⎪⎫x -23x n的展开式的通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎪⎫-23x r =(-2)r C r 5x 5-r 2-r 3,令5-r 2-r 3=0,解得r =3,所以其展开式的常数项为(-2)3C 35=-80,故选B.]考点二 二项式系数的性质或各项系数的和(师生共研)[典例] (1)在二项式⎝ ⎛⎭⎪⎫x 2-1x 11的展开式中,系数最大的项为第 ________项.(2)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 ________ .[解析] (1)依题意可知T r +1=C r 11(-1)r x 22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.[答案] (1)七 (2)1或-3 [互动探究]本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 ________ .解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5 【解题方法指导】(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[跟踪训练](1)已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20解析:D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.](2)在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为 ________ .解析:令x =1,得各项系数的和为4n ,而各项的二项式系数的和等于2n ,根据已知,得方程4n +2n =72,解得n =3.所以二项展开式的通项T r +1=C r 3(x )3-r⎝ ⎛⎭⎪⎫3x r =3r C r 3x 32-32r ,显然当r =1时,T r +1是常数项,值为3C 13=9. 答案:92020高中数学复习学案第10章 计数原理、概率、随机变量及其分布3 二项式定理检测一、选择题1.C 1n +2C 2n +4C 3n +…+2n -1C n n 等于( D ) A .3n B .2·3n C.3n2-1D.3n -12解析:因为C 0n +2(C 1n +2C 2n +4C 3n +…+2n -1C n n )=(1+2)n ,所以C 1n +2C 2n +4C 3n +…+2n -1C n n =3n -12.2.在⎝ ⎛⎭⎪⎫x 2+1x 5的展开式中x 的系数为( B )A .5B .10C .20D .40解析:∵T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5x 10-3r,令10-3r =1,得r =3,∴x 的系数为C 35=10.3.已知⎝ ⎛⎭⎪⎫x 3+2x n的展开式的各项系数和为243,则展开式中x 7的系数为( B )A .5B .40C .20D .10解析:由题意,二项式⎝ ⎛⎭⎪⎫x 3+2x n 的展开式中各项的系数和为243,令x =1,则3n=243,解得n =5,所以二项式⎝ ⎛⎭⎪⎫x 3+2x 5的展开式的通项公式为T r +1=C r 5(x 3)5-r⎝ ⎛⎭⎪⎫2x r =2r C r 5x 15-4r ,令15-4r =7,得r =2,则T 3=22C 25x 15-4×2=40x 7,即x 7的系数为40,故选B.4.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( C )A .2n -1B .2n -1C .2n +1-1D .2n解析:令x =1,得1+2+22+ (2)=1×(2n +1-1)2-1=2n +1-1.5.(3-2x -x 4)(2x -1)6的展开式中,含x 3项的系数为( C )A .600B .360C .-600D .-360解析:由二项展开式的通项公式可知,展开式中含x 3项的系数为3×C 3623(-1)3-2×C 2622(-1)4=-600.6.已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( B )A .1B .243C .121D .122解析:令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B. 7.在⎝ ⎛⎭⎪⎫1+x +1x 2 01510的展开式中,x 2的系数为( C )A .10B .30C .45D .120解析:因为⎝ ⎛⎭⎪⎫1+x +1x 2 01510=⎣⎢⎡⎦⎥⎤(1+x )+1x 2 01510=(1+x )10+C 110(1+x )91x 2 015+…+C 1010⎝ ⎛⎭⎪⎫1x2 01510,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C. 二、填空题8.(x 2-1x )8的展开式中x 7的系数为-56.(用数字作答)解析:二项展开式的通项T r +1=C r 8(x 2)8-r ·(-1x )r =(-1)r C r 8x 16-3r,令16-3r =7,得r =3,故x 7的系数为-C 38=-56. 9.若二项式(x -23x)n 的展开式中仅有第6项的二项式系数最大,则其常数项是13_440.解析:∵二项式(x -23x)n 的展开式中仅有第6项的二项式系数最大,∴n=10,∴T r +1=C r 10(x )10-r(-23x )r =(-2)r C r 10·x 30-5r6 ,令30-5r 6=0,解得r =6,∴常数项是(-2)6C 610=13 440.10.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =-14.解析:(x +a )(1+2x )5的展开式中x 3的系数为C 25·22+a ·C 35·23=20,∴40+80a =20,解得a =-14.11.在(x +4x -4)5的展开式中,x 3的系数是180.解析:(x +4x -4)5=(-4+x +4x )5的展开式的通项T r +1=C r 5(-4)5-r·(x +4x )r ,r =0,1,2,3,4,5,(x +4x )r 的展开式的通项T k +1=C k r x r -k (4x )k =4k C k r xr -2k ,k =0,1,…,r .令r -2k =3,当k =0时,r =3;当k =1时,r =5.∴x 3的系数为40×C 03×(-4)5-3×C 35+4×C 15×(-4)0×C 55=180.12.在(x +x )6⎝ ⎛⎭⎪⎫1+1y 5的展开式中,x 4y 2项的系数为( C )A .200B .180C .150D .120解析:(x +x )6展开式的通项公式为T r +1=C r 6(x )6-r x r=C r 6,令6+r2=4,得r =2,则T 3=C 26=15x 4.⎝ ⎛⎭⎪⎫1+1y 5展开式的通项公式为T r +1=C r 5⎝ ⎛⎭⎪⎫1y r =C r 5y -r ,令r =2可得T 3=C 25y -2=10y -2.故x 4y 2项的系数为15×10=150.13.已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( B )A .18B .24C .36D .56解析:∵(2x -1)4=[(2x -2)+1]4=[1+(2x -2)]4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,∴a 2=C 24·22=24,故选B.14.⎝ ⎛⎭⎪⎫x -a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为-48.解析:令x =1,可得⎝ ⎛⎭⎪⎫x -a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中x 4项的系数即是⎝ ⎛⎭⎪⎫2x -1x 5展开式中的x 3项与x 5项系数的和.又⎝ ⎛⎭⎪⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得x 3项与x 5项的系数分别为-80与32,故原展开式中x 4项的系数为-80+32=-48.尖子生小题库——供重点班学生使用,普通班学生慎用15.已知(1+ax +by )5(a ,b 为常数,a ∈N *,b ∈N *)的展开式中不含字母x 的项的系数和为243,则函数f (x )=sin2x +b 2sin (x +π4),x ∈[0,π2]的最小值为2.解析:令x =0,y =1,得(1+b )5=243,解得b =2.因为x ∈[0,π2],所以x+π4∈[π4,3π4],则sin x +cos x =2sin(x +π4)∈[1,2],所以f (x )=sin2x +b 2sin (x +π4)=sin2x +2sin x +cos x =2sin x ·cos x +2sin x +cos x=sin x+cos x+1sin x +cos x≥2(sin x +cos x )·1sin x +cos x=2,当且仅当sin x +cos x =1时取“=”,所以f (x )的最小值为2.。
核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步
3.两个计数原理的区别 分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不 同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题, 其中各种方法______________,用其中______________都可以做完这件事; 分步乘法计数原理针对的是“分步”问题,各个步骤中的方法 ______________,只有______________才算做完这件事. 4.两个计数原理解决计数问题时的方法 最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要 分步. (1)分类要做到“______________”.分类后再分别对每一类进行计数, 最后用分类加法计数原理求和,得到总数. (2)分步要做到“______________”,即完成了所有步骤,恰好完成任务, 当然步与步之间要______________,分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(2)分两步:先选教师,共 3 种选法,再选学生,共 6+8=14 种选法.由分步乘法计数原理知总选法数为 3×14=42(种).
(3)老师、男同学、女同学各一人可分三步,每步方法数依次为 3、6、8 种.由分步乘法计数原理知选法数为 3×6×8=144(种).
第十六页,共25页。
类型二 两个原理的综合应用
第十五页,共25页。
有一项活动需在 3 名老师,6 名男同学和 8 名女同学中选 人参加.
(1)若只需一人参加,有多少种不同选法? (2)若需一名老师,一名学生参加,有多少种不同选法? (3)若需老师、男同学、女同学各一人参加,有多少种不同选法?
解:(1)只需一人参加,可按老师、男同学、女同学分三类,各 自有 3、6、8 种选法,总选法数为 3+6+8=17(种).
2020高中数学第十章 2《排列与组合》复习学案+检测
2020高中数学复习学案第10章计数原理、概率、随机变量及其分布2 排列与组合【要点梳理·夯实知识基础】1.排列、组合的定义2.排列数、组合数的定义、公式、性质【学练结合】[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)所有元素完全相同的两个排列为相同排列.()(2)两个组合相同的充要条件是其中的元素完全相同.()(3)若组合式C x n=C m n,则x=m成立.().()(4)k C k n=n C k-1n-1答案:(1)×(2)√(3)×(4)√[小题查验]1.从3,5,7,11这四个质数中,每次取出两个不同的数分别为a,b,共可得到lg a-lg b的不同值的个数是()A.6B.8C .12D .16解析:C [由于lg a -lg b =lg a b ,从3,5,7,11中取出两个不同的数分别赋值给a 和b 共有A 24=12种,所以得到不同的值有12个.]2.(教材改编)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24解析:D [“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A 34=4×3×2=24.]3.有5名学生站成一排照相,其中甲、乙两人必须站在一起的排法有( )A .A 23·A 22种B .3A 22种C .2A 33种D .A 44·A 22种 解析:D [根据题意,分2步分析:①由于甲、乙两人必须站在一起,将甲、乙两人看成一个整体,考虑2人之间的顺序,有A 22种情况;②将这个整体与其余3人全排列,有A 44种情况,则甲、乙两人必须站在一起的排法共有A 22A 44种排法,故选D.]4.安排4名机关干部去3个行政村做村官,且每人只去一个行政村,要求每个行政村至少有一名机关干部到位做村官,则不同的安排方式共有( )A .36种B .24种C .34种D .43种解析:A [由题意,先把四名机关干部分为三组,共C 24=6(种)分法,再分配到三个行政村官,所以共有C 24A 33=6×6=36(种),故选A.]5.7位身高各不相同的同学排成一排,要求正中间的最高,左右两边分别顺次一个比一个矮,这样的排法共有 ________ 种.解析:最高的同学必须站在中间,再从其他6位同学中选取3位同学按从高到矮的顺序站在一边,有C 36种,则剩下三位同学的位置已定.故共有C 36=20种.答案:20【考点探究·突破重点难点】考点一排列问题(师生共研)[典例](1)将A,B,C,D,E这5名同学从左至右排成一排,则A与B相邻且A与C之间恰好有1名同学的排法有()A.18种B.20种C.21种D.22种(2)四位男演员与五位女演员排成一排拍照,其中四位男演员互不相邻,且女演员甲不站两端的排法种数为()A.A55A46-2A44A45B.A55A46-A44A45C.A55A45-2A44A44D.A55A45-A44A44[解析](1)B(2)A[(1)当A,C之间为B时,将3人看成一个整体与剩余2人进行排列,共有A22·A33=12(种)排法;当A,C之间不是B时,先在A,C之间插入D,E中的任意一个,然后B在A的另一侧,再将这4人看成一个整体,与剩余1人进行排列,共有C12·A22·A22=8(种)排法.所以共有20种不同的排法.(2)四位男演员互不相邻可用插空法,有A55A46种排法,其中女演员甲站在两端的排法有2A44A45种,因此所求排法种数为A55A46-2A44A45.故选A.] 【解题反思】求解有限制条件排列问题的主要方法[提醒](1)插空时要数清插空的个数,捆绑时要注意捆绑后元素的个数及相邻元素的排列数.(2)用间接法求解时,事件的反面数情况要准确.[跟踪训练](1)5名学生进行知识竞赛.笔试结束后,甲、乙两名参赛者去询问成绩,回答者对甲说:“你们5人的成绩互不相同,很遗憾,你的成绩不是最好的”;对乙说:“你不是最后一名”.根据以上信息,这5人的笔试名次的所有可能的种数是()A.54 B.72C.78 D.96(2)现将5张连号的电影票分给甲、乙等5个人,每人1张,且甲、乙分得的电影票连号,则共有不同分法的种数为()A.12 B.24C.36 D.48解析:(1)C(2)D[(1)由题得,甲不是第一,乙不是最后.先排乙:乙得第一,共有A44=24(种)可能;乙没得第一,有3种可能,再排甲也有3种可能,余下的3人有A33=6(种)可能,共有6×3×3=54(种)可能.所以共有24+54=78(种)可能.(2)甲、乙分得的电影票连号有4×2=8(种)分法,其余3人有A33种分法,所以共有8A33=48(种)分法,故选D.]考点二组合问题(子母变式)[母题]要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)男生甲和女生乙入选;(3)男生甲、女生乙至少有一个人入选.[解](1)法一:至少有1名女生入选包括以下几种情况:1女4男,2女3男,3女2男,4女1男,5女.由分类加法计数原理知总选法数为C15C47+C25C37+C35C27+C45C17+C55=771(种).法二:“至少有1名女生入选”的反面是“全是男代表”,可用间接法求解.从12人中任选5人有C512种选法,其中全是男代表的选法有C57种.所以“至少有1名女生入选”的选法有C512-C57=771(种).(2)男生甲和女生乙入选,即只要再从除男生甲和女生乙外的10人中任选3名即可,共有C310=120(种)选法.(3)间接法:“男生甲、女生乙至少有一个人入选”的反面是“两人都不入选”,即从其余10人中任选5人有C510种选法,所以“男生甲、女生乙至少有一个人入选”的选法数为C512-C510=540(种).[子题]在本例条件下,求至多有2名女生入选的选法种数.解:至多有2名女生入选包括以下几种情况:0女5男,1女4男,2女3男,由分类加法计数原理知总选法数为C57+C15C47+C25C37=546(种).【解题方法总结】组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.[跟踪训练](1)某地实行高考改革,考生除参加语文、数学、外语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科,要求物理、化学、生物三科至少选一科,政治、历史、地理三科至少选一科,则考生选考方法种数共有()A.6B.12C.18 D.24(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析:(1)C(2)D[(1)法一:所有选考方法可分两类:第一类可分两步,第一步,考生从物理、化学、生物三科中任选一科有C13种不同的选法,第二步,考生从政治、历史、地理三科中任选二科有C23种不同的选法,根据分步乘法计数原理,共有C13C23种不同的选法;第二类可分两步,第一步,考生从物理、化学、生物三科中任选二科有C23种不同的选法,第二步,从政治、历史、地理三科中任选一科有C13种不同的选法,根据分步乘法计数原理,共有C23C13种不同的选法.根据分类加法计数原理,考生共有C13C23+C23C13=18(种)不同的选考方法,故选C.法二:依题意,考生共有C36-2C33=18(种)不同的选考方法,故选C.(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴不同的取法共有C45+C44+C25C24=66(种).]考点三分组分配问题(多维探究)[命题角度1]整体均分问题1.教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有C26C24C22A33种方法,再将3组毕业生分到3所学校,有A33=6种方法,故6个毕业生平均分到3所学校,共有C26C24C22A33·A33=90种分派方法.答案:90[命题角度2]部分均分问题2.今年,我校迎来了师大数学系5名实习教师,若将这5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有() A.180种B.120种C.90种D.60种解析:C[将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人.另两组都是2人,有C15·C24A22=15(种)方法.再将3组分到3个班,共有15·A33=90(种)不同的分配方案.故选C.] [命题角度3]不等分问题3.若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C16种取法;第2步,在余下的5名教师中任取2名作为一组,有C25种取法;第3步,余下的3名教师作为一组,有C33种取法.根据分步乘法计数原理,共有C16C25C33=60种取法.再将这3组教师分配到3所中学,有A33=6种分法,故共有60×6=360种不同的分法.答案:360【解题规律总结】解决分组分配问题的策略(1)对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.(2)对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m!,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.(3)对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.2020高中数学复习学案第10章计数原理、概率、随机变量及其分布2 排列与组合检测一、选择题1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为(C)A.85 B.56C.49 D.28解析:分两类:甲、乙中只有1人入选且丙没有入选,甲、乙均入选且丙没有入选,计算可得所求选法种数为C12C27+C22C17=49.2.4位男生和2位女生排成一排,男生有且只有2位相邻,则不同排法的种数是(C)A.72 B.96C.144 D.240解析:先在4位男生中选出2位,易知他们是可以交换位置的,则共有A24种选法,然后再将2位女生全排列,共有A22种排法,最后将3组男生插空全排列,共有A33种排法.综上所述,共有A24A22A33=144种不同的排法.故选C.3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为(D) A.144 B.120C.72 D.24解析:“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.4.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有(B)A.60种B.48种C.30种D.24种解析:由题知,可先将B,C二人看作一个整体,再与剩余人进行排列,则不同的座次有A22A44=48种.5.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有(B)A.900种B.600种C.300种D.150种解析:依题意,就甲是否去支教进行分类计数:第一类,甲去支教,则乙不去支教,且丙也去支教,则满足题意的选派方案有C25·A44=240(种);第二类,甲不去支教,且丙也不去支教,则满足题意的选派方案有A46=360(种),因此,满足题意的选派方案共有240+360=600(种),故选B.6.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,则甲、乙在同一路口的分配方案共有(C)A.18种B.24种C.36种D.72种解析:不同的分配方案可分为以下两种情况:①甲、乙两人在一个路口,其余三人分配在另外的两个路口,其不同的分配方案有C 23A 33=18(种);②甲、乙所在路口分配三人,另外两个路口各分配一个人,其不同的分配方案有C 13A 33=18(种).由分类加法计数原理可知不同的分配方案共有18+18=36(种).7.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( C )A .24B .36C .48D .96解析:根据题意,分2种情况讨论:①丙机最先着舰,此时只需将剩下的4架飞机全排列,有A 44=24种情况,即此时有24种不同的着舰方法;②丙机不最先着舰,此时需要在除甲、乙、丙之外的2架飞机中任选1架,作为最先着舰的飞机,将剩下的4架飞机全排列,丙机在甲机之前和丙机在甲机之后的数目相同,则此时有12×C 12A 44=24种情况,即此时有24种不同的着舰方法.则一共有24+24=48种不同的着舰方法.故选C.二、填空题8.现将5张连号的电影票分给甲、乙等5个人,每人一张,若甲、乙分得的电影票连号,则共有48种不同的分法.(用数字作答)解析:电影票号码相邻只有4种情况,则甲、乙2人在这4种情况中选一种,共C 14种选法,2张票分给甲、乙,共有A 22种分法,其余3张票分给其他3个人,共有A 33种分法,根据分步乘法计数原理,可得共有C 14A 22A 33=48种分法.9.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有1_260种不同的方法.(用数字作答)解析:第一步,从9个位置中选出2个位置,分给相同的红球,有C 29种选法;第二步,从剩余的7个位置中选出3个位置,分给相同的黄球,有C 37种选法;第三步,剩下的4个位置全部分给4个白球,有1种选法.根据分步乘法计数原理可得,排列方法共有C 29C 37=1 260(种).10.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1_260个没有重复数字的四位数.(用数字作答)解析:若取的4个数字不包括0,则可以组成的四位数的个数为C 25C 23A 44;若取的4个数字包括0,则可以组成的四位数的个数为C 25C 13C 13A 33.综上,一共可以组成的没有重复数字的四位数的个数为C 25C 23A 44+C 25C 13C 13A 33=720+540=1 260.11.某班主任准备请2018届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少有一人参加,若甲、乙同时参加,则他们发言中间需恰好间隔一人,那么不同的发言顺序共有1_080种.(用数字作答)解析:若甲、乙同时参加,有2C 26A 22A 22=120种,若甲、乙有一人参加,有C 12C 36A 44=960种,从而不同的发言顺序有1 080种.12.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( B )A .90种B .180种C .270种D .360种解析:根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有C 16=6种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C 15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有C 24C 22A 22×A 22=6种情况,则一共有6×5×6=180种不同的安排方案,故选B.13.将数字“124467”重新排列后得到不同的偶数的个数为( D )A .72B .120C .192D .240解析:将数字“124 467”重新排列后所得数字为偶数,则末位数应为偶数.(1)若末位数字为2,因为其他位数上含有2个4,所以有5×4×3×2×12=60种情况;(2)若末位数字为6,同理有5×4×3×2×12=60种情况;(3)若末位数字为4,因为其他位数上只含有1个4,所以共有5×4×3×2×1=120种情况.综上,共有60+60+120=240种情况.14.某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层楼的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有12种.解析:分三类:(1)同一天2家有快递:可能是2层和5层、3层和5层、3层和6层,共3种情况;(2)同一天3家有快递:考虑将有快递的3家插入没有快递的4家形成的空位中,有C 35种插入法,但需减去1层、3层与7层有快递,1层、5层与7层有快递这两种情况,所以有C 35-2=8种情况;(3)同一天4家有快递:只有1层、3层、5层、7层有快递这一种情况.根据分类加法计数原理可知,同一天7家住户有无快递的可能情况共有3+8+1=12种.尖子生小题库——供重点班学生使用,普通班学生慎用15.2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( B )A .18种B .24种C .48种D .36种解析:由题意,有两类:第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C 23=3种,然后分别从选择的班级中再选择一个学生,有C 12C 12=4种,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C 13=3种,然后再从剩下的两个班级中分别选择一人,有C 12C 12=4种,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选B.16.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD (边长为3个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i (i =1,2,…,6),则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( C )A .22种B .24种C .25种D .36种解析:由题意知正方形ABCD (边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A 处表示三次骰子的点数之和是12,在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4,共有6种组合,前三种组合1,5,6;2,4,6;3,4,5各可以排出A 33=6种结果,3,3,6和5,5,2各可以排出A 33A 22=3种结果,4,4,4只可以排出1种结果.根据分类计数原理知共有3×6+2×3+1=25种结果,故选C.。
第10章 第9讲正态分布
第十章 计数原理、概率、随机变量及其分布(理)
高考一轮总复习 • 数学
返回导航
(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概 率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ) 之外的零件的概率只有0.040 8,发生的概率很小.因此一旦发生这种情 况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情 况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合 理的.
返回导航
第十章 计数原理、概率、随机变量及其分布(理)
高考一轮总复习 • 数学
返回导航
知识点二 正态分布 (1)正态分布的定义及表示. 若 对 于 任 何 实 数 a , b(a < b) , 随 机 变 量 X 满 足 P(a < X≤b) = ___ab_φ_μ_,_σ(_x_)d_x__,则称X服从正态分布,记作X~N(μ,σ2). (2)正态总体在三个特殊区间内取值的概率值: ①P(μ-σ<X≤μ+σ)=___0_.6_8_2__6_____; ②P(μ-2σ<X≤μ+2σ)=____0_.9_5_4__4____; ③P(μ-3σ<X≤μ+3σ)=____0_.9_9_7__4____.
得
x
=
1 16
16
∑
i=1
xi
=
9.97
,
s
=
116i∑1=61 xi- x 2 =
116∑ i1=61 xi2-16-x 2≈0.212,其中 xi 为抽取的第 i 个零件的尺寸,i= 1,2,…,16.
第十章 计数原理、概率、随机变量及其分布(理)
高考一轮总复习 • 数学
第十章 第九节 离散型随机变量的均值与方差、正态分布1
P
p1
p2
…
pi
…
pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X的均值或数学期望,它反映了离散型随机变量取值 的 平均水平 .
返回
2.若Y=aX+b,其中a,b为常数,则Y也是随机变量,
且E(aX+b)= aE(X)+b . 3. (1)若X服从两点分布,则E(X)= p ; (2)若X~B(n,p),则E(X)= np.
返回
9 9 81 P(X=110)=10×10=100. X的分布列为: X P 50 1 100 70 9 100 90 9 100 110 81 100
1 9 9 81 E(X)=50×100+70×100+90×100+110×100=104.
返回
[冲关锦囊] 1.求离散型随机变量的均值关键是先求出随机变量的分
返回
记“该运动员获得第一名”为事件C,依题意得 3 3 1 3 3 P(C)=P(AB)+P( A B)=4×4+4×4=4. 3 该运动员获得第一名的概率为4.
返回
(2)若该运动员选择乙系列,X的可能取值是50,70,90,110,则P(X=50) 1 1 1 =10×10=100, 1 9 9 P(X=70)=10×10=100, 9 1 9 P(X=90)=10×10=100,
返回
np=12, 解析:由 np1-p=4
2 得n=18,p=3.
答案: A
返回
4.(教材习题改编)有10件产品,其中3件是次品,从 中任取两件.若X表示取到次品的个数.则E(X)=
________.
1 C2 21 C1C3 21 7 7 解析:X=0时,C2 =45,X=1时,P= C2 =45, 10 10
高考数学一轮总复习第10章计数原理概率随机变量及其分布高考大题规范解答__概率统计pptx课件
1.(2023·江西上饶、景德镇等地名校联考)(12分)2022年12月份以 来,全国多个地区纷纷采取不同的形式发放多轮消费券,助力消费复 苏,记发放的消费券额度为x(百万元),带动的消费为y(百万元).某省随 机抽查的一些城市的数据如下表所示.
x3
3
4
5
5
6
6
8
y 10 12 13 18 19 21 24 27
P(ξ=10)=C13CC1137C13=395, P(ξ=11)=CC23C37 11=335,(10 分) ∴ξ 的分布列为:
P 6 7 8 9 10 11
ξ
1 35
9 35
9 35
4 35
9 35
3 35
∴ξ 的数学期望 E(ξ)=6×315+7×395+8×395+9×345+10×395+
答对的概率为23,乙能答对的概率为35;第二关的 6 道题目中甲能答对 4 题,乙能答对 3 题.
(1)求甲获胜的概率; (2)设 X 表示甲获得的优惠券总金额,求 X 的分布列和期望.
[解析] (1)令事件 A 为“甲第一关胜出进入第二关”,事件 B 为“乙 第一关胜出进入第二关”,
则 P(A)=12×23+12×1-35=13+15=185,(2 分) P(B)=12×1-23+12×35=12×13+130=3104=175 或PB=1-PA=175,(3 分) 令:C1:第二关甲两题都答对
8
(xi--x )(yi--y )=16+12+5+0+0+3+6+27=69,(2 分)
i=1
8
(xi--x )2=4+4+1+0+0+1+1+9=20,
i=1
8Hale Waihona Puke (yi--y )2=64+36+25+0+1+9+36+81=252,(3 分)
北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布几何概型教学案理
一、知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=错误!常用结论在几何概型中,如果A是确定事件,(1)若A是不可能事件,则P(A)=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P(A)=0不能推出A是不可能事件.(2)若A是必然事件,则P(A)=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P(A)=1不能推出A是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()解析:选A.因为P(A)=错误!,P(B)=错误!,P(C)=错误!,P(D)=错误!,所以P(A)>P(C)=P(D)>P(B).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为错误!.答案:错误!3.设不等式组错误!表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC及其内部为不等式组表示的平面区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4—π.因此满足条件的概率是错误!.答案:1—错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)与面积有关的几何概型的概率与几何图形的形状有关.()答案:(1)√(2)√(3)√(4)×二、易错纠偏错误!错误!选用的几何测度不准确导致出错.在区间[—2,4]上随机地取一个数x,若x满足|x|≤m的概率为错误!,则m=________.解析:由|x|≤m,得—m≤x≤m.当0<m≤2时,由题意得错误!=错误!,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得错误!=错误!,解得m=3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f(x)=错误!的定义域为D,在区间[—4,5]上随机取一个数x,则x∈D的概率是________.【解析】由6+x—x2≥0,解得—2≤x≤3,则D=[—2,3],则所求概率为错误!=错误!.【答案】错误!错误!与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[—2,2]中随机选取一个实数a,则函数f(x)=4x—a·2x+1+1有零点的概率是()A.错误!B.错误!C.错误!D.错误!解析:选A.令t=2x,函数有零点就等价于方程t2—2at+1=0有正根,进而可得错误!⇒a≥1,又a∈[—2,2],所以函数有零点的实数a应满足a∈[1,2],故P=错误!,选A.2.如图,扇形AOB的圆心角为120°,点P在弦AB上,且AP=错误!AB,延长OP交弧AB于点C,现向扇形AOB内投一点,则该点落在扇形AOC内的概率为________.解析:设OA=3,则AB=3错误!,所以AP=错误!,由余弦定理可求得OP=错误!,∠AOP=30°,所以扇形AOC的面积为错误!,扇形AOB的面积为3π,从而所求概率为错误!=错误!.答案:错误!与面积有关的几何概型(多维探究)角度一与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A.错误!B.错误!C.错误!D.错误!(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x=2交抛物线y2=4x于A,B两点.点A,B在y轴上的射影分别为D,C.从长方形ABCD中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为()A.错误!B.错误!C.错误!D.错误!【解析】(1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32—22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为错误!.故选B.(2)在抛物线y2=4x中,取x=2,可得y=±2错误!,所以S矩形ABCD=8错误!,由阿基米德理论可得弓形面积为错误!×错误!×4错误!×2=错误!,则阴影部分的面积为8错误!—错误!=错误!.由概率比为面积比可得,点位于阴影部分的概率为错误!=错误!.故选B.【答案】(1)B (2)B角度二与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合错误!表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为()A.错误!B.错误!C.错误!D.错误!【解析】因为集合错误!表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB.直线x+y=0与直线x—y=0垂直,故∠AOB=错误!.联立错误!得点A(1,—1),联立错误!得点B(3,3).OA=错误!=错误!,OB=错误!=3错误!,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的错误!圆,即扇形OCD,所以由几何概型得点到坐标原点的距离不大于1的概率P=错误!=错误!=错误!.故选B.【答案】B角度三与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知圆O的面积为π3,正弦曲线y=sin x,x∈[—π,π]与x轴围成的区域记为M,根据图形的对称性得区域M的面积S=2错误!sin x d x=—2cos x错误!=4,由几何概型的概率计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=错误!,故选B.【答案】B角度四与随机模拟相关的几何概型从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的1圆周率π的近似值为()A.错误!B.错误!C.错误!D.错误!【解析】设由错误!构成的正方形的面积为S,x错误!+y错误!<1构成的图形的面积为S′,所以错误!=错误!=错误!,所以π=错误!,故选C.【答案】C错误!求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD和OPQR构成的标靶图形,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕点O旋转,则小华随机向标靶投飞镖射中阴影部分的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.如图,连接OB,OA,可得△OBM与△OAN全等,所以S四边形MONB=S△AOB=错误!×2×1=1,即正方形ABCD和OPQR重叠的面积为1.又正方形ABCD和OPQR构成的标靶图形面积为4+4—1=7,故小华随机向标靶投飞镖射中阴影部分的概率是错误!,故选D.2.(一题多解)如图,线段MN是半径为2的圆O的一条弦,且MN的长为2,在圆O内,将线段MN绕点N按逆时针方向转动,使点M移动到圆O上的新位置,继续将新线段NM绕新点M按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动,…点M的轨迹所围成的区域是图中阴影部分.若在圆O内随机取一点,则该点取自阴影部分的概率为()A.4π—6错误!B.1—错误!C.π—错误!D.错误!解析:选B.法一:依题意,得阴影部分的面积S=6×[错误!(π×22)—错误!×2×2×错误!]=4π—6错误!,所求概率P=错误!=1—错误!,故选B.法二:依题意得阴影部分的面积S=π×22—6×错误!×2×2×错误!=4π—6错误!,所求概率P =错误!=1—错误!,故选B.与体积有关的几何概型(师生共研)已知正三棱锥SABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得V PABC<错误! V SABC的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知,当点P在三棱锥的中截面以下时,满足V PABC<错误!V SABC,故使得V PABC<错误! V SABC的概率:P=错误!=错误!.【答案】B错误!与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥PABCD的所有顶点都在球O的球面上,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2.现在球O的内部任取一点,则该点取自四棱锥PABCD内部的概率为________.解析:把四棱锥PABCD扩展为正方体,则正方体的体对角线的长是外接球的直径R,即2错误!=2R,R=错误!,则四棱锥的体积为错误!×2×2×2=错误!,球的体积为错误!×π(错误!)3=4错误!π,则该点取自四棱锥PABCD内部的概率P=错误!=错误!.答案:错误!2.一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADFBCE内自由飞翔,则它飞入几何体FAMCD内的概率为________.解析:因为V FAMCD=错误!×S四边形AMCD×DF=错误!a3,V ADFBCE=错误!a3,所以它飞入几何体FAMCD内的概率为错误!=错误!.答案:错误![基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=错误!=错误!.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1—错误!B.1—错误!C.1—错误!D.1—错误!解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P 的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为错误!×3×错误!×12=错误!,△ABC的面积S=错误!×22×sin 60°=错误!,则阴影部分的面积S=错误!—错误!,则对应的概率P=错误!=1—错误!.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1—错误!B.错误!C.错误!D.1—错误!解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1—错误!,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD为菱形,C为EF的中点,EC =CF=3,BE=DF=4,BE⊥EF,DF⊥EF.若在几何图形中任取一点,则该点取自Rt△BCE的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D.因为EC=3,BE=4,BE⊥EC,所以BC=5.又由题可知BD=EF=6,AC=2BE =8,所以S△BCE=S△DFC=错误!×3×4=6,S四边形ABCD=错误!AC·BD=24.由几何概型概率公式可得,所求概率P=错误!=错误!,即该点取自Rt△BCE的概率为错误!.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足错误!=错误!=错误!≈0.618,后人把这个数称为黄金分割,把点C称为线段AB的黄金分割点.图中在△ABC中,若点P,Q为线段BC的两个黄金分割点,在△ABC内任取一点M,则点M落在△APQ内的概率为()A.错误!B.错误!—2C.错误!D.错误!解析:选B.所求概率为错误!=错误!=错误!=错误!=错误!—2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y=错误!,y=—错误!,y=x,y=—x及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是错误!.答案:错误!7.已知平面区域Ω={(x,y)|0≤x≤π,0≤y≤1},现向该区域内任意掷点,则该点落在曲线y=sin 2x下方的概率是________.解析:y=sin2x=错误!—错误!cos 2x,所以错误!错误!d x=错误!错误!=错误!,区域Ω={(x,y)|0≤x≤π,0≤y≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y=sin2x下方的概率是错误!=错误!.答案:错误!8.已知O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,则点P到点C的距离大于错误!的概率为________.解析:因为O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,所以错误!如图,不等式组错误!对应的平面区域为正方形OEFG及其内部,|CP|>错误!对应的平面区域为阴影部分.由错误!解得错误!即E错误!,所以|OE|=错误!=错误!,所以正方形OEFG的面积为错误!,则阴影部分的面积为错误!—错误!,所以根据几何概型的概率公式可知所求的概率为错误!=1—错误!.答案:1—错误!9.如图所示,圆O的方程为x2+y2=4.(1)已知点A的坐标为(2,0),B为圆周上任意一点,求错误!的长度小于π的概率;(2)若N(x,y)为圆O内任意一点,求点N到原点的距离大于错误!的概率.解:(1)圆O的周长为4π,所以错误!的长度小于π的概率为错误!=错误!.(2)记事件M为N到原点的距离大于错误!,则Ω(M)={(x,y)|x2+y2>2},Ω={(x,y)|x2+y2≤4},所以P(M)=错误!=错误!.10.已知向量a=(2,1),b=(x,y).(1)若x∈{—1,0,1,2},y∈{—1,0,1},求向量a∥b的概率;(2)若x∈[—1,2],y∈[—1,1],求向量a,b的夹角是钝角的概率.解:(1)设“a∥b”为事件A,由a∥b,得x=2y.所有基本事件为(—1,—1),(—1,0),(—1,1),(0,—1),(0,0),(0,1),(1,—1),(1,0),(1,1),(2,—1),(2,0),(2,1),共12个基本事件.其中A={(0,0),(2,1)},包含2个基本事件.则P(A)=错误!=错误!,即向量a∥b的概率为错误!.(2)设“a,b的夹角是钝角”为事件B,由a,b的夹角是钝角,可得a·b<0,即2x+y<0,且x≠2y.基本事件为错误!所表示的区域,B=错误!,如图,区域B为图中的阴影部分去掉直线x—2y=0上的点,所以,P(B)=错误!=错误!,即向量a,b的夹角是钝角的概率是错误!.[综合题组练]1.(2020·安徽合肥模拟)已知圆C:x2+y2=4与y轴负半轴交于点M,圆C与直线l:x—y +1=0相交于A,B两点,那么在圆C内随机取一点,则该点落在△ABM内的概率为()A.错误!B.错误!C.错误!D.错误!解析:选A.由图可知,由点到直线距离公式得|OC|=错误!=错误!,则|AB|=2错误!=错误!,同理可得|MD|=错误!=错误!,所以S△MAB=错误!|AB|·|MD|=错误!,由几何概型知,该点落在△ABM内的概率为错误!=错误!=错误!,故选A.2.已知P是△ABC所在平面内一点,错误!+错误!+2错误!=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.以PB,PC为邻边作平行四边形PBDC,则错误!+错误!=错误!,因为错误!+错误!+2错误!=0,所以错误!+错误!=—2错误!,得错误!=—2错误!,由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC距离的错误!,所以S△PBC=错误!S△ABC,所以将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为错误!=错误!.3.两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O,建立平面直角坐标系,设两位同学到达的时刻分别为x,y,设事件A表示两位同学能够见面,所构成的区域为A={(x,y)||x—y|≤15},即图中阴影部分,根据几何概型概率计算公式得P(A)=错误!=错误!.答案:错误!4.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O被函数y=3sin 错误!x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y=3sin 错误!x的最小正周期T,又T=错误!=12,所以大圆的面积S=π·错误!错误!=36π,一个小圆的面积S′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P=错误!=错误!=错误!.答案:错误!5.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1—(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为错误!=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x,y米,则基本事件满足错误!,设事件A为“甲比乙跳得远”,则x>y,作出可行域如图中阴影部分所示.所以由几何概型得P(A)=错误!=错误!,即甲比乙跳得远的概率为错误!.6.已知关于x的二次函数f(x)=ax2—4bx+1.(1)设集合P={1,2,3}和Q={—1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域错误!内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.解:(1)因为函数f(x)=ax2—4bx+1的图象的对称轴为x=错误!,要使f(x)=ax2—4bx +1在区间[1,+∞)上为增函数,当且仅当a>0且错误!≤1,即2b≤a.若a=1,则b=—1;若a=2,则b=—1,1;若a=3,则b=—1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P和Q中随机取一个数作为a和b”的个数是15.所以所求事件的概率为错误!=错误!.(2)由(1)知当且仅当2b≤a且a>0时,函数f(x)=ax2—4bx+1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为错误!,构成所求事件的区域为如图所示的三角形BOC部分.由错误!得交点坐标C错误!,故所求事件的概率P=错误!=错误!=错误!.。
2020年高考数学一轮复习教案:第10章 第1节 随机事件的概率(含解析)
第十章概率第一节随机事件的概率[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.1.事件的相关概念2.频数、频率和概率(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n An为事件A出现的频率.(2)概率:对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).3.事件的关系与运算定义符号表示包含关系若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A,且A⊇B,那么称事件A与事件B相等A=B并事件若某事件发生当且仅当事件A发生或事件B发生,A∪B(或A+B)(1)概率的取值范围:0≤P(A)≤1;(2)必然事件的概率P(A)=1;(3)不可能事件的概率P(A)=0;(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);(5)对立事件的概率:若事件A与事件B互为对立事件,则P(A)=1-P(B).[常用结论]1.对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,“互斥”是“对立”的必要不充分条件.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).[基础自测]1.(思考辨析)判断下列结论的正误(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.()(2)在大量重复试验中,概率是频率的稳定值.()(3)两个事件的和事件发生是指两个事件都得发生. ()(4)对立事件一定是互斥事件,互斥事件不一定是对立事件.()[答案](1)×(2)√(3)×(4)√2.(教材改编)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶D[“至少有一次中靶”的对立事件是“两次都不中靶”.]3.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A.必然事件B.随机事件C.不可能事件D.无法确定B[抛掷10次硬币正面向上的次数可能为0,1,2,…,10,都有可能发生,正面向上5次是随机事件.]4.(教材改编)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3.根据样本的频率分布估计,数据落在[27.5,43.5]内的概率约是________.12[由条件可知,落在[27.5,43.5]内的数据有11+12+7+3=33(个),故所求概率约是3366=1 2.]5.(2019·济南模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________.0.35[∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.]随机事件之间的关系1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡A[至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]2.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B ={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.A与B,A与C,B与C,B与D B与D[设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,B∩C=∅,A∩C=∅,B∩D=∅,故A与B,B 与C,A与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.][规律方法]判断互斥、对立事件的两种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的充分不必要条件.(2)集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.随机事件的概率与频率【例1】(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出01234≥5(1)记A P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.[解](1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得调查的 1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某保险公司利用简单随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆)500130100150120(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.[解](1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保额为2 800元,赔付金额大于投保金额的情形是赔付3 000和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主是新司机的有0.1×1 000=100(位),而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24(位),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率是P(C)=0.24.互斥事件与对立事件概率公式的应用【例2】 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[解] (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=611 000,故1张奖券的中奖概率约为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000, 故1张奖券不中特等奖且不中一等奖的概率为9891 000.率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式求解(正难则反),特别是“至多”“至少”型题目,用间接求法就比较简便.某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:派出人数≤2345≥6概率0.10.460.30.10.04(1)求有4人或(2)求至少有3人外出家访的概率.[解](1)设派出2人及以下为事件A,3人为事件B,4人为事件C,5人为事件D,6人及以上为事件E,则有4人或5人外出家访的事件为事件C或事件D,C,D为互斥事件,根据互斥事件概率的加法公式可知,P(C+D)=P(C)+P(D)=0.3+0.1=0.4.(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,P=1-P(A)=1-0.1=0.9.。
2024年高考数学一轮复习课件(新高考版) 第10章 事件的相互独立性与条件概率、全概率公式
§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。
2020版高考数学一轮复习第10章计数原理概率随机变量及其分布10.4随机事件的概率学案理20200
10.4 随机事件的概率[知识梳理] 1.事件的分类2.频率和概率(1)在相同的条件S 下重复n 次实验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.3.事件的关系与运算4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).[诊断自测]1.概念思辨(1)若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( ) (2)在大量重复试验中,概率是频率的稳定值.( )(3)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.( )(4)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含结果组成集合的补集.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(必修A3P 113T 1)下列事件中不可能事件的个数为( )①如果a >b ,c >d ,则a -d >b -c ;②对某中学的毕业生进行一次体检,每个学生的身高都超过2 m ;③某电视剧收视率为40%;④从10个玻璃杯(其中8个正品,2个次品)中,任取2个,2个都是次品;⑤在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态.A .1B .2C .3D .4 答案 B解析 ①是必然事件;②⑤是不可能事件;③④是随机事件.故选B.(2)(必修A3P 124A 组T 6)一袋中装有100个除颜色不同外其余均相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.答案 25解析 设红球、白球各有x 个和y 个,则⎩⎪⎨⎪⎧x100=0.40,y100=0.35,解得⎩⎪⎨⎪⎧x =40,y =35,所以黑球的个数为100-40-35=25.3.小题热身(1)(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 答案 B解析 记3件合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,从5件产品中任取2件,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种可能.其中恰有一件次品有6种可能,由古典概型概率公式得所求事件概率为610=0.6.故选B.(2)(2017·浙江瑞安中学高三月考)一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为________.答案5108解析 将这颗骰子抛掷三次,共63=216(种)情况.而三次点数之和等于15的有10个(555共1个,456共6个,366共3个).所以三次点数之和等于15的概率P =10216=5108.题型1 随机事件典例 某县城有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报”,事件E 为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:(1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .用集合的观点分析.A ∩B =∅为互斥事件,A ∩B =∅且A ∪B =U 为对立事件.解 (1)由于事件C “至多订一种报纸”中包括“只订甲报”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故事件B 与E 是互斥事件;由于事件B 发生会导致事件E 一定不发生,且事件E 发生会导致事件B 一定不发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”“只订甲报纸”“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.方法技巧1.准确把握互斥事件与对立事件的概念(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.见典例.2.判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.见典例.冲关针对训练口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的2球同色”,B =“取出的2球中至少有1个黄球”,C =“取出的2球至少有1个白球”,D =“取出的2球不同色”,E =“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ).答案 ①解析 当取出的2个球中一黄一白时,B 与C 都发生,②不正确.当取出的2个球中恰有一个白球时,事件C 与E 都发生,则③不正确.显然A 与D 是对立事件,①正确;C ∪E 不一定为必然事件,P (C ∪E )≤1,④不正确.由于P (B )=45,P (C )=35,所以⑤不正确.题型2 随机事件的频率与概率典例 (2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出 险次数 0 12 3 4 ≥5保费0.85aa1.25a 1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数 0 1 2 3 4 ≥5频数60503030201(1)记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.采用公式法f n (A )=nA n.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a .[结论探究1] 若本例条件不变,结论变为“试求一续保人本年度的保费高于基本保费的估计值”.解 1-60+50200=0.45或30+30+20+10200=0.45.[结论探究2] 若本例条件不变,结论变为“试求一续保人本年度的保费不低于基本保费的估计值”.解 1-60200=0.7或50+30+30+20+10200=0.7.方法技巧1.计算简单随机事件频率或概率的解题思路 (1)计算出所求随机事件出现的频数及总事件的频数. (2)由频率与概率的关系得所求.2.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键,由所给频率分布表,频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.冲关针对训练(2018·福建基地综合测试)某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.(1)若商店一天购进该商品10件,求日利润y (单位:元)关于日需求量n (单位:件,n ∈N )的函数解析式;(2)商店记录了50天该商品的日需求量n (单位:件),整理得下表:15①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求日利润在区间[400,550]内的概率.解 (1)当日需求量n ≥10时,日利润为y =50×10+(n -10)×30=30n +200, 当日需求量n <10时,利润y =50×n -(10-n )×10=60n -100. 所以日利润y 与日需求量n 的函数解析式为y =⎩⎪⎨⎪⎧30n +200,n ≥10,n ∈N ,60n -100,n <10,n ∈N .(2)50天内有9天获得的日利润为380元,有11天获得的日利润为440元,有15天获得日利润为500元,有10天获得的日利润为530元,有5天获得的日利润为560元.所以①这50天的日利润(单位:元)的平均数为 380×9+440×11+500×15+530×10+560×550=477.2.②日利润(单位:元)在区间[400,550]内的概率为 P =11+15+1050=1825.题型3 互斥事件与对立事件的概率典例 (2014·陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解 (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=1501000=0.15,P (B )=1201000=0.12. 由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,知样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.方法技巧求复杂的互斥事件的概率的两种方法1.直接求解法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.2.间接求法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就显得较简便.提醒:间接法体现了“正难则反”的思想方法.冲关针对训练经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G , 则G =A +B +C ,所以P (G )=P (A +B +C ) =P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)解法一:记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.1.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 设“两人下成和棋”为事件A ,“甲获胜”为事件B .事件A 与B 是互斥事件,所以甲不输的概率P =P (A +B )=P (A )+P (B )=12+13=56,故选A.2.(2018·湖南衡阳八中模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3 答案 C解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率P =1-P (A )=1-0.65=0.35.故选C.3.(2014·全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.答案 23解析 设2本不同的数学书为a 1,a 2,1本语文书为b ,在书架上的排法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中2本数学书相邻的有a 1a 2b ,a 2a 1b ,ba 1a 2,ba 2a 1,共4种,因此2本数学书相邻的概率P =46=23.4.(2017·安徽池州模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.答案112解析 小明输入密码后两位的所有情况为(4,A ),(4,a ),(4,B ),(4,b ),(5,A ),(5,a ),(5,B ),(5,b ),(6,A ),(6,a ),(6,B ),(6,b ),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.[基础送分 提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56 答案 B解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A 1,A 2,A 3,A 4,从这四首歌中选出两首歌进行表演的所有可能结果为A 1A 2,A 1A 3,A 1A 4,A 2A 3,A 2A 4,A 3A 4,共6个,其中A 1未被选取的结果有3个,所以所求概率P =36=12.故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 答案 C解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15 答案 D解析 令选取的a ,b 组成实数对(a ,b ),则有C 13C 15=15种情况,其中b >a 的有(1,2),(1,3),(2,3)3种情况,所以b >a 的概率为315=15.故选D.4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118 答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112.故选B.5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316.故选B. 6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( )A.13B.12C.23D.1136答案 D解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.∴这两次出现的点数之和大于点数之积的概率P =1136.故选D. 7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A.310B.15C.12D.35答案 A 解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C 35=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P =310.故选A. 8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为( )A.13B.23C.710D.310答案 C解析 从5张卡片中随机抽取2张共有C 25=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有C 13C 12+C 22=7种等可能情况,故所求概率为P =710.故选C. 9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为( )A.427B.827C.49D.89 答案 C解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C 24×A 22=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C. 10.(2017·湖南郴州三模)从集合A ={-2,-1,2}中随机抽取一个数记为a ,从集合B ={-1,1,3}中随机抽取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14答案 A解析 (a ,b )所有可能的结果为C 13C 13=9种.由ax -y +b =0得y =ax +b ,当⎩⎪⎨⎪⎧ a ≥0,b ≥0时,直线不经过第四象限,符合条件的(a ,b )的结果为(2,1),(2,3),共2种,∴直线ax -y +b =0不经过第四象限的概率P =29,故选A.二、填空题11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35解析 如图,从A ,B ,C ,D ,O 这5个点中任取2个,共有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6种,因此所求概率P =610=35. 12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案 1928解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 815 1415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C “取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P (C )=715+115=815. (2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415. 14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25. 三、解答题15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110. P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710. 16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3. (3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
2020版高考数学一轮复习第10章计数原理概率随机变量及其分布第2节二项式定理教学案含解析理
第二节二项式定理[考纲传真] 会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质取得最大值为奇数时,中间的两项和相等,同时取得最大值1.C0n+C1n+C2n+…+C n n=2n.2.C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项. ( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( )(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.( )(4)通项T k+1=C k n a n-k b k中的a和b不能互换.( )[答案](1)×(2)×(3)√(4)√2.(教材改编)(1-2x)4展开式中第3项的二项式系数为( )A.6 B.-6C.24 D.-24A[(1-2x)4展开式中第3项的二项式系数为C24=6.故选A.]3.(教材改编)二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( )A .5B .-20C .20D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r(-2y )r.根据题意,得⎩⎪⎨⎪⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.]4.(教材改编)C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( )A .1B .2C .2 019D .2 019×2 020B [原式=22 01922 020-1=22 01922 019=1.故选A.]5.(1+x )n的二项展开式中,仅第6项的系数最大,则n =________. 10 [∵T 6=C 5n x 5,又仅有第6项的系数最大,∴n =10.]【例1】 (1)(x 2+2)⎝⎛⎭⎪⎫1x2-1的展开式的常数项是( )A .-3B .-2C .2D .3(2)(2018·广州二模)⎝⎛⎭⎪⎫x 2-2x+y 6的展开式中,x 3y 3的系数是________.(用数字作答)(1)D (2)-120 [(1)能够使其展开式中出现常数项,由多项式乘法的定义可知需满足:第一个因式取x 2项,第二个因式取1x 2项得x 2×1x2×C 15(-1)4=5;第一个因式取2,第二个因式取(-1)5得2×(-1)5×C 55=-2,故展开式的常数项是5+(-2)=3,故选D.(2)⎝⎛⎭⎪⎫x 2-2x+y 6表示6个因式x 2-2x+y 的乘积,在这6个因式中,有3个因式选y ,其余的3个因式中有2个选x 2,剩下一个选-2x,即可得到x 3y 3的系数.即x 3y 3的系数是C 36C 23×(-2)=20×3×(-2)=-120.]值范围k =0,1,2,…,第常数项:即这项中不含“变元”,令通项中“变元”的幂指数为有理项:数值的求解等都可依据上述方法求解求特定项或特定项的系数要多从组合的角度求解,一般用通项公式太麻烦 (1)若⎝⎛⎭⎪⎫x 2+1ax 的展开式中常数项为1516,则实数a 的值为( )A .±2 B.12 C .-2D .±12(2)已知在⎝⎛⎭⎪⎪⎫3x -123x n的展开式中,第6项为常数项,则展开式中所有的有理项分别是________.(1)A (2)454x 2,-638,45256x -2 [(1)⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式的通项为T r +1=,令12-3r =0,得r =4.故C 46·⎝ ⎛⎭⎪⎫1a 4=1516,即⎝ ⎛⎭⎪⎫1a 4=116,解得a =±2.故选A.(2)由T r +1=r=.∵第6项为常数项,∴r =5时有n -2r3=0,即n =10.当⎩⎪⎨⎪⎧10-2r3∈Z ,0≤r ≤10,r ∈Z时,即r =2,5,8时10-2r3∈Z ,所以展开式中的有理项分别为454x 2,-638,45256x -2.]►考法1 【例2】 (1)在⎝⎛⎭⎪⎫x +3x n的展开式中,各项系数和与二项式系数和之比为32∶1,则x2的系数为( )A .50B .70C .90D .120(2)(2019·汕头质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(1)C (2)-3或1 [(1)令x =1,则⎝ ⎛⎭⎪⎫x +3x n =4n ,所以⎝⎛⎭⎪⎫x +3x n的展开式中,各项系数和为4n,又二项式系数和为2n,所以4n2n =2n =32,解得n =5.二项展开式的通项T r +1=C r 5x5-r⎝ ⎛⎭⎪⎫3x r =C r 53r x 5-32r ,令5-32r =2,得r =2,所以x 2的系数为C 2532=90,故选C. (2)令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1.] ►考法2 二项式系数的性质【例3】 设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8B [根据二项式系数的性质知,(x +y )2m的二项式系数最大的项有一项,即C m2m =a ,(x +y )2m +1的二项式系数最大的项有两项,即C m 2m +1=C m +12m +1=b.又13a =7b ,所以13C m 2m =7C m2m +1,将各选项中m 的取值逐个代入验证,知m =6满足等式.]对形如ax +n,ax ma ,的式子求其展开式的各项系数之和,常用赋值法.若f x =x 展开式中各项系数之和为f,奇(1)若⎝⎛⎭⎪⎫x 2-1x 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 1+a 2+…+a n 的值为________.(2)已知⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的二项式系数和为32,⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x n的展开式中的各项系数的和为2,则该展开式中的常数项为________.(1)255 (2)40 [(1)⎝⎛⎭⎪⎫x 2-1x n 展开式的第k +1项为T k +1=C k n (x 2)n -k·⎝ ⎛⎭⎪⎫-1x k=C k n (-1)k x2n -3k,当k =5时,2n -3k =1,∴n =8. 对(1-3x )8=a 0+a 1x +a 2x 2+…+a 8x 8, 令x =1,得a 0+a 1+…+a 8=28=256. 又当x =0时,a 0=1, ∴a 1+a 2+…+a 8=255.(2)⎝ ⎛⎭⎪⎫2x -1x n的展开式中的二项式系数和为32,所以2n=32,所以n =5.令x =1,得⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的各项系数的和为(1+a )(2-1)5=2,所以a =1,所以⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中的常数项为C 35·(-1)3·25-3+C 25·(-1)2·25-2=40.]1.(2017·全国卷Ⅰ)⎝⎛⎭⎪⎫1+1x2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35C [因为(1+x )6的通项为C r 6x r ,所以⎝ ⎛⎭⎪⎫1+1x2(1+x )6展开式中含x 2的项为1·C 26x 2和1x2·C 46x 4.因为C 26+C 46=2C 26=2×6×52×1=30,所以⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为30.故选C.]2.(2015·全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20C .30D .60C [法一:利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5, 含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2项的系数为C 25C 13=30.故选C. 法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.]。
2020年高考数学理科一轮复习讲义:第10章 计数原理、概率、随机变量及其分布 第9讲 Word版
姓名,年级:时间:第9讲离散型随机变量的均值、方差和正态分布[考纲解读]1。
理解取有限个值的离散型随机变量的均值、方差的概念,并能根据分布列正确求出期望与方差,并能解决一些实际问题.(重点、难点)2。
借助直方图认识正态分布曲线的特点及曲线所表示的意义,掌握正态曲线的相关性质,并能进行正确求解.[考向预测] 从近三年高考情况来看,本讲是高考中的热点题型. 预计2020年将会考查:①与分布列相结合求期望与方差,通过设置密切贴近现实生活的情景,考查概率思想的应用意识和创新意识;②正态分布的考查,尤其是正态总体在某一区间内的概率. 题型为解答题中的一问,试题难度不会太大,属中档题型。
1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)=错误!x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的错误!平均水平.(2)D(X)=错误!(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的错误!平均偏离程度,其算术平方根错误!为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=错误!aE(X)+b;(2)D(aX+b)=错误!a2D(X)(a,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义函数φμ,σ(x)=错误!e错误!,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线错误!x=μ对称;③曲线在错误!x=μ处达到峰值错误!;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;⑥当μ一定时,曲线的形状由σ确定,错误!σ越小,曲线越“高瘦”,表示总体的分布越集中;错误!σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a〈X≤b)=错误!φμ,σ(x)d x(即x=a,x=b,正态曲线及x轴围成的曲边梯形的面积),则称随机变量X服从正态分布,记作X~N(μ,σ2).(2)正态分布的三个常用数据①P(μ-σ〈X≤μ+σ)=错误!0.6826;②P(μ-2σ<X≤μ+2σ)=错误!0.9544;③P(μ-3σ〈X≤μ+3σ)=错误!0.9974.1.概念辨析(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.()(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ()(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()答案(1)×(2)√(3)√(4)√2.小题热身(1)已知随机变量X的分布列为X-202P错误!错误!错误!则E(X)与D(X)的值分别为( )A.0,2 B.0,83C.2,0 D.错误!,0答案B解析E(X)=(-2)×错误!+0×错误!+2×错误!=0,D(X)=(-2-0)2×错误!+(0-0)2×错误!+(2-0)2×错误!=错误!.(2)设ξ~B(n,p),若E(ξ)=15,D(ξ)=11.25,则n=( ) A.45 B.50 C.55 D.60答案D解析由错误!解得错误!A.1 B.2 C.3 D.4答案B解析先求出E(X)=(-1)×错误!+0×错误!+1×错误!=-错误!。
高考数学一轮复习方案 第十单元 计数原理、概率、随机变量及其分布配套课件 理 北师大版
第57讲 第58讲 第59讲 第60讲 第61讲 第62讲 第63讲 第64讲
分类加法计数原理与分步乘法计数原理 排列与组合 二项式定理 随机事件的概率与古典概型 几何概型 离散型随机变量及其分布列 n次独立重复试验与二项分布 离散型随机变量的均值与方差、正态分布
固 基
一、分类加法计数原理(加法原理)
础
完成一件事有两类不同方案,在第1类方案中有m种不
同的方法,在第2类方案中有n种不同的方法,那么完成这
件事共有N=m_+__n_____种不同的方法.这个原理称为分类
ቤተ መጻሕፍቲ ባይዱ
加法计数原理.
二、分类加法计数原理的推广
完成一件事有n类不同方案,在第1类方案中有m1种不 同的方法,在第2类方案中有m2种不同的方法,…,在第n 类 方 案 中 有 mn 种 不 同 的 方 法 , 那 么 完 成 这 件 事 共 有 N = __m_1_+__m_2_+__…_+__m__n _种不同的方法.
•
四、分步乘法计数原理的推广
基 础
• 完成一件事情,需要分成n个步骤,做第1步有m1种不
同的方法,做第2步有m2种不同的方法,…,做第n步有 mn 种 不 同 的 方 法 , 那 么 完 成 这m件1×事m2×共…有×mNn =
返回目录
使用建议
(3)随机变量及其分布:随机变量及其分布是理科概 率统计的核心考查点,主要是考查以独立事件为中心的概 率计算、离散型随机变量的分布和特征数的计算、正态分 布,考查概率统计知识在实际问题中的应用.在试卷中一 般是以一道解答题对上述问题进行综合考查,也可能有小 题考查该部分的重要知识点(如二项分布、正态分布等), 试题的难度中等,预计2014年不会有大的变化,突出对独 立事件概率的计算和对n次独立重复试验概型应用的强 化.
概率与统计的综合问题(高三一轮复习)
i=1
∴a^= y -b^ x =0.3-0.14×4.5=-0.33,故y关于x的经验回归方程为^y=0.14x-
0.33.
数学 N
— 18 —
(2)①当x=7时,^y=0.14×7-0.33=0.65,
∴估计该市政府需要给E大学毕业生选择自主创业的人员发放补贴金总额为
0.65×1 00021年的毕业生人数及自主创业人数(单位:千人),得到如下表格:
A大学 B大学 C大学 D大学
当年毕业人数
x(千人)
3
4
5
6
自主创业人数
y(千人)
0.1 0.2 0.4 0.5
数学 N
— 15 —
(1)已知y与x具有较强的线性相关关系,求y关于x的经验回归方程^y=a^+b^x;
(2)假设该市政府对选择自主创业的大学生每人发放1万元的创业补贴. ①若该市E大学2021年毕业生人数为7千人,根据(1)的结论估计该市政府要给E 大学选择自主创业的毕业生创业补贴的总金额;
①若n=5,写出X5的分布列和数学期望; ②请写出Xn的数学期望的表达式(不需证明),根据你的理解说明Xn的数学期望的 实际意义.
数学 N
附:
α 0.1 0.05 0.01 0.005 0.001 xα 2.706 3.841 6.635 7.879 10.828
参考公式:χ2=a+bcn+add-ab+cc2b+d,其中n=a+b+c+d.
,a^= y -b^x.
n
x2i -n x 2
i=1
数学 N
— 17 —
解
(1)由题意得
x
=
3+4+5+6 4
=4.5,
y
=
0.1+0.2+0.4+0.5 4
2020年高考一轮复习数学(理)教学课件第十章 计数原理与概率、随机变量及其分布第一节
[过关训练]
1.如图所示,用4种不同的颜色涂入图中的
矩形A,B,C,D中,要求相邻的矩形涂 色不同,则不同的涂法有____7_2__种.
解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜 色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有 1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这 时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即 可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).
2020年高考一轮复习 数学(理)教学课件
第十章 计数原理与概率、 随机变量及其分布
全国卷5年考情图解
高考命题规律把握
1.本章在高考中一般考查1个小题和1个解答题,占12~17分. 2.从考查内容来看,主要有:
(1)利用计数原理解决实际问题,有时与古典概型综合考查. (2)几何概型均以选择题的形式单独考查. (3)对二项式定理的考查主要是利用通项公式求特定项. (4)对正态分布的考查,可能单独考查也可能在解答题中出现. (5)以实际问题为背景,考查分布列、期望等是高考的热点题型. 3.2018年高考全国卷Ⅰ将概率问题与导数相结合且出现在第20题的 位置,应引起考生的注 意.
[小题查验基础]
一、判断题(对的打“√”,错的打“×”) (1)在分类加法计数原理中,两类不同方案中的方法可以相同.( × )
(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事. (√ )
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不
相同的.
(√)
(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单
A.48
B.18
C.24
D.36
(新人教A版)2020版高考数学大一轮复习第十章计数原理、概率、随机变量及其分布第4节随机事件与概率讲义理
考试要求 1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系;2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算;3.理解概率的性质,掌握随机事件概率的运算法则;4.会用频率估计概率.知 识 梳 理1.样本点和样本空间随机试验的每一个可能的结果称为样本点,记作ω;随机试验的所有样本点组成的集合称为样本空间,记作Ω. 2.概率与频率(1)频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)概率:对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ). 3.事件的关系与运算定义符号表示 包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系 若B ⊇A 且A ⊇BA =B 并事件 (和事件) 若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件 (积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件) A ∩B (或AB )互斥事件 若A ∩B 为不可能事件,则称事件A 与事件B 互斥 A ∩B =∅ 对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A与事件B 互为对立事件A ∩B =∅ P (A ∪B )=14.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1.(2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式①如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). ②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). [微点提醒]1.任一随机事件A 都是样本空间Ω的一个子集,称事件A 发生当且仅当试验的结果是子集A 中的元素.2.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集. 3.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( )(2)在大量的重复实验中,概率是频率的稳定值.( ) (3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( ) 答案 (1)× (2)√ (3)√ (4)×2.(必修3P123A3改编)容量为20的样本数据,分组后的频数如下表:分组 [10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数234542则样本数据落在区间[10,40)的频率为( ) A.0.35B.0.45C.0.55D.0.65解析 由表知[10,40)的频数为2+3+4=9, 所以样本数据落在区间[10,40)的频率为920=0.45.答案 B3.(必修3P121T5改编)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( ) A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件解析 “至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件. 答案 C4.(2019·北京十八中月考)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A.必然事件 B.随机事件 C.不可能事件D.无法确定解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件. 答案 B5.(2018·全国Ⅲ卷)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3B.0.4C.0.6D.0.7解析 某群体中的成员分为只用现金支付、既用现金支付也用非现金支付、不用现金支付,它们彼此是互斥事件,所以不用现金支付的概率为1-(0.15+0.45)=0.4. 答案 B6.(2019·潍坊调研)甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是________.解析 乙不输包含两人下成和棋和乙获胜,且它们是互斥事件,所以乙不输的概率为12+13=56.答案 56考点一 样本点与样本空间【例1】 将一枚质地均匀的骰子相继投掷两次,请回答以下问题: (1)写出样本点和样本空间;(2)用A 表示随机事件“至少有一次掷出1点”,试用样本点表示事件A ;(3)用A j (j =1,2,3,4,5,6)表示随机事件“第一次掷出1点,第二次掷出j 点”;用B 表示随机事件“第一次掷出1点”,试用随机事件A j 表示随机事件B .解 (1)首先确定样本点,用1,2,3,4,5,6表示掷出的点数,用(i ,j )表示“第一次掷出i 点,第二次掷出j 点”,则相继投掷两次的所有可能结果如下: (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)注意到(1,2)和(2,1)是不同的样本点,分别表示“第一次掷出1点,第二次掷出2点”和“第一次掷出2点,第二次掷出1点”这两个随机事件,因此样本空间共有36个样本点.把每个样本点称为基本事件.样本空间为Ω=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)={(i ,j )|i ,j =1,2,3,4,5,6}.(2)因为随机事件A =“至少有一次掷出1点”,则A 包括上述样本空间中所有出现1的样本点,因此A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1). (3)A j ={(1,j )},j =1,2,3,4,5,6.因为这些事件任何一个发生事件B 就发生,所以B =A 1∪A 2∪A 3∪A 4∪A 5∪A 6.规律方法 1.在具体问题的研究中,描述随机现象的第一步就是建立样本空间.关于样本空间的几点说明:(1)样本空间中的元素可以是数也可以不是数;(2)样本空间中的样本点可以是有限多个的,也可以是无限多个的.仅含两个样本点的样本空间是最简单的样本空间;(3)建立样本空间,事实上就是建立随机现象的数学模型.因此,一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间Ω={H ,T },它既可以作为抛掷硬币出现正面或出现反面的模型,也可以作为产品检验中合格与不合格的模型,又能用于排队现象中有人排队与无人排队的模型等.【训练1】 写出下列随机试验的样本空间Ω.(1)同时掷三颗骰子,记录三颗骰子点数之和Ω=________.(2)生产产品直到得到10件正品,记录生产产品的总件数,Ω=________. 答案 (1){3,4,5,…,18} (2){10,11,12,…} 考点二 随机事件的关系【例2】 (1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”( ) A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件(2)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 (1)显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.(2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 答案 (1)C (2)A规律方法 1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.【训练2】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A.①B.②④C.③D.①③解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数. 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数构成对立事件.又①②④中的事件可以同时发生,不是对立事件. 答案 C考点三 随机事件的频率与概率【例3】 (2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15)[15,20) [20,25) [25,30) [30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y =200×6+(450-200)×2-450×4=-100; 若最高气温位于区间[20,25),则Y =300×6+(450-300)×2-450×4=300; 若最高气温不低于25,则Y =450×(6-4)=900,所以,利润Y 的所有可能值为-100,300,900.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8. 规律方法 1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值. 2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.提醒 概率的定义是求一个事件概率的基本方法.【训练3】 如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解 (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), ∴用频率估计相应的概率为p =44100=0.44.(2)选择L 1的有60人,选择L 2的有40人, 故由调查结果得频率为所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 L 1的频率 0.1 0.2 0.3 0.2 0.2 L 2的频率0.10.40.40.1(3)设A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6, P (A 2)=0.1+0.4=0.5, ∵P (A 1)>P (A 2),∴甲应选择L 1. 同理,P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9, ∵P (B 1)<P (B 2),∴乙应选择L 2. 考点四 互斥事件与对立事件的概率【例4】 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数 0 1 2 3 4 5人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率; (2)(一题多解)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C , 所以P (G )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)法一 记“至少3人排队等候”为事件H , 则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.法二 记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44. 规律方法 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A -)求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.【训练4】 (一题多解)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球}, A 3={任取1球为白球},A 4={任取1球为绿球}, 则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112,根据题意知,事件A 1,A 2,A 3,A 4彼此互斥, 由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=512+412=34.(2)取出1球是红球或黑球或白球的概率为 P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =512+412+212=1112. 法二 (利用对立事件求概率)(1)由法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1+A 2的对立事件为A 3+A 4,所以取出1球为红球或黑球的概率为 P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-212-112=34.(2)因为A 1+A 2+A 3的对立事件为A 4, 所以P (A 1+A 2+A 3)=1-P (A 4)=1-112=1112.[思维升华]1.随机试验、样本空间与随机事件的关系每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件.2.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).3.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.4.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反). [易错防范]1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.基础巩固题组 (建议用时:40分钟)一、选择题1.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90% 解析 由概率的意义知D 正确. 答案 D2.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A.互斥但非对立事件 B.对立事件 C.相互独立事件D.以上都不对解析 由于每人一个方向,事件“甲向南”与事件“乙向南”不能同时发生,但能同时不发生,故是互斥事件,但不是对立事件. 答案 A3.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A.两个任意事件B.互斥事件C.非互斥事件D.对立事件解析 因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.答案 B4.(2018·石家庄模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( ) A.0.95B.0.97C.0.92D.0.08解析 记“抽检的产品是甲级品”为事件A ,是“乙级品”为事件B ,是“丙级品”为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92. 答案 C5.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( ) A.17B.1235C.1735D.1解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥. 由于P (A )=17,P (B )=1235.所以P (C )=P (A )+P (B )=17+1235=1735.答案 C 二、填空题6.传说古时候有一个农夫正在田间干活,忽然发现一只兔子撞死在地头的木桩上,他喜出望外,于是拾起兔子回家了,第二天他就蹲在木桩旁守候,就这样日复一日,年复一年,但再也没有等着被木桩碰死的兔子,原因是____________________. 答案 兔子碰死在木桩上是随机事件,可能不发生7.(2019·济南模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为________.解析 ∵事件A ={抽到一等品},且P (A )=0.65, ∴事件“抽到的产品不是一等品”的概率为 p =1-P (A )=1-0.65=0.35. 答案 0.358.(2019·北京东城区调研)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数01234≥5概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是________.解析由表格知,至少有2人排队的概率p=0.3+0.3+0.1+0.04=0.74.答案0.74三、解答题9.黄种人人群中各种血型的人数所占的比例见下表:血型A B AB O该血型的人数所占的比例28%29%8%35%已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)任找一人,其血型为A,B,AB,O型血分别记为事件A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”为事件B′∪D′,根据概率加法公式,得P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.10.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a 2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55. (2)事件B 发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3. (3)由所给数据得保费 0.85a a 1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a .能力提升题组 (建议用时:20分钟)11.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”,若B -表示B 的对立事件,则一次试验中,事件A ∪B -发生的概率为( ) A.13B.12C.23D.56解析 掷一个骰子的试验有6种可能结果. 依题意P (A )=26=13,P (B )=46=23,∴P (B -)=1-P (B )=1-23=13.∵B -表示“出现5点或6点”的事件,因此事件A 与B -互斥,从而P (A ∪B -)=P (A )+P (B -)=13+13=23.答案 C12.甲、乙两人在5次综合测评中的成绩如下:甲:88,89,90,91,92,乙:83,83,87,9,99,其中乙的一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.910解析 设被污损的数字为x ,则x -甲=15(88+89+90+91+92)=90,x -乙=15(83+83+87+99+90+x ),若x -甲=x -乙,则x =8.若x -甲>x -乙,则x 可以为0,1,2,3,4,5,6,7, 故p =810=45.答案 C13.某城市2018年的空气质量状况如表所示:污染指数T 30 60 100 110 130 140 概率p1101613730215130其中污染指数T ≤50时,空气质量为优;50<T ≤100时,空气质量为良,100<T ≤150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________. 解析 由题意可知2018年空气质量达到良或优的概率为p =110+16+13=35.答案 3514.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米. (1)完成下表,并求所种作物的平均年收获量;Y51 4845 42频数 4(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.解(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y 51484542频数246 3所种作物的平均年收获量为51×2+48×4+45×6+42×315=69015=46.(2)由(1)知,P(Y=51)=215,P(Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=215+415=25.。
2020版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.5古典概型学案理
10.5 古典概型[知识梳理] 1.基本事件的特点(1)任何两个基本事件都是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)有限性:试验中所有可能出现的基本事件只有有限个. (2)等可能性:每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n.4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[诊断自测]1.概念思辨(1)在一次试验中,其基本事件的发生一定是等可能的. ( )(2)事件A ,B 至少有一个发生的概率一定比A ,B 中恰有一个发生的概率大.( ) (3)在古典概型中,如果事件A 中基本事件构成集合A ,所有的基本事件构成集合I ,那么事件A 的概率为card (A )card (I ).( )(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )答案 (1)× (2)× (3)√ (4)× 2.教材衍化(1)(必修A3P 134A 组T 5)在平面直角坐标系中点(x ,y ),其中x ,y ∈{0,1,2,3,4,5},且x ≠y ,则点(x ,y )在直线y =x 的上方的概率是( )A.13B.12C.14D.23 答案 B解析 在平面直角坐标系中满足x ,y ∈{0,1,2,3,4,5},且x ≠y 的点(x ,y )共有6×6-6=30个,而满足在直线y =x 的上方,即y >x 的点(x ,y )的基本事件共有15个,故所求概率为P =1530=12.故选B.(2)(必修A3P 133A 组T 1)已知A ,B ,C ,D 是球面上的四个点,其中A ,B ,C 在同一圆周上,若D 不在A ,B ,C 所在的圆周上,则从这四点中的任意两点的连线中取2条,这两条直线是异面直线的概率等于________.答案 15解析 A ,B ,C ,D 四点可构成一个以D 为顶点的三棱锥,共6条棱,则所有基本事件有:(AB ,BC ),(AB ,AC ),(AB ,AD ),(AB ,BD ),(AB ,CD ),(BC ,CA ),(BC ,BD ),(BC ,AD ),(BC ,CD ),(AC ,AD ),(AC ,BD ),(AC ,CD ),(AD ,BD ),(AD ,CD ),(BD ,CD ),共15个,其中满足条件的基本事件有:(AB ,CD ),(BC ,AD ),(AC ,BD ),共3个,所以所求概率P =315=15.3.小题热身(1)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56 答案 C解析 解法一:从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P =46=23,故选C.解法二:设红色和紫色的花在同一花坛为事件A ,则事件A 包含2个基本事件:红紫与黄白,黄白与红紫.由解法一知共有6个基本事件,因此P (A )=26=13,从而红色和紫色的花不在同一花坛的概率是P (A -)=1-P (A )=23.故选C.(2)(2018·山西联考)从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个,这个点在圆x 2+y 2=2016内部的概率是( )A.35B.25C.15D.45 答案 B解析 从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个的基本事件总数为5,这个点在圆x 2+y 2=2016内部包含的基本事件有(20,30),(10,10),共2个, ∴这个点在圆x 2+y 2=2016内部的概率P =25,故选B.题型1 简单古典概型的求解典例1 (2016·北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925 答案 B解析 设其他3名学生为丙、丁、戊,从中任选2人的所有情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共4+3+2+1=10种.其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种,故甲被选中的概率为410=25,或P =C 11C 14C 25=25.故选B.典例2 (2017·山西一模)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为( )A.13B.23C.12D.34答案 C解析 记两道题分别为A ,B ,所有抽取的情况为AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB (其中第1个,第2个分别表示两个女教师抽取的题目,第3个表示男教师抽取的题目),共有8种;其中满足恰有一男一女抽到同一道题目的情况为ABA ,ABB ,BAA ,BAB ,共4种.故所求事件的概率为12.故选C.方法技巧应用古典概型求某事件的步骤第一步,判断本试验的结果是否为等可能事件,设出所求事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; 第三步,利用公式P (A )=m n,求出事件A 的概率.见典例1,2.冲关针对训练(2018·安徽名校模拟)某车展展出甲、乙两种最新款式的汽车,现从参观人员中随机选取100人对这两种汽车均进行评价,评价分为三个等级:优秀、良好、合格,由统计信息可知,甲种汽车被评价为优秀的频率为35,良好的频率为25;乙种汽车被评价为优秀的频率为710,良好的频率是合格的频率的5倍.(1)求这100人中对乙种汽车评价优秀或良好的人数;(2)如果从这100人中按甲种汽车的评价等级用分层抽样的方法抽取5人,再从其他对乙种汽车评价优秀、良好的人中各选取1人进行座谈会,会后从这7人中随机抽取2人,求选取的2人评价都是优秀的概率.解 (1)因为对乙种汽车评价优秀的频率为710,故评价良好或合格的频率为1-710=310.设评价合格的频率为x ,则评价良好的频率为5x ,由题意可得x +5x =310,解得x =120.所以这100人中对乙种汽车评价优秀或良好的人数为100×⎝ ⎛⎭⎪⎫710+5×120=95.(2)因为对甲种汽车评价优秀的频率为35,良好的频率为25,则用分层抽样的方法抽取5人,其中有3人评价优秀,2人评价良好.又从对乙种汽车评价优秀、良好的人中各选取1人,所以7人中评价优秀的4人,评价良好的3人.由题意得:P =C 24C 27=27.题型2 复杂古典概型的求解典例(2016·山东高考)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16.(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C,则事件B包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.[结论探究] 本例中条件不变,试求小亮不能获得玩具的概率.解由题意知当xy>3时,小亮不能获得玩具,此时包含基本事件共11个,即(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),而基本事件总数共16个,所以此事件概率为P =1116.或根据对立事件求解:xy ≤3时包含事件个数为5个,故其获得玩具的概率为516,则不能获得玩具的概率为1-516=1116.方法技巧1.复杂古典概型的求解策略求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.2.基本事件个数的确定方法冲关针对训练(2018·成都诊断)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法, 得P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.题型3 古典概型与统计的综合问题典例 (2018·安徽阶段测试)某校高三期中考试后,数学教师对本次全部数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a ,b 的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值小于或等于10的概率.解 (1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人, ∴a =0.1,b =3.∵成绩在[90,110)范围内的频率为1-0.1-0.25-0.25=0.4, ∴成绩在[90,110)范围内的样本数为20×0.4=8, 估计这次考试全校高三学生数学成绩的及格率为P =1-0.1-0.25=0.65.(2)一切可能的结果组成的基本事件空间为Ω={(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128)},共21个基本事件,或基本事件数为C 27=21,设事件A =“取出的两个样本中数字之差小于或等于10”,则A ={(100,102),(100,106),(100,106),(102,106),(102,106),(106,106),(106,116),(106,116),(116,118),(118,128)},共10个基本事件,∴P (A )=1021.方法技巧求解古典概型与统计交汇问题的思路1.依据题目的直接描述或频率分布表、频率分布直方图、茎叶图等统计图表给出的信息,提炼出需要的信息.2.选择恰当的方法找出符合条件的基本事件总数及所求事件包含的基本事件数. 3.进行统计与古典概型概率的正确计算.冲关针对训练(2018·广东五校诊断)某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动,组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(1)若电视台记者要从抽取的群众中选人进行采访,估计被采访人恰好在第1组或第4组的概率;(2)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率.解 (1)设第1组[20,30)的频率为f 1,则由题意可知,f 1=1-(0.010+0.035+0.030+0.020)×10=0.05.被采访人恰好在第1组或第4组的频率为0.05+0.020×10=0.25. ∴估计被采访人恰好在第1组或第4组的概率为0.25. (2)解法一:第1组[20,30)的人数为0.05×120=6. ∴第1组中共有6名群众,其中女性群众共3名.记第1组中的3名男性群众分别为A ,B ,C,3名女性群众分别为x ,y ,z ,从第1组中随机抽取2名群众组成志愿者服务队包含(A ,B ),(A ,C ),(A ,x ),(A ,y ),(A ,z ),(B ,C ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y ),(C ,z ),(x ,y ),(x ,z ),(y ,z ),共15个基本事件.至少有一名女性群众包含(A ,x ),(A ,y ),(A ,z ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y )(C ,z ),(x ,y ),(x ,z ),(y ,z ),共12个基本事件.∴从第1组中随机抽取2名群众组成志愿者服务队,至少有1名女性群众的概率为1215=45. 解法二:第1组中有3男3女,由题意得P =1-C 23C 26=45.1.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110 B.15 C.310 D.25答案 D解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25.故选D.2.(2017·山东高考)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518 B.49 C.59 D.79答案 C解析 解法一:∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取, ∴P (第一次抽到奇数,第二次抽到偶数)=59×48=518,P (第一次抽到偶数,第二次抽到奇数)=49×58=518.∴P (抽到的2张卡片上的数奇偶性不同)=518+518=59.故选C.解法二:依题意,得P (抽到的2张卡片上的数奇偶性不同)=5×4C 29=59.故选C.3.(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45B.35C.25D.15 答案 C解析 解法一:从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P =410=25.故选C.解法二:由题意得P =1-C 24C 25=25.故选C.4.(2018·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.答案712解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有C 16C 16=36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,a 2≤b2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712.[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724 答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310 B.25 C.12 D.35答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79 答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9. 设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47 答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564 B.15128 C.24125 D.48125答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线x a +y b =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14.故选D.9.某酒厂制作了3种不同的精美卡片,每瓶酒盒随机装入一张卡片,集齐3种卡片可获奖,现购买该种酒5瓶,能获奖的概率为( )A.3181 B.3381 C.4881 D.5081答案 D解析 假设5个酒盒各不相同,5个酒盒装入卡片的方法一共有35=243种, 其中包含了3种不同卡片有两种情况:即一样的卡片3张,另外两种不同的卡片各1张,有C 35×2×3=60种方法,两种不同的卡片各2张,另外一种卡片1张,有C 15×3×C 24=15×6=90种,故所求的概率为90+60243=5081.故选D.10.(2018·淄博模拟)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-518,+∞B.⎝⎛⎭⎪⎫-∞,718 C.⎝ ⎛⎭⎪⎫-718,518 D.⎝ ⎛⎭⎪⎫-518,718答案 D解析 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118.两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可, ∴P 2=3336=1112.∵点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,∴⎝⎛⎭⎪⎫118-m 2+⎝ ⎛⎭⎪⎫11122<137144,解得-518<m <718,故选D.二、填空题11.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案2063解析 从正整数m ,n (m ≤7,n ≤9)中任取两数的所有可能结果有C 17C 19=63个,其中m ,n 都取奇数的结果有C 14C 15=20个,故所求概率为2063. 12.(2018·武汉调研)某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b2=1的离心率e >5的概率是________.答案 16解析 由e =1+b 2a2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16.13.(2018·湖南长沙模拟)抛掷两枚质地均匀的骰子,得到的点数分别为a ,b ,则使得直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为________.答案 19解析 根据题意,得到的点数所形成的数组(a ,b )共有6×6=36种,其中满足直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423,则圆心到直线的距离不小于13,即1>1a 2+b 2≥13,即1<a 2+b 2≤9的有(1,1),(1,2),(2,1),(2,2)四种,故直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为436=19.14.(2018·唐山模拟)无重复数字的五位数a 1a 2a 3a 4a 5,当a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________.答案215解析 ∵a 2>a 1,a 3;a 4>a 3,a 5,∴a 2只能是3,4,5.(1)若a 2=3,则a 4=5,a 5=4,a 1与a 3是1或2,这时共有A 22=2(个)符合条件的五位数.(2)若a 2=4,则a 4=5,a 1,a 3,a 5可以是1,2,3,共有A 33=6(个)符合条件的五位数. (3)若a 2=5,则a 4=3或4,此时分别与(1)(2)情况相同. ∴满足条件的五位数有2(A 22+A 33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A 55=120(个),故所求概率为16120=215. 三、解答题15.为了解收购的每只小龙虾的重量,某批发商在刚从甲、乙两个水产养殖场收购的小龙虾中分别随机抽取了40只,得到小龙虾的重量的频数分布表如下.从甲水产养殖场中抽取的40只小龙虾的重量的频数分布表重量/克 [5,15) [15,25) [25,35) [35,45) [45,55] 频数 2816104从乙水产养殖场中抽取的40只小龙虾的重量的频数分布表重量/克 [5,15) [15,25) [25,35) [35,45) [45,55] 频数 2618104(1)试根据上述表格中的数据,完成从甲水产养殖场中抽取的40只小龙虾的重量的频率分布直方图;(2)依据小龙虾的重量,将小龙虾划分为三个等级:重量/克[5,25)[25,45)[45,55]等级三级二级一级若规定二级以上(包括二级)的小龙虾为优质小龙虾,估计甲、乙两个水产养殖场的小龙虾哪个的“优质率”高?并说明理由;(3)从乙水产养殖场抽取的重量在[5,15),[15,25),[45,55]内的小龙虾中利用分层抽样的方法抽取6只,再从这6只中随机抽取2只,求至少有1只的重量在[15,25)内的概率.解 (1)(2)若把频率看作相应的概率,则“甲水产养殖场的小龙虾为优质小龙虾”的概率为16+10+440=0.75,“乙水产养殖场的小龙虾为优质小龙虾”的概率为18+10+440=0.8,所以乙水产养殖场的小龙虾“优质率”高.(3)解法一:用分层抽样的方法从乙水产养殖场重量在[5,15),[15,25),[45,55]内的小龙虾中抽取6只,则重量在[5,15)内的有1只,在[15,25)内的有3只,在[45,55]内的有2只,记重量在[5,15)内的1只为x ,在[15,25)内的3只分别为y 1,y 2,y 3,在[45,55]内的2只分别为z 1,z 2,从中任取2只,可能的情况有(x ,y 1),(x ,y 2),(x ,y 3),(x ,z 1),(x ,z 2),(y 1,y 2),(y 1,y 3),(y 1,z 1),(y 1,z 2),(y 2,y 3),(y 2,z 1),(y 2,z 2),(y 3,z 1),(y 3,z 2),(z 1,z 2),共15种;记“任取2只,至少有1只的重量在[15,25)内”为事件A ,则事件A 包含的情况有(x ,y 1),(x ,y 2),(x ,y 3),(y 1,y 2),(y 1,y 3),(y 1,z 1),(y 1,z 2),(y 2,y 3),(y 2,z 1),(y 2,z 2),(y 3,z 1),(y 3,z 2),共12种.所以P (A )=1215=45.解法二:由解法一可知:重量在[15,25)内有3只,由题意可得P =1-C 23C 26=45.16.(2017·石景山区一模)“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801-2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:累积净化量(克)(3,5](5,8](8,12]12以上等级P1P2P3P4为了了解一批空气净化器(共2000台)的质量,随机抽取n台机器作为样本进行估计,已知这n台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图.(1)求n的值及频率分布直方图中的x值;(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P2的空气净化器有多少台?(3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率.解(1)∵在(4,6]之间的数据一共有6个,再由频率分布直方图得:落在(4,6]之间的频率为0.03×2=0.06,∴n=60.06=100,由频率分布直方图的性质得:(0.03+x+0.12+0.14+0.15)×2=1,解得x=0.06.(2)由频率分布直方图可知:落在(6,8]之间共:0.12×2×100=24台. 又∵在(5,6]之间共4台, ∴落在(5,8]之间共28台,∴估计这批空气净化器(共2000台)中等级为P 2的空气净化器有560台. (3)设“恰好有1台等级为P 2”为事件B ,依题意落在(4,6]之间共6台,属于国标P 2级的有4台, 则从(4,6]中随机抽取2台,基本事件总数n =C 26=15, 事件B 包含的基本事件个数m =C 14C 12=8, ∴恰好有1台等级为P 2的概率P (B )=m n =815.。
2020版高考数学一轮复习第10章计数原理、概率、随机变量及其分布第1节排列与组合教学案理含解析
3月19日理科数学(实验班)学案(可以打印)两个计数原理的综合应用【例1】(1)从甲地到乙地每天有直达汽车4班,从甲到丙地,每天有5个班车,从丙地到乙地每天有3个班车,则从甲地到乙地不同的乘车方法有( )A.12种 B.19种 C.32种 D.60种(2)如图,用6种不同的颜色分别给图中A,B,C,D四块区域涂色,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A.400种 B.460种 C.480种 D.496种排列问题【例2】3名女生和5名男生排成一排.(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法?(5)其中甲不站最左边,乙不站最右边,有多少种排法?组合问题【例3】某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.排列、组合的综合应用【例4】将5名同学分到甲、乙、丙3个小组,若甲小组至少2人,乙、丙组至少1人,则不同的分配方案种数为( )A.80 B.120 C.140 D.50[课后真题演练]1.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种 B.18种 C.24种 D.36种2.(2016·全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18 C.12 D.93.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)3月19日理科数学(实验班)答案【例1】解析 (1)B (2)C [(1)分两类:一类是直接从甲到乙,有n 1=4种方法;另一类是从甲经丙再到乙,可分为两步,有n 2=5×3=15种方法.由分类加法计数原理可得:从甲到乙的不同乘车方法n =n 1+n 2=4+15=19.故选B .(2)完成此事可能使用4种颜色,也可能使用3种颜色.当使用4种颜色时:从A 开始,有6种方法,B 有5种,C 有4种,D 有3种,完成此事共有6×5×4×3=360种方法;当使用3种颜色时,A ,D 使用同一种颜色,从A ,D 开始,有6种方法,B 有5种,C 有4种,完成此事共有6×5×4=120种方法.由分类加法计数原理可知:不同的涂法有360+120=480(种).]【例2】解析 (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有A 66种排法,而其中每一种排法中,3名女生之间又有A 33种排法,因此共有A 66·A 33=4 320种不同排法.(2)(插空法)先排5名男生,有A 55种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400种不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5名男生中选2人排,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400种不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400种不同排法.(4)8名学生的所有排列共A 88种,其中甲在乙左边与乙在甲左边的各占12,因此符合要求的排法种数为12A 88=20 160. (5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有A 77种不同排法;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种不同排法.由分类加法计数原理知,共有A 77+A 16·A 16·A 66=30 960种不同排法.法二(特殊位置法):先排最左边,除去甲外,有A 17种排法,余下7个位置全排,有A 77种排法,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960种排法.法三(间接法):8名学生全排列,共A 88种,其中,不符合条件的有甲在最左边时,有A 77种排法,乙在最右边时,有A 77种排法,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种排法.因此共有A 88-2A 77+A 66=30 960种排法.[规律方法] 求解排列应用问题的六种常用方法优先法 优先安排特殊元素或特殊位置捆绑法 相隔问题把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列 插空法 对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题 除法处理 对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列 间接法正难则反、等价转化的方法1548(2)两队长当选,共有C 22·C 311=165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有C 12·C 411+C 22·C 311=825种.(或采用排除法:C 513-C 511=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有C 25·C 38+C 15·C 48+C 58=966种.[律方规法] 组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解. 法有C 25C 23C 11A 22=15(种),然后将有2人的两组分给甲、乙或甲、丙,分配方法是15×(A 22+A 22)=60(种);二是三组人数分别为3,1,1,分组方法有C 35C 12C 11A 22=10(种),然后将1人的两组分给乙、丙两组,分配方法是10×A 22=20(种).故共有60+20=80(种).[规律方法] 1.排列组合综合题思路,先选后排,先组合后排列.当有多个限制条件时,应以其中一个限制条件为标准分类,限制条件多时,多考虑用间接法,但需确定一个总数.2.(1)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.(2)对于相同元素的“分配”问题,常用的方法是采用“隔板法”.1. D [由题意可得其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).故选D .]2.B [从E 到G 需要分两步完成:先从E 到F ,再从F 到G .从F 到G 的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]3.[法一:可分两种情况:第一种情况,只有1位女生入选,不同的选法有C12C24=12(种);第二种情况,有2位女生入选,不同的选法有C22C14=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二:从6人中任选3人,不同的选法有C36=20(种),从6人中任选3人都是男生,不同的选法有C34=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 计数原理、概率、随机变量及其分布 第9讲A 组 基础关1.(2018·广西南宁模拟)设随机变量X ~N (5,σ2),若P (X >10-a )=0.4,则P (X >a )=( )A .0.6B .0.4C .0.3D .0.2答案 A解析 因为随机变量X ~N (5,σ2),所以P (X >5)=P (X <5).因为P (X >10-a )=0.4,所以P (X >a )=1-P (X <a )=1-0.4=0.6.故选A.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·浙江嘉兴适应性训练)随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .5答案 C解析 p =1-16-13=12,E (X )=0×16+2×12+a ×13=2⇒a =3,∴D (X )=(0-2)2×16+(2-2)2×12+(3-2)2×13=1.∴D (2X -3)=22D (X )=4.4.(2018· 潍坊模拟)我国成功申办2022年第24届冬季奥林匹克运动会,届时冬奥会的高山速降运动将给我们以速度与激情的完美展现,某选手的速度ξ服从正态分布(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.7,则他的速度超过120的概率为( )A .0.05B .0.1C .0.15D .0.2答案 C解析 由题意可得,μ=100,且P (80<ξ<120)=0.7,则P (ξ<80或ξ>120)=1-P (80<ξ<120)=1-0.7=0.3, ∴P (ξ>120)=12P (ξ<80或ξ>120)=0.15.则他的速度超过120的概率为0.15.5.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,则E (ξ)等于( )A.35B.815C.1415D .1答案 A解析 ξ服从超几何分布P (ξ=x )=C x 3C 2-x7C 210(x =0,1,2),则P (ξ=0)=C 27C 210=2145=715,P (ξ=1)=C 17C 13C 210=715,P (ξ=2)=C 23C 210=115.故E (ξ)=0×715+1×715+2×115=35.故选A.6.某学生在参加政、史、地三门课程的学业水平考试中,取得A 等级的概率分别为45,35,25,且三门课程的成绩是否取得A 等级相互独立.记ξ为该生取得A 等级的课程数,其分布列如下表所示,则数学期望E (ξ)的值为( )A.39125B.9C.95 D .1答案 C解析 ①学生在参加政、史、地三门课程的学业水平考试中,有两门取得A 等级有以下三种情况:政、史;政、地;地、史,∴P (ξ=2)=⎝ ⎛⎭⎪⎫1-45×35×25+45×⎝ ⎛⎭⎪⎫1-35×25+45×35×⎝ ⎛⎭⎪⎫1-25=58125. ②根据分布列的性质可得,P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3)=1-6125-58125-24125=37125. E (ξ)=0×6125+1×37125+2×58125+3×24125=225125=95,故选C. 7.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中记随机变量ξ=“|a -b |的取值”,则ξ的数学期望E (ξ)为( )A.89 B.35 C.25 D.13答案 A解析 由于对称轴在y 轴左侧,故-b2a <0,故a ,b 同号,基本事件有3×3×7×2=126,ξ的可能取值有0,1,2三种.P (ξ=0)=6×7126=13,P (ξ=1)=8×7126=49,P (ξ=2)=4×7126=29,故期望值为0×13+1×49+2×29=89,故选A. 8.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ,η,其分布列分别为:________. 答案 乙解析 甲、乙的均值分别为E (ξ)=0×0.4+1×0.3+2×0.2+3×0.1=1,E (η)=0×0.3+1×0.5+2×0.2=0.9,所以E (ξ)>E (η), 故乙的技术较好.9.设平面上的动点P (1,y )的纵坐标y 等可能地取-22,-3,0,3,22,用ξ表示点P 到坐标原点的距离,则随机变量ξ的数学期望E (ξ)=________.答案115解析 由题意,随机变量ξ的值分别为3,2,1,则随机变量ξ的分布列为所以随机变量ξE (ξ)=15×1+25×2+25×3=115.10.一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数为ξ,则ξ的期望值为________.答案 1解析 将四个小球放入四个盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4.其中,P (ξ=0)=9A 44=38,P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,所以E (ξ)=0×38+1×13+2×14×4×124=1.B 组 能力关1.(2018·浙江高考)设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ) A .D (ξ)减小 B .D (ξ)增大 C .D (ξ)先减小后增大 D .D (ξ)先增大后减小答案 D解析 由分布列可知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,所以方差D (ξ)=⎝ ⎛⎭⎪⎫0-p -122×1-p 2+⎝ ⎛⎭⎪⎫1-p -122×12+⎝ ⎛⎭⎪⎫2-p -122×p 2=-p 2+p +14,所以D (ξ)是关于p 的二次函数,开口向下,所以D (ξ)先增大后减小.2.(2018·潍坊二模)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a 元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费=基准保费×(1+与道路交通事故相联系的浮动比率),具体情况如下表:为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:类型A1A2A3A4A5A6数量2010103820 2若以这100则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )A.a元B.0.958a元C.0.957a元D.0.956a元答案 D解析设X为一辆该品牌车在第四年续保时的费用,由题意可知X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.由统计数据可知P(X=0.9a)=0.2,P(X=0.8a)=0.1,P(X=0.7a)=0.1,P(X=a)=0.38,P(X=1.1a)=0.2,P(X=1.3a)=0.02.所以X的分布列为X 0.9a 0.8a 0.7a a 1.1a 1.3aP 0.20.10.10.380.20.02E(X)=0.9a+1.3a×0.02=0.956a(元).3.(2018·吉林三模)某校高三年级学生一次数学诊断考试成绩(单位:分)X服从正态分布N(110,102),从中抽取一个同学的数学成绩ξ,记该同学的成绩90<ξ≤110为事件A,记该同学的成绩80<ξ≤100为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)=________.(结果用分数表示)附:X满足:P(μ-σ<X≤μ+σ)=0.6826;P(μ-2σ<X≤μ+2σ)=0.9544;P(μ-3σ<X≤μ+3σ)=0.9974.答案13594772解析 由题意,P (A )=0.4772,P (B )=12×(0.9974-0.6826)=0.1574,P (AB )=12×(0.9544-0.6826)=0.1359.∴P (B |A )=0.13590.4772=13594772.4.(2018·惠州二模)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =23,记该班级完成n 首背诵后的总得分为S n .(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解 (1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首.由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P =⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681.(2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23,∴P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081,P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081, P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181, ∴ξ的分布列为∴E (ξ)=10×4081+30×81+50×81=81.C 组 素养关1.(2017·全国名校名师原创联考)汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A 型车B型车(1)是A型车的概率;(2)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(3)①试写出A,B两种车型的出租天数的分布列及均值;②如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,建议应该购买哪一种车型,并说明你的理由.解(1)这辆汽车是A型车的概率约为P=3030+20=0.6,故这辆汽车是A型车的概率为0.6.(2)设“事件A i表示一辆A型车在一周内出租天数恰好为i天”,“事件B j表示一辆B 型车在一周内出租天数恰好为j天”,其中i,j=1,2,3, (7)则该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为P(A1B3+A2B2+A3B1)=P(A1B3)+P(A2B2)+P(A3B1)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)=5100×20100+10100×20100+30100×14100=9125,故该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为9 125.(3)①设X为A型车出租的天数,则X的分布列为设Y为E(X) 3.62,E(Y)=1×0.14+2×0.20+3×0.20+4×0.16+5×0.15+6×0.10+7×0.05=3.48.②一辆A类车型的出租车一个星期出租天数的平均值为3.62天,B类车型的出租车一个星期出租天数的平均值为3.48天,故选择A类型的出租车更加合理.2.(2018·安徽阜阳月考)从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.(1)估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率; (2)假设该市高一学生的体重X 服从正态分布N (57,σ2).①利用(1)的结论估计该高一某个学生体重介于54~57 kg 之间的概率;②从该市高一学生中随机抽取3人,记体重介于54~57 kg 之间的人数为Y ,利用(1)的结论,求Y 的分布列及E (Y ).解 (1)这400名学生中,体重超过60 kg 的频率为(0.04+0.01)×5=14,由此估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率为14.(2)①∵X ~N (57,σ2), 由(1)知P (X >60)=14,∴P (X <54)=14,∴P (54<X <60)=1-2×14=12,∴P (54<X <57)=12×12=14,即高一某个学生体重介于54~57 kg 之间的概率是14.②因为该市高一学生总体很大,所以从该市高一学生中随机抽取3人,可以视为独立重复试验,其中体重介于54~57 kg 之间的人数Y ~B ⎝ ⎛⎭⎪⎫3,14,P (Y =i )=C i 3⎝ ⎛⎭⎪⎫14i ⎝ ⎛⎭⎪⎫343-i,i =0,1,2,3. ∴Y 的分布列为Y 0 1 2 3 P276427649641641 4=3 4.E(Y)=3×。