真核生物基因表达调控

合集下载

真核生物基因表达的调控

真核生物基因表达的调控
(3)DNA甲基化导致染色质结构和DNA构象的改变
4、DNA甲基化与基因组印迹 (1)基因组印迹:来源于父母本的一对等位基因
表达不同(如X染色体失活) (2)基因组印迹的机制--DNA高度甲基化
5、DNA甲基化与X染色体的失活 X染色体DNA序列高度甲基化,基因被关闭
(1)与X染色体的失活有关的序列:
AP2
??
结合蛋白 (protein binding)
AP2 AP1
? SP1
? TF IID +
RNApol
BLE basal level element MRE metal response element AP activator protein
应答元件的特点:
1. 具有与启动子、增强子同样的一般特性. 2. 与起始点的位置不固定(多在-200以内;单个功能充分,
非洲爪蟾的卵母细胞 rDNA的拷贝数目: 500份 2×106份,可装配1012个核糖体 当胚胎期开始,增加的rDNA便失去功能并逐渐消失
二、基因丢失
有的生物在个体发育的早期在体细胞中要丢 失部分染色体,而在生殖细胞中保持全部的 基因组。
小麦瘿蚊(染色丢失了32条,只保留8条)
马蛔虫
三、基因重排(gene rearrangement)
的下游起作用。 4、与它结合的转录因子是GCN4和GAL4,识别位
点为 ATGACTCAT。
(四)绝缘子(Insulator)
阻止激活或失活效应的元件
举例:
1、当绝缘子位于增强子和启动子间时,能阻止 增强子激活启动子作用。
2、当绝缘子位于一个活化基因和异染色质之间 时,它保护基因免受由异染色质扩展造成的失 活效应影响。
Constant

真核生物的基因表达调控

真核生物的基因表达调控
并不就是所有得转录因子都能够与DNA结合, 也不就是所有得转录因子都就是激活基因得转 录。
转录因子得结构
绝大多数转录因子至少具有以下三种不同得结构域得 一种: (1)DNA结合结构域,直接与顺式作用元件结合得转录因子 都具有此结构域。转录因子通常使用此结构域之中得 特殊α-螺旋与顺式作用元件内得大沟接触,通过螺旋上 得特殊氨基酸残基得侧链基团与大沟中得特殊碱基对 之间得次级健(主要就是氢键)相互识别而产生特异性。 许多转录因子在此结构域上富含碱性氨基酸,这可能有 利于她和DNA骨架上带负电荷得磷酸根发生作用; (2)效应器结构域,这就是转录因子调节转录效率(激活或阻 遏)、产生效应得结构域; (3)多聚化结构域,此结构域得存在使得转录因子之间能够 组装成二聚体或多聚体(同源或异源)。下面将集中介绍 前两种结构域,特别就是DNA结合结构域。
在转录水平上得基因表达调控
真核生物得蛋白质基因得转录除了启动子、RNA聚合酶II和基础 转录因子以外,还需要其她顺式作用元件和反式作用因子得参与。 参与基因表达调控得主要顺式作用元件有:增强子、沉默子、绝缘 子和各种反应元件;参与基因表达调控得反式作用因子也称为转录 因子,她们包括激活蛋白、辅激活蛋白、阻遏蛋白和辅阻遏蛋白。 激活蛋白与增强子结合激活基因得表达,而阻遏蛋白与沉默子结合, 抑制基因得表达,某些转录因子既可以作为激活蛋白也可以作为阻 遏蛋白其作用,究竟就是起何种作用取决于被调节得基因。辅激活 蛋白缺乏DNA结合位点,但她们能够通过蛋白质与蛋白质得相互作 用而行使功能,作用方式包括:招募其她转录因子和携带修饰酶(如 激酶或乙酰基转移酶)到转录复合物而刺激激活蛋白得活性;辅阻 遏蛋白也缺乏DNA结合位点,但同样通过蛋白质与蛋白质得相互作 用而起作用,作用机理包括:掩盖激活蛋白得激活位点、作为负别构 效应物和携带去修饰酶去中和修饰酶(如磷酸酶或组蛋白去乙酰基 酶)得活性。

真核生物基因表达的调控

真核生物基因表达的调控

mRNA前体的加工、剪接、RNA编辑等。
1. 5’端加帽(cap)和3′端多聚腺苷酸化(polyA)的调控意义: 使mRNA稳定,在转录过程中不被降解;
2. mRNA的选择剪接(alternative splicing)对基因表达的调控:
外显子选择(optional exon)、内含子选择(optional intron)、互斥外显子、内部剪接位点; 3. mRNA 运输的控制。
2. 转录水平的调控
1. 顺式作用元件(cis-acting element) (1)启动子(promoter): TATA盒、CAAT盒和GC盒,3种类型;TATA盒决定转录起始的 位点,CAAT盒和GC盒决定RNA聚合酶转录基因的效率。 (2)增强子(enhancer):在真核细胞中通过启动子来增强转录的一种远端遗传性控制元件。 (3)沉默子(silencer ):负性调节元件,起阻遏作用。
(4)真核生物是多细胞的,在生物的个体发育过程中其基因表达在时间和空间上具有特异性,
即细胞特异性或组织特异性表达。
• 转录前水平调控(基因结构激活)(DNA structure level regulation)
• 转录水平调控(transcriptional regulation) • 转录后水平的调控(post transcriptional regulation) • 翻译水平调控(translational regulation) • 蛋白质加工水平的调控(regulation of protein maturation)
真核生物基因表达的调控
同原核生物一样,转录依然是真核生物基因表达调控的主要环节。但真核基因转录发生在
细胞核(线粒体基因的转录在线粒体内),翻译则多在胞浆,两个过程是分开的,因此其调控增

真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。

以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。

其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。

2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。

转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。

一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。

3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。

这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。

例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。

一些 RNA 编辑酶可以编辑 RNA,改变基因表达。

此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。

4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。

例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。

5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。

例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。

真核生物的基因表达调控

真核生物的基因表达调控

31
• 锌指结构域The zinc finger domain
锌指结构有2种形式: C2H2 zinc finger和C4 zinc finger •C2H2 zinc finger:由12个氨基酸组成的环,通过2个半胱氨 酸(C,Cys)和2个组氨酸(H,His)残基固定,这4个残基 与Zn2+在空间上形成一个四面体结构。 一般情况下需要3个 或更多的C2H2型锌指才能与DNA结合,如在TFIIA有9个重复, 转录因子SP1有3个重复。 •C4 zinc finger: Zn2+与4个半胱氨酸(C,Cys)结合,存 在于类固醇激素受体转录因子中。
限定于结构域之内。
26
反式作用因子的结构与功能
(1)概念:为DNA结合蛋白,核内蛋白,可使邻近基因开 放(正调控)或关闭(负调控)。
(2)通用或基本转录因子—RNA聚合酶结合启动子所必需 的一组蛋白因子。如:TFⅡA、 TFⅡB、 TFⅡD、 TFⅡE 等。 (3)特异转录因子( special transcription factors)—个别 基因转录所必需的转录因子.如:OCT-2:在淋巴细胞中特 异性表达,识别Ig基因的启动子和增强子。
(2) 动态模型(dynamic model):认为转录因子与组 蛋白处于动态竞争之中,基因转录前染色质必须经 历结构上的改变,即染色质重塑。在染色质重塑过 程中,某些转录因子可以在结合DNA的同时使核小 体解体。
6
组蛋白的乙酰化-去乙酰化 蛋白的乙酰化和去乙酰化是蛋白活性调节的一种 重要的形式,通过乙酰化或去乙酰化,改变了染色质 结构或是转录因子的活性,可以调节基因转录的活性。 组蛋白的乙酰化和去乙酰化能打开或关闭某些基因, 增强或抑制某些基因的表达。 组蛋白的8个亚基上有32个潜在的乙酰化位点。组 蛋白的乙酰化过程由组蛋白乙酰转移酶催化完成。

第十三章 真核生物基因表达调控

第十三章   真核生物基因表达调控

在染色质中的DNA潜在活性区域核小体组装较为
松弛且某些位点用DNaseⅠ处理时DNA极易断裂,
为高敏感位点(HS)
染色质上对DNaseⅠ的敏感区域有一定的界限 即使在一个基因内,各个区段对DNaseⅠ敏感
程度也不同,基因编码转录大范围表现一般 的敏感性,而在基因调控区的少数区域则显 示高度敏感性
真 核 生 物 基 因 表 达 调 控 七 个 层 次
染色质 DNA 染色质水平调控
DNA
转录调控
细胞核 细胞质
转录初产物 (RNA) 转录后加工调控
转运调控
mRNA
翻译调控
蛋白质前体
翻译后加工调控
mRNA降 解物
mRNA降解调 控
活性蛋白质
三、染色体水平上的调控
主要有:
染色质结构
DNA在染色体上的位臵

人的β-珠蛋白基因簇上、下游两个远侧区域就是 超敏感位点 LCR是一种远距离顺式调控元件(基因座调控区), 具有增强子和稳定活化染色质的功能,也是特异 性反式调控因子的结合位点
组蛋白的乙酰化能使染色质对DNaseⅠ和微球
菌核酸酶的敏感性显著增强
非组蛋白
与染色质松散结合,或者在某些条件下才能
被阻遏状态

有活性状态

被激活状态

异染色质化
— DNA结构高度致密,处于阻
遏状态,无转录活性

组成型异染色质:染色质在整个细胞周期一直
保持压缩状态,不具转录活性

兼性异染色质:只在一定的发育阶段或者生理
条件下由常染色质凝聚而成,无持久活性
组蛋白对基因活性的影响
是基因活性的重要调控因子,当与裸露DNA混

真核生物基因表达的调控

真核生物基因表达的调控

真核生物基因表达的调控09中西七2班 032009225 丁雪菲真核生物的基因表达可以随细胞内外环境条件的改变以及生长发育的不同阶段而在不同表达水平上加以精确的调节,这是真核生物基因表达调控的多层次性。

真核生物基因表达的调控可以发生在以下各个水平:1、染色质水平真核生物基因组DNA以致密的染色质形式存在,在DNA和染色质水平上发生的改变包括:染色质丢失(某些序列的删除)、基因扩增、基因重排、染色体DNA的修饰和异染色质化等。

发生在染色质水平的基因表达调控,也称转录前水平的调控。

真核生物中的基因组DNA与组蛋白形成复合物,组蛋白在细胞内含量丰富,几乎与DNA的含量相当。

真核生物中大多数编码蛋白质的基因为简单重复序列,但是组蛋白基因是中度重复序列,其中多数拷贝是完全相同的,有一些则差异较大。

导致组蛋白不均一性的另一个原因是组蛋白的修饰,最常见的组蛋白修饰是乙酰化,一般发生在N端氨基或者赖氨酸的ε-氨基上。

这种修饰可以影响染色质的结构和功能,调控基因活性。

2、转录起始水平组蛋白对基因转录活性的影响例子:爪蟾卵母细胞5SrRNA基因只在卵母细胞中转录实验证明:转录因子和组蛋白可以竞争基因的转录调控区,去过转录因子与调控区亲和力低,则基因的调控区与组蛋白形成核小体,并由H1将核小体交联成有序的紧密结构,抑制基因的转录活性;反之如果转录因子先与基因控制区结合,则不能与组蛋白形成核小体,基因具有转录活性。

3、转录后水平真核生物可以通过选择不同的5’-起始点或者3’-加尾位点产生不同的成熟mRNA,最终合成不同的蛋白;也可以进行组织特异性的选择性拼接,表达具有不同生物活性的蛋白。

3.1可变拼接mRNA前体可以选择不同的拼接途径产生不同的成熟mRNA,称为可变拼接。

例子:大鼠的免疫球蛋白μ重链基因大鼠的免疫球蛋白μ重链有两种存在形式:分泌型和膜结合型。

两种蛋白的区别在于羧基末端,膜结合型的羧基末端为疏水区,可以锚定在膜上;分泌型羧基端为亲水区,不能锚定在膜上而称为分泌型蛋白。

真核生物基因表达调控

真核生物基因表达调控
非编码区较多 多于编码序列(9:1)
含有大量重复序列
二、真核生物基因表达调控的特点 1、多层次 2、个体发育复杂 3、正性调节占主导 4、转录与翻译间隔进行
真核生物基因表达调控的种类:
根据其性质可分为两大类: 一是瞬时调控或称为可逆性调控,它相当于原核细胞 对环境条件变化所做出的反应。瞬时调控包括某种底 物或激素水平升降时,及细胞周期不同阶段中酶活性 和浓度的调节。 二是发育调控或称不可逆调控,是真核基因调控的精 髓部分,它决定了真核细胞生长、分化、发育的全部 进程。 根据基因调控在同一事件中发生的先后次序又可分为: DNA水平调控--转录水平调控--转录后水平调 控--翻译水平调控--蛋白质加工水平的调控
三. 活泼转录区染色质的结构变化:
1. 染色质的两种状态:
① 非活性状态【inactive (silent) state 】:如异染色质 ② 活化状态【active state 】:
活泼转录区对核酸酶的敏感性提高 正在转录的DNA甲基化程度降低; 活泼转录的染色质常常缺乏组蛋白H1,其他核心组蛋白 则被乙酰化或与泛素相结合而修饰 非常活泼的转录区,如许多真核生物的rRNA基因处,没 有核小体结构
cAMP的作用机理
PKA的激活 R 调节亚基 C 催化亚基
目录
蛋白激酶A
(cAMP-dependent protein kinase,PKA)
cAMP
R R
C C
R: 调节亚基 C: 催化亚基
PKA的作用
1) 对物质代谢的调节作用 通过对效应蛋白的磷酸化作用,实现其调 节功能。
肾上腺素 +受体
二 、转录因子:
(一)、转录因子的类型: 1. 转录基础因子:basal factor

真核生物的基因表达调控

真核生物的基因表达调控
1. 真核基因表达调控的特点 2. DNA染色体水平的调控
3. 真核基因转录水平的调控
4. 翻译水平的调节因素及其调节
真核生物基因表达的调控是当前分子 生物学中最活跃的研究领域之一。人们已 经能够利用许多过去不曾具备的先进仪器
设备等手段来研究许多分子生物学方面的
重大问题,使我们能从分子水平上认识许
④真核生物大都为多细胞生物,在个体发育 过程中发生细胞分化后,不同细胞的功能 不同,基因表达的情况也就不一样,某些 基因仅特异地在某种细胞中表达,称为细 胞特异性或组织特异性表达,因而具有调 控这种特异性表达的机制。
11.2 DNA染色体水平的调控 每个真核细胞所携带的基因数量及总基 。 因组中蕴藏的遗传信息量都大大高于原核生
物。
基因组 DNA 中基因之间存在许多重复序列、 基因内部有大量不编码蛋白质的序列、真核生 物的 DNA 常与蛋白质 ( 包括组蛋白和非组蛋白 ) 结合形成十分复杂的染色质结构、染色质构象 的变化、染色质中蛋白质的变化以及染色质对 DNA 酶敏感程度的不同等,都直接影响着真核 基因的表达调控。
真核细胞基因表达调控在DNA和染色 体水平上主要有以下几个方面: 染色质的结构、DNA在染色体上的位 置、基因拷贝数的变化、基因重组、基因 扩增、基因丢失、基因重排、DNA修饰等。
DNase I、II和微球菌核酸酶等非特 异性内切酶可用于检测核小体构象的变 化。染色质能被DNaseI降解为酸溶性小 片段,但由于核小体结构的保护,其对 酶的攻击仍具有一定的耐受性,敏感区 仅相当于染色质全长的1/10。
当用极低浓度的DNase I处理染色质时,
切割首先发生在少数特异性位点,其敏感hypersemitiveske)。
DNaseI超敏感位点(100~200bp)的存在是活 性染色质的重要特征,具有组织特异性,并 同基因的表达密切相关。 每个活跃表达的基因都有一个或几个超敏感 位点。大部分位于5′端启动子区域,少数 位于转录单位下游,为RNA聚合酶、转录因 子或其他调节蛋白提供结合位点。

真核生物基因表达调控

真核生物基因表达调控
真核生物基因表达调控,根据其性质可分为两大类。第一类是瞬时调控或称可逆调控 ,它相当于原核细胞对环境条件变化所作出的反应,包括某种底物或激素水平升降及 细胞周期不同阶段中酶活性和浓度的调节。第二类是发育调控或称不可逆调控,是真 核生物基因调控的精髓部分,它决定了真核细胞生长、分化、发育的全部进程
真核生物基因表达调控
真核生物基因表达调控
顺式作用元件
真核生物基因表达调控
反式作用因子
-
感谢您的莅临
著特征是能在 特定时间和特定细胞 中激活特定的基因, 从而实现"预定"的、 有序的、不可逆转的 分化、发育过程,并 使生物的组织和器官 在一定环境条件范围 内保持正常功能
真核生物基因表达调控
真核生物基因表达调控的特点如下
①基因表达有转录水平和转录后的调控,且以转录水平调控为主 ②在结构基因上游和下游甚至内部存在多种调控成分,并依靠特异蛋白因子与这些调控 成分结合而调控基因的转录 ③真核生物基因表达调控的环节多:转录与翻译间隔进行,个体发育复杂,具有调控基 因特异性表达的机制 ④真核生物活性染色体结构的变化对基因表达具有调控作用:DNA拓扑结构变化、DNA碱 基修饰变化、组蛋白变化等都具有调控作用 ⑤具有细胞特异性或组织特异性:在生长发育过程中,随着细胞需求的不断改变,各种 基因变得有活性或沉寂 ⑥正性调节占主导,且一个真核生物基因通常有多个调控序列,需要有多个激活物
真核生物基因表 达调控
-
1
基因表达调控
2
真核生物基因表达调控的特点
3
转录水平的调控
真核生物基因表达调控
基因表达调控
基因表达(gene expression)是基因经过转录、翻译,产生具有特异生物学功能的蛋 白质分子或RNA分子的过程。表达调控(gene regulation)是基因表达时受到内源及外 源信号调控的过程。基因表达调控大多数是对基因的转录和翻译速率的调节,从而导 致其编码产物的水平发生变化,进而影响其功能

第八章真核生物基因表达调控

第八章真核生物基因表达调控

hMLH1
缺损DNA错配修复,基因点突变
结肠癌[32]、胃癌[27]、子宫内膜瘤[33]、 卵巢癌[34]
MGMT
p53-相关基因,与DNA 修复及耐药性有关 肺癌[24]、脑瘤[35]
P15
细胞的过度激活与增殖
非白血性白血病[36]、淋巴瘤[37, 38]、鳞 状细胞癌、肺癌
RASSF1A
失去了对G1/S负调控抑制作用
③ The CTD may coordinate processing of RNA with transcription.
4. Many Transcriptional Activators
i.e. CAAT GC-box
Factors involved in gene expression include RNA polymerase and the basal apparatus, activators that bind directly to, co-activators that bind to both activators and the basal apparatus, and regulators that act on chromatin structure (chromatin remodeling complex).
1.马蛔虫受精卵的早期分裂 马蛔虫2n=2,但染色体上有多个着丝粒。第一 次卵裂是横裂,产生上下2个子细胞。第二次卵 裂时,一个子细胞仍进行横裂,保持完整的基 因组,而另一个子细胞却进行纵向分裂,丢失 部分染色体。
体细胞 生殖细胞
2.四膜虫: 大核: 营养核 可转录 小核: 生殖核 无转录活性 大核由小核发育而来,发育过程中有多处 染色质断裂,并删除约10%的基因组DNA, 被删除序列的存在可能抑制了基因的正常 表达。

真核生物基因的表达调控

真核生物基因的表达调控

细胞周期与基因表达
G1期
细胞在G1期主要合成与DNA 复制有关的蛋白质,如复制因 子等。
G2期
G2期细胞主要合成与分裂期有 关的蛋白质,如微管蛋白等。
细胞周期
真核生物细胞周期分为间期和 分裂期,不同时期基因表达DNA的复制,同 时合成组蛋白等与染色体组装 有关的蛋白质。
翻译和后翻译修饰
翻译
mRNA在细胞质中被核糖体读取并翻译成蛋白质。翻译的效率受到多种因素的 影响,包括mRNA的浓度、核糖体的数量、以及各种翻译调控因子。
后翻译修饰
新合成的蛋白质经常需要进行翻译后修饰,如磷酸化、乙酰化、糖基化等,以 增加其活性和稳定性。这些修饰通常由特定的酶催化,并受到细胞内环境和信 号通路的调节。
肾上腺素
02
03
甲状腺激素
肾上腺素可以激活糖原分解和脂 肪分解相关基因的表达,提高能 量供应。
甲状腺激素可以促进细胞代谢, 提高基础代谢率,同时还可以影 响神经系统的发育。
神经递质对基因表达的调控
多巴胺
01
多巴胺可以影响奖赏和愉悦相关基因的表达,与成瘾行为和心
理健康有关。
5-羟色胺
02
5-羟色胺可以影响情绪和行为,与抑郁症和精神分裂症等精神
染色质重塑
染色质重塑是基因表达调控的另一重要机制,通过改变染色质的结构和组成,影响转录因 子的结合和RNA聚合酶的活性。
microRNA的调节
microRNA通过与mRNA结合,调控靶基因的表达水平,参与多种生物学过程,如发育、 代谢和应激反应等。
02
转录水平的调控
转录因子
1 2 3
转录因子概述
葡萄糖
葡萄糖水平可以影响胰岛素的分 泌,进而影响与胰岛素相关的基 因表达。

医学分子生物学第五章 真核基因表达调控

医学分子生物学第五章 真核基因表达调控
控,发育调控称为不可逆性调控。 3、染色质结构变化影响转录效率。 4、转录调控以正调控为主。 5、调控序列多并且可以远离转录区 60、0:28调节蛋白种类繁多,调节机制复杂
DNA ① 转录调控
hnRNA
② 加工调控
mRNA
细胞核
③ 转运调控 mRNA
细胞质
翻译调控 ④
⑤ mபைடு நூலகம்NA降解调控
蛋白质 失活mRNA
甲基化的重建决定了细胞分化的命运,形 成的印记,在体细胞分裂中稳定遗传。
胰岛素样生长因子2( IGF2) 存在基因组印记 的现象, IGF2能促进细胞的增殖、分化以及 个体的生长发育并抑制细胞凋亡 。IGF2基因 组印记与多种肿瘤的发生、发展相关 。 来源于父方的基因Igf2对胚胎的贡献是促进胎 儿生长,加速其发育,促进胎盘发育为胎儿提 供更多营养。父系表达基因tgf2的缺失导致胎 儿在宫内生长迟缓。
四、染色质结构与基因表达调控: 真核细胞中基因转录的模板是染色质
而不是裸露的DNA,因此染色质呈疏松 或紧密结构,即是否处于活化状态是决 定RNA聚合酶能否有效行使转录功能的 关键。
00:28
四、染色质结构与基因表达调控:
活性染色质(常染色质) 按功能状态的不同可将染色质分为活性染色质和非 活性染色质,所谓活性染色质是指具有转录活性的 染色质;非活性染色质是指没有转录活性的染色质。
00:28
③大多为重复序列,一般长约50bp,适合与某 些蛋白因子结合。其内部常含有一个核心序 列:(G)TGGA/TA/TA/T(G),该序列是 产生增强效应时所必需的;
④ 增强效应有严密的组织和细胞特异性,说明增 强子只有与特定的蛋白质(转录因子)相互作用 才能发挥其功能;
00:28

分子遗传学4章真核生物基因的表达调控

分子遗传学4章真核生物基因的表达调控

基因剪接调控
预mRNA剪接
预mRNA剪接是基因表达的重 要调控过程,通过剪接酶体复 合物对转录产物进行剪接去除 内含子。
可变剪接
可变剪接是在剪接过程中选择 性地包含或排除外显子,产生 不同的mRNA剪接异构体,从 而调控基因表达。
RNA编辑调控
RNA编辑是通过改变RNA分子 中的碱基序列,例如腺嘌呤去 氨酶(ADAR)对腺嘌呤进行 去氨基反应。
分子遗传学4章真核生物基因 的表达调控
本章将探讨真核生物基因的表达调控机制,从转录调控到表观遗传调控,深 入了解生物基因活性的细节。
分子遗传学简介
分子遗传学研究基因如何传递、表达和调控。它涉及DNA、RNA和蛋白质的 相互作用,以及遗传信息的复制和遗传变异。
真核生物基因的表达调控概述
真核生物的基因表达调控机制非常复杂而多样化,包括转录调控、基因剪接调控、RNA后转录调控、表 观遗传调控和激素调控。
RNA后转录调控
非编码RNA
非编码RNA在转录后起重要作用,如长链非 编码RNA(lncRNA)和小核RNA (snRNA)。
RNA降解和稳定性
RNA的降解和稳定性受多种因素调控,确保 RNA分子在合适的时机和地点进行降解和稳 定。
RNA剪切调控
RNA剪切调控是RNA后转录调控的一种重要 机制,通过调整可剪切RNA的相对剪切位点 来调控基因表达。
RNA编辑调整
通过RNA编辑,已转录的RNA分子的核苷酸 序列可以发生改变,扩大RNA的多样性。
表观遗传调控
表观遗传调控通过改变染色质结构和DNA甲基化状态,调节基因的可及性和 表达。
激素调控
激素在基因表达调控中起着至关重要的作用,通过与核受体结合来调节基因 表达。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chromatin
epigenetic control
Protein degradation RNA silencing
一般而言的基因表达调控范畴
二、基因表达的时间性及空间性
(一)时间特异性
按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间 特异性(temporal specificity)。
第八章
真核基因表达调控
Eukaryotic Gene Expression and Regulation
本章主要内容
1.基因表达与调控的基本概念与原理
2.转录水平的调控(transcriptional regulation):
DNA level (Genetic) Chromatin level (Epigenetic)
某些基因在一个个体的几乎所有细胞中持 续表达,通常被称为管家基因(housekeeping gene)。
Housekeeping genes
– genes for essential cellular structures and metabolic pathways (e.g. rRNA, actin, tubulin)
(二)诱导和阻遏表达
在特定环境信号刺激下,相应的基因被激 活,基因表达产物增加,这种基因称为可诱导 基因 (inducible genes)。
如果基因对环境信号应答是被抑制,这种 基因是可阻遏基因 (repressible genes)。
基因表达调控大多数是对这些基因的转 录和翻译速率的调节,从而导致其编码产 物的水平发生改变,影响其功能。
多细胞生物基因表达的时间特异性又称阶 段特异性(stage specificity)。
人体发育过程中不同类型β-珠蛋白长全过程,某种基因产物在个体 按不同组织空间顺序出现,称之为基因表达的 空间特异性(spatial specificity)。
基因表达伴随时间顺序所表现出的这种分 布差异,实际上是由细胞在器官的分布决定的, 所以空间特异性又称细胞或组织特异性(cell or tissue specificity)。
3.转录后水平的调控(post-transcriptional regulation):
RNA interference (RNAi) Protein degradation (Ubiquitin/proteasome)
第一节 基本概念与原理
Basic Concepts and Principles
– usually expressed at high level – the level of their gene expression may vary
这类基因表达又称为组成性基因表达 (constitutive gene expression)。
rRNA, actin, tubulin are commonly used as loading control in RT-PCR or Northern blot
单个基因
中心法则
单个细胞
Genome (cell’s repertoire of DNA)
Transcriptome (cell’s repertoire of RNA transcripts)
Proteome (cell’s repertoire of proteins)
一、基因表达的概念
•基因组(genome) 一个细胞或病毒所携带的全部遗传信息或整 套基因。
四、基因表达调控的生物学意义
(一)维持细胞增殖、分化 (二)维持个体生长、发育 (三)适应环境变化
第九、十章(基因与疾病、基因与发育)将要讲到
一般而言,基因表达调控主要是发生在基因转录 水平上的调节,即:mRNA合成的多少。
• Spatial specificity: But they are not all turned on in every cell or tissue
• Temporal specificity: Each cell of an organism expresses a distinctive subset of genes at different time or developmental stage
• Tight regulation: During development different cells express different sets of genes in a precisely regulated fashion
三、基因表达的方式
按对刺激的反应性,基因表达的方式分为: (一)组成性表达 (constitutive expression)
BARD1 is expressed specifically in the apical domains of Arabidopsis inflorescence (A), ovules (B), anthers (C), and embryos (D).
In suit hybridization A, B, C, D: antisense BARD1 probe; E: sense BARD1 probe as a negative control.
(朱玉贤第五章课件)
四种母源影响基因的 mRNA和蛋白沿果蝇 胚胎前-后轴分布的
浓度变化图
第十章(基因和发育)
BICOID
NANOS mRNA protein
Facts
• Identical genome: Virtually every cell in an organism contains a complete set of genes
•基因表达(gene expression) 基因经过转录、翻译,产生具有特异生物学功 能的蛋白质分子或RNA分子的过程。
•基因表达调控(gene regulation, or regulation of gene expression)
基因表达是受内源及外源信号调控的。
Regulation of Gene Expression
相关文档
最新文档